Articles
Main achievements of recent years in the field of plasma welding, made by scientists from around the world and the history of the development of plasma technologies showed in the article. Main features of technological processes in which the source of heating is plasma are given. It is shown that at present a promising direction in plasma welding development is the combined and hybrid use of two or more heat sources in the formation of a welded joint. The description of equipment for plasma welding is presented.
2. Kablov E.N., Lukin V.I., Antipov V.V. et al. Efficiency of Using Filler Materials in Laser Welding of High-Strength Aluminium-Lithium Alloys. Welding International, 2017, vol. 31, no. 9, pp. 717–721.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and soldering in the aerospace industry. All-Rus. scientific-practical conf. «Welding and Safety». Yakutsk: IFTPS SO RAN, 2012, pp. 21–30.
4. Sviridov A.V., Skupov A.A., Afanasev-Khodykin A.N., Golev E.V. Special aspects of manufacturing of fixed joints from synthesized material EP648. Aviation materials and technologies, 2022, no. 1 (66), paper no. 02. Available at: http://www.journal.viam.ru (accessed: May 18, 2022). DOI: 10.18577/2713-0193-2022-0-1-17-29.
5. Panteleev M.D., Bakradze M.M., Skupov A.A., Scherbakov A.V., Belozor V.E. Technological features of fusion welding of aluminum alloy V-1579. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 11–17. DOI: 10.18577/2071-9140-2018-0-3-11-17.
6. Fomin V.M., Malikov A.G., Orishich A.M., Antipov V.V., Klochkov G.G., Skupov A.A. Heat treatment effect on structure of joint weld sheets from V-1469 alloy of Al–Cu–Li system manufactured by laser welding. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 9–18. DOI: 10.18577/2071-9140-2018-0-1-9-18.
7. Prasad K.S., Rao C.S., Rao D.N. Advances in Plasma Arc Welding: a review. Journal of Mechanical Engineering and Technology, 2012, vol. 4, no. 1, pp. 35–59.
8. Liu Z., Zhao Q., Li D. Study of hollow cathode penetrating arc welding technology. Journal of Materials Processing Technology, 2002, vol. 123, is. 3, pp. 382–384.
9. Esibyan E.M. Air-plasma cutting. Avtomaticheskaya svarka, 2000, no. 12, pp. 6–18.
10. Mikhailov B.I. Electric arc generators of steam-water plasma. Thermophysics and Aeromechanics, 2002, vol. 9, no. 4, pp. 597–612.
11. Vasiliev K.V. Features of plasma-arc cutting in nitrogen-oxygen mixtures (review). Avtomaticheskaya svarka, 2000, no. 12, pp. 21–25.
12. Paton B.E., Gvozdetsky B.C., Dudko D.A. et al. Microplasma welding. Kyiv: Naukova dumka, 1979, 248 p.
13. Nefedov B.B., Lyalyakin V.P. Development of plasma welding and surfacing abroad. Svarochnoe proizvodstvo, 1998, no. 3, pp. 21–27.
14. Perepletchikov E.F. Plasma surfacing. Svarshchik, 2000, no. 2, pp. 8–11.
15. Balanovsky A.E. Plasma technologies in industry: current state and prospects. Zagotovitelnye proizvodstva v mashinostroenii, 2007, no. 6, pp. 9–14.
16. Welding. Cutting. Control: a reference book in 2 vols. Ed. N.P. Aleshin, G.G. Chernyshev. Moscow: Mashinostroenie, 2004, vol. 1, 624 p.
17. Sahoo A., Tripathy S. Development in plasma arc welding process: a review. Materials Today: Proceedings, 2021, vol. 41, part 2, pp. 363–368.
18. Ovchinnikov V.V., Drits A.M., Rastopchin R.N., Gureeva M.A. Modern trends in the development of technology for plasma welding of aluminum alloys. Mashinostroyenie i inzhenernoe obrazovanie, 2016, no. 3 (48), pp. 10–23.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Arc torch and process: pat. US 2806124A; filed 26.07.55; publ. 10.09.57.
21. Rykalin N.N., Kulagin I.D., Nikolaev A.V. Thermal characteristics of the interaction of a plasma jet with a heated body. Avtomaticheskaya svarka, 1963, no. 6, pp. 3–13.
22. Mustaev Z.R., Saraev R.S., Shikhamirov R.A. Argon-arc and plasma welding technologies: technical and technological analysis and economic assessment. Paper of conf. "Research of the innovative potential of society and the formation of directions for its strategic development". Kursk: SWGU, 2016, pp. 172–176.
23. Petrov A.V., Slavin G.A., Verbitsky V.G. Investigation of the thermal efficiency of the process of welding with a compressed arc of thin sheet material. Svarochnoye proizvodstvo, 1967, no. 2, pp. 6–8.
24. Matyushkin B.A., Denisov V.I., Tolkachev A.A., Chavdarov A.V., Lyalyakin V.P. Plasma welding with a closed compressed arc. Svarochnoye proizvodstvo, 2016, no. 4, pp. 37–39.
25. Baraev A.V., Ilyinsky A.M., Kulik V.I., Nerovny V.M. Equipment and technologies for welding with a thermionic hollow cathode in vacuum. Svarochnoye proizvodstvo, 2017, no. 5, pp. 37–41.
26. The method of pulsed arc welding with a hollow cathode in a vacuum: certificate of authorship SU 1365513 A1; filed 06.08.85; publ. 20.06.05.
27. Irrovny V.M. Improving the efficiency and service life of the hollow cathode for welding in vacuum. Svarka i diagnostika, 2011, no. 1, pp. 6–12.
28. Baraev A.V., Ilʹinskii A.M., Kulik V.I., Nerovnyi V.M. Equipment and technology for welding with a thermoemission hollow cathode in vacuum. Welding International, 2018, no. 32 (10), pp. 667–671.
29. Anisimov Yu.A., Medovar B.I., Paton B.E. et al. Welding in the USSR. Moscow: Nauka, 1981, vol. 1: Development of welding technology and the science of welding. Technological processes, welding materials and equipment, 624 p.
30. Micro-Plasma-Lichtbogensсhweissverfahren für die Verbindung sehr dünner Bleche. Schweisstechnik/Soudure, 1965, no. 12, pp. 455–458.
31. Sharma A., Chaturvedi R., Saraswat M., Kalra R. Weld reliability characteristics of AISI 304L steels welded with MPAW (Micro Plasma Arc Welding). Materials Today: Proceedings, 2022, no. 60, pp. 1966–1972.
32. Szustaa J., Tüzünb N., Karakaş Ö. Monotonic mechanical properties of titanium grade 5 (6Al–4V) welds made by microplasma. Theoretical and Applied Fracture Mechanics, 2019, no. 100, pp. 27–38.
33. Baruah M., Prasad S.B., Tudu N. et al. Experimental investigation of Inconel welded joints formed by pulsed micro plasma welding. Materials Today: Proceedings, 2020, no. 33, pp. 5751–5756.
34. Golanski D., Chmielewski T., Skowronska B., Rochalski D. Advanced Applications of Microplasma Welding. Biuletyn Instytutu Spawalnictwa, 2018, no. 5, pp. 53–63.
35. Mikhailov B.I. Steam-water plasma is the most optimal environment for many plasma technologies. Vestnik VSGUTU, 2013, no. 6 (45), pp. 77–82.
36. Steam-water plasma torch: pat. 2263564C1 Rus. Federation; filed 22.03.04; publ. 10.11.05.
37. Steam-water plasma torch: pat. 2268558C2 Rus. Federation; filed 02.02.04; publ. 20.01.06.
38. Sosnin N.A., Ermakov S.A., Topolyanksky P.A. Plasma technologies. Guide for engineers. St. Petersburg: Polytech. Univ., 2013, 406 p.
39. Shchitsyn Yu.D., Gilev I.A., Belinin D.S., Neulybin S.D., Bazhenov A.M. Plasma welding of aluminum alloys during the operation of a two-arc plasma torch on a current of reverse polarity. Vestnik PNIPU. Mashinostroyenie, materialovedenie, 2015, vol. 17, no. 3, pp. 61–70.
40. Ovchinnikov V.V., Rastopchin R.N. Plasma welding of high-strength aluminum alloys. Naukoyemkiye tekhnologii v mashinostroyenii, 2020, no. 7 (109). pp. 3–11.
41. Prasad K.S., Rao C.S., Rao D.N. Advances in Plasma Arc Welding: a review. Journal of Mechanical Engineering and Technology, 2012, vol. 4, no. 1, pp. 35–59.
42. Krivtsun I.V., Bushma A.I., Khaskin V.Yu. Hybrid laser-plasma welding of stainless steels. Avtomaticheskaya svarka, 2013, no. 3 (719), pp. 48–52.
