Last number
№10 2024
Metallographic and durometric studies and wear tests under dry sliding friction conditions of maraging steel 21NKMT after various types of heat treatment were carried out. It has been established that the samples after quenching and single aging have the lowest wear rate, while the samples after two-times aging have the highest hardness of 630 HV. The use of two-fold aging and overaging of 21NKMT steel leads to an increase in wear intensity by 12–33%.
2. Gloeckner P., Rodway C. The evolution of reliability and efficiency of aerospace bearing systems. Engineering, 2017, vol. 9, no. 11, pp. 962–991.
3. Krishna S.C., Tharian K.T., Chakravarthi K.V.A. et al. Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C steel: a case study. Metallography, Microstructure, and Analysis, 2016, vol. 5, no. 2, pp. 108–115.
4. Geller Yu.A. Tool steels. Moscow: Metallurgiya, 1983, 525 p.
5. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: January 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
6. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva O.A. Development and research of high-strength corrosion-resistant steel for bearing parts. Metallurg, 2019, no. 11, pp. 39–44.
7. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
8. Bannykh I.O., Ashmarin A.A., Betzofen S.Ya. et al. Optimization of chemical composition and parameters of thermomechanical processing of TRIP steels based on new methods of X-ray tensiometry, texture and phase analysis. Metally, 2022, no. 6, pp. 66–72.
9. Lukin E.I., Blinov V.M., Bannykh I.O. et al. Effect of the Quenching Temperature on the Structure and Mechanical Properties of Martensitic–Ferritic Corrosion-Resistant Nitrogen-Bearing 08Kh17N2AF Steel. Russian Metallurgy (Metally), 2023, no. 6, pp. 629–637.
10. Blinov V.M., Antsyferova M.V., Bannykh I.O. et al. Structure and Properties of High-Strength Low-Alloy Martensitic Steels with an Overequilibrium Nitrogen Content. Russian Metallurgy (Metally), 2023, no. 6, pp. 649–656.
11. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Effect of the Reduction during Cold Rolling on the Phase Composition, Texture, and Residual Stresses in 20Kh15AN3MD2 Steel. Russian Metallurgy (Metally), 2023, vol. 2023, no. 11, pp. 1598–1605.
12. Kuksenova L.I., Gerasimov S.A., Lapteva V.G. Wear resistance of structural materials. Moscow: Publ. house of Bauman Moscow State Technical Univ., 2011, 240 p.
13. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Krylov S.A. Study of the tribo-technical characteristics of corrosion-resistant steels with different mechanisms of volumetric hardening. Trudy VIAM, 2021, no. 10 (104), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 16, 2024). DOI: 10.18577/2307-6046-2021-0-10-3-11.
14. Pokrovskaya N.G., Markova E.S., Shalkevich A.B. High-strength structural martensitic aging steels in aircraft construction. Aviatsionnaya promyshlennost, 2014, no. 1, pp. 24–28.
15. Stephen W. Martensitic aging steels. High-strength steels. Moscow: Metallurgiya, 1969, pp. 235–257.
16. Edneral A.F., Kardonsky V.M., Perkas M.D. Structural changes during aging of carbon-free iron-nickel martensite. Imperfections of the crystal structure and martensitic transformations. Moscow: Nauka, 1972, pp. 63–79.
17. Perkas M.D., Kardonsky V.M. High-strength maraging steels. Moscow: Metallurgy, 1970, 223 p.
18. Sevalnev G.S., Druzhinina M.E., Dulnev K.V., Mosolov A.N., Fomina L.Р., Chirkov I.A. Improvement of the tribotechnical characteristics of beryllium-containing steel VNS32-VI by surface modification. Trudy VIAM, 2022, no. 11 (117), paper no. 01. Available at: http://www.viam-works.ru (accessed: January 05, 2024). DOI: 10.18577/2307-6046-2022-0-11-3-14.
19. Gorokhov A.Yu. Effect of VKS-210 steel structure on the defect of elastic modulus under fatigue impact. Aktualnye problemy gumanitarnykh i yestestvennykh nauk, 2015, no. 3-1, pp. 52–54.
20. Perkas M.D., Strug M.D., Rusanenko V.V. Elinvar martensitic-aging steels with a high elastic limit. Metallovedenie i termicheskaya obrabotka metallov, 1991, no. 8, pp. 40–41.
21. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Technological features of the production of maraging steel VKS-180. Trudy VIAM, 2013, no. 7, paper no. 01. Available at: http://www.viam-works.ru (accessed: February 10, 2024).
22. Structural materials: reference book. Ed. B.N. Arzamasov. Moscow: Mashinostroenie, 1990, 688 p.
23. Sadovsky V. D. Structural heredity in steel. Moscow: Metallurgiya, 1973, 208 p.
24. Oshurina L.A. Analysis of the application of parameter sensors based on 21NKMT elinvar alloy. Innovatsii i investitsii, 2021, no. 3, pp. 169–171.
25. García-León R.A., Martínez-Trinidad J., Campos-Silva I. et al. Wear maps of borided AISI 316L steel under ball-on-flat dry sliding conditions. Materials Letters, 2021, vol. 282, p. 128842.
26. Kuksenova L.I., Alekseeva M.S. Effect of Preliminary Treatment on Tribotechnical Characteristics of Nitrided Structural Steels. Metal Science and Heat Treatment, 2023, vol. 65, no. 1-2, pp. 34–41.
27. Kuksenova L.I., Savenko V.I. Physicochemical Tribomechanics of Antifriction Materials Operating in Heavy-Loaded Friction Pairs in Active Lubricating Media. Journal of Friction and Wear, 2023, vol. 44, no. 6, pp. 333–345.
The results of the study of the effect of sulfur, phosphorus, silicon and nitrogen impurities on the main properties of the high-temperature nickel alloy VZhM200 for blades casting with a directional structure of the PD-8 gas turbine engine: long-term, fatigue strength and short-term mechanical properties are presented. It was found that with an increased content of these impurities in the alloy, the time to destruction decreases at T = 1000 °C at bases of 100, 500 h and plasticity at T = 20 °C. It was also found that the number of cycles to failure was reduced when tested for high-cycle fatigue at T = 900 °C in the alloy with the addition of silicon and nitrogen.
2. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: September 02, 2024). DOI: 10.18577/2713-0193-2023-0-3-3-14.
3. Konstantinov I.V. Ensuring technological sovereignty of the aviation industry using the SUKHOI SUPERJET NEW aircraft as an example. Scientific achievements and innovative approaches: theory, methodology, practice: collection of scientific papers based on the materials of the VIII International scientific and practical conf. Anapa, 2022, рp. 99–103.
4. More than 40 PD-8 engines are planned to be produced in 2024. Available ai: https://tass-ru/ekonomika/18995881 (accessed: September 02, 2024).
5. Min P.G., Kablov D.E., Sidorov V.V., Vadeev V.E. Patterns of impurity behavior in the production of single-crystal heat-resistant nickel alloys and the development of effective methods for their refining. Prospects for the development of metallurgical technologies: abstracts VII Conf. of young specialists. Moscow, 2016, рp. 36–37.
6. Sidorov V.V. The effect of impurities and surface-active additives on the formation of the structure and properties of high-heat-resistant casting alloys: thesis abstract, Dr. Sc. (Tech.). Moscow, 1989, 50 p.
7. Pridancev M.V. The effect of impurities and rare earth elements on the properties of alloys. Moscow: Metallurgizdat, 1962, 208 p.
