Articles
The main physical and mechanical properties of FK-20 phenolic foam based on the products of combination of nitrile rubbers with phenolic aldehyde oligomers have been studying. This foam use as a heat-resistant structural filler for three-layer structures and the manufacture of various structural elements. The results of the study of the microstructure of the foam plastic grade FK-20 and the effect of elevated temperature on the values of its compressive strength are shown. It is established that the foam is efficient at a temperature of 120 °C.
2. Samatadze A.I., Parahin I.V., Porosova N.F., Tumanov A.S. Production of phenolic-elastomer foams by sulfur-free vulcanization. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 49–52.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Kolosova A.S., Pikalov E.S. Modern gas-filled polymeric materials and products. Mezhdunarodny zhurnal prikladnykh i fundamentalnykh issledovaniy, 2020, no. 10, pp. 54–67.
6. Lavrov N.A. Traditions and innovations in chemistry and technology of polymers. Plasticheskie massy, 2021, no. 7–8, pp. 3–7. DOI: 10.35164/0554-2901-2021-7-8-3-7.
7. Berlin A.A., Shutov F.A. Foam polymers based on reactive oligomers. Moscow: Khimiya, 1978, 296 p.
8. Parakhin I.V., Tumanov A.S. Phenolic-rubber foamed plastic of higher increased plasticity. Aviacionnye materialy i tehnologii, 2014, no. 4, pp. 65–67. DOI: 10.18577/2071-9140-2014-0-4-65-67.
9. Samatadze A.I., Parakhin I.V., Porosova N.F. The choice of plasticizer for phenol-rubber foam. Kompozity i nanostruktury, 2014, vol. 6, no. 2, pp. 117–124.
10. Kablov E.N. The main results and directions of development of materials for advanced aviation technology. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
11. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
12. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
13. Semenova S.N., Chaykun A.M., Suleymanov R.R. Ethylene-propylene-diene rubber and its use in rubber materials for special purposes (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 23–30. DOI: 10.18577/2071-9140-2019-0-3-23-30.
14. Kablov E.N. Without new materials, there is no future. Metallurg, 2013, no. 12, pp. 4–8.
15. Khimenko G.S., Popov V.A., Fleishman S.L. The use of foam material FK-20-ST in the production of reflectors for antennas of radio-electronic aircraft equipment. Foam plastics: collection of articles. Ed. A.A. Moiseeva, V.V. Pavlova, M.Ya. Borodin. Moscow: Oborongiz, 1960, pp. 109–116.
Presents the results of studies of the influence of technological parameters of shaping on the structure and properties of high-temperature carbon fiber reinforced plastic based on a polyimide binder. It is shown that the formation of a monolithic structure of carbon fiber reinforced plastic with low porosity is achieved by implementing the conditions of the technological process of shaping polymer composite material, which ensure the complete occurrence of thermochemical transformations and the formation of a given structure of a high-temperature composite with maximum preservation of strength indicators at elevated temperatures.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
4. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature du-ring weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
5. Mikhailin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 416 p.
6. Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review). Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed September 01, 2022). DOI: 10.18577/2307-6046-2022-0-6-80-95.
7. Valueva M.I., Zelenina I.V., Zharinov M.A., Khaskov M.A. High-temperature carbon plastics based on thermosetting polyimide binder. Voprosy materialovedeniya, 2020, no. 3 (103), pp. 89–102.
8. Krysin V.N., Krysin M.V. Technological processes of forming, winding and gluing structures. Moscow: Mashinostroenie, 1989, 240 p.
9. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 3. Comparison of ATL and AFP technologies. Hybrid technology of ATL/AFP. Aviation materials and technologies, 2021, no. 4 (65), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 01, 2022). DOI: 10.18577/2713-0193-2021-0-4-43-50.
10. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 01, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-33.
11. Veshkin E.A., Satdinov R.A., Savitsky R.S. Approach to the selection of technological mode for the manufacture of PCM. Trudy VIAM, 2021, no. 11 (105), paper no. 10. Available at: http://www.viam-works.ru (accessed: September 01, 2022). DOI: 10.18577/2307-6046-2021-0-11-103-111.
12. Perov N.S., Gulyaev A.I. About the importance of structure evolution control of polymer composite materials with the microheterogeneous matrix for service life forecasting. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 75–85. DOI: 10.18577 / 2071-9140-2017-0-1-75-85.
13. Kolpachkov E.D., Kurnosov A.O., Papina S.N., Petrova A.P. Specificity of the formation of fiberglass based on PMR-polyimides. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 01. 20 DOI: 10.18577/2307-6046-2022-0-7-37-49.22).
14. Portnoy K.I., Salibekov S.E., Svetlov I.L., Chubarov V.M. Structure and properties of composite materials. Moscow: Mashinostroenie, 1979, 254 p.
15. Kablov E.N., Minakov V.T., Deev I.S., Nikishin E.F. Study of material microstructure stability for the micrometeoritic protection of «MIR» space comlex. Proc. of the 10th ISMSE & the 8th ICPMSE. Collioure, France, 2006, рр. 1–9.
16. Deev I.S., Kobets L.P. Structure formation in filled thermosetting polymers. Kolloidnyi zhurnal, 1999, vol. 61, no. 5, pp. 650–660.
17. Deev I.S., Kurshev E.V., Lonskii S.L. Influence of long-term climatic aging on the microstructure of the surface of epoxy carbon plastics. Voprosy materialovedeniya. 2018, no. 3 (95), pp. 157–169.
18. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
19. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders. Voprosy materialovedeniya, 2016, no. 4, pp. 50–62.
20. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 20–26.
21. Hubert P., Fernlund G., Poursartip A. Autoclave processing for composites // Manufacturing techniques for polymer matrix composites (PMCs). Cambridge: Woodhead Publishing Limited, 2012, 512 р.
22. Sheppard C.H., Hoggatt J.T., Symonds W.A. Manufacturing processes for fabricating graphite/PMR-15 polyimide structural elements. Seattle; Washington: NASA, Boeing aerospace company, 1979, 300 p.
23. Sheppard C.H., Hoggatt J.T., Symonds W.A. Quality control developments for graphite/PMR15 polyimide composites materials. Seattle; Washington: NASA, Boeing aerospace company, 1979, 200 p.
24. Lee C.S. A process simulation model for the manufacture of composite laminates from fiber-reinforced, polyimide matrix prepreg materials: A dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering Mechanics. Blacksburg, 1993, 205 p.
25. Mills J.S., Herakovich C.T., Davis J.G.Jr. Transverse Microcracking in Celion 6000/PMR-15 Graphite-Polyimide. NASA, Virginia Polytechnic Institute and State University Blacksburg, 1979, 133 p.
26. Deev I.S., Zastrogina O.B., Shvets N.I., Petukhov V.I., Chursova L.V. Influence of nanomodifiers on the microstructure and mechanical strength of fiberglass based on phenol-formaldehyde binder. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 5, pp. 55–60.
27. Litvinov V.B., Toksanbaev M.S., Deev I.S. et al. Kinetics of curing of epoxy binders and microstructure of polymer matrices in carbon plastics based on them. Materialovedenie, 2011, no. 7, pp. 49–56.
28. Gavrilova N.N., Nazarov V.V., Yarovaya O.V. Microscopic methods for determining the particle size of dispersed materials: textbook. Moscow: RKhTU im. DI. Mendeleeva, 2012, 52 p.
29. Oglezneva S.A., Smetkin A.A., Mitin V.I., Kalinin K.V. Influence of melt atomization parameters on technological characteristics of 12Kh18N10T powder. Vestnik PNIPU: Mashinostroyenie, materialovedenie, 2017, vol. 19, no. 4, pp. 122–138.
30. Iskhodzhanova I.V., Bondarenko Yu.A., Lapteva M.A. Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images. Trudy VIAM, 2015, no. 12, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 01, 2022). DOI: 10.18577/2307-6046-2015-0-12-6-6.
The kinetics of curing of adhesive prepreg binders was investigated by differential scanning calorimetry (DSC). The most adequate scheme of the curing reaction was selected and the kinetic parameters of the curing reaction for each elementary stage of the process were determined. Generalized kinetic models of the curing reaction are constructed on the basis of experimental data obtained by the DSC method. On the basis of experimental and calculated data, the curing modes of the binder in the prepreg are selected. Data on physical and mechanical properties of samples carbon fiber plastic BCU-59 are given.
2. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
5. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb structures aircraft technology. Trudy VIAM, 2022, no. 5 (111), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 19, 2022). DOI: 10.18577/2307-6046-2022-0-5-41-52.
6. Postnov V.I., Kachura S.M., Veshkin E.A. Modeling of the curing process of a polymer resin and changes in microhardness in its volume. Trudy VIAM, 2021, no. 4 (98), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 09, 2022). DOI: 10.18577/2307-6046-2021-0-4-92-99.
7. Antyufeeva N.V., Zhuravleva P.L., Aleksashin V.M., Kutsevich K.E. Influence of the degree of curing of the binder on the physical and mechanical properties of carbon fiber and the microstructure of the interfacial layer carbon fiber/matrix. Klei. Germetiki. Tekhnologii, 2014, no. 12, pp. 26–30.
8. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Polymer composite curing degree evaluation by thermal analysis test methods. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 79–83. DOI: 10.18577/2071-9140-2015-0-3-79-83.
9. Kutsevich K.E., Aleksashin V.M., Petrova A.P., Antyufeeva N.V. Investigation of the kinetics of curing reactions of adhesive binders. Klei. Germetiki. Tekhnologii, 2014, no. 11, pp. 27–31.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Aleksashin V.M., Bolshakov V.A., Solovieva N.A., Raskutin A.E. Influence of reinforcing fillers on the curing of a binder for heat-resistant polymer composite materials. Plasticheskiye massy, 2013, no. 10, pp. 49–54.
12. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
13. Zhelezina G.F., Voinov S.I., Karimbaev T.D., Chernyshev A.A. Aramid organoplastics for aircraft engine fan casings. Voprosy materialovedeniya, 2017, no. 32 (90), pp. 153–165.
14. Chursova L.V., Tkachuk A.I., Panina N.N., Gurevich Ya.M., Babin A.N., Malkov G.V. Investigation of the curing mechanism of the system dicyandiamide – epoxydian oligomer in the presence of unsymmetrical urea. Klei. Germetiki. Tekhnologii, 2014, no. 8, pp. 2–12.
15. Grenier-Loustalot M.F., Bente M.P., Grenier Ph. Reactivite du dicyandiamide vis a vis des groupements et N-epoxide-1. Mechanism reactionnel. European Polymer Journal, 1991, vol. 27, no. 11, pp. 1201–1216.
16. Dulnev G.N., Zarichnyak Yu.P. Thermal conductivity of mixtures and composite materials: a reference book. Leningrad: Energiya, 1974, 264 p.
17. Barinov D.Ya. About selection of optimal thickness of the carbon sample for thermal conductivity measurements using laser flash method. Aviation materials and technologies, 2022, no. 2 (67), paper no. 12. Available at: http://www.journal.viam.ru (accessed: January 19, 2022). DOI: 10.18577/2713-0193-2022-0-2-131-140.
18. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
19. Morozov S.V., Pavlov N.A., Zenin M.N. Study of the influence of the composition of an epoxy binder on its physical and mechanical characteristics. Polzunovskiy Vestnik, 2020, no. 1, pp. 140–144. DOI: 10.25712/ASTU.2072-8921.2020.01.027.
20. Vodovozov G.A., Osipchik V.S., Marakhovsky K.M., Papina S.N., Klyushnikov S.A. Modification of an epoxy-containing binder to create high-strength composites. Uspekhi v khimii i khimicheskoy tekhnologii, 2015, vol. XXIX, no. 10, pp. 20–22.
21. Malakhovskiy S.S., Panafidnikova A.N., Kostromina N.V., Osipchik V.S. Carbon plastics in the modern world: their properties and applications. Uspekhi v khimii i khimicheskoy tekhnologii, 2019, vol. XXXIII, no. 6, pp. 62–64.
22. Chutskova E.Yu., Aleksashin V.M., Barinov D.Ya., Dementyeva L.A. The differential scanning calorimetry application for kinetic regularities investigation of the epoxy adhesive VK-36R curing process. Trudy VIAM, 2015, no. 1, paper no. 12. Available at: http://www.viam-works.ru (accessed: January 19, 2022). DOI: 10.18577/2307-6046-2015-0-1-12-12.
23. Zelenina I.V., Gulyayev I.N., Kucherovskiy A.I., Mukhametov R.R. Heat-resistant CFRP for the impulse wheel of the centrifugal compressor. Trudy VIAM, 2016, no. 2 (38), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 19, 2022). DOI: 10.18577/2307-6046-2016-0-2-8-8.
24. Aleksashin V.M. Features of the interaction of components and their influence on the processes and technology of the formation of epoxy organoplastics: authors thesis, Cand. Sc. (Tech.). Moscow, 2001, 28 p.
25. Fedoseev M.S., Derzhavinskaya L.F., Oshchepkova T.E. et al. Influence of the chemical nature of epoxy binders on some properties of cured compositions during thermal aging. Klei. Germetiki. Tekhnologii, 2012, no. 7, pp. 8–12.
At present, the share of polymer composite materials (PCM) in the aviation industry is increasing year by year, which is why there is a growing interest in composite molding tooling. This interest can be explained by the fact that due to affinity of materials, a formed part and rigging have similar coefficients of thermal expansion, by means of which problems of warping and occurrence of residual stresses are eliminated. In article some factors of influence on service properties of tooling for PCM manufacturing are considered, the technique of control of tooling technological properties is offered, influence of antiadhesion liquids on free surface energy of PCM is shown.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskiye nanotekhnologii, 2013, vol. 8, no. 3–4, pp. 24–42.
3. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modification of structural carbon fiber plastics with carbon nanoparticles. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 5–11.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: April 23, 2022). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Veshkin E.A. Features of out-of-autoclave forming of poor-porous PCM. Trudy VIAM, 2016, no. 2 (38), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 25, 2022). DOI: 10.1857/2307-6046-2016-0-2-7-7.
7. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 25, 2022). DOI: 10.18577/2307-6046-2019-0-11-22-36.
8. Lopatin A.N., Zverkov I.D. Shaping molding tools production for composite parts by means of additive technologies. Aviacionnye materialy i tehnologii, 2019, no. 2 (55). pp. 53–59. DOI: 10.18577/2071-9140-2019-0-2-53-59.
9. Malyugin A.S., Smirnov M.M. Development of large-sized non-metallic tooling for molding parts based on polyurethanes and hybrid plastics. Trudy MAI, 2010, no. 38, pp. 22–24.
10. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
11. Equipment for molding products from polymer composite materials and method of its manufacture: pat. 2630798 Rus. Federation, no. 2016134245; filed 22.08.16; publ. 13.09.17.
12. Ruppel V. Latest developments in the field of anti-adhesive compounds and coatings for master models and tooling in the production of composite products. Kompozitnyy mir, 2016, no. 5 (68), pp. 32–35.
13. Postnov V.I., Petukhov V.I., Makrushin K.V., Yudin A.A. Investigation of anti-adhesive coatings during the molding of interior panels with a gelcoat layer. Aviacionnye materialy i tehnologii, 2009, no. 3 (12), pp. 23–25.
14. Barannikov A.A., Satdinov R.A., Veshkin E.A., Kurshev E.V. The effect of atmospheric pressure plasma on the strength of an adhesive bond based on CFPR. Trudy VIAM, 2021, no. 12 (106), paper no. 06. Available at: http://www.viam-works.ru (accessed: April 25, 2022). DOI: 10.18577/2307-6046-2021-0-12-47-54.
15. Barannikov A.A., Postnov V.I., Veshkin E.A., Satdinov R.A. The use of atmospheric pressure plasma as a method of preparing the surface of polymer composite materials for gluing. Reports of V All-Rus. sci.-tech. conf. "Polymer composite materials and production technologies of a new generation". Moscow: NRC "Kurchatov Institute" – VIAM, 2021, pp. 177–195.
16. Babayan A.L. Surface energy of polymers (elastomer compositions): comparative analysis of surface energy values with polymer defectiveness parameters. Nauchnyy zhurnal KubGAU, 2017, no. 131, pp. 300–309.
17. Langer M., Otto D. Methods for studying the surface characteristics of polymers after plasma treatment. Comparative analysis. Analitika, 2018, no. 2, pp. 68–74. DOI: 10.22184/2227-572X.2018.39.2.68.74.
