Articles
For a new nickel-based superalloy VZhL22 with 2 % by weight of Re, based on a complete factor experiment of the type 2n + 2n + 1 (where n=3 is the number of variable factors ‒ technological parameters of casting) data on the effect of the main technological parameters of directional solidification on the yield of suitable single-crystal castings, the angular deviation of the axial crystallographic orientation of a single-crystal, angular disorientation of crystallites, volume fractions of casting pores and eutectic γ'-phase secretions, and the parameter of the dendritic cell in the alloy castings were obtained. The results are summarized in the form of regression models.
2. Ni-base superalloy and gas turbine component using the same: pat. US 2010/0047110 A1; appl. 09.08.09; publ. 25.02.10.
3. Cast heat-resistant nickel-based alloy and products made from it: pat. 2530932 С1 Rus. Federation; appl. 29.10.13; publ. 20.10.14.
4. Kablov E.N., Petrushin N.V., Parfenovich P.I. Design of Cast Heat-Resistant Nickel Alloys with Polycrystalline Structure. Metallovedenie i termicheskaya obrabotka metallov, 2018, no. 2 (752), pp. 47–55.
5. Cast Blades of Gas Turbine Engines. Alloys, Technologies, Coatings. 2nd ed. Ed. E.N. Kablov. Moscow: Nauka, 2006, 632 p.
6. Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Single Crystals of Heat-Resistant Nickel Alloys. Moscow: Mashinostroenie, 1997, 336 p.
7. Tolorayya V.N., Kablov E.N., Demonis I.M. Technology for producing single-crystal castings of gas turbine engine turbine blades of a given crystallographic orientation from rhenium-containing heat-resistant alloys. Casting heat-resistant alloys. Effect of S.T. Kishkin. Moscow: Nauka, 2006, pp. 206–219.
8. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from superalloys with directional and single-crystal structure. Trudy VIAM, 2023, no. 7 (125), pp. 3–14. Available at: http://www.viam-works.ru (accessed: April 15, 2025). DOI: 10.18577/2307-6046-2023-0-7-3-14.
9. Tolorayya V.N., Ostroukhova G.N. Obtaining single-crystal [001] seeds from Ni–W system alloys by directional solidification. Voprosy materialovedeniya, 2021, no. 2 (106), pp. 55–65.
10. Toloraya V.N., Ostroukhova G.A. Production of single-crystal castings with a given axial and azimuthal orientations. Trudy VIAM, 2022, no. 8 (114), pp. 3–13. Available at: http://www.viam-works.ru (accessed: April 23, 2025). DOI: 10.18577/2307-6046-2022-0-8-3-13.
11. Petrushin N.V., Elyutin E.S., Nazarkin R.M. еt al. Segregation of alloying elements in directionally solidified Re-Ru-containing Ni-based superalloy. Inorganic Materials: Applied Research, 2016, vol. 7, no. 6, pp. 824–831. DOI: 10.1134/S2075113316060149.
12. Kablov E.N., Evgenov A.G., Petrushin N.V., Bakradze M.M., Nerush S.V., Shurtakov S.V., Mazalov I.S. Selective laser melting: materials and technologies for the synthesis of resource parts: textbook manual. Moscow: NRC «Kurchatov Institute» – VIAM, 2024, 504 p.
13. Epishin A.I., Link T., Nolze G. et al. Diffusion processes in multicomponent nickel base superalloy-nickel system. The Physics of Metals and Metallography, 2014, vol. 115, no. 1, pp. 21–29. DOI: 10.1134/S0031918X14010050.
14. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), pp. 3–22. Available at: http://www.journal.viam.ru (accessed: April 30, 2025). DOI: 10.18577/2713-0193-2023-0-2-3-22.
15. Huang M., Zhu J. An overview of rhenium effect in single-crystal superalloys. Rare Metals, 2016, vol. 35, is. 2, pp. 127–139. DOI: 10.1007/s12598-015-0597-z.
16. Lilensten L., Kürnsteiner P., Mianroodi J.R. et al. Segregation of solutes at dislocations: A new alloy design parameter for advanced superalloys. Superalloys 2020. Pennsylvania: Minerals, Metals & Materials Society, 2020, pp. 41–51. DOI: 10.1007/978-3-030-51834-9_4.
17. Kablov E.N., Gerasimov V.V., Dubrovsky A.V. Technological aspects of controlling the structure of alloys during directional solidification. Liteynoe proizvodstvo, 1994, no. 4, pp. 7–8.
18. Svetlov I.L., Kuleshova E.A., Monastyrsky V.P. et al. The influence of directional solidification on the phase composition and dispersion of the structure of nickel alloys. Izvestiya AN SSSR. Ser.: Metally, 1999, no. 1, pp. 86–93.
19. Kolyadov E.V., Visik E.M., Gerasimov V.V., Bityutskaya O.N. Features of the morphology of the structure of nickel superalloy depending on the values of the axial and radial temperature gradients at the crystallization front. Aviation materials and technologies, 2024, no. 2 (75), pp. 15–24. Available at: http://www.journal.viam.ru (accessed: April 22, 2025). DOI: 10.18577/2713-0193-2024-0-2-15-24.
20. Visik E.M., Gerasimov V.V., Kolyadov E.V., Kuzmina N.A. Influence of casting process modes on the structural parameters of single crystals of new heat-resistant alloys. Metallurgiya mashinostroeniya, 2016, no. 5, pp. 27–31.
21. Gerasimov V.V., Demonis I.M., Kablov E.N., Shalin R.E. Single-crystal casting of heat-resistant nickel alloys. Aviation materials at the turn of the 20th–21st centuries. Moscow: VIAM, 1994, pp. 285–296.
22. Pollock T.M., Murphy W.H. Grain defect formation directional solidification nickel base single crystals. Superalloys 1992. Pennsylvania: Minerals, Metals & Materials Society, 1992, pp. 123‒134.
23. Miller J.D., Pollock T.M. Development and application of optimization protocol for directional solidification: integration fundamental theory, experimentation and modeling tools. Superalloys 2012. Pennsylvania: Minerals, Metals & Materials Society, 2012, pp. 653−662.
24. Miller J.D., Chaput K.J., Lee D.S., Uchic M.D. Application and validation of directional solidification model dendritic morphology criterion for complex single crystal castings. Superalloys 2016. Pennsylvania: Minerals, Metals & Materials Society, 2016, pp. 229−236.
25. Kablov E.N., Tolorayya V.N., Ostroukhova G.N. Growth structure of single-crystal castings from nickel-based heat-resistant alloys. Aviatsionnye materialy i tekhnologii, 2004, is.: High-rhenium heat-resistant alloys, technology and equipment for the production of alloys and casting of single-crystal gas turbine engine blades, pp. 107–131.
26. Kuzmina N.A. Growth structural defects in single crystals of nickel heat-resistant alloys. Aviation materials and technologies, 2022, no. 3 (68), pp. 15–26. Available at: http://www.journal.viam.ru (accessed: April 22, 2025). DOI: 10.18577/2713-0193-2022-0-3-15-26.
27. Sidorov V.V., Kablov D.E., Rigin V.E. Metallurgy of Cast Heat-Resistant Alloys: Technology and Equipment. Moscow: VIAM, 2014, 368 p.
28. Zadgenidze I.G. Planning an Experiment for Studying Multicomponent Systems. Moscow: Nauka, 1976, 390 p.
29. Vinarsky M.S., Lurye M.V. Planning an Experiment in Technological Research. Kyiv: Tekhnika, 1975, 168 p.
30. Gerasimov V.V., Kolyadov E.V. Technical Characteristics and Technological Capabilities of UVNK-9A and VIP-NK Units for Producing Single-Crystal Castings from Heat-Resistant Alloys. Liteyshchik Rossii, 2012, no. 11, pp. 33–37.
31. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis. Moscow: MISiS, 2002, 358 p.
32. Iskhodzhanova I.V., Bondarenko Yu.A., Lapteva M.A. Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images. Trudy VIAM, 2015, no. 12, pp. 46–54. Available at: http://www.viam-works.ru (accessed: May 08, 2025). DOI: 10.18577/2307-6046-2015-0-12-6-6.
33. Starova E.N., Dolzhansky Yu.M., Sibileva L.I. et al. Processing and analysis of experimental data on the Nairi-2 computer: a methodological guide. Moscow: ONTI VIAM, 1979, 80 p.
34. Gaiduk S.V., Kononov V.V., Petrik I.A., Nalesny N.B. Influence of crystallization rate and heat treatment on the structure and properties of single crystals of heat-resistant nickel alloys. Vestnik dvigatelestroyeniya, 2005, no. 1, pp. 150–153.
35. Kablov E.N., Orlov M.R., Ospennikova O.G. Mechanisms of formation of porosity in single crystals turbine blades and kinetics of its elimination at hot isostatic pressing. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 117–129
During the operation of turbojet engines, the pipelines of the external systems are subject to fatigue failure caused by fretting corrosion. The article presents the results of developing a model describing the change in the resistance of 8×1 mm pipes made of 12X18H10T steel to fretting corrosion after various types of processing. It is shown that maximum resistance to fretting corrosion is achieved at: microhardness HV0,025 = 2510 МPа, modified layer depth greater than 44 microns, average compressive residual stresses greater than 208,5 MPa and roughness, Ra less than 1,18 microns.
2. Petukhov A.N. Fretting corrosion and fretting fatigue in low-mobility joints. Vestnik SGAU im. akademika S.P. Koroleva, 2006, no. 2-1 (10), pp. 115–120.
3. Muboyadzhyan S.A., Konnova V.I., Gorlov D.S., Alexandrov D.A. The study of steel EP866Sh fretting resistance. Trudy VIAM, 2015, no. 7, pp. 3–7. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2015-0-7-1-1.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik RAN, 2020, vol. 90, no. 4, pp. 331–334.
5. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
6. Kablov E.N. Trends and Guidelines for Innovative Development of Russia: Collection of Scientific and Information Materials; 3rd ed., rev. and enl. Moscow: VIAM, 2015, 720 p.
7. Maksarov V.V., Krasnyy V.A. Friction Mechanisms of Thin-Film Coatings under Fretting Corrosion Conditions. Nauchno-tekhnicheskiye vedomosti SpbGPU, 2015, no. 3 (226). pp. 111–120.
8. Lyubimov R.V. Forecasting and Technological Support of Performance Properties of GTE Parts Operating under Fretting Corrosion Conditions: thesis, Cand. Sc. (Tech.). Rybinsk, 2000, 202 p.
9. Terentyev V.F., Korableva S.A. Metal Fatigue. Moscow: Nauka, 2015, 484 p.
10. Ostrovsky M.S. Fretting as a Cause of Reduced Reliability of Mining Machines. Gornyy informatsionno-analiticheskiy byulleten, 2011, no. S3, pp. 315–331.
11. Khaing Min, Petukhov A.N., Pavlov Yu.I. Ensuring the Load-Bearing Capacity of Lock Joints of Aircraft Engine Compressor Blades under the Effect of Fretting Corrosion. Aviatsionnaya promyshlennost, 2012, no. 1, p. 12.
12. Ivanova V.S., Gurevich S.E., Kopyev I.M. et al. Fatigue and Brittleness of Metallic Materials. Moscow: Nauka, 1968, 219 p.
13. Aslanyan I.R., Semenov V.I., Shuster L.Sh. Determination of factors significantly influencing fretting wear of electrolytic NiP coatings. Vestnik UGATU, 2012, vol. 16, no. 1 (46), pp. 57–61.
14. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Effect of silicon carbide SiC additives on wear of electrolytic NiP coatings. Trenie i iznos, 2010, vol. 31, no. 5, pp. 353–361.
15. Zagorskikh O.A., Laptev A.B. Features of fretting corrosion of stainless austenitic steels (review). Actual problems of corrosion protection of oil and gas equipment and pipelines (CORROSION–2023): collection of materials of the I Int. scientific and technical conf. Ufa, 2023, pp. 40–42.
16. Aslanian I.R., Schuster L.Sh. Wear of electrolytic NiP coatings at fretting. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 38–43. DOI: 10.18577/2071-9140-2015-0-3-38-43.
17. Aslanyan I.R. Improving the efficiency of wear-resistant electrolytic coatings: thesis abstract, Dr. Sc. (Tech.). Ufa, 2014, 39 p.
18. Aslanyan I.R., Krioni N.K., Shuster L.Sh. Tribological characteristics of electrolytic coatings under various friction conditions. Vestnik UGATU, 2013, vol. 17, no. 8 (61), pp. 24–28.
19. Dokshanin S.G. Influence of lubricating compositions with ultradispersed additives on fretting fatigue processes. Vestnik SIBGAU, 2014, no. 3 (55), pp. 198–201.
20. Shevelya V.V., Oleksandrenko V.P. Rheological aspects of the influence of fretting on stress-corrosion cracking of steel. Vestnik dvigatelestroyeniya, 2006, no. 1, pp. 95–100.
21. Zabirov F.Sh., Mansurov R.R. On the Negative Impact of Fretting Corrosion in a Rubber-Metal Bearing of a Turbodrill Spindle. Alleya nauki, 2017, vol. 2, no. 9, pp. 412–414.
22. Petukhov A.N. Fretting and Fretting Fatigue of Structural Materials and Components. Aviatsionnaya promyshlennost, 2014, no. 4, pp. 5–50.
23. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), pp. 30–50. Available at: http://www.journal.viam.ru (accessed: April 07, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
24. Pogonyshev V.A., Tishchenko S.V. Method for Increasing Fretting Resistance of Machine Parts by Improving Their Damping Properties. Current Trends in Science, Technology, and Education: Coll. of Scientific Papers Based on the Proceedings of the III Int. Res. and Pract. Conf.: in 2 Parts (March 31, 2018, Smolensk). Smolensk: NOVALENSO, 2018, part 2, pp. 77–80.
25. Smyslov A.M., Selivanov K.S. Development and Research of Technological Methods for Improving Fretting Resistance of Titanium Alloy Working Blades. Vestnik UGATU, 2007, vol. 9, no. 1 (19), pp. 77–83.
26. Fridman Z.G., Veitsman M.G. The influence of mechanical and thermal treatment on the cyclic strength of sheets of 1X18N9 steel. Fatigue of metals and alloys: coll. of materials of the 5th Conference on metal fatigue. Moscow: Nauka, 1971, p. 123.
27. Fouvry S., Kapsa P., Vincent L. Quantification of fretting damage. Wear, 1996, vol. 200, pp. 186–205. DOI: 10.1016/j.wear.2009.09.012.
28. Loto R.T. Assessment of pitting corrosion of austenitic stainless steel type 304 in an acid-chloride environment. Journal of Materials and Environmental Sciences, 2013, vol. 4 (4), pp. 448–459.
29. Dabrowski J.R., Klekotka M., Sidun J. Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2014, vol. 16, pp. 441–446. DOI: 10.3390/ma13071561.
30. Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 1. Investigation of corrosion-mechanical destruction of steels. Trudy VIAM, 2022, no. 4 (110), pp. 118–130. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2022-0-4-118-130.
31. Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R., Gorbovets M.A. Methods of in-vestigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 2. Formation of passive films and hydrogen sulfide cracking of steels. Trudy VIAM, 2022, no. 5 (111), pp. 138–146. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2022-0-5-138-146.
32. Zagorskikh O.A., Laptev A.B. Prevention of fretting corrosion of austenitic alloy steel by forming a hardened layer on the surface. Bulletin PNIPU. Ser.: Mechanical Engineering, Materials Science, 2024, vol. 26, no. 4, pp. 5–18. DOI: 10.15593/2224-9877/2024.4.01.
The article presents the results of analysis of the influence of selective laser melting (SLM) technological parameters on the formation of structure, level of porosity and on the complex of mechanical properties of samples made of high-nitrogen corrosion-resistant bearing steel. It was found that exceeding the optimal energy values in the SLM process leads to significant changes in the resulting microstructure of the material. Excessive increase in specific energy density causes overheating of the melt and the associated negative phenomena, including gas release and defect formation, while insufficient energy exposure leads to incomplete fusion of the powder material and the formation of a heterogeneous structure.
2. Heat-resistant bearing steel: pat. 2447183 Rus. Federation; appl. 05.04.11; publ. 10.04.12.
3. High-strength corrosion-resistant steel: pat. 2724766 Rus. Federation; appl. 23.05.19; publ. 25.06.20.
4. Ahmed N., Barsoum I., Haidemenopoulos G., Al-Rub R.A. Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel : A review. Journal of Manufacturing Processes, 2022, vol. 75, pp. 415–434.
5. Rashev Ts.V. High-nitrogen steels. Pressure metallurgy. Sofia: Prof. Marin Drinov, 1995, 272 p.
6. Berns H., Escher C., Streich W.D. Martensitic high nitrogen steel for applications at elevated temperature. Materials science forum, 1999, vol. 318, рр. 443–448.
7. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Effect of the Reduction during Cold Rolling on the Phase Composition, Texture, and Residual Stresses in 20Kh15AN3MD2 Steel. Russian Metallurgy (Metally), 2023, vol. 2023, no. 11, pp. 1598–1605.
8. Degtyarev S.A., Leontyev M.K., Popov V.V. To determine the compliance of the «squirrel wheel» in the rotor supports of aircraft gas turbine engines. Vestnik SGAU im. akademika S.P. Koroleva (NIU), 2014, no. 4 (46), pp. 52–60.
9. Belousov A.I., Balyakin V.B., Novikov D.K. Theory and design of hydrodynamic dampers for rotor supports. Ed. A.I. Belousov. Samara: SNTs RAS, 2002, 335 p.
10. Gavriljuk V.G., Berns H. High nitrogen steels: structure, properties, manufacture, applications. Springer Science & Business Media, 1999, 364 p.
11. Agbalyan S.G., Simonyan V.A. Review of features, production methods and prospects for the use of maraging steels. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal, 2022, no. 8, pp. 1–12.
12. Tavaresa S.S.M., Abreub H.F.G., Netoc J.M. et al. A thermomagnetic study of the martensiteaustenite phase transition in the maraging 350 steel. Journal of Alloys and Compounds, 2003, vol. 358, pp. 152–156.
13. Korobova E.N., Sevalnev G.S., Gromov V.I., Leonov A.V. Steels for the manufacture of roller bearings for special purposes (review). Trudy VIAM, 2021, no. 11 (105), pp. 3–11. Available at: http://www.viam-works.ru (accessed: October 24, 2024). DOI: 10.18577/2307-6046-2021-0-10-3-11.
14. Perkas M.D. Structure, properties and areas of application of high-strength maraging steels. Metallovedenie i termicheskaya obrabotka metallov, 1985, no. 5, pp. 23–33.
15. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva O.A. Development and research of high-strength corrosion-resistant steel for bearing parts. Metallurg, 2019, no. 11, pp. 39–44.
16. Cronidur 30 Stainless Steel. Available at: https://www.progressivealloy.com/cronidur-30-stainless-steel (accessed: October 24, 2024).
17. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), pр. 15–29. Available at: http://www.journal.viam.ru (accessed: October 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
18. Pei Y.T., de Hosson J.T.M. Functionally graded materials produced by laser cladding. Acta Materialia, 2000, vol. 48, pp. 2617−2624.
19. Sevalnev G.S., Nefedkin D.Yu., Dulnev K.V., Skorikova M.A. Study of the characteristics of maraging steel under tribotechnical loading. Trudy VIAM, 2024, no. 10 (140), pp. 3–12. Available at: http://www.viam-works.ru (accessed: November 22, 2024). DOI: 10.18577/2307-6046-2024-0-10-3-12.
20. Svyazhin A.G., Kaputkina L.M. Nitrogen and high-nitrogen steels. Industrial technologies and properties. Izvestiya vuzov. Chernaya metallurgiya, 2019, no. 62 (3), pp. 173–187. DOI: 10.17073/0368-0797-2019-3-173-187.
21. Svyazhin A.G., Kaputkina L.M. Nitrogen-alloyed steels. Izvestiya vuzov. Chernaya metallurgiya, 2005, no. 10, pp. 36–46.
22. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Trudy VIAM, 2019, no. 3 (75), pр. 3–13. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2019-0-3-3-13.
The article analyzes a number of works describing the current state of manufacturing products by pressure welding from various structural materials used in the aviation industry. Based on this analysis, the necessary preparation stages of welded blanks were formed to obtain the required weld quality. The level of properties and the structure of the resulting joints satisfactorily meet the requirements for both titanium and aluminum alloys, as well as heat-resistant nickel alloys.
2. Gelman A.S. Fundamentals of Pressure Welding. Moscow: Mashinostroenie, 1970, 311 p.
3. Akhunova A.Kh., Galieva E.V., Povarova K.B., Bazyleva O.A., Valitov V.A., Dmitriev S.V., Drozdov A.A., Arginbaeva E.G. Modeling of Pressure Welding of Dissimilar Cast and Wrought Nickel-Based Alloys under Bulk Plastic Flow Conditions. Fundamentalnye problemy sovremennogo materialovedeniya, 2016, vol. 13, no. 1, pp. 131–135.
4. Galieva E.V., Povarova K.B., Drozdov A.A., Valitov V.A. Structure and properties of solid-phase joints of deformable nickel alloy EP975 and single-crystal intermetallic alloy VKNA-25 obtained by pressure welding with a degree of deformation of 24% under conditions of superplasticity of the EP975 alloy. Metally, 2018, no. 6, pp. 64–72.
5. Valitov V.A., Povarova K.B., Bazyleva O.A., Drozdov A.A., Ovsepyan S.V., Galieva E.V. Research of solid compound formation during thermal deformation effect on intermetallic Ni3Al-alloy with a heat-resistant alloy EP975 and influence on the physical, mechanical and performance properties. Materials Science Forum, 2016, vol. 838–839, pp. 523–527. DOI: 10.4028/www.scientific.net/MSF.838-839.523.
6. Krokhina V.A., Putyrskiy S.V., Gribkov M.S. Analysis of structure and mechanical properties of welded joint from titanium alloy VT22M. Aviation materials and technologies, 2022, no. 2 (67), pp. 52–62. Available at: http://www.journal.viam.ru (accessed: May 05, 2025). DOI: 10.18577/2713-0193-2022-0-2-52-62.
7. Kablov E.N. Quality control of materials – a guarantee of safe operation of aviation equipment. Aviavionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
8. Povarova K.B., Valitov V.A., Drozdov A.A., Bazyleva O.A., Galieva E.V., Arginbaeva E.G. Formation of gradient structures in the joint zone of a deformable nickel and single-crystal intermetallic alloy during thermodiffusion pressure welding and heat treatment. Metally, 2018, no. 1, pp. 48–57.
9. Gabb T.P., Kantzos P.T., Telesamn J. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy. International journal of fatigue, 2011, vol. 33, no. 3, pp. 414–426.
10. Smarsly W. Aero Engine Materials – MTU Aero Engines. Available at: http://www.mtu.de/en/technologies/engineering_news (accessed: December 10, 2024).
11. Perepelkin A.A., Matasov I.I., Platonov V.I. Experimental studies of the operation of isothermal pressure welding of high-strength materials. Izvestiya TulGU. Ser.: Tekhnicheskiye nauki, 2015, vol. 1, no. 8, pp. 154–158.
12. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), pp. 23–35. Available at: http://www.journal.viam.ru (accessed: May 05, 2025). DOI: 10.18577/2713-0193-2023-0-2-23-35.
13. Method for manufacturing composite blanks of the «disk-disk» and «disk-shaft» types from heat-resistant titanium and nickel alloys: pat. RU 2610658 C2 Rus. Federation; appl. 05.08.15; publ. 14.02.17.
14. Naprienko S.A., Erak A.D., Afanasev-Khodykin A.N., Davidenko A.N. Structure variation and properties of soldered joints ВПр16 under various temperature exposures. Aviation materials and technologies, 2023, no. 1 (70), pp. 115–125. Available at: http://www.journal.viam.ru (accessed: May 05, 2025). DOI: 10.18577/2713-0193-2023-0-1-115-125.
15. Galieva E.V., Klassma E.Y., Valitov V.A. Effect of the pressure welding scheme on the microstructure of solid-state joints from nickel-based superalloys ek61 and ep975 with different phase compositions. Materials Technologies Design, 2024, vol. 6, no. 2 (17), pp. 59–66. DOI: 10.54708/26587572_2024_621759.
The article presents the mechanical properties of VT6 alloy disk forgings manufactured under various production conditions with different heat treatment modes. The research results presented in the main part of the article were obtained in the initial period of work on the introduction of VT6 alloy for engine parts and were confirmed later during the certification of disk forging weighing up to 100 kg. A comparison of the mechanical properties of stampings of the same type made of VT6 and VT3-1 alloys is given. The discussion pays special attention to the factors leading to a decrease in the viscosity characteristics of the material.
2. Du S., Song Y., He Y. et al. Evolution of Microstructure and Mechanical Properties of Ti‒6Al‒4V Alloy under Heat Treatment and Multi-Axial Forging. Materials, 2024, vol. 17, pp. 1060–1079. DOI: 10.3390/ma17051060.
3. Yan-Wei S., Ai-Hui L., Bang-Sheng L., Jing-Jie G. Relationship between Thickness of Lamellar α+β Phase and Mechanical Properties of Titanium Alloy. Advanced Materials Research, 2011, vol. 311–313, pp. 1916–1919. DOI: 10.4028/www.scientific.net/AMR.311-313.1916.
4. Julien R., Velay V., Vidal V. et al. Characterization and modeling of forged Ti‒6Al‒4V Titanium alloy with microstructural considerations during quenching process. International Journal of Mechanical Sciences, 2018, vol. 142–143, pp. 456–467. DOI: 10.1016/j.ijmecsci.2018.05.023.
5. Neminathan P.V., Yadav J.S., Reddy K.R. et al. Development of disc forgings in Ti‒6Al‒4V alloy for aero-engine application. Transactions of the Indian Institute of Metals, 2008, vol. 61, no. 5, pp. 363–370.
6. Egorova Yu.B., Davydenko L.V. Influence of chemical composition and parameters of globular structure on the mechanical properties of rods made of titanium alloy VT6. Electrometallurgiya, 2025, no. 2, pp. 20–29. DOI: 10.31044/1684-5781-2025-0-2-20-29.
7. Moiseyev V.N. Titanium Alloys: Russian Aircraft and Aerospace Applications. 1st ed. CRC Press, 2005, 216 p. DOI: 10.1201/9781420037678.
8. Ji H., Zhanshuo P., Xiaomin H. et al. Dynamic recrystallization of Ti‒6Al‒4V titanium alloy based on cellular automata. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, vol. 237. DOI: 10.1177/09544089221125575.