8. Zhuanggi Hu, Hongwei Song. Effect of Phosphorus on Microstructure and Creep Property of IN718 Superalloy. Journal of material Science Technology, 2005, vol. 21, pp. 73–76.
9. Chao Yuan, Fengshi Yin. Effect of Phosphorus on Microstructure and High Temperature Properties of a cast Ni-base Superalloy. Journal of Material Science Technology, 2002, vol. 18, no. 6, pp. 555–557.
10. Holt R.T., Wallace W. Impurities and trace elements in nickel-base superalloys. International metals reviews, 1976, vol. 21, no. 1, pp. 1–24.
11. Sun C., Huang R.F., Guo J.T., Hu Z.Q. Sulphur distribution in K24 cast nickel-base superalloy and its influence on mechanical properties. High Temperature Technology, 1988, vol. 6 (3), pp. 145–148.
12. Tigrova G.D., Korkka S.I., Grebtsova T.M. Effect of silicon on the phase composition of nickel-based alloys. Metallovedenie i termicheskaya obrabotka metallov, 1980, no. 4, pp. 38–41.
13. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Features of the technology of smelting and pouring modern foundry high-heat-resistant nickel alloys. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie, 2011, no. SP2, pp. 68–78.
14. Kablov D.E. Regularities of nitrogen behavior in the production of single crystals of heat-resistant nickel alloys and improving their performance properties: thesis abstract, Cand. Sc. (Tech.). Moscow, 2012, 17 p.
15. Kablov D.E., Sidorov V.V., Min P.G. Regularities of nitrogen behavior during production of single crystals of heat-resistant nickel alloys and its influence on their operational properties. Metallovedenie i termicheskaya obrabotka metallov, 2014, no. 1, pp. 8–12.
16. Epishin A.L., Svetlov I.L., Petrushin N.V., Loshchinin Yu.V., Link T. Segregation in Single-Crystal Nickel-Base Superalloy. Defect and Diffusion Forum, 2011, vol. 309–310, pp. 121–126.
17. Sarioglub C., Stinner C., Blanchere J.R. et al. The Control of Sulfur Content in Nickel-Base, Single Crystal Superalloys and Its Effect on Cyclic Oxidation Resistance. Superalloys-1996, 1996, pp. 71–80.
18. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Production of cast bar (blend) preparations from modern cast high-heat resisting nickel alloys. All-Rus. Sci.-techn. conf. «Problems and perspectives of development of metallurgy and mechanical engineering with use of complete basic researches and research and development», Ekaterenburg, 2011, pp. 31–38.
19. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: September 02, 2024). DOI: 10.18577/2071-9140-2021-0-3-11-18.
20. Heat resisting cast alloy on the basis of nickel and the product which has been executed of it: pat. 2740929 Rus. Federation; appl. 20.04.20; publ. 21.01.21.
21. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
22. Gerasimov V.V., Visik E.M., Kolyadov E.V. On directional crystallization of large-sized castings on the UVNK-15 unit. Liteynoe proizvodstvo, 2013, no. 3, pp. 22–24.
23. Gerasimov V.V., Kolyadov E.V. Technical characteristics and technological capabilities of the UVNK-9A and VIP-NK units for producing single-crystal castings from heat-resistant alloys. Liteynoe proizvodstvo, 2012, no. 11, pp. 33–37.
24. Yakimovich P.V., Alekseev A.V. Determination of sulfur in casting heat-resistant nickel alloys by GD-MS. Trudy VIAM, 2020, no. 1, paper no. 11. Available at: http://www.viam-works.ru (accessed: September 02, 2024). DOI: 10.18557/2307-6046-2020-0-1-101-108.
25. Sidorov V.V., Morozova G.I., Petrushin N.V., Kuleshova E.A., Kulebyakina A.M., Dmitrieva L.I. Phase composition and thermal stability of cast heat-resistant nickel alloy with silicon. Metally, 1990, no. 1, pp. 94–98.
26. Yaoxiao Zhu, John Radavich, Zhi Zheng et al. Development and Long-Time Structural Stability of a Low Segregation Hf Free Superalloys – DZ 125L. Superalloys-2000, 2000, pp. 329–339.
27. Mc Vay R.V., William P., Meier G.H., Pettit F.S. Oxidation of Low Sulfur Single Crystal Nickel-base Superalloys. Superalloys-1992, 1992, pp. 807–816.
28. Tammy M. Simpson and Allen R. Price. Oxidation improvements of low sulfur processed supperalloys. Superalloys-2000, 2000, pp. 387–392.
29. Mitchel A. Nitrogen in Superalloys. High Temperature Materials and Processes, 2005, vol. 24, no. 2, pp. 101–109.
30. Sims C., Hagel V. Heat-resistant alloys. Moscow: Metallurgiya, 1976, 566 p.
31. Gorbovets M.A., Hodinev I.A., Karashaev M.M., Ryzhkov P.V. Low cycle dwell fatigue testing of heat resistant metallic materials (review). Trudy VIAM, 2022, no. 5 (111), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 10, 2024). DOI: 10.18577/2307-6046-2022-0-5-123-137.
32. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy. Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
The paper describes the process of creating a rheological model of aluminum alloy 1163, intended for use in software packages for modeling metal forming processes. The flow stress curves of the alloy depending on the temperature and strain rate were obtained experimentally. Using the empirical Hensel-Spittel model, the coefficients determining the dependence of the flow stress on the thermomechanical parameters were calculated. The resulting model ensures high convergence of the calculated and experimental data.
2. Shchetinina N.D., Rudchenko A.S., Selivanov A.A. The approaches that are used for developed of optimal strain modes of aluminum-lithium alloys (review). Trudy VIAM, 2020, no. 8 (90), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 28, 2024). DOI: 10.18577/2307-6046-2020-0-8-20-34.
3. Kapitanenko D.V., Moiseev N.V., Bazhenov A.R., Gladkov Yu.A. Development of the isothermal deformation on air technology of production turbocharger disks using computer modeling. Trudy VIAM, 2022, no. 4 (110), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 28, 2024). DOI: 10.18577/2307-6046-2022-0-4-13-21.
4. Shpagin A.S., Kucheryaev V.V., Bubnov M.V. Computer simulation of thermomechanical processing of heat-resistant nickel alloys VZh175 and EP742. Trudy VIAM, 2019, no. 8 (80), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 20, 2024). DOI: 10.18577/2307-6046-2019-0-8-27-35.
5. Nekrasov B.R., Bubnov M.V., Sklyarenko V.G. et al. Development and optimization of the technology for manufacturing a stamped disk from EP975-ID alloy using computer modeling. Reports of the youth scientific and technical conf. «Youth in aviation materials science». Moscow: VIAM, 2008, p. 25.
6. Tsepin M.A., Begnarsky V.V., Lisunets N.L. et al. Use of specialized programs in the development of technological processes for metal forming. Tsvetnye metally, 2007, no. 5, pp. 98–101.
7. Stebunov S.A., Biba N.V. Qform – a program created for technologists. Kuznechno-shtampovochnoe proizvodstvo, 2004, no. 9, pp. 38–43.
8. Vo Phan Thanh Dat, Petrov P.A., Burlakov I.A. et al. Obtaining rheological models of aluminum alloy RS-356 under various deformation modes. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2023, vol. 21, no. 3, pp. 78–88. DOI: 10.18503/1995-2732-2023-21-3-78-88.