18. Missol V. Surface energy of phase separation in metals. Moscow: Metallurgiya, 1978. 176 p.
The article is devoted to the study of the effect of the storage time of lined and uncured polymer composite material made of carbon fiber based on a bundle filler, unidirectional carbon fabric and equal-strength carbon fabric before autoclave forming on the occurrence of the warping process of flat monolithic elements. It was found that prolonged (more than five days) storage of the prepreg after laying out before molding negatively affects the warping of the panel. The development of technological recommendations in accordance with the results obtained will ensure a reduction in the share of defective finished products.
2. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of technology and polymer composite materials for the manufacture of wings of advanced aircraft (review). Trudy VIAM, 2022, no. 1 (107), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 01, 2022). DOI: 10.18577/2307-6046-2022-0-1-66-75.
3. Valueva M.I., Evdokimov A.A., Klimenko O.N. Carbon fiber in the design of space technology products (review). Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 1, pp. 12–21
4. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
6. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
7. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Yu., Konovalov A.N. Constructed layered materials based on sheets of aluminum-lithium alloys and fiberglass in the construction of new generation aircraft. Vestnik mashinostroeniya, 2020, no. 12, pp. 46–52.
8. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. On the need to create a unified information and analytical center for aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019. No. 3. S. 28–34.
9. Veshkin E.A., Satdinov R.A., Savitsky R.S. Approach to the selection of technological mode for the manufacture of PCM. Trudy VIAM, 2021, no. 11 (105), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 01, 2022). DOI: 10.18577/2307-6046-2021-0-11-103-111.
10. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
11. Bondarchuk D.A., Fedulov B.N., Fedorenko A.N., Lomakin E.V. Analysis of residual stresses in layered composites on the example of a symmetrical reinforcement scheme [0°/90°]. Vestnik Permskogo natsional'nogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 3, pp. 17–26.
12. Shabalin L.P., Puzyretsky E.A., Sidorov I.N., Girfanova A.M. Technique for calculating technological stresses to prevent warping of composite parts. Problemy mashinostroeniya i nadezhnosti mashin, 2021, no. 2, pp. 52–62. DOI: 10.31857/S0235711921020127.
13. Bondarchuk D.A., Klemareva M.V., Gadelev R.R., Nazarov E.V. The use of different methods for determining residual stresses and strains in large-sized aircraft parts made of PCM on the example of a stringer panel. Vestnik mashinostroeniya, 2021, no. 12, pp. 63–67. DOI: 10.36652/0042-4633-2021-12-63-67.
14. Mantusova O.Yu., Postnov V.I. Calculation-experimental method for estimating the fatigue strength of MPCM. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 4, pp. 847–849.
15. Bitkina E.V., Pidodnya V.G., Bitkina O.V. Study of the influence of technological factors on residual stresses in a fibrous composite. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Physical and mathematical sciences, 2011, no. 4 (25), pp. 59–66.
16. Korolkov V.I., Nekravtsev E.N., Safonov K.S. et al. Investigation of the processes of eliminating warping of aviation products from polymer-composite materials obtained by high-temperature molding. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyenie, 2021, no. 10, pp. 84–94. DOI: 10.18698/0536-1044-2021-10-84-94.
17. Markin O.V., Kravchenko E.A., Bush A.V., Sviridov A.G. Analysis of the causes of excessive distortion of the composite rib. Colloquium-Journal, 2021, no. 16-1 (103), pp. 19–22.
18. Guseva M.A., Petrova A.P. Possibilities of rheology in the study of binders for PCM. Vse materialy. Entsiklopedicheskiy spravochnik, 2021, no. 7, pp. 38–44.
Experimental data on the use of rare earth metals in combination with cobalt as the basis of permanent magnets are presented. Data analysis and calculations of the functionality of such magnets show that such magnets will have noticeably higher stability and will demonstrate unusually small deviations of properties under temperature variations. The proposed magnets will significantly increase the signal-to-noise ratio when removing the signal from the electrodynamical devices.
2. Chirkin D.S., Roslovets P.V., Tatarinov F.V., Novikov L.Z. Reducing the drift of a dynamically tuned gyroscope from run to run. Inzhenernyy zhurnal: nauka i innovatsii, 2017, is. 1, pp. 1–14. DOI: 10.18698/2308-6033-2017-01-1579.
3. Deleile F. Onboard inertial coordinate system for the European launch vehicle "ARIAN-6" based on a wave solid-state gyroscope. Pribory i metody izmereniy, 2018, vol. 26, no. 4, pp. 3–13. DOI: 10.17285/0869-7035.2018.26.4.003-013.
4. Podporin S.A., Veliev E.B. Heading guidance systems for modern offshore support vessels. Bulletin of the Sevastopol NTU. Series: Mechanics, energy, ecology, 2014, is. 153, pp. 99–106.
5. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental evaluation of allowable mechanical impacts on a dynamically adjustable gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroyenie, 2018, no. 4, pp. 69–79. DOI: 10.18698/0236-3933-2018-4-69-79.
6. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
7. Marinescu M., McGinnis K., Liu J.F., Walmer M.H. High (BH)max permanent magnets with near-zero reversible temperature coefficient of BR. Proceedings of 20th International Workshop on Rare Earth Permanent Magnets and Their Applications. 2008, pp. 1–6.
8. Li A., Li W., Wang H. et al. The study on thermal expansion of sintered Sm2Co17 magnets. IEEE Transactions Magnetics, 2009, vol. 45, no. 10, pp. 4402–4404.
9. Tian J., Qu X., Zhang S. et al. Magnetic properties and microstructure of radially oriented Sm(Co, Fe, Cu, Zr) ring magnets. Material Letters, 2007, vol. 61, pp. 5271–5274.
10. Tian J., Pan D., Zhou H. et al. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets. Journal of Alloys and Compounds, 2009, vol. 476, pp. 98–101.
11. Peshekhonov V.G. Prospects for the development of gyroscopy. Giroskopiya i navigatsiya, 2020, vol. 28, no. 2, pp. 3–10. DOI: 10.17285/0869-7035.0028.
12. Siraya T.N. Statistical interpretation of Allan variations as characteristics of measuring and navigation devices. Giroskopiya i navigatsiya, 2020, vol. 28, no. 1, pp. 3–18.
13. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 12, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
16. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromag-nets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: August 12, 2022). DOI: 10.18577/2713-0193-2021-0-1-44-60.
17. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Phase composition of the Pr–Dy–Fe–Co–B sintered materials. Aviacionnye materialy i tehnologii, 2015, no. S2 (39), pp. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
18. Perigo E.A., Takiishi H., Motta C.C., Faria R.N. On the squareness factor behavior of RE–FeB (RE = Nd or Pr) magnetic above room temperature. IEEE Transactions on Magnetics, 2009, vol. 45, no. 10, pp. 4431–4434.
19. Chuang Y.C., Wu C.H., Chang T.D. et al. Structure and magnetic properties of cobalt-rich Pr–Co–B alloys. Journal of the Less-Common Metals, 1985, vol. 144, pp. 249–256.
20. Ido H., Wallace W.E., Suzuki T. et al. Magnetic and crystallographic properties of NdCo4M (M = B, Al and Ga). Journal of Applied Physics, 1990, vol. 67, no. 9, pp. 4635–4637.
21. Pedziwiatr A.T., Jiang S.Y., Wallace W.E. et al. Magnetic properties of RCo4B compounds where R = Y, Pr, Nd, Gd and Er. Journal of Magnetism and Magnetic Materials, 1987, vol. 66, pp. 69–73.
22. Dub O.M., Chaban N.F., Kuzma Y.B. New borides of Pr5–xCo2+xB6 – type structure containing iron and cobalt. Journal of the Less-Common Metals, 1986, vol. 117, pp. 297–302.
23. Sergeev V.V., Bulygina T.I. Hard magnetic materials. Moscow: Energy, 1980, 224 p.
Up-to-date native and foreign regulatory and technical documents and scientific publications which are dedicated to the subject of fiber-reinforced composites’ defect classification and definition are observed at this article. The review of the most common defects of fiber reinforced plastics was made. The differences in terms of translation in regulatory and technical documents and scientific publications are shown. The variants of defect classification for 2D fiber-reinforced composites based on their common features and publications and documents’ areas of knowledge are observed. Data for non-destructive testing techniques which are recommended for different defects detection are given.