43. Shelyagin V.D., Orishich A.M., Khaskin V.Yu. Technological features of laser, microplasma and hybrid laser-microplasma welding of aluminum alloys. Avtomaticheskaya svarka, 2014, no. 5, pp. 35–41.
44. Hipp D., Mahrle A., Beyer E. et al. Thermal Efficiency Analysis for Laser-Assisted Plasma ArcWelding of AISI 304 Stainless Steel. Materials, 2019, no. 12, pp. 1–14.
45. Bushma A.I. Modern state of hybrid laser-plasma welding (review). Avtomaticheskaya svarka, 2015, no. 8 (744), pp. 20–27.
46. Korzhik V.N., Khaskin V.Yu., Grinyuk A.A. et al. Investigation of the technological features of hybrid plasma-arc welding of aluminum alloys. Sciences of Europe, 2016, no. 6-2 (6), pp. 45–51.
47. Korzhik V.N., Khaskin V.Yu., Grinyuk A.A. et al. Features of the formation of welds in hybrid plasma-arc welding of aluminum alloys. American Scientific Journal, 2016, no. 5, pp. 36–43.
48. Korzhik V.N., Khaskin V.Yu., Grinyuk A.A. et al. Study of pore formation in hybrid plasma-arc welding of aluminum alloys. Vostochno-Evropeyskiy nauchnyy zhurnal, 2016, vol. 12, no. 16, pp. 104–110.
49. Babich A.A., Korzhik V.N., Khaskin V.Yu. et al. Investigation of the stress-strain state of symmetrical butt welded joints in automatic hybrid welding PLASMA-MIG. Colloquium-journal, 2020, no. 17-2 (69), pp. 33–40.
50. Grinyuk A.A., Korzhik V.N., Shevchenko V.E. et al. Main trends in the development of plasma-arc welding of aluminum alloys. Avtomaticheskaya svarka, 2015, no. 11, pp. 39–50.
51. Welding in mechanical engineering: a reference book in 4 vols. Moscow: Mashinostroenie, 1978, vol. 1, 504 p.
52. Koroteev A.S., Mironov V.M., Svirchuk Yu.S. Plasmatrons: designs, characteristics, calculation. Moscow: Mashinostroenie, 1993, 296 p.
53. Kolganov L.A. Welding production: textbook. Rostov-on-Don: Phoenix, 2002, 512 p.
The review is devoted to rubbers used in the production of sealing materials (sealants). According to literary sources and experimental works, the dependences of the properties of sealing materials on the structure of rubbers are analyzed, general requirements for sealants used in critical products are identified. The assessment of rubbers used in sealing materials for aviation purposes and their main technical characteristics is given. The prospects of using combined polymers (rubbers) in the production of sealants for critical products have been revealed.
2. Zaikin A.E., Sofina S.Yu., Stoyanov O.V. Polymer tapes with an adhesive layer for anticorrosive insulation of pipelines. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2010, no. 6, pp. 98–112.
3. Performed adhesive compositions: pat. 617614 US, no. 4581092; filed 05.06.84; publ. 08.04.86.
4. Minibaeva L.A., Murtazina L.I., Galimzyanova R.Yu., Khakimullin Yu.N. Influence of the nature and content of calcium carbonate on the deformation-strength properties of non-cured sealants based on nitrile rubber. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, no. 9, pp. 105–107.
5. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
6. Shitov R.O., Kitaeva N.S., Shiryakina Yu.M., Kurshev E.V. Research of influence of modifiers of varied nature on the thermo-oxidative stability of a model silicone binder. Trudy VIAM, 2020, no. 6–7 (89), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 08, 2022). DOI: 10.18577/2307-6046-2020-0-67-19-28.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry: abstracts. reports. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
9. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, pp. 346–348.
10. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
11. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
12. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
13. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
14. Kurshev E.V., Lonskii S.L., Mekalina I.V. Influence of long climatic aging on microstructure of surface of organic glass in semi-arid and subtropical climate. Trudy VIAM, 2018, no. 3 (109), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 08, 2022). DOI: 10.18577/2307-6046-2022-0-3-15-26.
15. Silaeva A.A., Kuznetsova V.A., Zheleznyak V.G., Kurshev E.V. Research of adhesion and adhesive durability of functional paint coatings for protection of polimer composite surface. Trudy VIAM, 2021, no. 9 (103), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 08, 2022). DOI: 10.18577/2307-6046-2021-0-9-59-66.
16. A large guide rubberman: in 2 parts. Eds. S.V. Reznichenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 2: Rubbers and rubber products, 648 p.
17. Lisanevich M.S., Galimzyanova R.Yu., Rusakova S.N. Curing type hot melt sealants based on butyl rubber and ethylene-vinyl acetate copolymer. Klei. Germetiki. Tekhnologii, 2018, no. 4, pp. 9–12.
18. Rusanova S.N. Modification of ethylene copolymers with polar comonomers by saturated alkoxysilanes: thesis, Dr. Sc. (Chem.). Kazan, 2017, 219 p.
19. Ignatov A.V. Modern achievements in the field of adhesives and sealants. Klei. Germetiki. Tekhnologii, 2015, no. 11, pp. 35–39.
20. Griadunova Yu.E., Nikulin S.S., Belykh A.G., Posanchukov D.P. Increasing the performance of sealing compositions by electric fields. Klei. Germetiki. Tekhnologii, 2018, no. 4, pp. 35–39.
21. Kardashov D.A. Adhesives and sealants. Moscow: Chemistry, 1978, 200 p.
22. Eremenko V.N. Physical chemistry of condensed phases, superhard materials and their interfaces. Kyiv: Naukova dumka, 1975, 231 p.
23. Imamutdinov I.V., Galimzyanova R.Yu., Khakimullin Yu.N. Sealants based on elastomers. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, no. 6, pp. 69–74.
24. Agayants I.M. Five centuries of rubber and rubber. Moscow: Modern-A, 2002, 432 p.
25. Garmonov I.V. Synthetic rubber. Leningrad: Chemistry, 1976, 752 p.
26. Bryk Ya.A., Smirnov D.N. Research of frost resistance of aeronautical sealants. Trudy VIAM, 2018, no. 1 (61), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 8, 2022). DOI: 10.18577/2307-6046-2018-0-1-9-9.
27. A large guide rubberman: in 2 parts. Eds. S.V. Reznichenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 1: Rubbers and ingredients, 744 p.
28. Irzhak V.I. Topological structure of polymers. Kazan: Publishing House of KNRTU, 2013, 520 p.
29. Irzhak V.I. Polymer architecture. Moscow: Nauka, 2012, 367 p.
30. Kuleznev V.N., Shershnev V.A. Chemistry and physics of polymers. St. Petersburg: Lan, 2014, 368 p.
31. Todmor Z., Gogos K. Theoretical foundations of polymer processing. Moscow: Chemistry, 1984, 632 p.
32. Perfil'eva S.A., Shashok Zh.S., Uss E.P. and other Confectionary stickiness of filled rubber mixtures with petroleum resins. Klei. Germetiki. Tekhnologii, 2020, no. 3, pp. 21–26. DOI: 10.31044/1813-7008-2020-0-3-21-26.
33. Voyutsky S.S. Autohesion and adhesion of polymers. Moscow: Rostekhizdat, 1960, 244 p.
34. Vasenin R.M. Adhesion of polymers. Moscow: Publishing House of the Academy of Sciences of the USSR, 1963, pp. 17–22.
35. Chalykh A.E. Diffusion in polymer systems. Moscow: Chemistry, 1987, 311 p.
36. Stroilov S.V., Lyusova L.R., Glagolev V.A. Adhesive compositions with permanent tack based on nitrile rubber. Vestnik MITHT, 2009, vol. 4, no. 2, pp. 24–27.
37. Bryk Ya.A., Eliseev O.A., Smirnov D.N. Corrosion protection of magnesium alloys polysulphide sealants. Trudy VIAM, 2017, no. 10 (58), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 08, 2020). DOI: 10.18577/2307-6046-2017-0-10-10-10.
38. Zakharov V.P., Ganiev G.M., Tereshchenko K.A., Utilin N.V. Perspective technological solutions for the production of low molecular weight butyl rubber used as the basis of sealants. Klei. Germetiki. Tekhnologii, 2016, no. 12, pp. 11–15.
39. Technology of rubber: compounding and testing. Ed. J.S. Dick. St. Petersburg: Nauchnye osnovy i tekhnologii, 2010, 620 p.
40. Vagin S.Yu., Vasin V.P., Zdorikova G.A., Rudakova T.A. Flame-retardant vibration damping material. Pozharovzryvobezopasnost, 2010, vol. 19, no. 10, pp. 13–17.
41. Slobodkina K.N., Rudakov A.A., Makarov T.V., Wolfson S.I. Oil and petrol resistant sealing compositions based on nitrile rubber and thiokol. Klei. Germetiki. Tekhnologii, 2015, no. 5, pp. 12–14.