9. Seo S., Jung M., Park J. Microstructure control for enhancing the combination of strength and elongation in Ti‒6Al‒4V through heat treatment. Metals, 2024, vol. 14, p. 985. DOI: 10.3390/met14090985.
10. Senkov O.N., Senkova S.V., Valencia J. et al. Effect of cooling rate on microstructure of Ti‒6Al‒4V forging. Materials Science and Technology, 2002, vol. 18, pp. 1470–1478. DOI: 10.1179/026708302225007808.
11. Elmer J.W., Palmer T.A., Babu S.S. et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V. Materials Science and Engineering A, 2005, vol. 391, pp. 104–113.
12. Denisov Yu.P. Study of chemical microheterogeneity in two-phase titanium alloys using VT3-1 as an example: thesis abstract, Cand. Sc. (Tech.). Moscow, 1981, 25 p.
13. Solonina O.P., Glazunov S.G. Modern heat-resistant titanium alloys and prospects for their application in engines. Moscow: Metallurgy, 1974, 448 p.
14. Gorbovets M.A., Slavin A.V. Proof of material compliance with the requirements to part No. 33 of JARs. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 89–94. DOI: 10.18577/2071-9140-2018-0-3-89-94.
15. Preliminary National Standard 658–2022. Aviation Materials. General and Special Qualification Procedure. Available at: https://gostassistent.ru/doc/0fbe057e-14bd-4e3f-b3bd-6b67c5efb163 (accessed: May 17, 2025).
16. Berenson V.F., Shevchenko Yu.N., Kompaniets A.S. Passportization and certification of aviation materials – a guarantee of their quality. Aviation materials. Selected works of VIAM 1932–2002. Moscow: VIAM, 2002, pp. 409–412.
17. Gorbovets M.A., Khodinev I.A., Karanov V.A., Yushin V.D. Influence of the type of loading on high-cycle fatigue of heat-resistant alloys. Trudy VIAM, 2019, no. 3 (75), pp. 96–104. Available at: http://www.viam-works.ru (accessed: May 12, 2025). DOI: 10.18577/2307-6046-2019-0-3-96-104.
18. Callegari B., Marçola J.V., Aristizabal K. et al. Effect of microstructure on Ti3Al precipitation during ageing of Ti‒6Al‒4V alloy. MATEC Web of Conferences, 2020, vol. 321, pp. 1–7. DOI: 10.1051/matecconf/202032103013.
19. Radecka A., Bagot P.A.J., Martin T.L. et al. The formation of ordered clusters in Ti‒7Al and Ti‒6Al‒4V. Acta Materialia, 2016, vol. 112, pp. 141–149. DOI: 10.1016/j.actamat.2016.03.080.
20. Tubei V., Toda H., Hassanipour M. et al. 3D short fatigue crack closure behavior in Ti‒6Al‒4V alloy investigated using in-situ high resolution synchrotron X-ray tomography. Engineering Fracture Mechanics, 2021, vol. 249, art. 107755. DOI: 10.1016/j.engfracmech.2021.107755.
21. Junet A., Messager A., Weck A. et al. Internal fatigue crack propagation in a Ti‒6Al‒4V alloy: an in situ study. International Journal of Fatigue, 2023, vol. 168, art. 107450. DOI: 10.1016/j.ijfatigue.2023.107450.
22. Wang K., Wang F., Cui W. et al. Prediction of short fatigue crack growth of Ti‒6Al‒4V. Fatigue & Fracture of Engineering Materials & Structures, 2014, vol. 37, pp. 1075–1086. DOI: 10.1111/ffe.12177.
23. Wei K., Ma Q., Wang G. et al. Exploration of the material transfer effect in local loading forming of ultra-large-size integrated component with multi-rib. International Journal of Advanced Manufacturing Technology, 2020, vol. 108, pp. 1413–1427. DOI: 10.1007/s00170-020-05517-1.
24. Kuntz L., Pokorný P., Koněčná R. et al. Propagation of long fatigue cracks in Ti6Al4V alloy produced by direct metal laser sintering. Procedia Structural Integrity, 2019, vol. 17, pp. 222–229. DOI: 10.1016/j.prostr.2019.08.030.
25. Ivanov B., Manokhin S.S., Kolobov Y.R. et al. Phase composition and microstructure of Ti‒6Al‒4V alloy after hydrogen-plastic working. Materials Physics and Mechanics, 2010, vol. 10, pp. 62–71.
26. Gardner H., Radecka A., Rugg D. et al. Study of interaction of oxygen with the α2 phase in model alloy Ti-7 wt.% Al. Scripta Materialia, 2020, vol. 185, pp. 111–116. DOI: 10.1016/j.scriptamat.2020.03.048.
27. Venkataraman A., Shade P., Adebisi R. et al. Structure and deformation pathways in Ti-7Al using atomistic simulations, experiments, and characterization. Metallurgical and Materials Transactions A, 2017, vol. 48A, pp. 2222–2235. DOI: 10.1007/s11661-017-4024-y.
28. Chatterjee K., Venkataraman A., Garbaciak T. et al. Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM). International Journal of Solids and Structures, 2016, vol. 94–95, pp. 35–49. DOI: 10.1016/j.ijsolstr.2016.05.010.
29. Worsnop F., Lim R., Bernier J. et al. The influence of alloying on slip intermittency and implications for dwell fatigue in titanium. Nature Communications, 2022, vol. 13, аrt. 5949. DOI: 10.1038/s41467-022-33437-z.
30. Radecka A., Coakley J., Jones I. et al. Ordering and micromechanics of Ti-7Al. Materials Science and Engineering A, 2015, vol. 646, pp. 1–26. DOI: 10.1016/j.msea.2015.09.070.
31. Xu Y., Worsnop F., Dye D., Dunne F. Slip intermittency and dwell fatigue in titanium alloys: discrete dislocation plasticity analysis: Preprint. 2023. Available at: https://www.researchgate.net/publication/372286366_Slip_intermittency_and_dwell_fatigue_in_titanium_alloys_a_discrete_dislocation_plasticity_analysis (accessed: May 18, 2025). DOI: 10.48550/arXiv.2307.05316.
32. Yakovlev A.L., Arislanov A.A., Putyrsky S.V., Nochovnaya N.A. Study of mechanical properties and structure of large-sized semi-finished products made of VT6ch titanium alloy. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 12–18. DOI: 10.18577/2071-9140-2020-0-4-12-18.
33. Krokhinа V.A., Arislanov A.A., Putyrskiy S.V. Investigation of the mechanical properties and structure of forgings made of VT6ch alloy after heat treatment with heating in the β-area. Trudy VIAM, 2024, no. 7 (137), pp. 24–33. Available at: http://www.viam-works.ru (accessed: May 13, 2025). DOI: 10.18577/2307-6046-2024-0-7-24-33.
34. Sviridov A.V., Gribkov М.S. Features of repair of welded structures of large thicknesses from titanium alloy VT6ch. Trudy VIAM, 2021, no. 11 (105), pp. 34–43. Available at: http://www.viam-works.ru (accessed: May 13, 2025). DOI: 10.18577/2307-6046-2021-0-11-34-43.
35. Berenson V.F., Shevchenko Yu.N., Kompaniets A.S. Passportization and certification of aviation materials – a guarantee of their quality. Aviation materials. Selected works of VIAM 1932–2002. Moscow: VIAM, 2002, pp. 907–916.
36. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
37. Kablov E.N. Materials and Technologies of VIAM for Aviadvigatel. Permskie aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
38. Kablov E.N. New Generation Materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
39. Kablov E.N., Grinevich A.V., Slavin A.V., Kabanov I.V., Gromov V.I., Ampilogov A.Yu., Yakovlev N.O., Polyakov A.N., Yakusheva N.A. Calculated Strength Characteristics of VKS-9M and 300M Steels. Zavodskaya laboratoriya. Diagnostika materialov, 2022, vol. 88, no. 3, pp. 51–60.
40. State Standard 27.002–2015. Reliability in Engineering. Terms and Definitions. Moscow: Standartinform, 2016, pp. 9–11
The stability of thermoplastic polyurethane samples during high temperature processing has been evaluated. Material degradation during thermooxidative processing in air at 200 °C is well explained by the possible presence of residual amounts of 1,4-butanediol and its participation in the processes taking place. For quantitative data processing, a model was proposed that is suitable to describe the kinetics of polymer degradation during its thermochemical processing at 150 °C (R2 = 0,9982); to assess its suitability at a higher processing temperature of 180 °C, more data is required.
2. Kuznetsov D.A. Segmented polyurethane-imide copolymers containing aromatic and aliphatic blocks: thesis, Cand. Sc. (Chem.). St. Petersburg, 2022, 124 p.
3. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
4. Dedov A.V., Kolotilin D.V., Rybakov Yu.N. Permeability of thermoplastic polyurethanes for aviation kerosene storage tanks. Plasticheskie massy, 2021, no. 9–10, pp. 45–47.
5. Zhdanov A.V. Analysis of modern technologies for the manufacture of pulsed-type individual housing construction. Biotechnosfera, 2011, no. 4 (16), pp. 35–37.
6. Chaykun A.M., Sergeyev A.V., Pravada E.S. Elastomeric-fabric materials for products of special equipment (review). Trudy VIAM, 2023, no. 6 (124), pp. 25–37. Available at: http://www.viam-works.ru (accessed: April 21, 2025). DOI: 10.18577/2307-6046-2023-0-6-25-37.
7. Kablov E.N. The Role of Fundamental Research in the Creation of Next-Generation Materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
8. Kablov E.N. The Role of Chemistry in the Creation of Next-Generation Materials for Complex Technical Systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg, 2016, pp. 25–26.
9. Gorbunova M.A., Anokhin D.V., Badamshina E.R. Modern Advances in the Production and Use of Thermoplastic Semicrystalline Polyurethanes with Shape Memory Effect. Vysokomolekulyarnye soedineniya. Ser.: B, 2020, vol. 62, no. 5, pp. 323–347.
10. Lipatov Yu.S., Kercha Yu.Yu., Sergeeva L.M. Structure and Properties of Polyurethanes. Kyiv: Naukova Dumka, 1970, 279 p.
11. Shilnikova N.V. Development of Technologies for Obtaining Composite Materials Based on Polyurethanes and Natural Cork: thesis, Cand. Sc. (Tech.). Kazan, 2002, 142 p.
12. Nesterov S.V., Bakirova I.N., Samuilov Ya.D. Thermal and Thermo-oxidative Degradation of Polyurethanes: Mechanisms, Influencing Factors, and Basic Methods for Improving Thermal Stability. Review Based on Domestic and Foreign Publications. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2011, no. 14, pp. 10–23.
13. Gallyamov A.A. Structure, properties, and application of polyurethane degradation products by di- and polyamines: thesis, Cand. Sc. (Tech.). Ekaterinburg, 2016, 163 p.
14. Ponomarenko S.A., Shimkin A.A. Chromatographic methods of analysis: application possibilities in the aviation industry (review). Zavodskaya laboratoriya. Diagnostika materialov, 2017, no. 83 (4), pp. 5–13.
15. Trathnigg B. Size-exclusion chromatography of polymers. Encyclopedia of Analytical Chemistry. Ed. R.A. Meyers. Chicheste: Wiley, 2000, pp. 8008–8034.
16. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Study of the curing process of diphthalonitrile binder. Zhurnal prikladnoy khimii, 2016, vol. 89, no. 2, pp. 256–264.
17. Lem K.W., Haw J.R., Curran S. et al. Effect of Hard Segment Molecular Weight on Dilute Solution Properties of Ether Based Thermoplastic Polyurethanes. Nanoscience and Nanoengineering, 2013, no. 1 (3), pp. 123–133.
18. Nguyen T.Q., Kausch H.H. GPC Data Interpretation in Mechanochemical Polymer Degradation. International Journal of polymer analysis and characterization, 1997, vol. 4 (5), pp. 447–470. DOI: 10.1080/10236669808009728.
19. Novikov V.U., Kozitsky D.V., Deev I.S., Ivanova V.S., Kobets L.P. Multifractal analysis of the structure of polymethyl methacrylate studied by scanning electron microscopy. Plasticheskie massy, 2001, no. 1, pp. 7–9.
20. Makushchenko I.S., Kozlov I.А., Smirnov D.N., Kurshev E.V., Lonskii S.L. Influence of corrosion inhibitors on the microstructure and vulcanization kinetics of polisulfide sealant. Trudy VIAM, 2024, no. 4 (134), pp. 123–132. Available at: http://www.viam-works.ru (accessed: April 21, 2025). DOI: 10.18577/2307-6046-2024-0-4-123-132.
21. De Bruijn J.C.M., Meijer H.D.F. The design and application of a microfoil tensile test apparatus for monitoring the degree of ultraviolet degradation of polymers. Review of Scientific Instruments, 1991, no. 62, pp. 1620–1623.
22. Kurshev E.V., Lonskii S.L., Mekalina I.V. Influence of long climatic aging on microstructure of surface of organic glass in semi-arid and subtropical climate. Trudy VIAM, 2022, no. 3 (109), pp. 15–26. Available at: http://www.viam-works.ru (accessed: April 21, 2025). DOI: 10.18577/2307-6046-2022-0-3-15-26.
23. Deev I.S., Kuklin E.A. Features of the Formation of the Microphase Structure of Polymethyl Methacrylate Organic Glasses and Its Changes under Aging Conditions. Materialovedenie, 2014, no. 4, pp. 43–50.