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 26, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-33.
4. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
5. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
6. Murashov V.V. Control and diagnostics of multilayer structures made of polymeric composite materials by acoustic methods: monograph. Moscow: Spektr, 2016, 244 p.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. State Standard 15467–79. Product quality management. Basic concepts. Terms and Definitions. Moscow: Standartinform, 2009, 25 p.
9. State Standard 32794–2014. Polymer composites. Terms and Definitions. Moscow: Standartinform, 2015, 98 p.
10. State Standard R 56787–2015. Polymer composites. Unbrakable control. Moscow: Standartinform, 2016, 71 p.
11. ASTM Е2533-09. Standard Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace Applications. ASTM International, 2009, 47 p.
12. State Standard R 56975–2016. Polymer composites. Indicators of the appearance of products from multilayer glass composites. Мoscow: Standartinform, 2016, 35 p.
13. ASTM D2563-08. Standard Practice for Classifying Visual Defects in Glass-Reinforced Plastic Laminate Parts. ASTM International, 2008, 24 p.
14. SAE ARP5089. Composite Repair NTD/NDI Handbook. SAE International, 2011, 98 p. DOI: 10.4271/ARP5089.
15. ASTM D3878-07. Standard Terminology for Composite Materials. ASTM International, 2007, 5 p.
16. Murashov V.V., Rumyantsev A.F. Defects in monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 1. Defects in monolithic parts and multilayer structures made of polymer composite materials. Kontrol. Diagnostika, 2007, no. 4, pp. 23–32.
17. Murashov V.V., Rumyantsev A.F. Defects in monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 2. Methods for detecting defects in monolithic parts and multilayer structures made of polymer composite materials. Kontrol. Diagnostika, 2007, no. 5, pp. 31–42.
18. Kartashova E.D., Muizemnek A.Yu. Technological defects of polymeric layered composite materials. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki, 2017, no. 2 (42), pp. 79–89. DOI: 10.21685/2072-3059-2017-2-7.
19. Kulikov V.V., Petrova A.P. Analysis of types of defects in adhesive joints of aviation equipment and their repair. Klei. Germetiki. Tekhnologii, 2011, no. 5, pp. 24–27.
20. Features of non-destructive testing of composite materials by low-frequency acoustic methods. Control. Measurement. Diagnostics. Available at: http://defectoscop.ru/page19.html (дата обращения: 26.09.2022).
21. Azmah Hanim M.A., Brabazon D., Hashmi M.S.J. Cracks, microcracks, and fracture toughness of polymer composites: formation, testing method, nondestructive detection, and modifications. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing, 2019, рр. 157–180. DOI: 10.1016/B978-0-08-102293-1.00008-5.
22. Ivanov V.I., Belov P.A., Nasibullin T.S. Defects in composite materials as a source of acoustic emission. Znanie, 2016, no. 3–2 (32), pp. 23–29.
23. Smith R.A. Use of 3D ultrasound data sets to map the localised properties of fibre-reinforced composites: PhD thesis. University of Nottingham, 2010. Available at: http://eprints.nottingham.ac.uk/31253/1/Full%20Thesis%20Chapters%20%282%29.pdf (accessed: September 26, 2022).
24. Rivin G.L. Repair of structures made of polymer composite materials for aircraft: textbook. Ulyanovsk: UlGTU, 2000, 75 p.
25. Saboktakin A. 3D textile preforms and composites for aircraft structures: a review. International Journal of Aviation, Aeronautics, and Aerospace, 2019, vol. 6, is. 1, art. 2. рр. 1–41. DOI: 10.15394/ijaaa.2019.1299.
26. Katunin A., Dragan K., Dziendzikowski M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Composite Structures, 2015, vol. 127, pp. 1–9. DOI: 10.1016/j.compstruct.2015.02.080.
27. Practical Applications «New» NDT Techniques on Composite Material in the Aerospace Industry. 2014. Available at: http://ndt.aero/images/Presentation_26_Nov_2014.pdf (accessed: September 26, 2022).
28. Ning W. Structural Health Condition Monitoring of Carbon-Fibre Based Composite Materials Using Acoustic Emission Techniques: Thesis M. Sc. University of Birmingham, 2015. Available at: https://core.ac.uk/download/pdf/33528371.pdf (accessed: September 26, 2022).
29. Gaidachuk A.V., Kondratiev A.V., Omelchenko E.V. Analysis of technological defects arising in the serial production of integral aircraft structures from polymer composite materials. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2010, no. 3 (70), pp. 11–20.
30. Vorobey V.V., Markin V.B. Quality control of manufacturing and repair technology of composite structures. Novosibirsk: Nauka, 2006, 190 p.
31. Aung T.H. Analysis of defects in products made of polymeric materials and restoration of their bearing capacity by welding: Cand. Sc. (Tech.). Moscow: MATI – RGTU named after K.E. Tsiolkovsky, 2014, 197 p.
32. Non-destructive testing: a reference book in 7 vols. Ed. V.V. Klyuev. Moscow: Mashinostroenie, 2004, vol. 3: Ultrasonic testing, 864 p.
33. Adams R.D., Cawley P. A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT International, 1988, vol. 21, no. 4, pp. 208–222.
34. Cawley P., Adams R. Defect types and NDT for composites and bonded joints. Materials Science and Technology, 1989, vol. 5, pp. 406–447.
35. Mehdikhani M., Gorbatikh L., Verpoest I., Lomov S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 2018, vol. 53, is. 12, pp. 1–91. DOI: 10.1177/0021998318772152.
36. Baurova N.I., Zorin V.A. The use of polymer composite materials in the production and repair of machines: textbook. Moscow: MADI, 2016, 264 p.
37. Crowley D.M., Ward C., Potter K. A Status of Acceptance Criteria and Process Requirements in Advanced Composites Manufacturing, and Whether They are Fit for Purpose. Bristol: SAE International, 2013, 10 p. DOI: 10.4271/2013-01-2144.
38. Potter K. Understanding the origins of defects and variability in composites manufacture. ICCM-17. Edinburgh, 2009. Available at: http://www.iccm-central.org/Proceedings/ICCM17proceedings/papers/ P1.5%20Potter.pdf (дата обращения: 26.09.2022).
39. Chertishchev V.Yu. Development of Technologies and Means of Acoustic Impedance Control of Multilayer Honeycomb Structures from Polymer Composite Materials: thesis, Cand. Sc. (Tech.). Moscow: Bauman MSTU, 2020, 180 p.
40. Bossi R.H., Giurgiutiu V. Nondestructive testing of damage in aerospace composites. Polymer Composites in the Aerospace Industry. Elsevier Ltd., 2015, pp. 413–448. DOI: 10.1016/B978-0-85709-523-7.00015-3.
41. Unnthorsson R., Jonsson M.T., Runarsson T.P. NDT methods for evaluating carbon fiber composites. Procceedings Composites Testing and Model Identification. Bristol, 2004, рр. 21–23.
42. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its depen-dence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
43. Slavin A.V., Dalin M.A., Dikov I.A., Boychuk A.S., Chertishchev V.Yu. Current trends in development of acoustic non-destructive testing methods in aviation industry (review). Trudy VIAM, 2021, no. 12 (106), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 26, 2022). DOI: 10.18577/2307-6046-2021-0-12-96-106.
44. Vavilov V.P., Chulkov A.O., Nesteruk D.A., Plesovskikh A.V. A complex approach to the development of the method and equipment for thermal nondestructive testing of CFRP cylindrical parts. Composites. Part B: Engineering, 2015, vol. 68, pp. 375–384. DOI: 10.1016/j.compositesb.2014.09.007.
The compositions, properties, methods of manufacturing of cermet materials for plain bearings of transport vehicles and other equipment are considered. It is shown that iron, copper, cobalt and nickel or alloys based on them are mainly used as the matrix material of cermet bearings. Ceramic filler is selected to improve strength characteristics, increase wear resistance and load-bearing capacity. An increase in lubricating characteristics is provided by the introduction of solid lubricants into the composition of cermet materials: graphite, BN or sulfides, as well as polymers.