42. Kornev A.E., Bukanov A.M., Sheverdyaev O.N. Technology of elastomeric materials: a textbook for universities. Moscow: NPPA "Istek", 2009, 504 p.
43. Murtazina L.I., Gariffulin A.R., Nikultsev I.A. et al. Effect of calcium carbonate on the properties of non-curing sealants based on ethylene propylene diene rubber and thermoplastics. Klei. Germetiki. Tekhnologii, 2015, no. 1, pp. 21–26.
44. Murtazina L.I., Garifullin A.R., Nikultsev I.A. et al. Non-curing sealants of high filling based on ethylene propylene diene rubber. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, no. 24, pp. 71–73.
45. Ososhnik I.A., Shutilin Yu.F., Karmanova O.V. Manufacture of rubber technical products. Voronezh: Voronezh State Technol. Acad., 2007, 972 p.
46. Fedyukin D.P., Makhles F.A. Technical and technological properties of rubbers. Moscow: Chemistry, 1985, 240 p.
47. Tager A.A. Physico-chemistry of polymers. Moscow: Scientific world, 2007, 576 p.
48. Meyer K.H. Propriétés de polymères en solution XVI. Interprétation statistique des propriétés thermodynamiques de systèmes binaires liquides. Helvetica Chimica Acta, 1940, vol. 23, no. 1, pp. 1063–1070. DOI: 10.1002/hlca.194002301130.
49. Baramboim N.K. Mechanochemistry of macromolecular compounds. Moscow: Chemistry, 1971, 364 p.
50. Shvarts A.G., Ginzburg B.N. Combination of rubbers with plastics and synthetic resins. Moscow: Chemistry, 1972, 224 p.
51. Bogdanov V.V., Torner R.V., Krasovsky V.N., Reger E.O. Mixing polymers. Leningrad: Chemistry, 1979, 192 p.
52. Gelfman M.I., Kovalevich O.V., Yustratov V.P. Colloidal chemistry. St. Petersburg: Lan, 2010, 336 p.
53. Bohn K. Die Einfriertemperatur des Polyäthylens. Kolloid-Zeitschrift und Zeitschrift für Polymere, 1964, no. 1, pp. 10–15.
54. Berlin A.A., Wolfson S.A., Oshmyan V.G., Enikolopov N.S. Principles of creation of composite polymeric materials. Moscow: Chemistry, 1990, 240 p.
55. Perry E. Block polymers of styrene and acrylonitrile. Journal of Applied Polymer Science, 1964, vol. 8, no. 6, pp. 2605–2618. DOI: 10.1002/APP.1964.070080609.
56. Slonimsky G.L., Reztsova E.V. On the mutual solubility of polymers. V. Mechano-chemical combination. Vysokomolekulyarnye soedineniya, 1959, vol. 1, no. 4, pp. 534–538.
57. Novitskaya S.P., Nudelman Z.N., Dontsov A.A. Fluoroelastomers. Moscow: Chemistry, 1988, 240 p.
58. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
59. Khorova E.A., Myshlyavtsev A.V., Strizhak E.A., Tretyakova N.A. Examination of hydrogenated butadiene-nitrile rubbers by methods of differential scanning calorimetry and dynamic mechanical analysis. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 11–16. DOI: 10.18577/2071-9140-2019-0-1-11-16.
60. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
61. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
Currently, one of the global trends in the development of aircraft engines is the replacement of metal alloys with composite materials, which makes it possible to achieve a significant reduction in the weight of products and improve their performance. The use of modern methods of modeling the process of impregnation of carbon filler allows to reduce the development time of both the material itself and the product based on it. It is necessary to apply a multilevel approach when developing materials of a new generation – material modeling at nano-, micro-, meso- and macrolevels, behavior of elementary samples, structural elements and products.
2. Development of a family of propellers with light high-life blades made of polymer composite materials for new generation turboprop aircraft: a report on the work of PJSC NPP Aerosila. 2018. Available at: http://aviationunion.ru (accessed: June 20, 2022).
3. Calvert T. Braided Fabrics for Aircraft Interiors Use Carbon Reinforced PPS Tapes. 2009. Available at: https://www.reinforcedplastics.com/content/other/braided-fabrics-for-aircraft-interiors-use-carbon-reinforced-pps-tapes (accessed: May 28, 2022).
4. A&P Technology, Bombardier Wing Flap. 2014. Available at: http://www.braider.com/Case-Studies/Bombardier-Wing-Flap.aspx (accessed: June 24, 2022).
5. Donetskiy K.I., Bystrikova D.V., Karavaev R.Yu., Timoshkov P.N. Application of polymeric composite materials for creation of elements of transmissions of aviation engineering (review). Trudy VIAM, 2020, no. 3 (87), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 19, 2020). DOI: 10.18577/2307-6046-2020-0-3-82-93.
6. Ivey M., Carey J.P., Ayranci C. Manufacturing and characterization of braidtruded fiber reinforced polymer rebar. Polymer Compositе, 2018, vol. 39, pp. 337–350.
7. Hajihosseini A., Ayranci C., Carey J.P.R. Simulation of the rapid curing process for braid reinforced frp rebar in braidtrusion process using a finite element analysis. Internatioanal SAMPE Technical Conference. Seattle; Washington, 2014, pp. 2–5.
8. Del Rosso S., Iannucci L., Curtis P. Experimental Investigation of the Mechanical Properties of Dry Microbraids and Microbraid Reinforced Polymer Composites. Composite Structure, 2015, vol. 44, pp. 505–519.
9. Gnädinger F., Karcher M., Henning F. Holistic and Consistent Design Process for Hollow Structures Based on Braided Textiles and RTM. Applied Composite Materials, 2013, vol. 21, pp. 1–16.
10. Sun Y., Yang Y.H., He J.L. Study on Manufacture Technology and Mechanical Properties of Three Dimensional Braided Composite Support with Irregular Shape. Advanced Material Research, 2011, vol. 194–196, pp. 1417–1420.
11. Branscomb D., Beale D., Broughton R.M. New Directions in Braiding. Journal of Engineered Fibers and Fabric, 2013, vol. 8, pp. 11–24.
12. Okano M., Sugimoto K., Nakai A., Hamada H. Bending Properties of Braided Composite Tubes. Australasian Conference on Composite Materials (ACCM 4), 2014, pp. 218–222.
13. Pototsky M.V., Nebelov E.V., Tkachenko D.P., Kirpichnikov A.P. An approach to the study of propeller blades of a turboprop engine damaged by foreign objects. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 17, no. 12, pp. 167–169.
14. Melenka G.W., Pastore C.M., Kj F.K. et al. Advances in 2-D and 3-D braided composite material modeling. Edmonton, 2016, pp. 321–363.
15. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
16. Donetskiy K.I., Karavayev R.Yu., Raskutin A.Ye., Dun V.A. Carbon fibers composite material on the basis of volume reinforcing triax braiding preformes. Trudy VIAM, 2019, no. 1 (73), paper no. 07. Available at: http://viam-works.ru (accessed: May 19, 202022). DOI: 10.18577/2307-6046-2019-0-1-55-63.
17. Melenka G.W., Carey J.P., Hut A., Cheung B. Advanced testing of braided composite materials. Edmonton, 2016, pp. 155–204.
18. Composite propeller blade (options) and method for its manufacture (options): pat. 2013109705 Rus. Federation; filed 04.03.13; publ. 20.05.14.
19. Aircraft propeller blade: pat 2012131274 Rus. Federation; filed 20.12.10; publ. 20.11.14.
20. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
21. Advancements in Braided Materials Technology. 2015. Available at: http://www.braider.com/Resources/Papers-Articles/Automated-Manufacturing.aspx (accessed: May 19, 2022).
22. Samipour S.A., Khaliulin V.I., Batrakov V.V. Development of the Technology of Manufacturing Aerospace Composite Tubular Elements by Radial Braiding. Journal of Machinery Manufacture and Reliability, 2018, vol. 47, no. 3, pp. 284–289.
23. Ivey M., Carey J.P., Ayranci C. Ply mechanics for braided composite materials. Edmonton, 2017, pp. 259–306.
24. Xu L., Kim S.J., Ong Ch.-H. Prediction of material properties of biaxial and triaxial braided textile composites. Journal of Composite Materials, 2012, vol. 46, pp. 2255–2270.
25. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials: textbook. Ed. E.N. Kablov. Moscow: NRC "Kurchatov Institute" – VIAM, 2021, 528 p.
26. Donetskiy K.I., Usacheva M.N., Khrulkov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM, 2022, no. 6 (112). paper no. 06. Available at: http://www.viam-works.ru (accessed: May 19, 2022). DOI: 10118577/2307-6046-2022-0-6-58-67.
27. Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of the structure and reinforcement transmission shafts made of polymer composite materials (review). Trudy VIAM, 2021, no. 1 (95), paper no. 9. Available at: http://www.viam-works.ru (accessed: May 19, 2022). DOI: 10.18577/2307-6046-2021-0-1-85-96.
The coercive force of sintered Pr–Dy–Fe–Co–B magnets plays a decisive role for the quality and accuracy of gyroscopes and other navigation devices. The residual magnetization also plays an important role in determining the sensitivity threshold and the accuracy of the such systems. The chemical design of magnets, i. e. the selection of chemical composition, does not fully realize the best characteristics. Therefore, some success can be achieved by applying heat treatment. The article shows that the selection of the heat treatment mode of sintered magnets allows to improve their characteristics to technically acceptable values, which greatly simplifies the manufacturing technology of such magnets.
2. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: July 15, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
3. Korolev D.V., Stolyankov Yu.V., Piskorsky V.P., Valeev R.A., Bahmetiev M.V., Dvorezkaya E.V., Koplak O.V., Morgunov R.B. Magnetic properties and magnetic strip domains in micro stripes PrDyFeCoB. Aviation materials and technologies, 2021, no. 3 (64), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 15, 2022). DOI: 10.18577/2713-0193-2021-0-3-86-93.
4. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
5. Mezentsev G.M. Analysis of a two-mass model of linear motion of a dynamically tuned gyroscope. Miass: South Ural State Univ., 2019, 94 p.
6. Vasilevsky N.I. Development of a dynamically tuned gyroscope taking into account its vibrational characteristics. Miass: South Ural State Univ., 2018, 77 p.
7. Chirkin D.S., Roslovets P.V., Tatarinov F.V., Novikov L.Z. Reducing the drift of a dynamically tuned gyroscope from run to run. Inzhenernyi zhurna: nauka i innovatsii, 2017, no. 1, pp. 1–14. DOI: 10.18698/2308-6033-2017-01-1579.
8. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental evaluation of allowable mechanical impacts on a dynamically adjustable gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.:Instrumentation, 2018, no. 4, pp. 69–79.
9. Golovanov V.A. Gyroscopic orientation. St. Petersburg, 2004, 92 p.
10. Kablov E.N., Ospennikova O.G., Piskorskij V.P. et al. Ring magnets with radial texture for dynamically tuned gyroscopes. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 89–94. DOI: 10.18577/2071-9140-2014-0-S5-89-94.
11. Fuerst C.D., Herbst J.F., Alson E.A. Magnetic properties of Nd2(CoxFe1–x)14B. Journal of Magnetism and Magnetic Materials, 1986, vol. 54–56, pp. 567–569.
12. Sinnema D.B., Radwanski R.J., Franse J.J.M. et al. Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. Journal of Magnetism and Magnetic Materials, 1984, vol. 44, nо. 3. P. 333–341.
13. Pedziwiatr A.T., Wallace W.E. Structure and magnetism of the R2Fe14–xCoxB (R = Dy and Er). Journal of Magnetism and Magnetic Materials, 1987, vol. 66, nо. 3, pp. 63–68.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Knyazev A.V., Suleimanov E.V. Fundamentals of X-ray phase analysis. N. Novgorod, 2005, 23 p.
16. Boyarkina O.V., Zotov M.I., Kyashkin V.M. et al. Physical methods for studying solids: electron microscopy and X-ray diffraction analysis. Saransk: Mordovia Univ., 2012, 96 p.
17. Grossinger R., Krewenka R., Kirchmayr H.R. et al. Magnetic anisotropy in Pr2(Fe1–xCox)14 B compounds. Journal of the Less-Common Metals, 1987, vol. 132, pp. 265–272.
18. Abache C., Oesterreicher H. Magnetic properties of compounds R2Fe14B. Journal Applied Physics, 1985, vol. 57, pp. 4112–4114.
19. Pedziwiatr A.T., Wallace W.E. Structure and magnetism of the R2Fe14–xCoxB ferromagnetic systems (R = Dy and Er). Journal of Magnetism and Magnetic Materials, 1987, vol. 66, pp. 63–68.
20. Pedziwiatr A.T., Chen H.Y., Wallace W.E. Magnetism of the Tb2Fe14–xCoxB system. Journal of Magnetism and Magnetic Materials, 1987, vol. 67, pp. 311–315.
21. Abache C., Oesterreicher H.J. Magnetic anisotropies and spin reorientations of R2Fe14B-type compounds. Journal Applied Physics, 1986, vol. 60, pp. 3671–3679.
22. Zhi-dong Z., Sun X.K., Zhen-Chen Z. et al. Effects of partial Co substitution on structural and magnetic properties of (Pr, Gd)2Fe14B compounds. Journal of Magnetism and Magnetic Materials, 1991, vol. 96, pp. 215–218.
23. Perigo E.A., Takiishi H., Motta C.C., Faria R.N. On the squareness factor behavior of RE–Fe–B (RE = Nd or Pr). IEEE Transactions on Magnetics, 2009, vol. 45, nо. 10, pp. 4431–4434.
24. Faria R.N., Takiishi H., Lima L.F.C.P., Costa I. Praseodymium-based HD-sintered magnets produced using a mixture of cast alloys. Journal of Magnetism and Magnetic Materials, 2001, vol. 237, pp. 261–266.
25. Musalimov V.M., Rotts Yu.A., Astafiev S.A., Amvrosyeva A.V. Calculation of reliability of elastic elements of micromechanical gyroscopes. St. Petersburg: St. Petersburg State Univ. of information, technologies, mechanics and optics, 2009, 128 p.
26. Dynamically adjustable gyroscope: pat. 2687169 Rus. Federation; filed 17.04.18; publ. 07.05.19.
27. Galler A., Ener S., Maccari F. et al. Intrinsically weak magnetic anisotropy of cerium in potential hard-magnetic intermetallics. Quantum Materials, 2021, vol. 6, p. 2. DOI: 10.1038/s41535-020-00301-6.
The analysis of information sources in area of thermoplastic composite materials on the basis of polyetheretherketone (PEEK) for aerospace application is carried out. Requirements are formulated and the main results on development of prepreg and thermoplastic carbon plastic the VKU-65 brands on the basis of domestic woven carbon filler and PEEK binding are provided. Processes of manufacturing of prepreg and thermoplastic carbon plastic are described, research of their main properties is conducted. The refining technology of thermoplastic carbon plastic is developed by thermoforming method.
2. Komarov G.A. The state, prospects and problems of the use of PKM in technology. Polimernye materialy, 2009, no. 2, pp. 5–9.
3. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology. St. Petersburg: Professiya, 2011, pp. 32–33.
4. Petrova G.N., Bader E.Ya. Structural materials based on reinforced thermoplasts. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 30–40.
5. Kraev I.D., Shuldeshov E.M., Platonov M.M., Yurkov G.Yu. Composite materials combining acoustic and radio shielding properties. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 60–67. DOI: 10.18577/2071-9140-2016-0-4-60-67.
6. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Constructional carbon the plastics modified by nanoparticles. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 277–286.
7. Golovkin G.S. The regulation of the mechanical properties of PCM by the methods of targeted formation of the interference zone. Polimernye materialy, 2009, no. 11, pp. 26–28.
8. Gunyaeva A.G., Veshkin E.A., Antyufeeva N.V., Panafidnikova A.N., Efimik V.A. Research of influence of the condensation moisture on carbon fiber plastic prepreg on the basis of solution epoxy binder and PСM on its basis. Trudy VIAM, 2019, no. 9 (81), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 20, 2022). DOI: 10.18577/2307-6046-2019-0-9-80-88.
9. Kirin B.S., Kuznetsova K.R., Petrova G.N., Sorokin A.E. Comparative analysis of properties of polyetheretherketones of domestic and foreign production. Trudy VIAM, 2018, no. 5 (65), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 20, 2022). DOI: 10.18577/2307-6046-2018-0-5-34-43.
10. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
11. Petrova G.N., Larionov S.A., Sorokin A.E., Sapego Yu.A. Modern ways of processing of thermoplastics. Trudy VIAM, 2017, no. 11 (59), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 20, 2022). DOI: 10.18577/2307-6046-2017-0-11-7-7.
12. Timoshkov P.N., Usacheva M.N., Khrulkov A.V. Stickiness and possibility of using prepregs for automated technologies (review). Trudy VIAM, 2018, no. 8 (68), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 20, 2022). DOI: 10.18577/2307-6046-2018-0-8-38-46.
13. Mikhailin Yu.A. Thermal-resistant polymers and polymer materials based on them. St. Petersburg: Professiya, 2006, 346 p.
14. Kablov E.N. Trends and guidelines of innovative development of Russia: collection scientific-inform. materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
15. Kablov E.N. What to make the future from? The materials of the new generation, the technology of their creation and processing are the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
16. Nikolaev A.F. Heat-resistant polymers. Leningrad: Lensovet LTI, 1988, pp. 3–11.
17. Golovkin G.S. Technological properties of thermoplastic binders for reinforced plastics. Plasticheskie massy, 2005, no. 1, pp. 35–40.