9. Potapenko K.E., Voronkov V.I., Petrov P.A. Determination of the deformation resistance model based on isothermal yield curves. Zagotovitelnye proizvodstva v mashinostroyenii, 2013, no. 8, p. 32.
10. Polukhin P.I., Gun G.Ya., Galkin A.M. Resistance of plastic deformation of metals and alloys. Moscow: Metallurgiya, 1983, 351 p.
11. Hensel A., Shpittel T. Calculation of energy-power parameters in metal forming processes: trans. from Germ. Moscow: Metallurgiya, 1982, 360 p.
12. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Aluminum alloys in aerospace engineering. Ed. E.N. Kablov. Moscow: Nauka, 2001, 192 p.
13. Kablov E.N., Lukin V.I., Ospennikova O.G. Promising aluminum alloys and their joining technologies for aerospace products. Reports of the 2nd Int. Conf. «Aluminum-21. Welding and Soldering». St. Petersburg, 2012, art. 8.
14. Kablov E.N., Dynin N.V., Benarieb I., Shchetinina N.D., Samokhvalov S.V., Nerush S.V. Promising aluminum alloys for brazed structures of aircraft equipment. Zagotovitelnye proizvodstva v mashinostroyenii, 2021, vol. 19, no. 4, pp. 179–192.
15. Astashkin A.I., Zaitsev D.V., Selivanov A.A., Tkachenko E.A. The influence of homogenization annealing оn the structural phase evolution and technological plasticity of aluminum alloy 1163 ingots. Trudy VIAM, 2024, no. 7 (137), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 28, 2024). DOI: 10.18577/2307-6046-2024-0-7-12-23.
The article presents and summarizes the test results of the mechanical properties of material of industrial sheets with a thickness of 2,0 mm made of heat-resistant titanium alloy VT41. The results of tensile tests, low- and high-cycle fatigue tests of flat samples are presented as well as the results of tensile testing of samples with a corset shape of the working part at different loading speeds. On the base of tests results a stress-cycles to failure curve is constructed in the areas of static, re-static, low-cycle and classical high-cycle destruction.
2. Burago N.G., Nikitin I.S., Shanyavski A.A., Zhuravlev A.B. Durability estimations for in-service titanium compressor disks subjected to multiaxial cyclic loads in low- and very-high-cycle fatigue regimes. Proceedings of 19th European Conference on Fracture (Kazan, Russia, 26–31 Aug. 2012). Available at: https://www.grouppofrattura.it (accessed: February 11, 2024).
3. Belousov G.G., Nikitin A.D., Shanyavskiy A.A. Model of fatigue failure in operation of a titanium fan disk of the TA12-60 engine. Nauchnyy vestnik MGTUGA, 2013, no. 187, pp. 103–107.
4. Ravikovich Yu.A., Kholobtsev D.P., Arkhipov A.N., Shakhov A.S. Calculation and experimental study of the dynamics and strength of the main parts of a gas turbine engine taking into account geometric deviations. Vestnik UGATU, 2023, vol. 27, no. 1 (99), pp. 47–59.
5. Soloviev B.A., Kulandin A.A., Makarov N.V. Design and flight operation of power plants. Moscow: Transport, 1991, 256 p.
6. Pakhomenkov A.V. Calculation and experimental forecasting of low-cycle durability and service life of gas turbine engine disks taking into account the influence of analytical and operational factors: thesis, Cand. Sc, (Tech.). Rybinsk, 2020, 154 p.
7. Makarov P.V., Kolotnikov M.E., Vedeneev V.V., Abdukhakimov F.A. Comprehensive analysis of the dynamic behavior of compressor blades at the design stage. Aviatsionnye dvigateli, 2023, no. 3 (20), рр. 20–27.
8. Petukhov A.N. Problems of high-cycle fatigue of structural materials and gas turbine engine parts. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, no. 3 (34), pp. 17–25. DOI: 10.18287/2541-7533-2012-0-3-1(34)-17-25.
9. Inozemtsev A.A., Sandratsky V.L. Gas turbine engines. Perm: Aviadvigatel, 2006, 1204 p.
10. De Monicault J.-M., Guedou J.-Y., Soniak F. Issues and progress in manufacturing of aero titanium parts. 24th ITA: Titanium Conference Proceedings. Las Vegas, 2008, р. 7.
11. Geary B., Bolam V.J., Jenkins S.L., Davies D.P. High temperature titanium sheet for helicopter exhaust applications. 8th Titanium World Conference. London: Cambridge University Press, 1996, рр. 1638–1645.
12. Pavlova T.V., Kashapov O.S., Kalashnikov V.S., Kondrateva A.R. Industrial development of manufacturing large-size forgings from heat-resistant titanium alloy VT41 for welded assemblies of aircraft products. Trudy VIAM, 2022, no. 9 (115), paper no. 04. Available at: http://www.viam-works.ru (accessed: February 16, 2024). DOI: 10.18577/2307-6046-2022-0-9-39-57.
13. Makhutov N.A., Gdenini M.M. Study of generalized curves of static and cyclic deformation, damage and destruction. Zavodskaya laboratoriya. Diagnostika materialov, 2023, vol. 89, no. 5, pp. 46–54. DOI: 10.26896/1028-6861-2023-89-5-46-55.
14. Kapustin V.I., Zakharchenko K.V., Cherepanova V.K., Shayapov V.R. Investigation of dissipative processes of VT6 alloy under fatigue. Aviation materials and technologies, 2022, no. 4 (69), paper no. 09. Available at: http://www.journal.viam.ru (accessed: February 01, 2024). DOI: 10.18577/2713-0193-2022-0-4-96-111.
15. Gorbovets M.A., Khodinev I.A., Monin S.A. Influence of average cycle stress on characteristics of low-cycle fatigue of high-temperature nickel alloy VZh175. Aviation materials and technologies, 2023, no. 1 (70), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 16, 2024). DOI: 10.18577/2713-0193-2023-0-1-126-136.
16. Gorbovets M.A., Khodinev I.A., Karanov V.A., Yushin V.D. Influence of the type of loading on high-cycle fatigue of heat-resistant alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 11. Available at: http://www.viam-works.ru (accessed: February 12, 2024). DOI: 10.18577/2307-6046-2019-0-3-96-104.
17. Duyunova V.A., Putyrskiy S.V., Arislanov A.A., Krokhina V.A., Shiryaev A.A. Analysis of the effect of heat treatment on the structure and mechanical properties of bars made of VT47 titanium alloy. Aviation materials and technologies, 2021, no. 4 (65), paper no. 03. Available at: http://www.journal.viam.ru (accessed: February 17, 2024). DOI: 10.18577/2713-0193-2021-0-4-26-34.
18. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
19. Nochovnaya N.A., Shiryaev A.A. Features of the structural and phase composition, mechanical properties of metastable β-titanium alloy VT47 alloyed with silicon. Aviation materials and technologies, 2023, no. 1 (70), paper no. 04. Available at: http://www.journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2023-0-1-51-60.
20. Dzunovich D.A., Lukina E.A., Yakovlev A.L. Influence of heat treatment parameters on producibility and mechanical properties of sheets made from high-strength titanium alloy VT23. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-3-3-10.
21. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
23. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Development of a pilot industrial technology for the production of semi-finished products from pseudo-α titanium alloy VT41. Titan, 2016, no. 2 (52), pp. 33–42.
24. Shrestha R., Simsiriwong J., Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel under axial versus rotating-bending loading: Synergistic effects of stress gradient, surface roughness, and volumetric defects. International Journal of Fatigue, 2021, vol. 144, p. 106063. DOI: 10.1016/j.ijfatigue.2020.106063.