2. Method for manufacturing high-temperature composite antifriction material: pat. 2695854 Rus. Federation; filed 15.01.18; publ. 29.07.19.
3. Copper-based alloy sliding-bearing material and preparation method thereof: pat. CN 103602849; filed 10.10.13; publ. 09.03.16.
4. Burkovskaya N.P., Sevostyanov N.V., Bolsunovskaya T.A., Efimochkin I.Yu. Improvement of materials for sliding bearings of internal combustion engines (review). Trudy VIAM, 2020, no. 1, paper no. 08. Available at: http://www.viam-works.ru (accessed: June 08, 2022). DOI: 10.18577/2307-6046-2020-0-1-78-91.
5. Sliding supports. Suspension and steering. Autocomponents: business, technology, service: multifunctional portal of the Max Media Group publishing house. Available at: https://a-kt.ru/articles/opory-skolzheniya (accessed: June 08, 2022).
6. Sevostyanov N.V., Rozen A.E., Buznik V.M., Loginov O.N., Usatii S.G., Bolsunovskaya T.A. Copper-fluoroplastic conductive composite material obtained by explosive pressing. Trenie i iznos, 2020, vol. 41, no. 1, pp. 55–62.
7. Adamenko N.A., Trykov Yu.P., Fetisov A.V. Polymer and metal-polymer materials obtained by explosive processing. Perspektivnye materialy, 2004, no. 3, pp. 63–68.
8. Fedorchenko I.M., Pugina L.I. Composite sintered antifriction materials. Kyiv: Naukova Dumka, 1980, 404 p.
9. Ultra-high molecular weight polyethylene (UHMWPE) – a material for extreme conditions. Available at: https://www.catalysis.ru/block/index.php?ID=3&SECTION_ID=1487 (дата обращения: 22.07.2022).
10. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
11. Migunov V.P., Chatynyan L.A., Ivanov E.V. et al. Wear-resistant and antifriction materials for friction units. Aviation industry, 1982, no. 8, pp. 71–73.
12. Self-lubrication sintered metal powder bearing with high tenacity and preparation method of self-lubrication sintered metal powder bearing: pat. CN 105420604A; filed 05.11.15; publ. 23.03.16.
13. High-strength self-lubricating metal ceramic bearing and preparation method thereof: pat. CN 105369146A; filed 05.11.15; publ. 02.03.16.
14. Metal ceramic bearing with good self-lubrication performance and preparation method of metal ceramic bearing: pat. CN 105369140A; filed 05.11.15; publ. 02.03.16.
15. Self-lubricating metal ceramic bearing with high bending resisting strength and preparing method of self-lubricating metal ceramic bearing: pat. CN 105385967A; filed 05.11.15; publ. 09.03.16.
16. Self-lubricating metal ceramic bearing good in abrasion resistance and preparing method of self-lubricating metal ceramic bearing: pat. CN 105385929A; filed 05.11.15; publ. 09.03.16.
17. Self-lubrication sintered metal powder bearing with good abrasion resistance and preparation method of self-lubrication sintered metal powder bearing: pat. CN 105420602A; filed 05.11.15; publ. 23.03.16.
18. Anti-cracking self-lubricating metal ceramic bearing and preparation method thereof: pat. CN 105369147A; filed 05.11.15; publ. 02.03.16.
19. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy: pat. US 7294167B2; filed 18.11.04; publ. 13.11.07.
20. Wear resistant sintered member: pat. US 7575619B2; filed 24.03.06; publ. 18.08.09.
21. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same: pat. US 7282078B2; filed 09.01.05; publ. 16.10.07.
22. Manufacture of self-lubricative sliding material: pat. JP 532989A; filed 12.01.89; publ. 20.07.90.
23. Particle-dispersed copper alloy and method for producing the same: pat. JP 4314226B2; filed 13.09.05; publ. 12.08.09.
24. Sintered bearing: pat. CN 107252888A; filed 23.07.13; publ. 17.10.17.
25. Patrushev A.Yu., Farafonov D.P., Serov M.M. Tungsten-free hard alloys: manufacturing methods, structure and properties (review). Trudy VIAM, 2021, no. 11 (105), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 08, 2022). DOI: 10.18577/2307-6046-2021-0-11-66-81.
26. Trofimenko N.I., Efimochkin I.Yu., Dvoretskov R.M., Batienkov R.V. Obtaining fine-grained cemented carbide alloys of the WC–Co system (review). Trudy VIAM, 2020, no. 1 (85), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 08, 2022). DOI: 10.18577 / 2307-6046-2020-0-1-92-100.
27. Elagina O.Yu., Buklakov A.G., Yanka L.E.V. Development of a new composite material for the teeth of the armament of support-centering devices. Treniye i iznos, 2017, vol. 38, no. 2, pp. 151–157.
28. Cobalt-based composite material that a kind of wear-resisting rotation axis carbide enhances and preparation method thereof: pat. CN 108149126A; filed 02.12.16; publ. 12.06.18.
29. Method for preparing Ni cementing WC base cemented carbide: pat. CN 101397614B; filed 04.11.08; publ. 15.10.15.
30. Novel WC–Fe–Ni hard alloy roll ring and preparation method thereof: pat. CN 104894452A; filed 03.07.15; publ. 12.09.17.
31. WC–Fe–Ni–Co–Cr cemented carbide roll collar with low cost and high performance: pat. CN 106435322A; filed 02.11.16; publ. 04.09.19.
32. WC–Co hard alloy with binding phase enhanced by Ni3Al and preparation method thereof: pat. CN 102383021A; filed 21.11.11; publ. 13.02.13.
33. Kritsky V.Yu., Zubko A.I. Investigation of the possibility of using ceramic aircraft bearings of a new generation in the structures of rotor bearings for gas turbine engines. Dvigatel, 2013, no. 3, pp. 24–26.
34. Balinova Yu.A., Grashchenkov D.V., Shavnev A.A., Babashov V.G., Chainikova A.S., Kurbatkina E.I., Bolshakova A.N. High-temperature heat-shielding, ceramic and metal-ceramic composite materials for a new generation of aircraft. Vestnik Kontserna VKO «Almaz-Antey», 2020, no. 2 (33), pp. 83–92. DOI: 10.38013/2542-0542-2020-2-83-92.
35. Plain bearings. Automobile directory. Available at: https://press.ocenin.ru/podshipniki-skolzheniya/#Metallkeram_podsip (accessed: June 08, 2022).
The review of carbon fiber reinforced plastics based on high–modulus carbon fiber and woven reinforcing fillers developed at the National Research Center «Kurchatov Institute» – VIAM is presented. The difference between high-modulus reinforcing fillers and high-strength fillers is shown. The main domestic and foreign fiber brands are presented, as well as information on the elastic-strength characteristics of the developed high-modulus carbon fiber plastics, including at various temperatures. The comparison of domestic carbon fiber plastics with foreign materials of similar composition and structure is carried out.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. New materials are needed for space exploration. Nauchnaya Rossiya. Available at: https://scientificrussia.ru/interviews/akademik-e-n-kablov-dlya-osvoeniya-kosmosa-nuzhny-novye-
materialy (accessed: June 10, 2022).
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. Ed. A.A. Berlin. 3rd ed., rev. and add. St. Petersburg: Profession, 2011, 556 p.
6. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 10, 2022). DOI: 10.18577/2307-6046-2020-0-67-38-44.
7. Sidorina A.I., Gunyaeva A.G. Carbon fiber market. Khimicheskie volokna, 2016, no. 4, pp. 48–53.
8. Startsev O.V., Khristoforov D.A., Kolyushnichenko A.B., Fizulov B.G., Rumyantsev A.F., Gunyaev G.M., Raskutin A.E. Dimensional stability of high-modulus carbon fibers and carbon plastics based on them. Reports of intersectoral scientific-practical. conf. "Problems of creating new materials for the aerospace industry in the XXI century". Moscow: VIAM, 2002, p. 87.
9. Carbon fiber: high-tech carbon fiber based on PAN precursor. Available at: https://umatex.com/production/fiber/ (accessed: July 20, 2022).
10. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, vol. 7: Polymer composite materials, 2010, 210 p.
11. TenaxTM Filament Yarn. Available at: https://www.teijincarbon.com/products/tenaxr-carbon-fiber/tenaxr-filament-yarn (accessed: February 03, 2023).