24. Deev I.S., Kobets L.P. Structure Formation in Filled Thermosetting Polymers. Kolloidnyy zhurnal, 1999, vol. 61, no. 5, pp. 650–660.
25. Serdtselyubova A.S., Zverevich Yu.K., Kurshev E.V., Lonskiy S.L. Study of the Influence of Thermal Humidity Tests on the Microstructure of Fluoropolyurethane Coatings. Lakokrasochnye materialy i ikh primenenie, 2024, no. 7–8 (566), pp. 32–38.
26. Thermoplastic polyurethane. Available at: https://www.vitur33.ru/publications/articles/articles_9.html (accessed: April 21, 2025).
27. Yuan Y., Lin W., Xu L., Wang W. Recent Progress in Thermoplastic Polyurethane/MXene Nanocomposites: Preparation, Flame-Retardant Properties and Applications (review). Molecules, 2024, no. 29 (16). DOI: 10.3390/molecules29163880.
28. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, no. 10, pp. 61–71.
29. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), pp. 32–51. Available at: http://www.viam-works.ru (accessed: April 21, 2025). DOI: 10.18577/2307-6046-2022-0-2-32-51.
30. A guide to thermoplastic polyurethanes (TPU). Available at: https://www.huntsman-pimcore.equisolve-dev.com/Documents/PU_Elastomers_Guide_to_TPU.pdf (accessed: April 21, 2025).
31. Ponomarenko S.A., Kurshev E.V., Lonskii S.L. Investigation of degradation mechanisms of thermoplastic polyurethane by storage at long times in aviation kerosene TS-1 by gel permeation chromatography, optic and scanning electron microscopy, and FTIR spectroscopy. Trudy VIAM, 2025, no. 2 (144), pp. 47–64. Available at: http://www.viam-works.ru (accessed: April 21, 2025). DOI: 10.18577/2307-6046-2025-0-2-47-64.
32. Lu L., Zhu Z., Wu Y. Depolymerization kinetics for thermoplastic polyurethane elastomer degradation in subcritical methanol. Polymer Degradation and Stability, 2017, vol. 140, pp. 126–135.
33. Bardin A., Le Gac P.-Y., Gerontola S., Simon G. Hydrolytic kinetic model predicting embrittlement in thermoplastic elastomers. Polymer Degradation and Stability, 2020, vol. 171, аrt. 109902.
34. State Standard R 57268.3–2016 (ISO 16014-3:2012). Polymer composites. Determination of average molecular weight and molecular weight distribution of polymers by size-exclusion chromatography. Part 3. Low-temperature method. Moscow: Standartinform, 2016, 18 p.
A comprehensive assessment of the durability of the strength properties of carbon fiber grade VKU-51 under tension, compression and bending in the temperature range from –60 to +80 °C in the initial state and after after climatic tests in a tropical climate and heat-humidity aging chamber to operating factors such as in a tropical climate chamber and heat-humidity aging for 1 and 3 months, as well as thermal aging for 500, 1000, 1500 and 2000 hours was carried out. The influence of mycological environment and fuel and lubricants of automobile fluids on the bending strength limit of carbon fiber reinforced plastic and weight gain was studied.
2. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), pp. 22–33. Available at: http://www.journal.viam.ru (accessed: February 21, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
3. Sedov L.N., Mikhailova Z.V. Unsaturated polyesters. Moscow: Khimiya, 1977, 232 p.
4. Ogmrcyan A.R., Guseva M.A. Research of the effect of modifiers on the properties of an epoxy vinyl ester composition cured by the radical polymerization mechanism. Novosti materialovedeniia. Nauka i tekhnika, 2018, no. 1-2 (29), paper no. 9. Available at: http://materialsnews.ru (accessed: February 21, 2025).
5. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Grigoreva K.N. Research of the influence of the modifying additives nature on the rheological and thermomechanical properties of a photopolymer composition based on epoxy vinyl ester resin. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 31–40. DOI: 10.18577/2071-9140-2019-0-3-31-40.
6. Mikhaldykin E.S. Application of Tube-Concrete Structures with a Shell Made of Polymer Composite Materials in the Construction of Small Bridges: thesis, Cand. Sc. (Tech.). Moscow, 2021, 111 p.
7. Construction Materials Science: Textbook. Ed. V.A. Nevsky. 3rd ed., add. and rev. Rostov-on-Don: Phoenix, 2010, 588 p.
8. Okano M., Sugimoto K., Saito H. et al. Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube. Proceedings of the Institution of Mechanical Engineers, Part L, 2005, vol. 219, no. 1, p. 59.
9. Evdokimov A.A. Polymer composite material with shaping at temperatures up to 40 °C: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2022, 116 p.
10. Erber А., Birkefeld K., Drechsler K. The influence of braiding configuration on damage tolerance of drive shafts. SAMPE EUROPE 30-th International Jubilee Conference and Forum. Paris, 2010, p. 364–371.
11. Yezhov V.B. Technology of Concrete, Building Products and Structures. Ekaterinburg, 2014, 206 p.
12. Polymer Composite Materials: Structure, Properties, Technology. Ed. St. Petersburg: Profession, 2008, 557 p.
13. Kerber M.L., Vinogradov V.M. Polymer Composite Materials: Structure, Properties, Technology. St. Petersburg: Profession, 2009, 560 p.
14. Rumyantsev A.F. Properties of Structural Carbon Fiber Reinforced Plastics, Composition, Reinforcement Structure: thesis, Dr Sc. (Tech.). Moscow, 2002, 113 p.
15. Kablov E.N. The Role of Fundamental Research in the Creation of New Generation Materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
16. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), pp. 148–170. URL: http://www.journal.viam.ru (accessed: February 21, 2025). DOI: 10.18577/2713-0193-2023-0-1-148-170.
17. Mikhailin Yu.A. Structural polymer composite materials. St. Petersburg: Scientific foundations and technologies, 2008, 822 p.
18. Bunakov V.A., Golovkin G.S., Mashinskaya G.P. et al. Reinforced plastics. Ed. G.S. Golovkin, V.I. Semenov. Moscow: MAI Publ. House, 1997, 404 p.
19. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Researches and development autoclave and out-of-autoclave technologies of formation of PCM. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 292–301.
20. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
21. Kablov E.N., Kirillov V.N., Zhirnov A.D. et al. Centers for climatic testing of aviation PCM. Aviatsionnaya promyshlinnost, 2009, no. 4, pp. 36–46.
22. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), pр. 70–80. Available at: http://www.journal.viam.ru (accessed: February 05, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
23. Evdokimov A.A., Ilyichev A.V., Mikhaldykin E.S. Stretching of anisotropic layered polymer composite materials based on carbon preforms with biaxial weaving. Vse materialy. Entsiklopedicheskiy spravochnik, 2016, no. 7, pp. 72–79.
24. Gunyaev G.M. Structure and Properties of Polymer Fiber Composites. Moscow: Khimiya, 1981, 232 p.
25. Sokolov I.I., Raskutin A.E. Carbon plastics and fibreglasses of new generation. Trudy VIAM, 2013, no. 4, paper no. 09. Available at: http://www.viam-works.ru (accessed: February 11, 2025).
26. Alfutov N.A., Bolotin V.V., Vasiliev V.V. et al. Composite materials: a reference book. Moscow: Mashinostroenie, 1990, 512 p.
27. Kirillov V.N., Startsev O.V., Efimov V.A. Climatic firmness and damageability of polymeric composite materials, problems and solutions. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 412–423.
28. Startsev V.O. Climatic resistance of polymer composite materials and protective coatings in a moderately warm climate: thesis, Dr Sc. (Tech.). Moscow, 2018, 297 p.
29. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), pp. 64–76. Available at: http://www.viam-works.ru (accessed: February 11, 2025). DOI: 10.18577/2307-6046-2020-0-8-64-76.
30. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
31. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible influence of moisture on the mechanical properties of PCM after weathering. Trudy VIAM, 2018, no. 5 (65), pp. 110–118. Available at: http://www.viam-works.ru (accessed: February 11, 2025). DOI: 10.18577/2307-6046-2018-0-5-110-118.
32. Deev I.S., Kurshev E.V., Lonskiy S.L., Zhelezina G.F. The influence of long-term climatic aging on the surface microstructure of epoxy organoplastics and the nature of its destruction under bending conditions. Voprosy materialovedeniya, 2016, no. 3 (87), pp. 104–114.
33. Evdokimov A.A., Petrova A.P., Pavlovskiy K.A., Gulyaev I.N. The influence of climatic ageing on the properties of PCM-based epoxy resin systems. Trudy VIAM, 2021, no. 3 (97), pp. 128–136. Available at: http://www.viam-works.ru (accessed: February 11, 2025). DOI: 10.18577/2307-6046-2021-0-3-128-136.
The second part of the review examines the compositions and methods for obtaining photocurable polymer pre-ceramic compositions for the manufacture of ceramics using vat photopolymerization. The main types of photocurable organosilicon polymers, active diluents, photoinitiators, and special additives are considered. The mechanisms of radical and cationic photopolymerization of photocurable polymer pre-ceramic compositions are presented. The effect of filler addition into the composition on the properties of ceramics is indicated.
2. Rosso M. Ceramic and metal matrix composites: Кoutes and properties. Journal of Materials Processing Technology, 2006, vol. 175, pp. 364–375. DOI: 10.1016/j.jmatprotec.2005.04.038.
3. Bill J., Wakai F., Aldinger F. Precursor-derived ceramics: Synthesis, Structure and High-Temperature Mechanical Properties. Weinheim: Wiley-VCH, 2008, 313 p.
4. Kablov E.N. The Present and Future of Additive Technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
5. Kablov E.N. Additive Technologies – the Dominant Focus of the National Technological Initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
6. Turchenko M.V., Lebedeva Yu.E., Belyachenkov I.O., Prokofiev V.A. Obtaining of ceramic materials by stereolithography method. Trudy VIAM, 2023, no. 9 (127), pp. 79–89. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2023-0-9-79-89.
7. Lacelle T., Sampson K.L., Sarvestani H.Y. et al. Additive manufacturing of polymer derived ceramics: Materials, methods, and applications. APL Materials, 2023, vol. 11, pp. 1–29. DOI: 10.1063/5.0151661.
8. Camargo I.L., Morais M.M., Fortulan C.A., Branciforti M.C. A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceramics International, 2021, vol. 47, pp. 11906–11921. DOI: 10.1016/j.ceramint.2021.01.031.
9. Bae C.J., Ramachandran A., Chung K., Park S. Ceramic stereolithography: Additive manufacturing for 3D complex ceramic structures. Journal of the Korean Ceramic Society, 2017, vol. 54, pp. 470–477. DOI: 10.4191/kcers.2017.54.6.12.
10. Rasaki S.A., Xiong D., Xiong S. et al. Photopolymerization-based additive manufacturing of ceramics: A systematic review. Journal of advanced ceramics, 2021, vol. 10, no. 3, pp. 442–471. DOI: 10.1007/s40145-021-0468-z.
11. Nowak D., Ortyl J., Kamińska-Borek I. et al. Photopolymerization of hybrid monomers: Part I: Comparison of the performance of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polymer Testing, 2017, vol. 64, pp. 313–320. DOI: 10.1016/j.polymertesting.2017.10.020.
12. Mucci V., Vallo C. Efficiency of 2,2-dimethoxy-2-phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. Journal Applied Polymer Science, 2012, vol. 123, pp. 418–425. DOI: 10.1002/app.34473.
13. Babkin O.E. 3D modeling: technologies, equipment, materials. St. Petersburg: Publ. House of St. Petersburg State Univ. of Cinematography and Television, 2013, 97 p.
14. Sarychev I.A., Butuzov A.V., Serkova E.A., Dolgova E.V. Photocurable acrylate compositions (review). Trudy VIAM, 2022, no. 9 (115), pp. 68–82. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2022-0-9-68-82.
15. Green W.A. Industrial Photoinitiators: A Technical Guide. Boca Raton: CRC Press, 2010, 302 p.
16. Rapid Prototyping Resin Compositions: pat. 8293810 US; appl. 29.08.05; publ. 23.10.12.
17. Photopolymerizable Compositions Containing an Alkylbisacylphosphine Oxide: pat. 5472992 US; appl. 28.04.94; publ. 05.12.95.
18. Wloka T., Gottschaldt M., Schubert U.S. From light to structure: Photo initiators for radical two-photon polymerization. Chemistry – A European Journal, 2022, no. 28, pp. 1–54. DOI: 10.1002/chem.202104191.
19. Boddapati A., Rahane S.B., Slopek R.P. et al. Gel Time Prediction of Multifunctional Acrylates Using a Kinetics Model. Polymer, 2011, no. 52, pp. 866–873. DOI: 10.1016/j.polymer.2010.12.024.
20. Wayner D.D.M., Clark K.B., Rauk A. et al. C-H Bond Dissociation Energies of Alkyl Amines: Radical Structures and Stabilization Energies. Journal of the American Chemical Society, 1997, no. 119, pp. 8925−8932. DOI: 10.1021/ja971365v.
21. Crivello J.V. The Discovery and Development of Onium Salt Cationic Photoinitiators. Journal of Polymer Science. Part A: Polymer Chemistry, 1999, no. 37, pp. 4241−4254. DOI: 10.1002/(sici)1099-0518(19991201)37:233.0.co;2-r.