25. Medvedev P.N., Kashapov O.S., Reshetilo L.P. Study of surface layers of titanium alloy VT41 after mechanical treatment. Voprosy materialovedeniya, 2022, no. 1 (109), pp. 54–63.
26. Derimow N., Benzing J., Newton D., Beamer C. Microstructural effects on the rotating bending fatigue behavior of Ti–6Al–4V produced via laser powder bed fusion with novel heat treatments. International Journal of Fatigue, 2024, vol. 185, p. 108362. DOI: 10.1016/j.ijfatigue.2024.108362.
The dependences of the mechanical and thermophysical characteristics in samples with different ratios of polyetheretherketone (PEEK) and liquid crystalline polymers (LCP), synthesized by layer-by-layer filament deposition, are shown. It has been shown for certain concentrations, adding LCP to PEEK can increase the mechanical characteristics compared to the material synthesized by FDM from unfilled PEEK. The presence of fibrils and coaxial shells between the layers of 3D-synthesized organic composite plastic and inside the threads themselves is shown. A relationship has been proposed between the microstructure of samples synthesized by FDM and their mechanical properties.
2. Pykhtin A.A., Sorokin A.E., Larionov S.A., Lonskii S.L. Study of the influence of non-covalent modifiers on the structure and properties of polymer filaments for FDM-printing based on ABS-plastic and carbon nanoparticles. Trudy VIAM, 2021, no. 10 (104), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2021-0-10-36-44.
3. Kirin B.S., Lonskii S.L., Petrova G.N., Sorokin A.E. Materials for the 3D-printing on the basis of polyetheretherketones. Trudy VIAM, 2019, no. 4 (76), paper no. 03. Available at: http://viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2019-0-4-21-29.
4. Kirin B.S., Kuznetsova K.R., Petrova G.N., Sorokin A.E. Comparative analysis of properties of polyetheretherketones of domestic and foreign production. Trudy VIAM, 2018, no. 5 (65), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2018-0-5-34-43.
5. Sikder P., Challa B.T., Gummadi S.K. A comprehensive analysis on the processing-structure-property relationships of FDM-based 3-D printed polyetheretherketone (PEEK) structures. Materialia. 2022, vol. 22, р. 101427.
6. Dua R., Rashad Z., Spears J., Dunn G., Maxwell M. Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers, 2021, vol. 13, р. 4046.
7. Rinaldi M., Cecchini F., Pigliaru L., Ghidini T., Lumaca F., Nanni F. Additive Manufacturing of Polyether Ether Ketone (PEEK) for Space Applications: A Nanosat Polymeric Structure. Polymers, 2021, vol. 13, р. 11
8. Rinaldi M., Ghidini T., Cecchini F., Brandao A., Nanni F. Additive layer manufacturing of poly (ether ether ketone) via FDM. Composites Part B. 2018, vol. 145, рр. 162–172.
9. Li Y., Lou Y. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling. Polymers, 2020, vol. 12 (11), р. 2497
10. Gonçalves J., Lima P., Krause B. et al. Electrically conductive polyetheretherketone nanocomposite filaments: From production to fused deposition modeling. Polymers, 2018, vol. 10, р. 925.
11. Aysha M. A futuristic reality: 3D printed SpaceX helmets. 3DNatives. Available at: https://www.3dnatives.com/en/3d-printed-spacex-helmets-090620206/ (accessed: August 18, 2023).
12. Steers S. 3D printing: The future of space construction? Construction Digital. Available at: https://constructiondigital.com/epc/3d-printing-future-space-construction (accessed: August 18, 2023).
13. Reuters T. Boeing's new spacecraft to use more than 600 3D-printed parts. CBC News. Available at: https://www.cbc.ca/news/science/boeing-new-spacecraft-3d-parts-1.3966358 (accessed: August 18, 2023).
14. Pearson A. Stratasys additive manufacturing chosen by Airbus to produce 3D printed flight parts. Stratasys Blog. Available at: https://www.stratasys.com/en/resources/blog/airbus-3d-printing/ (accessed: August 18, 2023).
15. Tyrer-Jones A. Finnair upgrades its Airbus A320 fleet with new 3D printed components. 3D printing industry. Available at: https://3dprintingindustry.com/news/finnair-upgrades-its-airbus-a320-fleet-with-new-3d-printed-components-230516/ (accessed: August 18, 2023).
16. Materialise. Why Airbus Qualified A New 3D Printing Material In 2021: Flame-Retardant PA. Aviation Week. Available at: https://aviationweek.com/mro/why-airbus-qualified-new-3d-printing-material-2021-flame-retardant-pa (accessed: August 18, 2023).
17. Case study. Airbus Gets on Board with 3D Printing. Materialise. Available at: https://www.materialise.com/en/inspiration/cases/airbus-3d-printing (accessed: August 18, 2023).
18. Davies S. Boeing qualifies Stratasys Antero 800NA 3D printing thermoplastic material. TCT Magazine. Available at: https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/boeing-qualifies-stratasys-antero-800na-3d-printing-material/ (accessed: August 18, 2023).
19. Autonomous Manufacturing. Application Spotlight: 3D Printing for Aircraft Cabins. AMFG. Available at: https://amfg.ai/2020/07/27/application-spotlight-3d-printing-for-aircraft-cabins/ (accessed: August 18, 2023).
20. Torke N. Materialise to Deliver 3D-Printed, Flight-Ready Plastic Parts for Airbus. Materialise. Available at: https://www.materialise.com/en/news/press-releases/3d-printed-flight-ready-plastic-parts-for-airbus (accessed: August 18, 2023).
21. Gardner J.M., Stelter C.J., Yashin E.A., Siochi E.J. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, OpenSource Hardware. NASA Report № NASA-TM-2016-219344. Available at: https://ntrs.nasa.gov/api/citations/20170000214/downloads/20170000214.pdf (accessed: August 18, 2023).
22. Prater T.J., Bean Q.A., Beshears R.D. et al. Summary Report on Phase I Results From the 3D Printing in Zero-G Technology Demonstration Mission, Volume I // NASA Report № NASA/TP—2016–219101. Available at: https://ntrs.nasa.gov/api/citations/20160008972/downloads/20160008972.pdf (accessed: August 18, 2023).
23. Gaskill M. Solving the Challenges of Long Duration Space Flight with 3D Printing. NASA website. Available at: https://www.nasa.gov/missions/station/solving-the-challenges-of-long-duration-space-flight-with-3d-printing/ (accessed: August 18, 2023).
24. Caliendo H. Mercedes-Benz Turns to 3D Printing for Plastic Spare Parts. Additive Manufacturing. Available at: https://www.additivemanufacturing.media/articles/mercedes-benz-turns-to-3d-printing-for-plastic-spare-parts-(2) (accessed: August 18, 2023).
25. Griffiths L. Audi Sport reduces design time by 90% with automation of 3D printed jigs and fixtures. TCT Magazine. Available at: https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/software-and-simulation-news/audi-sport-reduces-design-time-by-90-with-automated-design-o/ (accessed: August 18, 2023).
26. Camillo J. Bentley Motors Drives its Future Car Design With 3D Printing. Assembly Magazine. Available at: https://www.assemblymag.com/articles/95439-bentley-motors-drives-its-future-car-design-with-3d-printing (accessed: August 18, 2023).