12. Valueva M.I., Evdokimov A.A., Nacharkina A.V., Gubin A.M. Polymer composite materials and technologies in the automotive industry (rеview). Trudy VIAM, 2022, no. 1 (107), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2022-0-1-53-65.
13. Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review). Trudy VIAM, 2022, no. 5 (111), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 15, 2022). DOI: 10.18577/2307-6046-2022-0-5-87-95.
14. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
15. Raskutin A.E. Polymer composite materials of a new generation for aviation and space technology. Report conf. "Modern achievements in the field of creating promising non-metallic composite materials and coatings for aviation and space technology". Moscow: VIAM, 2015. Available at: https://conf.viam.ru/conf/172/proceedings (accessed: May 25, 2022).
16. Raskutin A.E. Structural carbon plastics based on new melt-type binders and Porcher fabrics. Novosti materialovedeniya. Nauka i tekhnika, 2013, no. 5. URL: http://materialsnews.ru (date of access: 04.06.2022).
17. Mishurov K.S., Mishkin S.I., Gunyaeva A.G. Polymer composite materials for advanced aircraft engines. Materials of II All-Rus. sci.-tech. conf. "Polymer composite materials and production technologies of a new generation". Moscow: VIAM, 2017, pp. 131–145.
18. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
19. Gunyaeva A.G. Developments of FSUE "VIAM" in the field of polymer composite materials for aviation and other industries. Reports of IV Interdisciplinary scientific forum with International participation "New materials and promising technologies": in 3 vols. Moscow: Buki Vedi, 2018, vol. 3, рр. 71–72.
20. Valueva M.I., Zelenina I.V., Mishurov K.S., Gulyaev I.N. Review of publications on the development of blades made of polymer composite materials for an aircraft engine fan. Vestnik mashinostroeniya, 2019, no. 2, pp. 34–41.
21. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
22. Gunyaeva A.G., Raskutin A.E., Gulyaev I.N., Sidorina A.I., Mishkin S.I. Polymer composite materials of a new generation for the aviation, electrical and construction industry. Reports of II Intern. sci.-tech. conf. "New materials and technologies for deep processing of raw materials – the basis for the innovative development of the Russian economy". Moscow: VIAM, 2017. Available at: http://conf.viam.ru/conf/254/proceedings (accessed: May 25, 2022).
23. High temperature plastics market by type (polysulfones, polyimides, polyphenylene sulfide, fluoropolymers, and others), by end-use industries (electrical & electronic, transportation, industrial, medical, and others) – Global trends & forecast to 2019. Available at: https://www.marketsandmarkets.com/Market-Reports/high-temperature-plastics-market-1192.html (accessed: November 17, 2021).
24. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Study of the curing process of a diphthalonitrile binder. Zhurnal prikladnoy khimii, 2016, vol. 89, no. 2, pp. 256–264.
25. Zelenina I.V., Gulyayev I.N., Kucherovskiy A.I., Mukhametov R.R. Heat-resistant CFRP for the impulse wheel of the centrifugal compressor. Trudy VIAM, 2016, no. 2 (38), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2016-0-2-8-8.
26. Raskutin A.E. Heat-resistant carbon plastics for aircraft structures operating at temperatures up to 400 °C: Cand. Sc. (Tech.). Moscow, 2007, 166 p.
27. Valevin E.O., Zelenina I.V., Marakhovsky P.S., Gulyaev A.I., Bukharov S.V. Investigation of the effect of heat and moisture exposure on the phthalonitrile matrix. Materialovedenie, 2015, no. 9, pp. 15–19.
The article presents a theoretical study of the producing silaethylene from methylsilane chemical reaction kinetics at high temperatures. Quantum chemistry was used for calculating of thermodynamic parameters (changes of enthalpy, entropy, Gibbs free energy. The activated complex theory was taken for calculation values activation energy, equilibrium constant, rate of chemical reactions.We used a transitional state structure in the chemical reaction of methylsilane-silaethylene. The calculations have shown active formation of silaethylene from methylsilane at temperature above 1500 K.
2. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 08, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
3. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: August 18, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Foresman J.B., Frish A.E. Exploring chemistry with electronic structure methods. 3rd ed. Gausssian Inc.: Wallingford, CT, 2015, 335 p.
5. Sidorov D.V., Kirilin A.D., Shavnev A.A., Petrogradsky A.V. Investigation of the mechanism of pyrolytic decomposition of methylsilane in the gas phase. Khimicheskaya tekhnologiya, 2006, no. 7, pp. 22–24.
6. Truong T., Gordon M., Pople J. Thermal decomposition pathways of ethane. Chemical Physics Letters, 1986, vol. 130, pp. 245–249.
7. Jensen J., Morokuma K., Gordon M. Pathways for H2 elimination from ethylene: a theoretical study. The Journal of Chemical Physics, 1994, vol. 100, pp. 1981–1987.
8. Allendorf M., Melius C. Theoretical study of the thermochemistry of molecules in the Si–C–Cl–H system. The Journal of Chemical Physics, 1993, vol. 97, pp. 720–728.
9. Osterheld T., Allendorf M. Unimolecular decomposition of methyltrichlorosilane: RRKM calculation. The Journal of Chemical Physics, 1994, vol. 98 pp. 6995–7003.
10. Diau E., Lin M., Melius C. A theoretical study of the CH3 + C2H2 reaction. The Journal of Chemical Physics, 1994, vol. 101, pp. 3923–3927.
11. Hase W., Schlegel H., Balbyshev V., Page M. An ab initio study of the transition state forward and reverse rate constant for C2H5 = H + C2H4. The Journal of Chemical Physics, 1996, vol. 100, pp. 5354–5361.
12. Ohta K., Davidson E., Morokuma K. Dimerization Paths of CH2 and SiH2 Fragments to Ethylene, Disilene, and Silaethylene: MCSCF and MRCI Study of Least- and Non-Least-Motion Paths. Journal of the American Chemical Society, 1985, vol. 107, pp. 3466–3471.
13. Zechmann G., Marbatti M., Lishka H. Multiple pathways in the photodynamics of a polar π: a case study of silaethylene. Chemical Physics Letters, 2006, vol. 418, pp. 377–382.
14. Sidorov D.V., Kirilin A.D., Schavnev А.А., Melentev А.А., Flotskiy А.А., Grunin А.А. Transition state chemical reaction producing silaethylene from methylsilane. Trudy VIAM, 2022, no. 9 (115), paper no. 09. Available at: http://www.viam-works.ru (accessed: September August 18, 2022). DOI: 10.18577/2307-6046-2022-0-9-111-120.
15. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian-09: revision A.02. Wallingford: Gaussian Inc., 2009.
16. Chorkendorf I., Naimantsvedreit H. Modern catalysis and chemical kinetics. Dolgoprudny: Intellekt, 2010, 504 p.
17. Tsyshevsky R.V., Garifzyanova G.G., Khrapkovsky G.M. Quantum-chemical calculations of the mechanisms of chemical reactions: textbook. Kazan: KNRTU, 2012, 87 p.
This work is devoted to the issues of determining the chemical composition of galvanic nickel plating electrolytes using the methods of atomic emission spectrometry and inductively coupled plasma mass spectrometry. The mass fraction of components in model electrolyte solutions at different dilutions was determined. The metrological characteristics of the obtained results were evaluated. Concentration ranges were chosen to which it is optimal to dilute stock solutions in order to obtain reproducible and reliable results.
2. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
3. Skryabin V.A., Fomichev V.O. Peculiarities of applying nickel coatings to parts made of steels and aluminum alloys. Nauchnye vesti, 2020, no. 1 (18), pp. 116–119.
4. Vinogradov S.S., Nikiforov A.A., Balahonov S.V., Leshhev K.A. Ni–B chemical coating’s structure and properties investigation. Trudy VIAM, 2014, no. 12, paper no. 07. Available at: http://www.viam-works.ru (accessed: July 16, 2022). DOI: 10.18577/2307-6046-2014-0-12-7-7.
5. Borisenko A.B., Khramtsov V.V., Nemtinov V.A., Krylov A.V., Matrokhin M.A. Development of the design of a chemical nickel plating plant operating as part of a galvanic line. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2021, vol. 27, no. 2, pp. 275–284.