22. Fouassier J.-P., Lalevee J. Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency. Weinheim: Wiley-VCH Verlag and Co. KGaA, 2012, 490 p.
23. Lenshina N.A., Shurygina M.P., Chesnokov S.A. Photoreduction reaction of carbonyl-containing compounds in the synthesis and modification of polymers. Vysokomolekulyarnye soedineniya. Ser.: B, 2021, vol. 63, no. 6, pp. 383–418. DOI: 10.31857/S2308113921060139.
24. Yagci Y. Wavelength flexibility in photoinitiated cationic polymerization. Macromolecular Symposia, 2004, vol. 215, no. 1, pp. 267–280. DOI: 10.1002/masy.200451121.
25. Ligon S.C., Liska R., Stampfl J. et al. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 2017, vol. 117, pp. 10212–10290. DOI: 10.1021/acs.chemrev.7b00074.
26. Bagheri A., Jin J. Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 2019, vol. 1, pp. 593–611. DOI: 10.1021/acsapm.8b00165.
27. Zhiganshina E.R., Arsenyev M.V., Chesnokov S.A. Two-photon stereolithography – optical nanolithography. Vysokomolekulyarne soedineniya. Ser.: B, 2023, vol. 65, no. 3, pp. 163–188. DOI: 10.31857/S2308113923700468.
28. Brigo L.L., Schmidt J.E.M., Gandin A. et al. 3D Nanofabrication of SiOC Ceramic Structures. Advanced Science, 2018, no. 5, pp. 1–8. DOI: 10.1002/advs.201800937.
29. Bauer J., Crook C., Izard A.G. et al. Additive manufacturing of ductile, ultrastrong polymer-derived nanoceramics. Matter, 2019, vol. 1 (6), pp. 1547–1556. DOI: 10.1016/j.matt.2019.09.009.
30. Barroso G., Li Q., Bordia R.K., Motz G. Polymeric and ceramic silicon-based coatings – A review. Journal of Materials Chemistry, 2019, vol. 7 (5), pp. 1936–1963. DOI: 10.1039/C8TA09054H.
31. Al-Ajrash S.M.N., Browning C., Eckerle R., Cao L. Initial development of preceramic polymer formulations for additive manufacturing. Materials Advances, 2021, no. 2, pp. 1083–1089. DOI: 10.1039/d0ma00742k.
32. Dory H., Miele P., Salameh C. UV-curable inorganic precursorsenable direct 3D printing of SiOC ceramics. International Journal of Applied Ceramic Technology, 2023, no. 20, pp. 141–152. DOI: 10.1111/ijac.14173.
33. Ligon-Auer S.C., Schwentenwein M., Gorsche C. et al. Toughening of Photo-Curable Polymer Networks: A Review. Polymer Chemistry, 2016, no. 7, pp. 257–286. DOI: 10.1039/C5PY01631B.
34. Husar B., Ligon S.C., Wutzel H. et al. The Formulator’s Guide to Anti-Oxygen Inhibition Additives. Progress Organic Coatings, 2014, no. 77, pp. 1789−1798. DOI: 10.1016/j.porgcoat.2014.06.005.
35. Wang X., Schmidt F., Hanaor D. et al. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 2019, vol. 27, pp. 80–90. DOI: 10.1016/j.addma.2019.02.012.
36. Dufaud O., Marchal P., Corbel S. Rheological properties of PZT suspensions for stereolithography. Journal of the European Ceramic Society, 2002, vol. 22, pp. 2081–2092. DOI: 10.1016/S0955-2219(02)00036-5.
37. Zhang J., Wei L., Meng X. et al. Digital light processing stereolithography three-dimensional printing of yttria-stabilized zirconia. Ceramics International, 2020, vol. 46, pp. 8745–8753. DOI: 10.1016/j.ceramint.2019.12.113.
38. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: methods of preparation and properties (review). Trudy VIAM, 2020, no. 11 (93), pp. 76–92. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2020-0-11-76-92.
39. Wang D., Klein J., Mejia E. Catalytic systems for the cross-linking of organosilicon polymers. Chemistry – An Asian Journal, 2017, vol. 12 (11), pp. 1180–1197. DOI: 10.1002/asia.201700304.
40. Butuzov A.V., Semina A.V. Preceramic polymers for the production of ceramic products by vat photopolymerization. Part 1. Methods of production and properties. Trudy VIAM, 2025, no. 3 (145), pp. 70–88. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2025-0-3-70-88.
41. Schmidt J., Colombo P. Digital light processing of ceramic components from polysiloxanes. Journal of the European Ceramic Society, 2018, vol. 38, pp. 57–66. DOI: 10.1016/j.jeurceramsoc.2017.07.033.
42. Brigo L.L., Schmidt J.E.M., Gandin A. et al. 3D Nanofabrication of SiOC Ceramic Structures. Advanced Science, 2018, no. 5, pp. 1–8. DOI: 10.1002/advs.201800937.
43. Zanchetta E., Cattaldo M., Franchin G. et al. Stereolithography of SiOC ceramic microcomponents. Advanced Materials, 2016, vol. 28, pp. 370–376. DOI: 10.1002/adma.201503470.
44. He C., Ma C., Li X. et al. Polymer-derived SiOC ceramic lattice with thick struts prepared by digital light processing. Additive Manufacturing, 2020, vol. 35, pp. 1–8. DOI: 10.1016/j.addma.2020.101366.
45. Yang J., Yu R., Li X. et al. Silicon carbide whiskers reinforced SiOC ceramics through digital light processing 3D printing technology. Ceramics International, 2021, vol. 47, pp. 18314–18322. DOI: 10.1016/j.ceramint.2021.03.152.
46. Tarasova E.M., Butuzov А.V., Cherkasova A.A., Ivanov P.V. Study of chemical assembly of macromolecules in polycondensation of difunctional dimethylsilanes. Tonkie khimicheskie tekhnologii, 2016, vol. 11, no. 1, pp. 59–66. DOI: 10.32362/2410-6593-2016-11-1-59-66.
47. Shitov R.О., Butuzov А.V. Commercial silicone resin (review). Part 1. Trudy VIAM, 2023, no. 2 (120), pp. 3–19. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2023-0-2-3-19.
48. Hazan Y., Penner D. SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems. Journal of the European Ceramic Society, 2017, vol. 37, pp. 5205–5212. DOI: 10.1016/j.jeurceramsoc.2017.03.021.
49. Wang X., Schmidt F., Hanaor D. et al. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 2019, vol. 27, pp. 80–90. DOI: 10.1016/j.addma.2019.02.012.
50. Li Z., Chen Z., Liu J. et al. Additive manufacturing of lightweight and high-strenght polymer-derived SiOC ceramics. Virtual and Physical Protyping, 2020, vol. 15, no. 2, pp. 1–15. DOI: 10.1080/17452759.2019.1710919.
The article presents the features of obtaining silicon nitride-boron nitride ceramics Si3N4‒BN as a result of the joint interaction of silicon and boron with nitrogen in the presence of nickel additives with the subsequent protection of ceramics from high-temperature oxidation by the formation of borosilicate glasses and a solid substitution solution Si‒B‒O‒N in the surface layer. Some high-temperature characteristics of ceramics, the results of tribological studies and the results of tests of samples and products are given.
2. Method for producing an antenna radome shell from reaction-bonded silicon nitride: pat. 2453520 Rus. Federation; appl. 20.12.10; publ. 20.06.12.
3. Kondratieva L.A., Bichurov G.V. Chemical stages of formation of nitride composites Si3N4‒TiN, Si3N4‒BN, Si3N4‒AlN in the SHS-AZ mode. Vestnik SamGTU, 2016, no. 3 (52), pp. 130–135.
4. Kondratieva L.A. On chemical stability and structure formation of SiN‒BN composites in the azide SHS mode. Sovremennye materialy, tekhnika i tekhnologii, 2017, no. 4 (12), pp. 22–26.
5. Rudykina V.N., Paranosenkov V.P., Vikulin V.V. Features of producing reaction-bonded silicon nitride. Methods for producing reaction-bonded silicon nitride. Riga: Zinatne, 1980, pp. 165–166.
6. Vikulin V.V., Kurskaya I.N., Kindinova O.N. Study of the influence of nickel on the synthesis and some properties of reaction-bonded silicon nitride. Designs and technology for producing products from non-metallic materials: in 3 parts. Moscow: VIMI, 1984, part 1: Heat-resistant ceramic materials, p. 89.
7. Method for producing products based on silicon nitride: pat. 2239613 Rus. Federation; appl. 28.07.04; publ. 20.05.06.
8. Vikulin V.V. Effect of additives on the synthesis mechanism and properties of reaction-bonded silicon nitride. Perspektivnye materialy, 2007, no. 5, pp. 12–15.
9. Vikulin V.V., Chikina A.A., Borzilova V.D., Romashin A.G. Features of the synthesis of reaction-bonded silicon nitride in the presence of boron additives. Designs and technology for producing products from non-metallic materials: in 3 parts. Moscow: VIMI, 1984, part 1: Heat-resistant ceramic materials, pp. 21–23.
10. Vikulin V.V. Structural ceramic materials with targeted properties made of silicon nitride and carbide and products made of them for aerospace engineering: thesis, Dr of Sc. (Tech.). Obninsk, 1990, 422 p.
11. Vikulin V.V. Production of Si3N4-Based Products and Their Application in the Aerospace Industry. Perspektivnye materialy, 2006, no. 5, pp. 14–19.
12. Vikulin V.V., Shkarupa I.L. Testing Silicon Nitride and Carbide-Based Materials under Extreme Conditions. Abstract of the 2nd Scientific and Technical Conf. «High-Temperature Ceramic Composite Materials and Protective Coatings». Moscow: VIAM, 2016, p. 26.
13. Usherenko S.M., Ovchinnikov V.I., Shmuradko V.T., Kirshina N.V. Ceramic Material Based on Reaction-Bonded Silicon Nitride for Refractory Crucibles. Litye i metallurgiya, 2000, no. 2, pp. 26–30.
14. Samsonov G.V. Non-metallic Nitrides. Moscow: Metallurgy, 1969, 264 p.
15. Arnesen D. Steels Quarterly Profits So-So Nonferous Strong. Iron Age, 1980, vol. 223, no. 19, pp. 43–45.
16. Eliot R. Structure of Binary Alloys; trans. from Engl. Moscow: Metallurgy, 1970, 928 p.
17. Vikulin V.V., Rusanova L.N., Kuznetsova V.F., Smakhtin L.A. Study of the Effect of Heat Treatment Temperature on the Oxygen Content in Active Boron Nitride Powders by Neutron Activation Analysis. Poroshkovaya metallurgiya, 1978, no. 9, pp. 64‒70.
18. Wild S., Elliot H., Thompson D. Combined infrared and X-ray studies of β-silicon nitride and β-sialons. Journal Material Science, 1978, vol. 13, pp. 1769–1775.
The article presents a review of the component base of modern epoxy binders for FR-4 class dielectrics. The main types of resins, hardeners, fire retardants and various functional additives are considered, and their structural formulas are given. The influence of binder components on the properties of dielectrics is described. The possibility of wide modification of the binder to achieve the required properties of the dielectric is indicated. The properties of the VSE-79 epoxy binder and experimental samples of dielectrics based on it are presented.
2. Halogen-free resin composition, copper clad laminate using the same, and printed circuit board using the same: pat. US20140178697A1; appl. 15.03.13; publ. 26.06.14.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
5. Goosey M. Plastics for Electronics. Netherlands: Springer, 1999, 408 p.
6. Epoxy resin compositions for use in electrical laminates: pat. US5405931A; appl. 13.08.93; publ. 11.04.95.
7. Resin composition for printed wiring board, prepreg, and laminate obtained with the same: pat. EP1637554A1; appl. 03.06.03; publ. 22.03.06.
8. Peng Y.-R., Qi X. The influence of curing systems on epoxide-based PCB laminate performance. Circuit World, 2005, vol. 31, no. 4, pp. 14–20.
9. Luda M.P., Balabanovich A.I., Zanetti M. Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polymer Degradation and Stability, 2007, vol. 92 (6), pp. 1088–1100.
10. Thermoset resin composition, and prepreg and laminate for printed circuit board manufactured therefrom: pat. US20150159016A1; appl. 29.12.11; publ. 11.07.15.
11. Lowdielectric resin composition, copper clad laminate using the same, and printed circuit board using the same: pat. US20140174802A; appl. 26.02.13; publ. 26.06.14.
12. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
13. Epoxy resin composition and prepreg and copper clad laminate manufactured by using the same: pat. US20140342161A1; appl. 28.10.11; publ. 20.11.14.
14. Resin composition, copper clad laminate and printed circuit board using same: pat. US9850375B2; appl. 23.08.13; publ. 26.12.17.
15. Barinov D.Ya., Shorstov S.Yu., Razmahov M.G., Gulyaev A.I. Examination of thermophysical characteristics of a heat-protective material based on fiberglass during destruction. Aviation materials and technologies, 2021, no. 4 (65), pp. 91–97. Available at: http://www.journal.viam.ru (accessed: April 17, 2025). DOI: 10.18577/2713-0193-2021-0-4-91-97.
16. Curing epoxy resins using dicy, imidazole and acid: pat. US5508328; appl. 17.11.94; publ. 16.04.96.
17. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), pp. 94–103. Available at: http://www.journal.viam.ru (accessed: April 17, 2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
18. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Study of epoxy-polysulfone polymer systems as the basis for high-strength adhesives for aviation purposes. Klei. Germetiki. Tekhnologii, 2017, no. 3, pp. 7–12.
19. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
20. SMA resin formulation: pat. US11365282B2; appl. 25.07.17; publ. 21.06.22.
21. Flame retardants in printed circuit boards. Available at: https://www.epa.gov/sites/default/files/2015-08/documents/pcb_ch3.pdf (accessed: April 17, 2025)
22. An Overwie of Flame Retardants in Printed Circuit Boards for LEDs and other Electronic Devices. Journal of Materials and Environmental Science, 2023, vol. 14 (04), pp. 410–420.
23. Stunning Reversal: EU Axes RoHS Directive’s TBBP-A and MCCPs Restriction Proposals. Available at: https://www.cirs-group.com/en/chemicals/stunning-reversal-eu-axes-rohs-directive-tbbp-a-and-mccps-restriction-proposals (accessed: April 17, 2025).
24. Flame retardants in printed circuit boards. Available at: https://www.epa.gov/sites/default/files/2015-08/documents/pcb_ch2.pdf (accessed: April 17, 2025).
25. Schartel B. Phosphorus-based Flame Retardancy Mechanisms-Old Hat or a Starting Point for Future Development? Materials, 2010, vol. 3 (10), pp. 4710–4745.
26. IEC 61249-2-21 for Halogen Free. Available at: https://www.masterbond.com/certifications/halogen-free (accessed: April 17, 2025).
27. Halogen-free flame retardant epoxy resin composition, prepreg, and copper clad lamination: pat. US20080241578A1; appl. 29.08.07; publ. 02.10.08.
28. Copper clad laminate and method for manufacturing the same: pat. US20150266267А1; appl. 21.03.13; publ. 24.09.15.
29. Halogen-free resin composition, copper clad laminate using the same, and printed circuit board using the same: pat. US20140322541А1; appl. 10.08.13; publ. 30.10.14.
30. Startsev O.V., Kablov E.N., Makhonkov A.Yu. Regularities of the α-transition of epoxy binders of composite materials according to the data of dynamic mechanical analysis. Bulletin of Bauman MSTU. Ser.: Mechanical Engineering, 2011, no. SP2, pp. 104–113.
31. Composite and copper clad laminate made therefrom: pat. US20220022314А1; appl. 21.03.21; publ. 20.06.22.
32. Sho S., Arefazar A., Khosrokhavar R. Silane Coupling Agents in Polymer-based Reinforced Composites: A Review. Journal of Reinforced Plastics and Composites, 2008, vol. 27 (5), pp. 473–485.
33. Nakamura T., Tabuchi H., Hirai T. et al. Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particle-filled epoxy resin. Journal of Applied Polymer Science, 2019, vol. 137 (17), no. 48615, pp. 1–11.
34. Copper clad laminate, prepreg and method of reducing signal loss: pat. US20100248569А1; appl. 05.02.10; publ. 30.09.10.
35. Homogeneousbsmalemde trazine-epoxy compositions useful for the manufacture of electrical laminates: pat. US20110247756А1; appl. 11.12.09; publ. 13.10.11.
36. Olin-Epoxy-Asia-Pacific-Product-Brochure. Available at: https://olinepoxy.com/wp-content/uploads/2018/05/Olin-Epoxy-Asia-Pacific-Product-Brochure.pdf (accessed: 17.04.2025).
37. Isola DE104. Available at: https://www.isola-group.com/pcb-laminates-prepreg/de104-laminate-and-prepreg (accessed: April 17, 2025).
The dependence of the magnetic properties of sintered materials of the composition (Pr1–z–xDyxGdz)12,55–12,81(Fe0,80Co0,20)balB5,71–6,25 (x = 0,34–0,58; z = 0,11–0,33)on the gadolinium concentration and sintering temperature of 1120–1140 °C was studied. The temperature coefficient of induction was measured in the temperature range of 20–100 °C. Demagnetization curves (magnetization and induction) were measured using a vibrating sample magnetometer (VSM) at temperature of 20±5 °C. The temperature dependences of the magnetization in the temperature range of 300–600 K were revealed. about the article states the effect of gadolinium on the magnetic characteristics of sintered materials.
2. Martynenko Yu.G. Trends in the Development of Modern Gyroscopy. Sorosovskiy obrazovatelnyy zhurnal, 1997, no. 11, pp. 120–127.
3. Vasilevsky N.I. Development of a Dynamically Tuned Gyroscope Taking into Account its Vibration Characteristics. Miass: Publ. House of the South Ural State University, 2018, 77 p.
4. Chirkin D.S., Roslovets P.V., Tatarinov F.V. et al. Reducing the Drift of a Dynamically Tuned Gyroscope from Launch to Launch. Inzhenernyy zhurnal: nauka i innovatsii, 2017, no. 1, pp. 1–14. DOI: 10.18698/2308-6033-2017-01-1579.
5. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental assessment of permissible mechanical effects on a dynamically tuned gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroyenie, 2018, no. 4, pp. 69–79.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare-earth elements are materials for modern and future high technologies. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 3–10.
7. Sun T., Zhu J., Wan D. The anisotropic expansion and fracture of radially oriented toroid specimens of the rare-earth-cobalt permanens magnets. Fourth International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications. Hakone, 1979, paper nо. 12-5, pp. 419–435.
8. Tian J., Qu H., Zhang S. еt al. Magnetic properties and microstructure of radially oriented Sm(Co, Fe, Cu, Zr)Z ring magnets. Materials Letters, 2007, vol. 61, pp. 5271–5274.
9. Tian J., Qu H., Zhang S. еt al. Influence of heat treatment on fracture and magnetic properties of radially oriented Sm2Co17 permanent magnets. Transaction of Nonferrous Metals Society of China, 2007, vol. 17, pp. 491–495.
10. Li A., Li W., Wang H. et al. The study on thermal expansion of sintered Sm2Co17 magnets. IEEE Transaction on Magnetics, 2009, vol. 45, no. 10, pp. 4402–4404.
11. Tian J., Pan D., Zhou H. et al. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets. Journal of Alloys and Compounds, 2009, vol. 467, pp. 98–101.
12. Moiseeva N.S., Rezchikova I.I., Korolev D.V. et al. Limitation of the permissible coercive force caused by the stray field of a magnet. Zhurnal tekhnicheskoy fiziki, 2019, vol. 89, no. 7, рр. 1055–1058.
13. Tenaud P., Lemaire H., Vial F. Recent improvements in NdFeB sintered magnets. Journal of Magnetism and Magnetic Materials, 1991, vol. 101, pp. 328–332.
14. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63, no. 4, pp. 819–898.
15. Sergeev V.V., Bulygina T.N. Magnetically hard materials. Moscow: Energiya, 1980, 224 p.
16. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Phase composition of the Pr–Dy–Fe–Co–B sintered materials. Aviacionnye materialy i tehnologii, 2015, no. S2 (39), pp. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
17. Buzenkov A.V., Burkanov M.V., Valeev R.A., Piskorsky V.P. Properties of sintered magnets Pr–Dy–Fe–Co–B depending on the composition and technological parameters of manufacture. Trudy VIAM, 2024, no. 5 (135), pp. 91–100. Available at: http://www.viam-works.ru (accessed: February 20, 2025). DOI: 10.18577/2307-6046-2024-0-5-91-100.
18. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The contribution of phases to the magnetization of sintered materials Nd–Dy–Fe-Co–B. Trudy VIAM, 2022, no. 11 (117), pp. 60–68. Available at: http://www.viam-works.ru (accessed: February 20, 2025). DOI: 10.18577/2307-6046-2022-0-11-60-68.
19. Determination of the density of bodies by hydrostatic weighing: method. recommendations. Irkutsk: Irkutsk State Univ., 2003, pp. 1–9.
20. Lapteva K.A., Tolmachev I.I. Calculation of the demagnetizing factor during longitudinal magnetization in magnetic particle testing. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, vol. 321, no. 2, pp. 140–144.
21. Sato M., Ishii Y. Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. Journal of Applied Physics, 1989, vol. 66, no. 2, pp. 983–985.
22. Chen D.-X., Brug J.A., Goldfarb R.B. Demagnetizing factor for cylinder. IEEE Transactions on Magnetics, 1991, vol. 27, no. 4, pp. 3601–3619.
23. Perigo E.A., Takiishi H., Motta C.C. et al. On the squareness factors behavior of RE–FeB (RE = Nd or Pr) magnets above room temperature. IEEE Transaction Magnetics, 2009, vol. 45, no. 10, pp. 4431–4434.
24. Yuing Z., Tianyu M., Mi Y. et al. Squareness factors of demagnetization curves for multi-main-phase Nd–Ce–Fe–B magnets with different Ce contents. Journal of Magnetism and Magnetic Materials, 2019, vol. 487, p. 165355. DOI: 10.1016/ j.jmmm.2019.165355.
25. Minna H., Sampo T., Timo S.-N. et al. Magnetic behavior of sintered NdFeB magnets on a long-term timescale. Advances in Materials Science and Engineering, 2014, vol. 7, p. 760584. DOI: 10.1155/2014/760584.
26. Takiishi H., Lima L.F.C.P., Costa I. et al. The influence of process parameters and alloy structure on the magnetic properties of NdDyFeNb HD sintered magnets. Journal of Materials Processing Technology, 2004, vol. 152, pp. 1–8.
27. de Vos K.J. The relationship between microstructure and magnetic properties of alnico alloys. Eindhoven: Technische Hogeschool Eindhoven, 1966, 119 p. DOI: 10.6100/IR287613.
28. Akbar S., Ahmad Z., Awanb M.S. et al. Development of Fe–Cr–Co permanent magnets by single step thermo-magnetic treatment. Key Engineering Materials, 2012, vol. 510–511, pp. 507–512.
29. Betancourt J.I. Nanocrystalline hard magnetic alloys. Revista Mexicana de Fisica, 2002, vol. 48 (4), pp. 283–289.
30. Heritier L., Fruchart R. Crystallographic and magnetic study of solid solutions Gd2(Fe14-xCox)B, Gd2(Co14-xMnx)B, Dy2Fe14BHx, Y2Fe14BHx and Lu2Fe14BHx. Journal de Physique, 1985, vol. 46, pp. C6-319–C6-322.
31. Korolev M.N. Study of technical characteristics of modern types of angular rate sensors. Proceedings of the 12th Int. sc. and tech. conf. «Instrument Engineering–2019». Minsk: BNTU, 2019, pp. 21–23.
32. Blazhnov B.A., Nesenyuk L.P., Peshekhonov V.G., Staroseltsev L.P. Miniature integrated orientation and navigation systems. Elektronika: Nauka, Tekhnologiya, Biznes, 2001, vol. 5, pp. 56–59.
33. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), pp. 66–75. Available at: http://www.viam-works.ru (accessed: February 20, 2025). DOI: 10.18577/2307-6046-2022-0-10-66-75.
34. Valeev R.A., Piskorsky V.P., Korolev D.V., Morgunov R.B. Optimization of the cobalt content as a way of temperature stabilization of rare earth magnets. Trudy VIAM, 2023, no. 3 (121). pp. 58–66. Available at: http://www.viam-works.ru (accessed: February 20, 2025). DOI: 10.18577/2307-6046-2023-0-3-58-66.
The article analyzes the application of machine learning methods for the development of epoxy compositions with specified properties. Approaches to the formation of training data sets based on limited number of experiments are considered. Special attention is paid to the methods of active learning and Bayesian optimization methods, which allow efficient planning of experiments. Practical examples of using machine learning models for predicting the properties of developed compositions are given. The advantages of combining different machine learning methods for solving complex problems in materials science are shown.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334. DOI: 10.31857/S0869587320040052.
3. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), pp. 94–103. Available at: http://www.journal.viam.ru (accessed: April 17, 2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
4. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), pp. 22–33. Available at: https://www.journal.viam.ru (accessed: April 17, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
5. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Study of epoxy-polysulfone polymer systems as the basis for high-strength adhesives for aviation purposes. Klei. Germetiki. Tekhnologii, 2017, no. 3, pp. 7–12.
6. Moshinsky L. Epoxy resins and hardeners. Tel Aviv: Arcadia press Ltd., 1995, 370 p.
7. Adler Yu.P., Markova E.V., Granovsky Yu.V. Experimental design in the search for optimal conditions. Moscow: Nauka, 1976, 140 p.
8. Montgomery D.K. Experimental design and data analysis. Trans. from Engl. Leningrad: Shipbuilding, 1980, 384 p.
9. Oreshko E.I., Erasov V.S., Sibayev I.G., Lutsenko A.N., Shershak P.V. Machine learning algorithms (review). Part 1. Classification and regression tasks. Linear algorithms in machine learning. Application of machine learning algorithms for calculating the strength characteristics of materials. Aviation materials and technologies, 2022, no. 3 (68), pp. 130‒146. Available at: http://www.journal.viam.ru (accessed: April 20, 2025). DOI: 10.18577/2713-0193-2022-0-3-130-146.
10. Oreshko E.I., Erasov V.S., Sibayev I.G., Lutsenko A.N., Shershak P.V. Machine learning algorithms (review). Part 2. Machine learning metrics. Decision trees and ensembles of decision trees. An algorithm for neural network to forecast properties of ferrite-martensite steel. Aviation materials and technologies, 2022, no. 4 (69), pp. 132–146. Available at: http://www.journal.viam.ru (accessed: April 20, 2025). DOI: 10.18577/2713-0193-2022-0-4-132-146.