27. Farish M. Bentley increases use of additive manufacturing. AMS magazines. Available at: https://www.automotivemanufacturingsolutions.com/oems/bentley-increases-use-of-additive-manufacturing/43137.article (accessed: August 18, 2023).
28. Lamborghini и Stratasys: история любви на высокой скорости. Новости 3D Today. Available at: https://3dtoday.ru/blogs/news3dtoday/lamborghini-and-stratasys-a-love-story-at-high-speed (accessed: August 18, 2023).
29. Five Ways 3D Printing Is Transforming the Automotive Industry. Stratasys. Available at: https://www.stratasys.com/contentassets/e85c0f5f58be4be1a4e12ceac237e026/wp_fdm_fivewaysauto_a4_0516-web.pdf?v=48fd7e (accessed: August 18, 2023).
30. Lamborghini Accelerates and Perfects Automotive Engineering with Stratasys 3D Printed Prototypes and Track-Ready Parts. Statasys corporate blog. Available at: http://blog.stratasys.com/ (accessed: August 18, 2023).
31. 3D Printed Lamborghini: Next-Gen Innovations In Automotive Design. Petropoulos G. Available at: https://www.inorigin.eu/3d-printed-lamborghini/ (accessed: August 18, 2023).
32. Stratasys. UPSA spurs pharmaceutical manufacturing innovation with 3D printing. Stratasys Case Study. Available at: https://www.stratasys.com/en/resources/case-studies/upsa/ (accessed: August 18, 2023).
33. How UPSA realizes its return on investment by integrating 3D printing. 3D Adept Media. Available at: https://3dadept.com/stratasys-upsa-3d-printing/ (accessed: August 18, 2023).
34. Stratasys to test 3D printed materials on the moon. The Engineer. Available at: https://www.theengineer.co.uk/content/news/stratasys-to-test-3d-printed-materials-on-the-moon/ (accessed: August 18, 2023).
35. Boissonneault T. Marshall Aerospace and Defence using FDM 3D printing for flight-ready parts. Voxel Matters. Available at: https://www.voxelmatters.com/marshall-aerospace-defence-fdm-3d-printing/ (accessed: August 18, 2023).
36. Sevcik S. The Install Ready (FORM 1) Approach - AM Part Qual in Aviation, Part 1. Aerospace & Defense | Technology, Strategy, Additive Manufacturing. Available at: https://www.linkedin.
com/pulse/install-ready-form-1-approach-am-part-qual-aviation-scott-sevcik-k6pmc (accessed: August 18, 2023).
37. De Zeeuw E. Breaking the certification barrier in aerospace AM. Aerospace Manufacturing and Design. Available at: https://www.aerospacemanufacturinganddesign.com/article/breaking-the-certification-barrier-in-aerospace-am/ (accessed: August 18, 2023).
38. Stratasys. A Path to Certification. White paper, 2019, рр. 1–9. Available at: https://www.padtinc.com/blog2/wp-content/uploads/2019/12/Path-to-Certification-EN-A4-FDM-White-Paper.pdf (accessed: August 18, 2023).
39. Banerjee S., Kar K.K. Introduction to Liquid Crystalline Polymers. Polymers and Polymeric Composites: A Reference Series, 2020, рр. 1–26.
40. Wang X.-J., Zhou Q.-F. Liquid Crystalline Polymers. World Scientific Publishing Company, 2004, 388 р.
41. Thakur V.K., Kessler M.R. Liquid Crystalline Polymers. Springer, 2016, vol. 1: Structure and Chemistry, 626 р.
42. Deberdeev T.R., Akhmetshina A.I., Karimova L.K. et al. Heat-resistant polymer materials based on liquid crystalline compounds. Vysokomolekulyarnyye soyedineniya. Ser.: С, 2020, vol. 62, no. 2, pp. 145–165. DOI: 10.31857/S230811472002003X.
The results of the development and research of fiberglass for structural purposes for the manufacture of interior design elements of helicopters are presented. A comparative analysis was carried out with previously developed and used materials, including a foreign analogue. It is shown that the developed materials meet modern requirements for fire safety, and due to the use of an epoxy melt binder they provide increased manufacturability and achieve a high level of elastic and strength characteristics. The possibility of improving the developed material to meet the requirements in terms of fire safety imposed on the interior materials of aircraft of the transport category is shown.
2. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, no. 10, pp. 61–71.
3. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the issue of production of floor panels from polymer composite materials for aircraft (review article). Izvestiya Samarskogo nauchnogo tsentra RAN, 2017, no. 4-2, pp. 198–213.
4. Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review). Trudy VIAM, 2022, no. 7 (113), paper no. 12. Available at: http://www.viam-works.ru (accessed: August 29, 2024). DOI: 10.18577/2307-6046-2022-0-7-134-150.
5. Kurnosov A.O., Sokolov I.I., Melnikov D.A., Topunova T.E. Fireproof fiberglass for interior of passenger aircraft (review). Trudy VIAM, 2015, no. 11, paper no. 07. Available at: http://www.viam-works.ru (accessed: August 29, 2024). DOI: 10.18577/2307-6046-2015-0-11-7-7.
6. Serkova E.A., Zastrogina O.B., Barbotko S.L. Study of the possibility of use of new environmentally friendly organophosphorus flame retardants in the composition of binders for interior fire safety materials. Trudy VIAM, 2019, no. 2 (74), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 29, 2024). DOI: 10.18577/2307-6046-2019-0-2-24-34.
7. Veshkin E.A., Satdinov R.A., Barannikov A.A. Modern materials for the aircraft cabin. Trudy VIAM, 2021, no. 9 (103), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 29, 2024). DOI: 10.18577/2307-6046-2021-0-9-33-42.
8. Strelnikov S.V., Petukhov V.I., Postnov V.I., Shvets N.I. New solutions in the technology of manufacturing prepregs for interior panels. Izvestiya Samarskogo nauchnogo tsentra RAN, 2011, no. 4-2, pp. 498–507.
9. Satdinov R.A., Veshkin E.A., Postnov V.I. Assessment of the impact of climatic factors on the performance properties of fiberglass VPS-42P/T-64. Trudy VIAM, 2020, no. 10 (92), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 29, 2024). DOI: 10.18577/2307-6046-2020-0-10-21-29.
10. Barbotko S.L., Kirillov V.N., Shurkova E.N. Fire safety evolution for polymer composites of aeronautical application. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 56–63.
11. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 29, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
12. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: August 29, 2024). DOI: 10.18577/2713-0193-2022-0-1-41-50.
13. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: August 29, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
14. Imametdinov E.Sh., Valueva M.I. Promising materials: overview of works in the field of ultrahigh molecular weight polyethylene. Part 1. Aviation materials and technologies, 2024, no. 1 (74), paper no. 00. Available at: http://www.journal.viam.ru (accessed: August 29, 2024). DOI: 10.18577/2713-0193-2024-0-3-69-80.
15. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
The article describes the results of research (physical, fire and thermophysical) properties of the flame retardant material based on fluorosiloxane rubber with different systems of functional additives. The work is aimed at extending the temperature range (up to 200 °С) of fire retardant materials operation, in environments that allow contact with fuel. Research confirms the efficiency of phosphate-nitrogen intumescent system, due to the formation of a durable protective carbon backbone under the influence of high temperatures, preventing the spread of fire.