18. Mazhirin P.Yu. Polyphenylene sulfide in aircraft industry. Polimernye materialy, 2003, no. 2, pp. 22–24.
19. Li J. Effect of Silane Couning Agent on the Tensile Properties of Carbon Fiber-Reinforced Thermoplastic Polyimide. Composites. A: Polymer-Plastics Technology and Engineering, 2010, vol. 49, pp. 337–340.
20. Trostyanskaya E.B., Stepanova M.I., Rosokhin G.I. Heat-resistant linear polymers. Rostov-on-Don: RGASKhM, 2002, pp. 3–22.
21. Kablov E.N. Russia needs new generation materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
22. Buznik V.M., Kablov E.N. Arctic Materials Science: Current State and Prospects. Herald of the Russian Academy of Sciences, 2017, vol. 87, no. 5, pp. 397–408.
23. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problems of creating composite materials based on structural thermoplasts. Uspekhi v khimii i khimicheskoy tekhnologii, 2010, vol. 24, no. 4, pp. 58–63.
24. Kablov E.N. Airospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
25. Jones Fr. A Review of Interphase Formation and Design in Fibre-Reinforced Composites. Journal of Adhesion Science and Technology, 2010, vol. 24, no. 1, pp. 171–202.
26. Drzal Lt., Raghavedran Vk. Adhesion of Thermoplastic Matrices to Carbon Fibers: Effect of Polymer Molecular Weight and Fiber Surface Chemistry. Journal of Thermoplastic Composite Materials, 2003, vol. 16, pp. 21–30.
27. Thostenson E.T., Chou T.-W. Aligned Multi-Walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization. Journal of Physics. D: Applied Physics, 2002, vol. 35, pp. L77–L80.
28. Chuang L., Chu N.-J. Effect of Polyamic Acids on Interface SHEAR Strength In Carbon Fiber/Aromatic Thermopoplastics. Journal of Applied Polymer Science, 1990, vol. 41, pp. 373–382.
29. Datasheet Setex-1200. Available at: www.toraytac.com (accessed: May 05, 2022).
30. Datasheet Tenax®-E TPCL Peek-HTA40. Available at: www.teijincarbon.com (accessed: May 05, 2022).
31. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 20, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
32. Kirin B.S., Sorokin A.E., Boychuk A.S. Carbon fiber reinforced thermoplastic on the basis of polyetheretherketones. Trudy VIAM, 2020, no. 4–5 (88), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 05, 2022). DOI: 10.18577/2307-6046-2020-0-45-22-31.
33. A Kind of Method of Carbon Fiber Surface Modification: pat. CN108642882A, no. CN201810435940; filed 09.05.18; publ. 12.10.18.
34. The method of manufacturing carbon fiber based on woven carbon filler and thermoplastic binding: pat. 2765042 Rus. Federation, no. 2020135999; filed 02.11.20; publ. 25.01.22.
A scientific and technical literature review in the field of welding of aluminum alloys reinforced with refractory particles of silicon carbide is presented. Structural changes after laser welding, the causes of various kinds of defects and ways to improve the weldability of the material are described. The results of testing the mechanical properties of welded joints are presented.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
5. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
6. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialyi tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
8. Lukin V.I., Kovalchuk V.G., Ioda E.N. Fusion welding is a core of welding manufacturing. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 130–143. DOI: 10.18577/2071-9140-2017-0-S-130-143.
9. Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Methods for joining of aluminum composite materials (review). Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 35–42. DOI: 10.18577/2071-9140-2017-0-3-35-42.
10. Ellis M.B.D. Joining of Aluminium Based Metal Matrix Composites. International Materials Reviews, 1996, vol. 41, pp. 41–58. DOI: 10.1179/imr.1996.41.2.41.
11. Parikh V.K., Badgujar A.D., Ghetiya N.D. Joining of Metal Matrix Composites Using Friction Stir Welding: A Review. Material Manufacturing Process, 2019, vol. 34, pp. 123–146. DOI: 10.1080/10426914.2018.1532094.
12. Salih O.S., Ou H., Wei X., Sun W. Microstructure and Mechanical Properties of Friction Stir Welded AA6092/SiC Metal Matrix Composite. Material Science and Engineering: A, 2019, vol. 742, pp. 78–88. DOI: 10.1016/j.msea.2018.10.116.
13. Kumar N., Das A., Prasad S.B. An Analysis of Friction Stir Welding (FSW) of Metal Matrix Composites (MMCs). Materials Today: Proceedings, 2020, vol. 26, pp. 2650–2656. DOI: 10.1016/j.matpr.2020.02.558.
14. Chao M., Cui H., Lu F., Tang X. Evolution Behavior of TiB2 Particles during Laser Welding on Aluminum Metal Matrix Composites Reinforced with Particles. Transactions of Nonferrous Metals Society of China, 2013, vol. 23, pp. 1543–1548. DOI: 10.1016/S1003-6326(13)62628-X.
15. Banerjee A.J., Biswal M.K., Lohar A.K. et al. Review on experimental study of Nd:YAG laser beam welding, with a focus on aluminium metal matrix composites. International Journal of Engineering and Technology, 2016, vol. 5, pp. 92–101. DOI: 10.14419/ijet.v5i3.5984.
16. Dubey A.K., Yadava V. Experimental study of Nd:YAG laser beam machining-An overview. Journal of Materials Processing Technology, 2008, vol. 195, pp. 15–26. DOI: 10.1016/j.jmatprotec.2007.05.041.
17. Jun D., Zheng L., Li Y. et al. Re-search on pulsed laser welding of TiB2-enhanced aluminum matrix composites. The International Journal of Advanced Manufacturing Technology, 2016, vol. 85, pp. 157–162. DOI: 10.1007/S00170-015-7887-3.
18. Norikazu T., Shigenori Y., Masao H. Present and future of lasers for fine cutting of metal plate. Journal of Materials Processing Technology, 1996, vol. 62, pp. 309–314. DOI: 10.1016/S0924-0136(96)02426-0.
19. Liu L., Zhu M., Xu D., Wang T. Study of the interfacial reaction of SiC–Al in 6061Al reinforced with SiC whisker at laser beam. Composite Interfaces, 2002, vol. 9, no. 2, pp. 135–142. DOI: 10.1163/156855402760116067.
20. Huang R.Y., Huang J.C., Chen S.C. Electron and Laser Beam Welding of High Strain Rate Superplastic Al-6061/SiC Composites. Metallurgical and Materials Transactions: A, 2001, vol. 32, pp. 2575–2584. DOI: 10.1007/s11661-001-0047-4.
21. Wang H.M., Chen Y.L., Yu L.G. «In-situ» weld-alloying/laser beam welding of SiCp:6061Al MMC. Materials Science and Engineering: A, 2000, vol. 293, pp. 1–6.
22. Li H., Cao H., Zhu Q. et al. Influence of Welding Process on Microstructure and Properties of Laser Welding of SiCp/6061 Al Matrix Composite. Frontiers in Material, 2021, vol. 8, pp. 1–11. DOI: 10.3389/fmats.2021.779324.
23. Chen Y.B., Zhang D.K., Niu J.T., Ji G.J. In-Situ Reinforcing Effect of Ti on Aluminum Matrix Composite during Laser Beam Welding. Applied Laser, 2002, vol. 22, pp. 320–322. DOI: 10.3969/j.issn.1000-372X.2002.03.015.
The mechanical properties of polymer composite materials (PCM) based on knitted fillers with a modified structure are considered. The specific features of the structure of fillers and the nature of their influence on the mechanical properties of the filler and PCM are described. Particular attention is paid to knitwear with additional non-knitted carbon fibers and the properties of PCM based on it. For such materials, the tensile strength is in the range from 767 to 1157 MPa, which is comparable to the values of this characteristic of carbon fiber reinforced plastics based on unidirectional fillers.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
5. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
6. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
7. Cuong N.K., Yamane H., Maekawa Z. Mechanical properties of knitted fabric reinforced polypropylene composites. Advanced Composite Materials, 2000, vol. 9, pp. 25–35. DOI: 10.1163/156855100300132947.
8. Qi Y., Li J., Liu L. Tensile properties of multilayer-connected biaxial weft knitted fabric reinforced composites for carbon fibers. Materials & Design (1980–2015), 2014, vol. 54, pp. 678–685. DOI: 10.1016/j.matdes.2013.08.051.
9. Li D.-S., Xia Y., Zhou Q. et al. Experimental study on the mechanical behavior and failure mechanism of 3d MWK carbon/epoxy composites under quasi-static loading. Polymer Composites, 2016, vol. 37, is. 12, pp. 3486–3498. DOI: 10.1002/pc.23548.