11. Shonichev I.D., Tynchenko V.S., Borodulin A.S., Muzyka S.S. Application of machine learning technologies in the design and production of structures from composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2024, no. 6, pp. 18–27. DOI: 10.31044/1994-6260-2024-0-6-18-27.
12. Monakhov A.D., Yakovlev N.O. Application of the deep learning method in studying crack resistance characteristics. Trudy VIAM, 2024, no. 6 (136), pp. 80‒91. Available at: http://www.viam-works.ru (accessed: April 20, 2025). DOI: 10.18577/2307-6046-2024-0-6-80-91.
13. Xu P., Ji X., Li M. et al. Small data machine learning in materials science. npj Computational Materials, 2023, vol. 9, art. 42. DOI: 10.1038/s41524-023-01000-z.
14. Serrano L. Grokking Machine Learning. St. Petersburg: Piter, 2022, 320 p.
15. Scholle F. Deep Learning in Python. St. Petersburg: Piter, 2021, 400 p.
16. Choosing the right estimator. Scikit-learn. Machine learning in Python. Available at: http://scikit- learn.org/stable/tutorial/machine_learning_map (accessed: April 16, 2025).
17. Theobald O. Machine Learning for Absolute Beginners. Moscow: Bombora, 2024, 208 p.
18. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Assessment of the adhesive strength of the fiber–polymer matrix system using the nonparametric bootstrap method. Trudy VIAM, 2024, no. 11 (141), pp. 100‒112. Available at: http://www.viam-works.ru (accessed: April 17, 2025). DOI: 10.18577/2307-6046-2024-0-11-100-112.
19. Aggarwal C.C. Data Mining: The Textbook. N.-Y.: Springer, 2015, 734 p.
20. Monarch R. Machine Learning with Human Interaction. Moscow: DMK Press, 2022, 498 p.
21. Nguyen K. Bayesian Optimization in Practice. Astana: ALIST, 2024, 416 p.
22. Taniguchi S., Uemura K., Tamaki S. et al. Multi-objective Optimization of the Epoxy Matrix System Using Machine Learning. Results in Materials, 2023, vol. 17 (1), art. 100376. DOI: 10.1016/j.rinma.2023.100376.
23. Akiba T.T., Sano S., Yanase T. Optuna: a next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19). N.-Y., 2019, pp. 2623–2631. DOI: 10.1145/3292500.3330701.
24. Rishal H. Grokking Artificial Intelligence Algorithms. St. Petersburg: Piter, 2023, 368 p.
25. Pruksawan S., Lambard G., Samitsu S. et al. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Science and Technology of Advanced Materials, 2019, vol. 20 (1), pp. 1010–1021. DOI: 10.1080/14686996.2019.1673670.
26. Albuquerque R.Q., Rothenhäusler F., Ruckdäschel H. Designing formulations of bio-based, multicomponent epoxy resin systems via machine learning. MRS Bulletin, 2024, no. 49, pp. 59–70. DOI: 10.1557/s43577-023-00504-9.
Liquid thermal insulation compositions based on a polymer matrix and the additions of gas filled or evacuated microspheres are considered, and the main prospects and scope of application of thin film thermal insulation material obtained from these liquid compositions is shown. The microstructure and X-ray spectral analysis of a typical thin-film thermal insulation coating and microspheres included in its composition were studied by pyrolytic gas chromate-mass spectrometry, the composition of the polymer component of the material was determined, and the structure of microspheres was studied by X-ray diffraction.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Foamed polyimides. Trudy VIAM, 2015, no. 4, paper no. 09. Available at: http://www.viam-works.ru (accessed: May 17, 2025). DOI: 10.18577/2307-6046-2015-0-4-9-9.
4. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41‒49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
5. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), pp. 51–60. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2022-0-4-51-60.
6. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), pp. 119–126. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2021-0-1-119-126.
7. Babashov V.G., Varrik N.M., Karaseva T.A. Porous ceramic for filtration of metal melts and hot gases (rеview). Trudy VIAM, 2020, no. 8 (90), pp. 54–63. Available at: http://www.viam-works.ru (accessed: May 17, 2025.) DOI: 10.18577/2307-6046-2020-0-8-54-63.
8. Istomin A.V., Kolyshev S.G. Processing of wastes high-temperature heat-protective material. Trudy VIAM, 2021, no. 1 (95), pp. 97‒104. Available at: http://www.viam-works.ru (accessed: May 17, 2025.). DOI: 10.18577/2307-6046-2021-0-1-97-104.
9. Osnos S.P. Application of materials based on basalt fibers in the aerospace industry. Kompozitnyy mir, 2015, no. 4 (61), pp. 72–79.
10. Bespalov A.S., Salimov I.E., Yudin A.V. Imparting highly hydrophobic properties to a high-porous ceramic material with low-concentration solutions of fluoroparaffin in a supercritical carbon dioxide environment. Aviation materials and technologies, 2025, no. 1 (78), pp. 39‒48. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2025-0-1-39-48.
11. Lermontov S.A., Sipyagina N.A., Malkova A.N., Buznik V.M., Bespalov A.S., Grashchenkov D.V., Baranchikov A.E. Hierarchical porous composite ceramic material modified by hydrophobic methyltrimethoxysilane-based aerogel. Journal of porous materials, 2021, vol. 28, no. 4, pp. 1237–1244. DOI: 10.1007/s10934-021-01075-3.
12. Kondrashov E.K., Nefedov N.I., Vereninova N.P., Kushch P.P., Kichigina G.A., Kiryukhin D.P., Buznik V.M. Modification of fluorocopolymer coatings by telomers to improve their hydrophobicity. Polymer Science. Series D, 2016, vol. 9, no. 2, pp. 212–218.
13. Buznik V.M. The state of domestic fluoropolymer chemistry and possible development prospects. Rossiyskiy khimicheskiy zhurnal, 2008, vol. 52, no. 3, pp. 7–12.
14. Venevitin A.A., Asminin V.F. Improving the functional properties of heat-insulating coatings based on hollow microspheres. Current areas of scientific research in the 21st century: theory and practice, 2013, no. 5, pp. 171–178.
15. Zhdanov N.N., Garipov R.M., Levin A.S. The influence of functionalized monomers on the properties of acrylstyrene dispersion and heat-protective coating based on it. Vestnik tekhnologicheskogo universiteta, 2016, vol. 19, no. 23, pp. 65–67.
16. Kurshev E.V., Lonskiy S.L., Deev I.S. Application of scanning electron microscopy and X-ray spectral microanalysis to study non-metallic composite materials. Proc. of the VIII All-Rus. Conf. on Testing and Research of Material Properties «TestMat»: in 4 parts. Moscow: VIAM, 2016, part 2, pp. 1–13.
17. Deev I.S., Kobets L.P. Structure formation in filled thermosetting polymers. Kolloidnyy zhurnal, 1999, vol. 61, no. 5, pp. 650–660.
18. Bousfield B. Surface Preparation and Microscopy of Materials. John Wiley & Sons Ltd, 1992, 342 p.
19. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading. Trudy VIAM, 2014, no. 7, paper no. 06. Available at: http://www.viam-works.ru (accessed: May 13, 2025). DOI: 10.18577/2307-6046-2014-0-7-6-6.
20. Trathnigg B. Size-exclusion chromatography of polymers. Encyclopedia of Analytical Chemistry. Ed. R.A. Meyers. Chichester: Wiley, 2000, pp. 8008–8034.
21. Grundy P.J., Jones G.A. Electron Microscopy in the Study of Materials. Edward Arnold Publishers Ltd, 1976, 194 p.
22. Ponomarenko S.A., Shimkin A.A. Chromatographic methods of analysis: application possibilities in the aviation industry (review). Zavodskaya laboratoriya. Diagnostika materialov, 2017, no. 83 (4), pp. 5–13.
23. Applied Pyrolysis Handbook. 2nd ed. Ed. T.P. Wampler. CRC Press, 2006, 304 p.
24. Lebedev A.T. Mass Spectrometry in Organic Chemistry: A Textbook. Moscow: Binom. Knowledge Laboratory, 2003, 493 p.
25. Zhdanov N.N. Development of Heat-Protective Coatings Based on Acrylic-Styrene Copolymers and Hollow Glass Microspheres: thesis, Cand. Sc. (Thech.). Kazan, 2017, 123 p.
26. Loginova N.A. Determination of the Efficiency of Thin-Film Thermal Insulation Coatings as Applied to Heating Systems: thesis, Cand. Sc. (Thech.). Moscow, 2010, 133 p.
This article presents theresults of information search and discusses the main tendencies in the field of creation of fireproof paint and varnish materials and coverings on their basis for painting interior elements of aviation engineering. The research defines the main requirements for interior coatings, and for choice of components for obtaining fire-resistant interior paint and varnish materials and coverings. The most promising research and development for fire-resistant paint coatings are identified.
2. Garashchenko A.N., Kulkov A.A., Strakhov V.L. The effect of the service life on the flame-retardant efficiency of the bulging coatings and the fire resistance of structures. Aviation materials and technologies, 2022, no. 2 (67), pp. 97–110. Available at: http://www.journal.viam.ru (accessed: March 28, 2025). DOI: 10.18577/2713-0193-2022-0-2-97-110.
3. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), pp. 51–60. Available at: http://www.journal.viam.ru (accessed: March 28, 2025). DOI: 10.18577/2713-0193-2022-0-4-51-60.
4. Barbotko S.L. Requirements of aviation standards and methods for assessing the fire safety of aviation materials: history, current status, and development prospects. Vestnik Voronezhskogo instituta GPS MCHS Rossii, 2014, is. 3 (12), pp. 23–33.
5. Konstantinova N.I., Tsarichenko S.G., Krivoshapkina O.V., Kolesnikov V.V. On the fire hazard of paints and varnishes. Lakokrasochnye materialy i ikh primenenie, 2014, no. 6, pp. 18–22.
6. Nevzorov G.N., Drinberg A.S., Nedvedskiy G.R. et al. Development of special coatings for the interior spaces of ships and vessels with reduced flammability. Reports of the 5th All-Rus. sc. and pract. Conf. with the participation of young people «Innovative materials and technologies in design». St. Petersburg, 2019, pp. 115–117.
7. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Fire safety assessment of polymeric materials for aviation purposes. Ed. E.N. Kablov. Moscow: VIAM, 2018, 408 p.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Kondrashov E.K. Paints and Varnishes and Coatings Based on Them in Mechanical Engineering. Moscow: Paint-Media, 2021, p. 141.
10. Water-Borne Paint and Varnish Coating Composition: pat. 2338766 Rus. Federation; appl. 27.08.07; publ. 20.11.08.
11. Kablov E.N. The Role of Chemistry in Creating Next-Generation Materials for Complex Technical Systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: UB of RAS, 2016, pp. 25–26.
12. State Standard R 52020–2003. Water-Dispersible Paints and Varnishes. General Specifications. Moscow: Publ. House of Standards, 2003, 15 p.
13. Pavlikova S.M., Anisimov S.V., Shurygina Yu.N. Acrylic and styrene acrylic aqueous dispersions in paint and varnish compositions for metal painting. Lakokrasochnye materialy i ikh primenenie, 2017, no. 4, pp. 24–28.
14. Karpov S.V., Dzhalmukhanova A.S., Badamshina E.R. Synthesis and study of the properties of water-dispersion polyurethanes modified with partial nitrate of B-cyclodextrin. Reports of the academic forum of young scientists from the countries of Greater Eurasia «Continent of Science». Moscow: Center for Scientific and Technical Solutions, 2023, pp. 217–218.
15. Noble K.L. Waterborne polyurethanes. Progress in Organic Coatings, 1997, vol. 32, no. 1–4, pp. 131–136.
16. Lee Y., Luo X., Hu S. et al. Corrosion protection studies of crude glycerol-based waterborne polyurethane coating on steel substrate. Journal of The Electrochemical Society, 2016, vol. 163, is. 3, pp. 54–61.
17. Lei L., Zhong L., Lin X. et al. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chemical Engineering Journal, 2014, vol. 253, pp. 518–525.
18. Kozlova A.A., Kondrashov E.K. Influence of molecular weight and elemental composition of isocyanates on the properties of fluoropolyurethane enamels. Aviation materials and technologies, 2023, no. 4 (73), pp. 92–100. Available at: http://www.journal.viam.ru (accessed: April 22, 2025). DOI: 10.18577/2713-0193-2023-0-4-92-100.
19. Halogen-free, non-intumescent, fire retardant coating composition: pat. 3963012 EP; appl. 24.04.20; publ. 07.06.23.
20. Solvent-soluble fluoropolymer resin for coatings that can be cured at room temperature or at elevated temperatures. Available at: http://www.agcchem.com (accessed: April 05, 2025).
21. Aqueous coating composition for aircraft interior and aircraft interior: pat. 2016079265 JP; appl. 15.10.14; publ. 16.05.16.
22. Modified halogenated and halogensulfonated (co)polymer of 4-methylpentene-1, binder, composition and articles based on it: pat. 2252227 Rus. Federation; appl. 04.10.02; publ. 20.05.05.
23. Water-dispersion paint and varnish composition: pat. 2154078 Rus. Federation; appl. 12.01.99; publ. 10.08.00.
24. Complex mixed nitrate esters of cellulose with phthalate groups as a polymer base for adhesives, varnishes, paints, coatings, solid rocket propellants and the method for producing them: pat. 2170235 Rus. Federation; appl. 19.04.96; publ. 10.07.01.