6. Vinogradov S.S., Nikiforov A.A., Zakirova L.I. Cadmium replacement. Stage 2 – final. Galvanic thermal coating of zinc–tin system – real alternative to cadmium plating. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 59–66. DOI: 10.18577/2071-9140-2019-0-3-59-66.
7. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 1. Atmospheric corrosion. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-4-86-94.
8. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 2. Corrosion in sea water. Aviation materials and technology, 2021, no. 1 (62), paper no. 09. Available at: http://www.journal.viam.ru (accessed: August 20, 2022). DOI: 10.18577/2713-0193-2021-0-1-95-103.
9. Churilov D.G., Stekolnikov Yu.A., Arapov I.S. Restoration of parts using combined composite coatings with further hardening. Sovremennye materialy, tekhnika i tekhnologii, 2021, no. 1 (34), pp. 52–58.
10. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
11. Kablov E.N., Sidorov V.V., Min P.G., Vadeev V.E., Kramer V.V. Research and development of technological parameters of vacuum melting of corrosion-resistant heat-resistant nickel alloys. Metallurg, 2021, no. 2, pp. 62–67.
12. Nikiforov A.A., Demin S.A., Khmeleva K.M. Electrochemical treatment of parts obtained by selective laser fusion. Trudy VIAM, 2021, no. 7 (101), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 25, 2022). DOI: 10.18577/2307-6046-2021-0-7-3-12.
13. Goncharov B.E., Sipatov A.M., Cherkashneva N.N., Pleskan A.Yu., Samokhvalov N.Yu., Vaganova M.L., Sorokin O.Yu., Solntsev St.S., Evdokimov S.A. Studies of thermal shock resistance of an anti-oxidation coating for a multi-layered ceramic composite. Aviation materials and technologies, 2021, no. 4 (65), paper no. 06. Available at: http://www.journal.viam.ru (accessed: August 12, 2022). DOI: 10.18577/2713-0193-2021-0-51-58.
14. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
15. Laptev A.B., Zakirova L.I., Degovets M.L. Properties of protective galvanic coatings for replacement of cadmium on steel fixing parts (review). Part 2. Hydrogen embrittlement and frictional characteristics. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 35–40. DOI: 10.18577/2071-9140-2020-0-4-35-40.
16. Tikhonov R.D. Electrochemical deposition of NIFE alloy from concentrated chloride electrolyte. Nano- i mikrosistemnaya tekhnika, 2020, vol. 22, no. 8, pp. 422–433.
17. Sevostyanov N.V. Automation of the selection of copper-nickel plating and technological parameters of deposition. Korroziya: materialy, zashchita, 2015, no. 4, pp. 9–16.
18. Skopintsev V.D., Vinokurov E.G. Energy efficiency of the process of chemical nickel plating of surfaces. Khimicheskaya tekhnologiya, 2020, vol. 21, no. 10, pp. 434–440.
19. Salakhova R.K., Tikhoobrazov A.B., Farafonov D.P., Smirnova T.B. Features of electrolytic deposition of abrasive-wear-resistant nickel-based coatings. Trudy VIAM, 2022, no. 2 (108), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 26, 2022). DOI: 10.18577/2307-6046-2022-0-2-99-110.
20. Smirnov G.A. Nickel layer control on metallized ceramics. Steklo i keramika, 2021, no. 5, pp. 9–13.
21. Balyueva Yu.A., Sosnovskaya N.G., Rozentsveig I.B. Shine-forming action of trichloroethylamides with thioamide functions in the technology of electrochemical nickel plating. Sovremennye tekhnologii i nauchno-tekhnicheskiy progress, 2022, no. 9, pp. 11–12.
22. Butrik R.V., Grabelnykh V.A., Sosnovskaya N.G., Korchevin N.A. Isothiuronium derivatives of pyridine as brightening additives in electrochemical nickel plating. Sovremennye tekhnologii i nauchno-tekhnicheskiy progress, 2021, no. 8, pp. 19–20.
23. Sosnovskaya N.G., Istomina N.V., Korchevin N.A., Rozentsveig I.B. Influence of the structure of organic additives on the formation of shiny coatings during electrochemical nickel plating. Uspekhi v khimii i khimicheskoy tekhnologii, 2021, vol. 35, no. 5 (240), pp. 54–56.
24. Soloveva I.A., Solovev D.S., Litovka Yu.V. Search for the current strength and degree of loading of the drum to reduce the unevenness of the galvanic coating of small parts. Prikaspiyskiy zhurnal: upravleniye i vysokiye tekhnologii, 2022, no. 2 (58), pp. 119–126.
25. Hamburg Yu.D. Galvanic coatings. Application guide. Moscow: Technosfera, 2006, 216 p.
26. Vyacheslavov P.M., Shmeleva N.M. Control of electrolytes and coatings. Leningrad: Mashinostroenie, 1985. 96 p.
27. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, pp. 97–107.
28. Nadezhdina M.E. Progressive technological processes of organization of production of enterprises of the chemical industry. Polzunovskiy almanakh, 2020, no. 1, pp. 55–58.
29. Nadezhdina M.E., Shinkevich A.I., Shinkevich M.V. Monitoring system for digital production of an enterprise of the petrochemical industry. Competence, 2021, no. 7, pp. 36–39.
30. Yakimovich P.V., Alekseev A.V. Wastewater analysis by ICP-MS. Metallurg, 2018, no. 1, pp. 13–18.
31. Garmash A.V., Sorokina N.M. Metrological bases of analytical chemistry. Moscow: Lomonosov Moscow State University, 2012, 47 p.
32. Nadezhdina M.E., Bobkov V.I. Implementation of the principles of system analysis of chemical technology in the transition to industry 4.0. Days of Student Science: collection of sci. Works of III Intern. stud. conf. Kazan, 2020, pp. 366–369.
33. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
34. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plasma methods of nickel alloys elemental chemical composition analysis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
The second section of the article presents the results of studies of the coefficient of linear thermal expansion (CLTE) of carbon fiber reinforced plastic based on the cyanoether binder VSC-14, exposed for 24 months in a moderately cold climate and laboratory simulation conditions. Two variants of full-scale climatic tests were studied: standard exposure on an open atmospheric stand and exposure with a combination of thermal cycles simulating the mode of takeoff and landing of an aircraft. To find out the reasons for the change in the CLTE, the results of measurements of the compressive and tensile strengths, as well as the glass transition temperature of the binder VSC-14, are analyzed.
2. Irving P., Soutis C. Polymer composites in the aerospace industry. Polymer Composites in the Aerospace Industry. 2nd ed. Woodhead Publishing, 2019, 688 p.
3. Charitidis P.J. Criteria for the selection of carbon fiber composite materials for fighter aircraft. Advances in Materials Science and Engineering: An International Journal (MSEJ), 2018, vol. 5, no. 2/3/4, pp. 1–13.
4. Shetty K., Bojja R., Srihari S. Effect of hygrothermal aging on the mechanical properties of IMA/M21E aircraft-grade CFRP composite. Advanced Composites Letters, 2020, vol. 29, рр. 1–9.
5. Iijima N., Katogi H., Takemura K. Effect of Thermal Cycling after Water Absorption on Flexural Property of CFRP. Advanced Materials Research, 2015, vol. 1110, pp. 19–22.
6. Cinquin J., Medda B. Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100–150 °C). Composites Science and Technology, 2009, vol. 69, no. 9, pp. 1432–1436.
7. Jedidi J., Jacquemin F., Vautrin A. Accelerated hydrothermal cyclical tests for carbon/epoxy laminates. Composites. Part A, 2006, vol. 37, pp. 636–645.
8. Kumar B.G., Singh R.P., Nakamura T. Degradation of Carbon Fiber-Reinforced Epoxy Composites by Ultraviolet Radiation and Condensation. Journal of Composite Materials, 2002, vol. 36, no. 24, pp. 2713–2733.
9. Kablov E.N., Startsev O.V., Deev I.S., Nikishin E.F. Properties of polymer composite materials after exposure to open space in near-Earth orbits. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 10, рр. 2–9.
10. Startsev O.V., Nikishin E.F. Aging of polymer composite materials in open space. Mekhanika kompozitnykh materialov, 1993, no. 4, pp. 457–467.
11. Dexter H.B. Long-term environmental effects and flight service evaluation of composite materials. NASA Technical Report TM-89067, 1987, 188 p.