10. Li D.-S., Zhao C., Jiang L., Jiang N. Experimental study on the bending properties and failure mechanism of 3D integrated woven spacer composites at room and cryogenic temperature. Composite Structures, 2014, vol. 111, pp. 56–65. DOI: 10.1016/j.compstruct.2013.12.026.
11. Jiang D., Hu X., Lin Zh. et al. Mechanical properties and crystallization behaviors of oriented electrospun nanofibers of zein/poly(ε-caprolactone) composites. Polymer Composites, 2018, vol. 39, pp. 2151–2159. DOI: 10.1002/pc.24180.
12. Leong K.H., Ramakrishna S., Huang Z.M., Bibo G.A. The potential of knitting for engineering composites – a review. Composites. Part A: Applied Science and Manufacturing, 2000, vol. 31, is. 3, pp. 197–220. DOI: 10.1016/S1359-835X(99)00067-6.
13. Kim K.-Y., Curiskis J. I., Ye L., Fu Sh.-Y. Mode-I interlaminar fracture behaviour of weft-knitted fabric reinforced composites. Composites. Part A: Applied Science and Manufacturing, 2005, vol. 36, is. 7, pp. 954–964. DOI: 10.1016/j.compositesa.2004.12.004.
14. Hasanalizadeh F., Dabiryan H., Sadighi M. Low-velocity impact behavior of weft-knitted spaсer fabrics reinforced composites based on energy absorption. 17th World Textile Conference (AUTEX 2018). IOP Conf. Series: Materials science and Engineering, 2017, vol. 254, art. 042014. DOI: 10.1088/1757-899X/254/4/042014.
15. Ponomarenko L.A. About ways of structure modification of a knitted fillers for polymeric composite materials (review). Trudy VIAM, 2018, no. 3 (109), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 02, 2022). DOI: 10.18577/2307-6046-2022-0-3-54-63.
16. Dalidovich A.S. Fundamentals of the theory of knitting. Moscow: Light industry, 1970, 432 p.
17. Truevtsev A.V., Tsobkallo E.S., Moskalyuk O.A. Quasi-continuous reinforcement of the composite with knitwear. Tekhnologiya legkoy promyshlennosti, 2016, no. 1, pp. 64–67.
18. Balea L., Dusserre G., Bernhart G. Mechanical behaviour of plain-knit reinforced injected composites: effect of inlay yarns and fiber type. Composites. Part: B, 2014, no. 56, pp. 20–29. DOI: 10.1016/j/compositesb.2013.07.028.
19. Dusserre G., Balea L., Bernhart G. Elastic properties prediction of a knitted composite with inlaid yarns subjected to stretching: A coupled semi-analytical model. Composites. Part A: Applied science and manufacturing, 2014, no. 64, pp. 185–193. DOI: 10.1016/j.compositesa.2014.05.007.
20. De Araujo M., Fangueiro R., Hu H. Weft-knitted structures for Industrial applications. Advances in Knitting Technology, Woodhead Publishing Ltd, 2011, pp. 136–170. DOI: 10.1533/9780857090621.2.136.
21. Zilio L., Dias M., Santos T. et al. Characterization and statistical analysis of the mechanical behavior of knitted structures used to reinforce composities: yarn compositions and float stitches. Journal of materials research and technology, 2020, no. 9 (4), pp. 8323–8336. DOI: 10.1016/j.jmrt.2020.05.089.
22. Hu J.L., Jiang Y.M., Ko K.F. Modeling uniaxial tensile properties of multiaxial warp knitted fabric. Textile Research Journal, 1998, vol. 68, pp. 828–834. DOI: 10.1177/004051759806801107.
23. Vuure A.W., Ko K.F., Beevers C. Net-shape knitting for complex composite performs. Textile Research Journal, 2003, vol. 73, pp. 1–10. DOI: 10.1177/004051750307300101.
24. Pei X., Shang B., Chen L. et al. Compression properties of multilayer-connected biaxial weft knitted carbon fiber fabric reinforced composites. Composites. Part. B, 2016, vol. 91, pp. 296–305. DOI: 10/1016/j/compositesb.2015.12.041.
25. Gunes K.S., Ince M.E., Icoglu H.I. Compressibility of weft knitted reinforcement fabrics from glass yarn. 18th World Textile Conference (AUTEX 2018). IOP Conf. Series: Materials Science and Engineering, 2018, no. 460, pp. 1–6. DOI: 10.1088/1757-899X/460/1/012029.
26. Ishmael N., Fernando A. Textile tehnologies for the manufacture of three-dimensional textile preforms. Research Journal of Textile and Apparel, 2017, vol. 21, no. 4, pp. 342–362. DOI: 10.1108/RJTA-06-2017-0034.
27. Bezsmertna V., Mazna O., Kohanyiy V. et al. Multifunctional polymer-based composite materials with weft-knitted carbon fibrous fillers. MATEC Web of Conferences, 2019, no. 304, art. 01012. DOI: 10.1051/matecconf/201930401012.
28. Xue D., Hu H. Mechanical properties of biaxial weft-knitted flax composities. Materials and design, 2012, no. 46, pp. 264–269. DOI: 10.1016/j.matdes.2012.10.019.
29. Demirkan O., Hamada Y., Kosui T., Nakai A. Effect of stitch yarn on tensile properties of biaxial weft knitted thermoplastic composites. ECCM 15th European Conference on Composite Materials, Venice, 2012, pp. 1–5.
30. Molosnov K.A. Development of knitted fabrics for reinforcing composite materials: thesis, Cand. Sc. (Tech.). St. Petersburg, 2013, 17 p.
31. Truevtsev A.V., Tsobkallo E.S., Moskalyuk O.A. Polymer composite materials with knitted filler. Modern trends in the development of chemistry and technology of polymeric materials: abstracts of the IV Intern. scientific conf. St. Petersburg, 2018, pp. 57–59.
32. Bazanova E.A., Truevtsev A.V. On the possibility of using knitwear as a filler for composites. Molodye uchenye – razvitiyu natsional'noy tekhnologicheskoy initsiativy (POISK), 2020, no. 1, pp. 21–23.
33. Composite Materials for Aircraft Structures. ALAA Education series. Ed. A. Baker, S. Dutton, D. Kelly. Second Edition. Blacksburg, 2004, 540 p.
Presents the results of studies of various variants of layered erosion-resistant coatings based on titanium and zirconium nitrides, chromium carbide. Metallographic studies, studies of residual stresses, phase composition, tests for erosion resistance, endurance of samples with coatings were carried out. The dependence of erosion resistance, phase composition and stress-strain state of coatings on the energy parameters of the application process has been established. The influence of functional sublayers on the stress-strain state of the layered ion-plasma coating and its erosion resistance has been established.
2. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
3. Peskova A.V., Sukhov D.I., Mazalov P.B. Exami-nation of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
4. Alexandrov D.A., Gorlov D.S., Budinovskii S.A. Application of a complex of ion-plasma technologies to protect the compressor blades of a helicopter gas-turbine engine from erosion wear and fretting. Trudy VIAM, 2021, no. 2 (96), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 08, 2022). DOI: 10.18577/2307-6046-2021-0-2-71-80.
5. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for gas turbine engine compressor blades. Russian metallurgy (Metally), 2017, vol. 2017, no. 6, pp. 494–504.
6. Muboyadzhyan S.A. Erosion-resistant coatings for GTE compressor blades. Metally, 2009, no. 3, pp. 3–20.
7. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
8. Gromov V.I., Yakusheva N.A., Vostrikov A.V., Cherkashneva N.N. High strength structural steels for gas-turbine engine shafts (review). Aviation materials and technology, 2021. no. 1 (62). paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 08, 2022). DOI: 10.18577/2713-0193-2021-0-1-3-12.
9. Grzesik W., Malecka J., Kwasny W. Identification of oxidation process of TiAlN coatings versus heat resistant aerospace alloys based on diffusion couples and tool wear tests. CIRP Annals – Manufacturing Technology, 2020, no. 69, pp. 41–44. DOI: 10.1016/j.cirp.2020.04.024.
10. Zhang M., Cheng Y., Xin L. et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy. Corrosion Science, 2020, no. 166, pp. 108476–108486. DOI: 10.1016/j.corsci.2020.108476.
11. Vereschaka A.A., Grigoriev S.N. Study of cracking mechanisms in multi-layered composite nano-structured coatings. Wear, 2017, no. 378–379, pp. 43–57. DOI: 10.1016/j.wear.2017.01.101.
12. Xu Y.X., Riedl H., Holec D. et al. Thermal stability and oxidation resistance of sputtered Ti–Al–Cr–N hard coatings. Surface & Coatings Technology, 2017, no. 324, pp. 48–56. DOI: 10.1016/j.surfcoat.2017.05.053.