25. Composite single-pack silicate paint: pat. 2645502 Rus. Federation; appl. 14.06.16; publ. 21.02.18.
26. Water-based paint and varnish composition for coatings: pat. 2087505 Rus. Federation; appl. 11.01.95; publ. 20.08.97.
27. Aqueous fluorocarbon coating for painting metal base materials: pat. 102408808 CN; appl. 16.09.11; publ. 24.07.13.
28. Water-based primer coating composition for aluminum substrate: pat. 2016519141 JP; appl. 10.03.15; publ. 20.04.17.
29. Domnichenko R.G., Vostrikova G.Yu., Nikulin S.S. Production of epoxy-acrylic water-dispersion coatings. Khimiya, fizika i mekhanika materialov, 2019, no. 3 (22), pp. 14–22.
30. Shinkareva E.V. Composite paints and varnishes based on aqueous epoxy emulsions. Izvestiya Natsionalnoy akademii nauk Belarusi. Seriya khimicheskikh nauk, 2019, vol. 55, no. 3, pp. 329–337.
31. Khalturinsky N.A. Combustion of polymers, mechanism of action of flame retardants. Uspekhi khimii, 1984, no. 2, pp. 334–339.
32. Zaripov I.I., Vikhareva I.N., Buylova E.A., Berestova T.V., Mazitova A.K. Additives for reducing the flammability of polymers. Nanotekhnologii v stroitelstve, 2022, no. 14 (2), pp. 156–161.
33. Water-dispersion paint: pat. 2209223 Rus. Federation; appl. 17.12.01; publ. 27.07.03.
34. Aqueous flame retardant compositions and aqueous coating compositions comprising such flame retardant compositions: pat. 20220054346 KR; appl. 17.11.20; publ. 31.12.24.
35. Flame-retardant, isocyanate-free coating composition: pat. 7189392 JP; appl. 23.11.20; publ. 21.12.22.
36. Fadeev S.S., Bogdanova V.V., Safropenko E.D. Inhibition of polymer combustion. Study of the mechanism of action of synergistic mixtures of antimony oxide and halogen-containing compounds. Moscow: NIITEkhim, 1988, 39 p.
37. Kablov V.F., Keibal N.A. Polymer materials with functionally active components. Research and technology (part 1). Volgograd: VPI (branch) of VolGTU, 2018, 406 p.
38. Buravov B.A., Tuzhikov O.O., Al-Hamzavi A.Kh.D. et al. Modern trends in the development of flame retardants for polymer composites. Composition, properties, application. Izvestiya VolgGTU. Ser.: Khimiya i tekhnologiya elementoorganicheskikh monomerov i polimernykh materialov, 2020, no. 12 (247), pp. 7–24.
39. Al-Hamzawi A.H.D. Phosphorus-Containing Oligoether Methacrylate Binders for Reinforced Plastics with Low Flammability: thesis, Cand. Sci. (Tech.). Volgograd, 2023, 137 p.
40. Evtushenko Yu.M., Grigoriev Yu.A., Kuchkina I.O. et al. Effect of a Complex Flame Retardant on the Physicochemical Properties of Unsaturated Orthophthalic Resin. Plasticheskie massy, 2020, no. 1–2, pp. 26–29.
41. Rodrigues J., Shimpi N.G. Nanostructured flame-retardants: An overview. Nano-Structures & Nano-Objects, 2024, vol. 39, p. 101253.
42. Singh M.K., Rangappa S.M., Misra M. et al. Recent advancements in nanostructured flame-retardants: Types, mechanisms, and applications in polymer composites. Nano-Structures & Nano-Objects, 2025, vol. 42, p. 101468.
43. Tu Z., Ou H., Ran Y. et al. Preparation and flame retardant properties of organic montmorillonite synergistic intumescent flame retardant polypropylene. Journal of loss prevention in the process industries, 2024, vol. 87, p. 105226
44. Sankeshi S., Ganapathiraju J., Bajaj P. et al. 2D-nanostructures as flame retardant addives: Recent progress in hybrid polymeric coatings. Nano-Structures & Nano-Objects, 2024, vol. 40, p. 101346.
45. Qiu X., Wu C., Lin J. et al. Construction of MOFs-based nanocomposites and their application in flame retardant polymers: A rewiew. Polymer degradation and stability, 2024, vol. 229, p. 110982.
46. Liu C., Zhuang D., Zhou Y. et al. Mechanically reinforced and flame-retardant epoxy resin nanocomposite based on molecular engeneering of POSS. Polymer testing, 2025, vol. 143, p. 108719.
47. Greiner L., Kukla P., Eibl S., Döring M. Phosphorylated salicylic acid as flame retardant in epoxy resins and composites. Journal of renewable materials, 2022, vol. 10, is. 7, p. 1931–1950.
48. Greiner L., Kukla P., Eibl S., Döring M. Phosphorus containing polyacrylamides as flame retardants for epoxy-based composites in aviation. Polymers, 2019, vol. 11, is. 2, p. 284.
49. Kondrashov E.K., Kozlova A.A. UV quantum technologies for the formation of protective, decorative and functional polymer coatings. Part I. Film-forming agents for UV-polymerizable coatings. Lakokrasochnye materialy i ikh primenenie, 2022, no. 10 (546), pp. 20–26.
50. Nikalin D.M., Serdtselyubova A.S., Merkulova Yu.I., Kozlova A.A. Water-based polyurethane paints and varnishes for metal surfaces. Patent review. Rossiyskiy khimicheskiy zhurnal, 2019, vol. 63, no. 2, pp. 10–16.
The article presents the features of manufacturing, preparation for testing and testing of samples of layered carbon fiber reinforced plastics for transverse tensile strength. The features of laying out thick-walled plates and typical damage to the structure of the material during the manufacture of samples, as well as their influence of structural defects on the values obtained during testing are described. Differences in samples and their destruction are shown. At present, the Institute continues to improve the methods of testing layered carbon fiber reinforced plastics for the most complete description of the properties of PCM.
2. Goldenblat I.I., Kopnov V.A. Strength Criterion of Anisotropic Materials. Mekhanika, 1965, no. 6, pp. 77–83.
3. Levin V.E., Laperdina N.A., Olegin I.P. Numerical Approach to Determining the Elastic Properties of Unidirectionally Reinforced Composites. Nauchno-tekhnicheskiy vestnik Povolzhya, 2019, no. 11, pp. 141–145.
4. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), pp. 82–94. Available at: http://www.journal.viam.ru (accessed: March 02, 2025). DOI: 10.18577/2713-0193-2024-0-4-82-94.
5. Shershak P.V., Yakovlev N.O., Sutubalov A.I. Standards for testing polymer composite materials. Part 1. Tensile properties. Aviation materials and technologies, 2023, no. 3 (72), pp. 152–166. Available at: http://www.journal.viam.ru (accessed: April 05, 2025). DOI: 10.18577/2713-0193-2023-0-3-152-166.
6. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), pp. 122–144. Available at: http://www.journal.viam.ru (accessed: April 09, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
7. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), рр. 121–135. Available at: http://www.journal.viam.ru (accessed: April 25, 2025). DOI: 10.18577/2713-0193-2024-0-1-121-135.
8. Hancox N.L. The compression strength of unidirectional carbon fibre reinforced plastic. Journal of materials science, 1975, vol. 10, pp. 234–242. DOI: 10.1007/BF00540347.
9. Berkov N.A., Arkhangelsky A.I., Arkhangelskaya M.V. Nonlinear analysis of composite shell connections. New technologies of higher education. Science, technology, pedagogy. Moscow: Moscow Polytechnic, 2021, pp. 113–119.
10. Pyataev S.F. Effect of temperature on the strength of linearly reinforced boron-plastics under complex loading. Zhurnal Sibirskogo federal'nogo universiteta. Ser.: Matematika i fizika, 2012, vol. 5 (2), pp. 246–255.
11. Lee S., Waas A.M. Compressive response and failure of fiber reinforced unidirectional composites. International Journal of Fracture, 1999, vol. 100, pp. 275–306. DOI: 10.1023/A:1018779307931.
12. State Standard 25.603–82. Methods of mechanical testing of composite materials with a polymer matrix (composites). Moscow: Publ. House of Standards, 1983, 15 p.
13. Fedonyuk N.N., Maslich E.A. Application of polymer composite materials in foreign shipbuilding. St. Petersburg: Krylov State Research Center, 2024, 304 p.
14. Suknev S.V. Non-local failure criteria. Point stress criteria. Nauka i obrazovanie, 2008, no. 1 (49), p. 27–32.
15. Minibaev M.I., Raskutin A.E., Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), pp. 105–114. Available at: http://www.viam-works.ru (accessed: April 30, 2025). DOI: 10.18577/2307-6046-2019-0-1-105-114.
16. Khrulkov I.A., Gulyaev I.N., Mishkin S.I. Features of cutting polymer composite materials with diamond wheels (review). Trudy VIAM, 2022, no. 4 (110), pp. 22–31. Available at: http://www.viam-works.ru (accessed: May 18, 2025). DOI: 10.18577/2307-6046-2022-0-4-22-31.
17. Minibaev M.I., Usacheva M.N., Dyshenko V.S., Goncharov V.A. A device and tool for making sample from polymer composite materials on a CNC machine (review). Trudy VIAM, 2021, no. 4 (98), pp. 100–109. Available at: http://www.viam-works.ru (accessed: April 22, 2025). DOI: 10.18577/2307-6046-2021-0-4-100-109.
18. Kanatov A.V., Zaitsev D.A., Zaporozhan D.Yu. Features of cutting special composite materials with a mechanical point tool. Improving energy and resource efficiency and environmental safety of processes and equipment in the chemical and related industries: in 2 vols. Moscow: Publ. House of the Kosygin Rus. State Univ., 2021, vol. 1, pp. 289–292.
19. Zhelezina G.F., Kulagina G.S., Sidorina A.I., Soloveva N.A. Fatigue of constructional organoplastics. Aviacionnye materialy i tehnologii, 2014, no. 1, pp. 89–100. Available at: http://www.journal.viam.ru (accessed: May 15, 2025). DOI: 10.18577/2713-0193-2024-0-1-89-100.
20. State Standard 57864–2017. Method for determining the ultimate strength and elastic modulus under tension in the direction of specimen thickness. Moscow: Standartinform, 2017, 17 p.
Heat-resistant alloys and steels
Bityutskaya O.N., Petrushin N.V., Visik E.M., Kuzmina N.A., Lonskaya N.A. Structural characteristics of monocrystalline castings and mechanical properties of nickel-based superalloys with low renium content. Рart 1
Laptev A.B., Zagorskikh O.A., Fedorov A.S., Golubev I.A. Optimization of the surface hardening parameters for 12X18H10T steel pipes using a regression model
Krylov S.A., Druzhnov M.A., Sevalnev G.S., Novikov A.S., Egorov E.V. Influence of synthesis parametres on the structure formation in high-nitrogen corrosion-resistant steel
Light-metal alloys
Yashin M.S., Kapitanenko D.V. Features of the production of semi-finished products from heat-resistant nickel, titanium and aluminum alloys by pressure welding
Kashapov O.S., Pavlova T.V., Zaitsev D.V., Chuchman O.V. Comparative analysis of mechanical properties of the material of ВТ6 alloy disk forgings, manufactured by various methods and production conditions
Polymer materials
Ponomarenko S.A., Lonskii S.L. Investigation of the resistance of thermoplastic polyurethane during thermooxidative and thermochemical treatment with diethylene glycole by gel permeation chromatography and microstructural analysis
Composite materials
Evdokimov A.A., Erasov V.S., Kablov E.N., Laptev A.B. Comprehensive assessment of the impact of operational and climatic tests on the change of strength properties of polymer composite materials with shaping at temperatures up to 40 °C. Part 2. Carbon fiber grade VKU-51
Butuzov A.V. Preceramic polymers for the production of ceramic products by vat photopolymerization. Part 2. Composition and methods of obtaining photo-curable polymer preceramic compounds
Vikulin V.V., Mukhin A.N., Kurbatkina E.I., Zaklyakova O.V. Possibility of obtaining ceramics based on reaction-bound silicon nitride with adjustable hardness and high heat strength characteristics
Sarychev I.A., Serkova E.A., Mishurov K.S., Payarel S.M. Epoxy binders for FR-4 grade dielectric materials
Potapov M.V., Buzenkov A.V., Morgunov R.B., Piskorsky V.P. Effect of gadolinium doping on the magnetic properties of sintered
Pr–Dy–Fe–Co–B magnets
Mishurov K.S., Monahov A.D., Sarychev I.A. Development and prediction of properties of epoxy compositions using machine learning methods
Protective and functional
coatings
Bespalov A.S., Salimov I.E., Lonskii S.L., Kurshev E.V., Ponomarenko S.A. Investigation of the composition and structure of a thermal insulation coating based on a polymer matrix and hollow microspheres
Kozlova A.A., Shunina M.A., Kozlov I.A. Trends in the development of fire-resistant paintwork coatings for painting elements of aircraft passenger cabin interiors
Material tests
Vasilchuk E.A., Gubin A.M., Gulyaev I.N., Klimenko O.N. Features of preparation and conducting tests to determine the transverse tensile strength of samples of laminated carbon fiber reinforced plastics