2. Gabdulin R.Sh. Effective methods of fire protection of building structures. Bezopasnost, 2011, no. 1, pp. 48–49.
3. Yakovlev A.D., Yakovlev S.A. Functional-purpose paint and varnish coatings. St. Petersburg: Khimizdat, 2016, 272 p.
4. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Fire safety assessment of polymeric materials for aviation purposes: analysis of the state, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
5. Mouritz A.P., Gibson A.G. Fire properties of polymer composite materials. Dordrecht: Springer Science & Business Media, 2007, pp. 59–63.
6. Lyon R.E. Fire-safe aircraft cabin materials. Fire & Polymers, ACS Symposium Series, 1995, no. 559, pp. 618–638.
7. Avduevsky V.S., Galitseysky B.M., Glebov G.A. Fundamentals of Heat Transfer in Aviation and Rocket-Space Engineering. Ed. V.K. Koshkin. Moscow: Mashinostroenie, 1975, 623 p.
8. Khalturinsky N.A., Popova T.V., Berlin A.A. Combustion of Polymers and the Mechanism of Action of Flame Retardants. Uspekhi Khimii, 1984, vol. 53, no. 2, pp. 326–346.
9. Aseeva R.M., Zaikov G.E. Combustion of Polymer Materials. Moscow: Nauka, 1981, 280 p.
10. Krasnov L.L., Kirina Z.V. Materials Ensuring the Reliability of Structural Elements in Fire Conditions. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 10, pp. 48–52.
11. Venediktova M.A., Krasnov L.L., Kirina Z.V. Some aspects of the application of fire-protective coatings (review). Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 1–2, paper no. 06. Available at: http://www.materialsnews.ru (accessed: September 07, 2024).
12. Venediktova M.A., Evdokimov A.A., Krasnov L.L., Petrova A.P. Research of possibility of application of fireproof paste for increase of fire safety of designs from polymeric composite materials. Trudy VIAM, 2021, no. 9 (103), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 07, 2024). DOI: 10.18577/2307-6046-2021-0-9-67-75.
13. Zybina O.A., Varlamov A.V., Chernova N.S., Mnatsakanov S.S. On the role and transformations of components of fire-retardant intumescent paint and varnish compositions in the process of thermolysis. Zhurnal prikladnoy khimii, 2009, vol. 82, no. 4, pp. 1445–1449.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg, 2016, рp. 25–26.
16. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, рp. 907–916.
17. Shetz M. Silicone rubber. Moscow: Khimiya, 1975, 400 p.
18. Dolgov O.N., Voronkov M.G., Grinblat M.P. Organosilicon liquid rubbers and materials based on them. Leningrad: Khimiya, 1975, 112 p.
19. The Big Handbook of the Rubber Manufacturer: in 2 parts. Eds. S.V. Reznicenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 1, 2, 1385 p.
20. Rubber and Rubber. Science and Technology; trans. from Engl. Eds. A.A. Berlin, Yu.L. Morozov. Dolgoprudny: Intellect, 2011, 768 p.
21. Kornev A.E., Bukanov A.M., Sheverdyaev O.N. Technology of Elastomeric Materials. Moscow: Istok, 2009, 502 p.
22. Krasheninnikova M.V. Fire-retardant intumescent materials based on organosoluble film formers. Lakokrasochnye materialy i ikh primenenie, 2006, no. 12, pp. 14–16.
23. Pavlovich A.V., Vladenkov V.V., Izyumsky V.N., Kilchitskaya S.L. Fire-retardant intumescent coatings. Lakokrasochnaya promyshlennost, 2012, no. 5, pp. 22–27.
24. Zaikov G.E. Combustion, destruction and stabilization of polymers. St. Petersburg: Scientific foundations and technologies, 2008, 421 p.
25. Kodolov V.I. Flammability and fire resistance of polymeric materials. Moscow: Khimiya, 1976, 98 p.
26. Kodolov V.I. Flame retardants for polymeric materials. Moscow: Khimiya, 1980, 156 p.
27. Potapova A.I., Bobrova I.I., Evdokimov A.A., Venediktova M.А. Prescription techniques for creating elastomeric compositions with reduced flammability. Trudy VIAM, 2024, no. 1 (131), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 07, 2024). DOI: 10.18577/2307-6046-2024-0-1-60-77.
28. Kondrashov S.V., Solovyanchik L.V., Larionov S.A., Volny O.S. Investigation of the effect of flame retardants on the flammability and fluidity of the melt of aliphatic polyamides. Trudy VIAM, 2022, no. 2 (108), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 07, 2024). DOI: 10.18577/2307-6046-2022-0-2-52-63.
29. Garashchenko A.N., Kulkov A.A., Strakhov V.L. The effect of the service life on the flame-retardant efficiency of the bulging coatings and the fire resistance of structures. Aviation materials and technologies, 2022, no. 2 (67), paper no. 09. Available at: http://www.journal.viam.ru (accessed: September 07, 2024). DOI: 10.18577/2713-0193-2022-0-2-97-110.
30. Barbotko S.L., Volnyy O.S., Shurkova E.N. Creation of the phenomenological model describing change of the characteristic of combustibility (duration of residual burning) depending on thickness of polymeric material. Trudy VIAM, 2018, no. 10 (70), paper no. 12. Available at: http://www.viam-works.ru (accessed: September 07, 2024). DOI: 10.18577/2307-6046-2018-0-10-107-116.
The influence of ambient temperature and humidity on the curing rate of putty based on unsaturated polyester resin (epoxy vinyl ether) was studied: the viability of the putty after mixing with a hardener and accelerator, the drying time to degree 3 of the putty coating was investigated. The physical and mechanical properties of the putty coating during curing under various temperature and humidity conditions have been determined. The optimal temperature and humidity (when working in open areas) were determined during the curing of coatings based on epoxy vinyl ether putty.
2. Kablov E.N. Structural and Functional Materials – the Basis of Economic and Scientific-Technical Development of Russia. Voprosy materialovedeniya, 2006, no. 1, pp. 64–67.
3. Kablov E.N. Aviation Materials Science in the 21st Century. Prospects and Tasks. Aviation Materials. Selected Works of VIAM 1932–2002. Moscow: MISiS–VIAM, 2002, pp. 23–47.
4. Tkachuk A.I., Zagora A.G., Donetsky K.I., Evdokimov A.A. Polymeric matrixes for composite materials used in the construction of quickly built bridge structures. Trudy VIAM, 2020, no. 12 (94), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 21, 2024). DOI: 10.18577/2307-6046-2020-0-12-67-74.
5. Doriomedov M.S. Russian and world market of polymer composites (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 20, 2024). DOI: 10.18577/2307-6046-2020-0-67-29-37.
6. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 21, 2024). DOI: 10.18577/2713-0193-2021-0-3-105-116.
7. Harish V., Nagaiah N., Niranjana Prabhu T. et al. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. Journal of Applied Polymer Science, 2009, vol. 112, is. 3, pp. 1503–1508.
8. Martínez-Barrera G., Villarruel U., Vigueras-Santiago E. et al. Compressive strength of gamma-irradiated polymer concrete. Polymer Composites, 2008, vol. 29, is. 11, pp. 1210–1217.
9. Kucherenko E.V., Shcherbakov A.S., Arzamastsev S.V. Composite materials based on polyester resin. Sovremennye innovatsii, 2016, no. 3 (5), pp. 5–7.
10. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Grigoreva K.N. Research of the influence of the modifying additives nature on the rheological and thermomechanical properties of a photopolymer composition based on epoxy vinyl ester resin. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 31–40. DOI: 10.18577/2071-9140-2019-0-3-31-40.