13. Asanuma H., Polcik P., Kolozsvari S. et al. Cerium doping of Ti–Al–N coatings for excellent thermal stability and oxidation resistance. Surface & Coatings Technology, 2017, no. 326, pp. 165–172. DOI: 10.1016/j.surfcoat.2017.07.037.
14. Sui X., Li G., Zhou H. et al. Evolution behavior of oxide scales of TiAlCrN coatings at high temperature. Surface & Coatings Technology, 2019, no. 360, pp. 133–139. DOI: 10.1016/j.surfcoat.2019.01.016.
15. Tillmann W., Grisales D., Stangier D. et al. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface & Coatings Technology, 2021, no. 406, pp. 126664–126675. DOI: 10.1016/j.surfcoat.2020.126664.
16. Pilemalm R., Sjögren A. High pressure and high temperature behaviour of TiAlN coatings deposited on c-BN based substrates. Processing and Application of Ceramics, 2020 no. 14, vol. 3, pp. 210–217. DOI: 10.2298/PAC2003210P.
17. Özkan D., Erarslan Y., Sulukan E. et al. Tribological behavior of TiAlN, AlTiN, and AlCrN coatings at boundary lubricating condition. Tribology Letters, 2018, no. 66, pp. 152–167. DOI: 10.1007/s11249-018-1111-1.
18. Lin J., Zhang X., Ge F. et al. Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance. Surface & Coatings Technology, 2019, no. 377, pp. 124922–124933. DOI: 10.1016/j.surfcoat.2019.124922.
During the operation of aircraft parts, internal stresses may occur, leading to the appearance of cracks, as well as the formation of defects due to impact loads, which can lead to the destruction of the part and structure. The method of cold gas-dynamic spraying (CGS) of metals makes it possible not only to apply various protective and functional coatings, but also, when using plastic materials, to effectively eliminate defects in parts and assemblies for various purposes.
2. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
3. Ryabov D.K., Morozova L.V., Korolev V.A., Ivanova A.O. Alternation of mechanical features of alloy AK9ch manufactured by selective laser melting. Trudy VIAM, 2016, no. 9, paper no. 02. Available at: http://www.viam-works.ru (accessed: August 08, 2022). DOI: 10.18577/2307-6046-2016-0-9-2-2.
4. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components. Science, 2003, vol. 301 (5637), pp. 1225–1227.
5. Bremen S., Meiners W., Diatlov A. Selective Laser Melting. Laser Technic Journal, 2012, vol. 9 (2), pp. 33–38.
6. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Ivanova A.O., Ryabov D.K., Antipov V.V., Pahomkin S.I. Application of Thermo-Calc software for determination of parameters of heat treatment 1913 alloy and temperatures of gas atomization for aluminium alloys. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 52–59. DOI: 10.18577/2071-9140-2016-0-S1-52-59.
8. Akopyan T.K., Zolotorevsky V.S., Khvan A.V. Calculation of phase diagrams of Al–Cu–Zn–Mg and Al–Cu–Zn–Mg–Fe–Si systems. Tsvetnaya metallurgiya, 2013, no. 3, pp. 44–51.
9. Ivanova A.O., Vahromov R.O., Grigor'ev M.V., Senatorova O.G. Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys. Trudy VIAM, 2014, no. 10, paper no. 01. Available at: http://www.viam-works.ru (accessed: August 08, 2022). DOI: 10.18577/2307-6046-2014-0-10-1-1.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
12. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
13. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 12, 2022). DOI: 10.18577/2713-0193-2021-0-4-3-13.
14. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
15. Plokhikh A.I., Safonov M.D., Kolesnikov A.G., Karpukhin S.D. Mechanism of interlaminar stress relaxation in multilayer steel materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 26–32. DOI: 10.18577/2071-9140-2018-0-2-26-32.
16. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
17. Kozlov I.A., Leshchev K.A., Nikiforov A.A., Demin S.A. Cold spray coatings (review). Trudy VIAM, 2020, no. 8 (90), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 08, 2022). DOI: 10.18577/2307-6046-2020-0-8-77-93.
18. Kosarev V.F., Alkhimov A.P. Technology, equipment, tools. Obrabotka metallov, 2003, no. 3, pp. 28–30.
19. Alkhimov A.P., Gulidov A.I., Kosarev V.F., Nesterovich N.I. Peculiarities of deformation of microparticles upon impact with a solid barrier. Prikladnaya mekhanika i tekhnicheskaya fizika, 2000, vol. 41, no. 1, pp. 204–209.
20. Alkhimov A.P., Klinkov S.V., Kosarev V.F., Fomin V.M. Cold gas-dynamic spraying. Theory and practice. Moscow: Fizmatlit, 2010, pp. 25–27.
Presents studies aimed at creating a methodology for assessing the depth of defects in multilayer honeycomb parts made of polymer composite materials during impedance testing with serial flaw detectors with the construction of C-scans. There are methods for estimating depth based on data with two independent parameters, which require special equipment and software. The study is aimed at creating a technique based on the analysis of only one parameter due to the knowledge of the mechanisms of the influence of the depth of defects on the impedance value and understanding the nature of the change in the signal of the flaw detector when the load changes.
2. Kablov E.N. The key problem is materials. Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
3. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Estimation of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using domestic and foreign flaw detection liquids. Defectoscopiya, 2021, no. 1, pp. 64–71. DOI: 10.31857/S0130308221010073.
4. Kablov E.N. New generation materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
5. Murashov V.V. Control and diagnostics of multilayer structures made of polymer composite materials by acoustic methods. Moscow: Spektr, 2016, 244 p.
6. Non-destructive testing: a reference book in 7 vols. General ed. V.V. Klyuev. Moscow: Mashinostroenie, 2004, vol. 3: Ultrasonic testing. Ed. I.N. Ermolov, Yu.V. Lange, 864 p.
7. Murashov V.V., Generalov A.S. Control of multilayer adhesive structures operating in severe climatic condition. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 59–67. DOI: 10.18577/2071-9140-2014-0-2-59-67.
8. Murashov V.V. Research and improvement of acoustic low-frequency control methods of products from layered plastics and multilayered glued of constructions. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 87–93. DOI: 10.18577/2071-9140-2018-0-4-87-93.
9. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
10. Chertishchev V.Yu., Boychuk A.S., Dikov I.A., Yakovleva S.I., Generalov A.S. Determination of the Defect Depth in Multilayer PCM Structures by Acoustic Methods Based on the Mechanical Impedance. Defektoskopiya, 2018, no. 8, pp. 21–34. DOI: 10.1134/50130308218080031.
11. Chertishchev V.Yu., Ospennikova O.G., Boichuk A.S., Dikov I.A., Generalov A.S. Determina-tion of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
12. Starikovsky G.P., Zhovner P.B. Non-destructive testing of three-layer integral structures made of polymer composite materials. Kontrol. Diagnostika, 2012, no. 6, pp. 58–62.
13. Nondestructive Evaluation System Reliability Assessment: Handbook. Military and Government Specs & Standards (Naval Publications and Form Center), 2009, 171 p.
14. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: June 01, 2022). DOI: 10.18577/2713-0193-2021-0-2-115-122.
15. Lange Yu.V. Acoustic low-frequency methods and means of non-destructive testing of multilayer structures. Moscow: Mashinostroenie, 1991, 272 p.
The exposition of samples of cured polyester resin with the addition of metal oxides and cellulose (control sample) in the seawater of the Gelendzhik Bay of the Black Sea was carried out for 60 days. It was shown that eukaryotic diatoms, as well as prokaryotic blue-green algae (cyanobacteria) were the most numerous members of communities inhabiting the surfaces of samples. By sequencing the V4 region of the prokaryotic 16S rRNA gene and bioinformatic analysis of these results, it was shown that in fouling on samples with chromium, lead, zinc, and titanium oxides, the proportion of bacteria resistant to these metals increased, while bacteria potentially capable of degrading polyester resins formed a minor part of the communities.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Kogan A.M., Nikolayev E.V., Golubev A.V., Laptev A.B., Movenko D.A. Stages of biofouling and corrosion of steel in the Black sea water. Trudy VIAM, 2019, no. 6 (78), paper no. 09. Available at: http://viam-works.ru (accessed: June 08, 2022). DOI: 10.18577/2307-6046-2019-0-6-84-94.
5. Yoshida S., Hiraga K., Takehana T. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, vol. 353, pp. 759–759. DOI: 10.1126/science.aad6359.
6. Krueger M.C., Seiwert B., Prager A. et al. Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations. Chemosphere, 2017, vol. 173, pp. 520–528. DOI: 10.1016/j.chemosphere.2017.01.089.
7. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 08, 2022). DOI: 10.18577/2307-6046-2019-0-7-84-91.