12. Startsev O.V., Mashinskaya G.P., Yartsev V.A. Molecular mobility and relaxation processes in an epoxy matrix. 2. Effects of weathering in humid subtropical climate. Mechanics of Composite Materials, 1985, vol. 20, no. 4, pp. 406–409.
13. Tian W., Hodgkin J. Long-term aging in a commercial aerospace composite sample: Chemical and physical changes. Journal of Applied Polymer Science, 2010, vol. 115, no. 5, pp. 2981–2985.
14. Kirillov V.N., Efimov V.A., Shvedkova A.K. Influence of climatic factors and mechanical loading on the properties of carbon fiber reinforced plastic with epoxy binder. Plasticheskiye massy, 2012, no. 2, pp. 3–7.
15. Kafodya I., Xian G., Li H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties. Composites. Part B: Engineering, 2015, vol. 70, pp. 138–148.
16. Startsev O.V., Lebedev M.P., Blaznov A.N. Aging of polymer composite materials in a loaded state (end). Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 11, pp. 2–12.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329.
18. Startsev O.V., Medvedev I.M., Kurs M.G. Hardness as the indicator of corrosion of aluminum alloys in sea conditions. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 16–19.
19. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymeric composite materials. Moscow: VIAM, 2021, 528 p.
20. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
21. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.Sh. fiber reinforced plastic) VKU-27L. Trudy VIAM, 2018, no. 3 (63), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2018-0-3-60-67.
22. Perov N.S., Startsev V.O., Chutskova E.Yu., Gulyaev A.I., Abramov D.V. Properties of carbon plastic based on polycyanurate binder after exposure to various natural and artificial environments. Materialovedenie, 2017, no. 2, pp. 3–9.
23. Slavin A.V., Startsev O.V. Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering. Trudy VIAM, 2018, no. 9 (69), paper no. 8. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2018-0-9-71-82.
24. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2021-0-5-114-126.
25. Startsev O.V., Perepechko I.I. Molecular mobility and relaxation in an epoxy matrix. 1. Influence of the reinforcing filler. Mechanics of Composite Materials, 1984, vol. 20, no. 3, pp. 271–274.
26. Startsev V.O., Nikolaev E.V., Vardanyan A.M., Nechaev A.A. The influence of climatic factors on residual stresses in nanomodified cyanate ester-based CFRP. Trudy VIAM, 2021, no.8 (102), paper no. 12. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2021-0-8-104-112.
27. Startsev O.V., Kurs I.S., Deev I.S., Nikishin E.F. Thermal expansion of KMU-4L carbon fiber after 12 years of exposure in outer space. Voprosy materialovedeniya, 2013, no. 4 (76), pp. 77–85.
28. Lebedev M.P., Startsev O.V., Petrov M.G., Kopyrin M.M. Formation of microcracks during climatic aging of polymer composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 4, pp. 2–11.
29. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2020-0-12-47-58.
30. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
31. Crossman F.W., Mauri R.E., Warren W.J. Hygrothermal damage mechanisms in graphite-epoxy composites. NASA Contractor Reports, 1979, no. 3189. 157 p.
32. Asai S., Goto K., Yoneyama S., Arikawa S., Kobayashi S. Effect of space environment on thermal and mechanical properties of CFRP. ICCM International Conferences on Composite Materials, 2015, vol. 2015, art. 43-16-2.
33. Herakovich C.T., Hyer M.W. Damage-induced property changes in composites subjected to cyclic thermal loading. Engineering Fracture Mechanics, 1986, vol. 25, no. 5–6, pp. 779–791.
34. Lafarie-Frenot M., Rouquie S. Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling. Composites Science and Technology, 2004, vol. 64, no. 10–11, pp. 1725–1735.
35. Bowles D.E., Tompkins S.S. Prediction of Coefficients of Thermal Expansion for Unidirectional Composites. Journal of Composite Materials, 1989, vol. 23, no. 4, pp. 370–388.
36. Rogers K.F., Kingston-Lee D.M., Phillips L.N. et al. The thermal expansion of carbon-fibre reinforced plastics. Journal of Materials Science, 1981, vol. 16, no. 10, pp. 2803–2818.
37. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016, no. 5 (41), paper no. 11. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2016-0-5-11-11.
38. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
39. Evdokimov A.A., Petrova A.P., Pavlovskiy K.A., Gulyaev I.N. The influence of climatic ageing on the properties of PCM-based epoxy resin systems. Trudy VIAM, 2021, no. 3 (97), paper no. 12. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2021-0-3-128-136.
40. Kong E.S.-W. Physical aging in epoxy matrices and composites. Epoxy Resins and Composites. Berlin, 1986, pp. 125–171.
41. Inamdar A., Yang Y.H., Prisacaru A. et al. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package. Polymer Degradation and Stability, 2021, vol. 188, art. 109572.
42. Ogata M., Kinjo N., Kawata T. Effects of crosslinking on physical properties of phenol-formaldehyde novolac cured epoxy resins. Journal of Applied Polymer Science, 1993, vol. 48, no. 4, pp. 583–601.
43. Khamidulin O.L., Madiyarova G.I., Rezvykh A.V. et al. Comparative analysis of thermal expansion and heat capacity of polymers based on a number of epoxy novolac resins in a wide temperature range. Vestnik tekhnologicheskogo universiteta, 2021, vol. 24, pp. 40–44.
44. Startsev O.V., Krotov A.S., Golub P.D. Effect of climatic and radiation ageing on properties of VPS-7 glass fibre reinforced epoxy composite. Polymer Degradation and Stability, 1999, vol. 63, no. 3, pp. 353–358.
45. Marahovskiy P.S., Maltceva E.Yu., Barinov D.Ya., Zuev A.V., Smirnov M.V. Experience in measuring the thermal linear expansion coefficient of combined cords using organic and glass fibers. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 82–87. DOI: 10.18577/2071-9140-2019-0-1-82-87.
46. Park S.Y., Choi W.J., Choi C.H., Choi H.S. An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption. Composite Structures, 2019, vol. 207, pp. 81–92.
47. Kablov E.N., Startsev V.O. The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576.
48. Shi Z., Zou C., Zhou F., Zhao J. Analysis of the Mechanical Properties and Damage Mechanism of Carbon Fiber/Epoxy Composites under UV Aging. Materials, 2022, vol. 15, no. 8, p. 2919.
49. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
Polymer materials
Kapustianskaia M.A., Mishurov K.S., Studenov I.G. Application area and physical and mechanical properties of phenol-rubber foam plastic grade FK-20
Composite materials
Zelenina I.V., Valueva M.I., Nacharkina A.V., Kurshev E.V. Structure and properties of high-temperature carbon fiber reinforced plastic based on polyimide binder
Starkov A.I., Kutsevich K.E., Petrova A.P., Antufeeva N.V. Development of temperature and time curing regime for prepregs based on adhesive binder with reduced flammability
Savitskiy R.S., Sudin Yu.I. Evaluation of the effect of antiadhesion composition on the free surface energy of carbon fiber-reinforced plastics
Savitskiy R.S., Galiullin A.R., Mantusova O.Yu., Veshkin E.A. Valuation of the effect of prepreg storage time on warping and PCM properties based on it
Valeev R.A., Piskorsky V.P., Korolev D.V., Morgunov R.B. Optimization of the cobalt content as a way of temperature stabilization of rare earth magnets
Dikov I.A., Yakovleva S.I., Boychuk A.S., Chertishchev V.Yu. Defect classification for 2D fiber-reinforced composites (review)
Burkovskaya N.P., Sevostyanov N.V. Cermets for plain bearings (review)
Gulyaev I.N., Pavlovskiy K.A. High modulus carbon plastics for civil aviation equipment (review)
Material tests
Sidorov D.V., Kirilin A.D., Schavnev А.А., Flotskiy А.А., Grunin А.А. Kinetic for chemical reaction producing silaethylene from methylsilane at temperatures up to 2100 K
Dvoretskov R.M., Karachevtsev F.N., Demin S.A. Analytical control of the chemical composition of galvanic electrolytes of nickel plating by the ICP AES and ICP MS methods
Startsev V.O., Vardanyan A.M. Influence of external influences on the coefficient linear thermal expansion of carbon fiber plastics. Part 2. Comparison of the results of full-scale and laboratory climatic tests