11. Cook M.I., Dubowik D.A., Walker F.H. Improved high solids epoxy paints with new curing agents. Fabre und Lack, 2000, vol. 106 (4), pp. 28–43.
12. Brock T., Groteklaus M., Mischke P. Unsaturated polyesters. European Guide to Paints and Coatings. Moscow: Paint-Media, 2007, pp. 73–78.
13. Sertsova A.A., Koroleva M.Yu., Yurtov E.V. et al. Fire-resistant polymer nanocomposites based on metal oxides and hydroxides. Khimicheskaya tekhnologiya, 2009, vol. 10, no. 12, pp. 706–712.
14. Pravednikova O.B., Dutikova O.S., Karelina I.M. et al. Effect of nano-sized metal compounds on the flameproof properties of plasticized polyvinyl chloride. Fiber Chemistry, 2009, vol. 41 (2), pp. 80–84.
15. Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review). Trudy VIAM, 2022, no. 7 (113), paper no. 12. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2022-0-7-134-150.
16. Sorina T.G., Polyakov D.K., Korobko A.P., Penskaya T.V. Vinyl ester resins for pultrusion technology. Elektrotekhnika, 2002, no. 4, pp. 49–51.
17. Li P., Yu Y., Yang X. Effects of initiators on the cure kinetics and mechanical properties of vinyl ester resins. Journal of Applied Polymer Science, 2008, vol. 109, is. 4, pp. 2539–2545.
18. Garay A., Paese L., Souza J., Amico S. Studies on thermal and viscoelastic properties of vinyl ester resin and its composites with glass fiber. Matéria, 2015, vol. 20, pp. 64–71.
19. Fraga A., Alvarez V., Vazquez A., de La Osa O. Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. Journal of Composite Materials, 2003, vol. 37, pp. 1553–1574.
20. Zhang J., Richardson M. Micro-heterogeneity of urethane vinylester resin networks. Polymer, 2000, vol. 41, is. 18, pp. 6843–6849.
21. Borodina I.A., Kozik V.V., Borilo L.P. Effect of natural silicates on the curing of unsaturated polyester resins. Izvestiya Tomskogo politekhnicheskogo universiteta, 2005, vol. 308, no. 3, pp. 118–122.
22. Dilmiev V.V., Onina S.A. Features of modification of unsaturated polyester resins on the example of orthophthalic. Vestnik nauki, 2024, vol. 4, no. 5 (74), pp. 1805–1808.
Carbon fiber reinforced plastic (CFRP) KMKU-2m.120, protected by fluoroepoxide VE-46 and acrylic AC-1115 coatings, was exposed to natural weathering conditions in the moderately warm climate of Gelendzhik for 8 and 13 years of exposure. The moisture transfer kinetics in aged CFRP is studied. Fick and Langmuir one-dimensional and three-dimensional models were used to fit the experimental data: the relative change in the mass of samples of different shapes and sizes. The influence of the coating type and color, duration of natural weathering on moisture content and moisture diffusion coefficients (in-plane and transverse directions) was studied.
2. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 14, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Tomblin J., Salah L., Hoffman D. Durability and aging of composite aircraft structures. Long-term durability of polymeric matrix composites. Boston, MA: Springer, 2011, pp. 513–548.
5. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. Moscow, 2015, vol. 13: Climatic and microbiological resistance of non-metallic materials, 270 p.
6. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: National Research Center «Kurchatov Institute» – VIAM, 2023, 520 p.
7. Shershak P.V., Yakovlev N.O., Sutubalov A.I. Standards for testing polymer composite materials. Part 1. Tensile properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 12. Available at: http://www.journal.viam.ru (accessed: April 25, 2024). DOI: 10.18577/2713-0193-2023-0-3-152-166.
8. Shershak P.V., Sutubalov A.I., Yakovlev N.O., Sherstyuk F.A. Standards test methods for polymer matrix composite materials. Part 2. Compression properties. Aviation materials and technologies, 2024, no. 1 (74), paper no. 00. Available at: http://www.journal.viam.ru (accessed: April 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-149-166.
9. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mechanics of Composite Materials, 2020, vol. 56, pp. 227–240. DOI: 10.1007/s11029-020-09875-5.
10. Startsev O.V., Anikhovskaya L.I., Litvinov A.A., Krotov A.S. Increasing the reliability of predicting the properties of polymer composite materials during thermal and humidity aging. Doklady akademii nauk, 2009, vol. 428, p. 56–60.
11. Kudo A., Ben G. Estimation of weatherability flexural properties for CFRP subjected to long-term outdoor exposure. 18th International Conference on Composite Materials. Jeju, 2011, art. W27–3.
12. Yi L., Peng X.Q., Wang Q.F., Yang Y.X. Time-dependent deterioration of carbon fiber reinforced polymer affected by climatic factors. Advanced Materials Research, 2012, vol. 457–458, pp. 320–324.
13. Tao L., Min W., Qi L. The hygrothermal aging process and mechanism of CFRP papered by prepreg that may be stored at room temperature. Polymer Degradation and Stability, 2020, vol. 182, pp. 109395. DOI: 10.1016/j.polymdegradstab.2020.109395.
14. Shvedkova A.K., Petrova A.P., Buznik V.M. Climate resistance of composite materials based on adhesive prepregs under arctic conditions. Polymer Science. Ser.: D, 2016, vol. 9, pp. 165–171. DOI: 10.1134/S1995421216020210.
15. Startsev V.O., Il'ichev A.V. Effect of mechanical impact energy on the sorption and diffusion of moisture in reinforced polymer composite samples on variation of their sizes. Mechanics of Composite Materials, 2018, vol. 54, pp. 145–154. DOI: 10.1007/s11029-018-9727-7.
16. Cavasin M., Sangermano M., Thomson B., Giannis S. Exposure of glass fiber reinforced polymer composites in seawater and the effect on their physical performance. Materials, 2019, vol. 12, paper 807. DOI: 10.3390/ma12050807.
17. Startsev O.V., Startsev V.O., Kogan A.M., Vardanyan A.M. Change in the plasticizing effect of moisture during climatic aging of polymer composite materials. Deformatsiya i razrusheniye materialov, 2024, no. 1, p. 16–26. DOI: 10.31044/1814-4632-2024-1-16-26.
18. Crank J. The mathematics of diffusion. 2nd ed. Oxford: Clarendon press, 1975. 414 p.
19. Carter H.G., Kibler K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. Journal Composite Materials, 1978, vol. 12, pp. 118–131. DOI: 10.1177/002199837801200201.
20. Korkees F. Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: a review. Polymer-Plastics Technology and Materials, 2023, vol. 62, pp. 1789–1822. DOI: 10.1080/25740881.2023.2234461.
21. Almudaihesh F., Holford K., Pullin R., Eaton M.A. Comparison study of water diffusion in unidirectional and 2D woven carbon/epoxy composites. Polymer Composites, 2022, vol. 43, pp. 118–129. DOI: 10.1002/pc.26361.
22. Althal S., Hossagadde P.N., Kini M.V., Pai D. Durability study of quasi isotropic carbon/epoxy composites under various environmental conditions. Iranian Polymer Journal, 2023, vol. 32, pp. 873–885. DOI: 10.1007/s13726-023-01172-x.
23. Bone J.E., Sims G.D., Maxwell A.S. On the relationship between moisture uptake and mechanical property changes in a carbon fibre/epoxy composite. Journal of Composite Materials, 2022, vol. 65, pp. 2189–2199. DOI: 10.1177/00219983221091465.
24. Davies P., Le Gac P.Y., Le Gall M. Influence of sea water aging on the mechanical behavior of acrylic matrix composites. Applied Composite Materials, 2017, vol. 24, pp. 97–111. DOI: 10.1007/s10443-016-9516-1.
25. Du Y., Yu'e M.A., Wenbo S.U.N., Zhenhai W.A.N.G. Effect of hygrothermal aging on moisture diffusion and tensile behavior of CFRP composite laminates. Chinese Journal of Aeronautics, 2023, vol. 36, pp. 382–392. DOI: 10.1016/j.cja.2022.11.022.
26. Nandagopal R.A., Boay C.G., Narasimalu S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material. Composite Structures, 2020, vol. 236, art. 111876. DOI: 10.1016/j.compstruct.2020.111876.
27. Arnold J.C., Alston S.M., Korkees F. An assessment of methods to determine the directional moisture diffusion coefficients of composite materials. Composites: Part A, 2013, vol. 55, pp. 120–128. DOI: 10.1016/j.compositesa.2013.08.012.
28. Korkees F., Morris E., Jarrett W., Swart R. Characterization of moisture absorption and flexural performance of functionalized graphene modified carbon fiber composites under low energy impact. Polymer Composites, 2023, vol. 44, pp. 3325–3340. DOI: 10.1002/pc.27324.
29. Loos A.C., Springer G.S. Moisture absorption of graphite-epoxy composites immersed in liquids and in humid air. Journal of Composite Materials, 1979, vol. 13, pp. 131–147. DOI: 10.1177/002199837901300205.
30. Mei J., Tan P.J., Liu J. Moisture absorption characteristics and mechanical degradation of composite lattice truss core sandwich panel in a hygrothermal environment. Composites. Part A, 2019, vol. 127, art. 105647. DOI: 10.1016/j.compositesa.2019.105647.
31. Scott P., Toumpanaki E., Lees J.M. Solution uptake in cylindrical carbon-fibre-reinforced polymer (CFRP) tendons. Advances in Polymer Technology, 2022, vol. 2022, art. 1981256. DOI: 10.17863/CAM.91288.
32. Gagani A., Krauklis A., Echtermeyer A.T. Anisotropic fluid diffusion in carbon fiber reinforced composite rods: Experimental, analytical and numerical study. Marine Structures, 2018, vol. 59, pp. 47–59. DOI: 10.1016/j.marstruct.2018.01.003.
33. Ryan J.M., Adams R., Brown S.G.R. Moisture ingress effect on properties of CFRP. Proceedings of ICCM-17 – 17th International Conference on Composite Materials. Edinburgh, United Kingdom, 2009, pp. 1–10.
34. Revathi A., Sendil M.M., Shylaja S. et al. Effect of hot-wet conditioning on the mechanical and thermal properties of IM7/8552 carbon fiber composite. Indian Journal of Advances in Chemical Science, 2014, vol. 2, pp. 84–88.
35. Panin S.V., Startsev O.V., Krotov A.S. Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient. Trudy VIAM, 2014, no. 7, paper no. 09. Available at: http://www.viam-works.ru (accessed: June 11, 2024). DOI: 10.18577/2307-6046-2014-0-7-9-9.
36. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solventfree binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 21, 2024). DOI: 10.18577/2307-6046-2021-0-5-114-126.
37. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: III. Significant aging factors. Russian Metallurgy (Metally), 2012, vol. 2012, no. 4, pp. 323–329. DOI: 10.1134/S0036029512040040.
38. Heinrick M., Crawford B., Milani A.S. Degradation of fibreglass composites under natural weathering conditions. MOJ Polymer Science, 2017, vol. 1, pp. 18–24. DOI: 10.15406/mojps.2017.01.00004.
39. Nishizaki I., Kishima T., Sasaki I. Deterioration of mechanical properties of pultruded FRP through exposure tests. Third International Conference on Durability & Field Applications of FRP Composites for Construction. Quebec City, 2007, pp. 159–166.
40. Nishizaki I., Sasaki I., Tomiyama T. Outdoor exposure tests of pultruded CFRP plates. Proceeding of the 6th International Conference on FRP Composites in Civil Engineering. Calgary, Alberta, 2012, art. 11-096.
41. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: May 05, 2024). DOI: 10.18577/2307-6046-2016-0-8-7-7.
42. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
43. Startsev O.V., Bolonin A.B., Vapirov Yu.M., Vladimirsky V.N., Ofitserova M.G. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnyye materialy i ikh primenenie, 1986, no. 4, pp. 16–18.
44. Startsev V.O., Frolov A.S. Influence of climatic exposure on the color characteristics of paint and varnish coatings. Lakokrasochnyye materialy i ikh primenenie, 2015, no. 3, pp. 16–18.
45. Pavlov A.V., Andreeva N.P., Pavlov M.R., Merkulova Yu.I. Climatic tests of paint coating based on fluoroplastic and features of its destruction. Trudy VIAM, 2019, no. 5, paper no. 12. Available at: http://www.viam-works.ru (accessed: July 01, 2024). DOI: 10.18577/2307-6046-2019-0-5-103-110.
46. Yuan Z., Wang C., Jin L. A modified Langmuir model for moisture diffusion in UGFRE of composite insulator considering the composite degradation. Polymers, 2022, vol. 14, art. 2922. DOI: 10.3390/polym14142922.
47. Bystritskaya E.V., Pomerantsev A.L., Rodionova O.Y. Non-linear regression analysis: new approach to traditional implementations. Journal of Chemometrics, 2000, vol. 14, pp. 667–692.
Heat-resistant alloys and steels
Sevalnev G.S., Nefedkin D.Yu., Dulnev K.V., Skorikova M.A. Study of the characteristics of maraging steel under tribotechnical loading
Min P.G., Vadeev V.E., Kolesnikov S.I., Chemov D.A. The effect of impurities on mechanical and operational properties of the cast nickel-base superalloy VZhM200
Light-metal alloys
Shpagin A.S., Bazhenov A.R., Antipov K.V., Oglodkova Yu.S. Construction of a rheological model of deformable aluminum alloy 1163 for computer simulation of metal pressure processes
Kashapov O.S., Ryzhkov P.V., Chuchman O.V., Naprienko S.A. Investigation of the fatigue strength of VT41 titanium alloy sheet material at room temperature under uniaxial stretching conditions in the low- and high-cycle region
Polymer materials
Gurov D.A., Tsapenko A.N., Pavlukovich N.G. Effect of mutual strengthening in polymer composites based on polyethereketone and thermotropic liquid crystal polymers obtained by 3D-printing
Composite materials
Kolpachkov E.D., Vavilova M.I., Serkova E.A., Dolgov E.Yu., Antipov V.V. New generation PCM based on glass fillers for the manufacturing of interior elements of helicopter equipment
Protective and functional
coatings
Antipov V.V., Venediktova М.А., Pushnitsa А.S., Kotelnikova D.D., Popov А.V. Investigation of the possibility of increasing the temperature range of fire retardant materials
Marchenko S.A., Skivko P.V. Effect of temperature on drying time and viability of epoxyvinyl ether resin putty
Material tests
Startsev O.V., Koval T.V., Krotov A.S., Dvirnaya E.V., Veligodsky I.M. Investigation of the properties of carbon fiber reinforced plastic with coatings after 8 and 13 years of weathering in moderately warm climate. Part 1. Moisture content and diffusion coefficients