8. De Carvalho C.C.C.R. Marine biofilms: A successful microbial strategy with economic implications. Frontiers of Marine Science, 2018, vol. 5, art. 126. DOI: 10.3389/fmars.2018.00126.
9. Oberbeckmann S., Kreikemeyer B., Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Frontiers in Microbiology, 2018 vol. 8, art. 2709. DOI: 10.3389/fmicb.2017.02709.
10. Dussud C., Meistertzheim A.L., Conan P. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environment Pollution, 2018, vol. 236, pp. 807–816. DOI: 10.1016/j.envpol.2017.12.027.
11. Turova T.P., Sokolova D.Sh., Nazina T.N., Gruzdev D.S., Laptev A.B. Phylogenetic diversity of microbial communities from the surface of polyethylene terephthalate materials during exposure to aquatic environments. Mikrobiologiya, 2020, vol. 89, no. 1, no. 99–110. DOI: 10.1134/S0026365620010152.
12. Gohl D.M., MacLean A., Hauge A. et al. An optimized protocol for high-throughput amplicon-based microbiome profiling. Research Square, 2016, nо. 1, art. 30. DOI: 10.1038/protex.2016.030.
13. Fadrosh D.W., Ma B., Gajer P. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome, 2014, nо. 2 (1), art. 6. DOI: 10.1186/2049-2618-2-6.
14. Hugerth L.W., Wefer H.A., Lundin S. et al. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies. Applied and Environmental Microbiology, 2014, nо. 80 (16), pp. 5116–5123. DOI: 10.1128/AEM.01403-14.
15. Merkel A.Y., Podosokorskaya O.A., Chernyh N.A., Bonch Osmolovskaya E.A. Occurrence, diversity, and abundance of methanogenic archaea in terrestrial hot springs of Kamchatka and Sao Miguel Island. Microbiology, 2015, vol. 84, pp. 577–583.
16. Srikanth M., Sandeep T.S.R.S., Sucharitha K., Godi S. Biodegradation of plastic polymers by fungi: a brief review. Bioresources Bioprocessing, 2022 vol. 9, art. 42. DOI: 10.1186/s40643-022-00532-4.
17. Kanamaru K., Kashiwagi S., Mizuno T. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Molecular Microbiology, 1994, vol. 13 (2), pp. 369–377. DOI: 10.1111/j.1365-2958.1994.tb00430.x.
18. Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, vol. 28, pp. 27–30. DOI: 10.1093/nar/28.1.27.
19. Abdullin I.Sh., Kanarskaya Z.A., Khubathuzin A.A. and other Nanodispersed materials based on titanium in the microbiological, medical and food industries. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no. 11, pp. 158–165.
20. Bonyadi Z., Mirzaee M., Ejtehadi M.M., Mokhtari M. The bactericidal effect of simultaneous titanium oxide on common hospital bacteria. Environmental Monitoring and Assessment, 2017, vol. 189, art. 342. DOI: 10.1007/s10661-017-6049-5.
21. Nies D.H. Efflux-mediated heavy metal resistance in prokaryotes. Microbiology Review, 2003, vol. 27 (2-3), pp. 313–339. DOI: 10.1016/S0168-6445(03)00048-2.
22. Choudhury R., Srivastava S. Zinc resistance mechanisms in bacteria. Current Science, 2001, vol. 81, pp. 768–775.
23. Viti C., Marchi E., Decorosi F., Giovannetti L. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. Microbiology Review, 2014, vol. 38 (4), pp. 633–659. DOI: 10.1111/1574-6976.12051.
24. Hynninen A., Touzé T., Pitkänen L. et al. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Molecular Microbiology, 2009, vol. 74 (2), pp. 384–394. DOI: 10.1111/j.1365-2958.2009.06868.x.
25. Vorobyov A.V. Polyester resins. Komponenty i tekhnologii, 2003, no. 6, pp. 182–185.
Considers methods for testing steels and alloys for the fatigue crack growth rate when exposed to a corrosive environment. Preferably, these tests are carried out under simultaneous mechanical and corrosion action on compact eccentric tensile specimens. The composition of the environment is determined by the operating conditions of the product. In most cases, NaCl solutions of various concentrations are used. Fatigue crack growth rate is extremely sensitive to the parameters of the test environment and mechanical loading.
2. ASTM E647-15e1. Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, 2016, 49 p.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Strength tests and researches of aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
5. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 2. Corrosion in sea water. Aviation materials and technology, 2021, no. 1 (62). paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 21, 2022). DOI: 10.18577/2713-0193-2021-0-1-95-103.
6. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
7. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 21, 2022). DOI: 10.18577/2713-0193-2021-0-4-3-13.
8. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
9. Grinevich A.V., Yakovlev N.O., Skripachev S.Yu., Nuzhny G.A. Corrosion cracking of steels of various strengths under conditions of constant crack opening. Deformatsiya i razrusheniye materialov, 2019, no. 1, pp. 43–48.
10. Grinevich A.V., Lutsenko A.N., Erasov V.S., Nuzhny G.A. A technique for assessing fracture toughness in a corrosive environment under long-term static load. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 9, pp. 52–56.
11. Lutsenko A.N., Grinevich A.V., Karimova S.A. Strength characteristics of aircraft airframe materials under humid conditions. Voprosy materialovedeniya, 2013, no. 1 (73), pp. 212–219.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistance on sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
14. Kang D.H., Lee J.K., Kim T.W. Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment. Procedia Engineering, 2010, pp. 1170–1175. DOI: 0.1016/j.proeng.2011.04.195.
15. Arunachalam S., Fawaz S. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy. International Journal of Fatigue, 2016, no. 98, pp. 50–58.
16. Bogar F.D., Crooker T.W. Effects of Natural Seawater and Electrochemical Potential on Fatigue-Crack Growth in 5086 and 5456 Aluminum Alloys: NRL Report 8153. Washington, DC: Department of Defense, Navy Department, Office of Naval Research, Naval Research Laboratory, 1977, 14 p.
17. Vosikovsky O. Effects of Mechanical and Environmental Variableson Fatigue Crack Growth Rates in Steel. A Summary of Work DoneAt CANMET. Canadian Metallurgical Quarterly, 1980, vol. 19, pp. 87–97.
18. Guo Y., Shao Y., Gao X. et al. Corrosion fatigue crack growth of serviced API 5L X56 submarine pipeline. Ocean Engineering, 2022, no. 256, art. 111502.
19. Laptev A.B., Zakirova L.I. Zagorskikh O.A., Pavlov M.R. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 1. Investigation of corrosion-mechanical destruction of steels. Trudy VIAM, 2022, no. 4 (110), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2022-0-4-118-130.
20. A kind of difference seawater velocity Corrosion Fatigue Crack Propagation rate prediction method: pat. CN 110489848 A; filed 12.08.19; publ. 11.12.20.
21. Method for assessing the corrosion fatigue resistance of welded joints: pat. 2485483 Rus. Federation; filed 10.01.12; publ. 20.06.13.
22. Device for corrosion and fatigue test: pat. ES 2393491 В1; filed 29.04.11; publ. 29.10.13.
23. Large-scale model corrosion fatigue test system and method for ocean engineering structure: pat. CN 112924369 A; filed 27.01.21; publ. 08.06.21.
24. A kind of steel bridge deck corrosion fatigue coupling test method and device thereof: pat. CN 110361318 A; filed 04.06.19; publ. 01.09.20.
25. Apparatus for testing corrosion fatigue life of automotive chassis parts: pat. KR 20080103124; filed. 23.05.07; publ. 27.11.08.
26. Barsom J.M. Effects of Cyclic Stress Form on Corrosion Fatigue Crack Propagation Below KIscc in a High Yield Strength Steel. Corrosion Fatigue: Chemistry, Mechanics and Microstructure, 1972, pp. 424–433.
27. Selines R.J., Pelloux R.M. Effect of Cyclic Stress Wave Form on Corrosion Fatigue Crack Propagation in Al–Zn–Mg Alloys. Metallurgical Transactions, 1972, vol. 3, pp. 2525–2531.
28. Dawson D.B., Pelloux R.M. Corrosion Fatigue Crack Growth in Titanium Alloys in Aqueous Environments. Metallurgical Transactions, 1974, vol. 5, pp. 723–731.
29. Menan F., Henaff G. Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024–1351 aluminium alloy in the S–L orientation. Materials Science and Engineering, 2009, pp. 70–76. DOI: 10.1016/j.msea.2009.04.058.
30. Andersson С., Liu J. Effect of corrosion on the low cycle fatigue behavior of Sn–4.0 Ag–0.5 Cu lead-free solder joints. International Journal of Fatigue, 2008, vol. 30 (5), pp. 917–930. DOI: 10.1016/j.ijfatigue.2007.06.009.
31. Mukahiwa K., Scenini F., Burke M.G. et al. Corrosion fatigue and microstructural characterization of Type 316 austenitic stainless steels tested in PWR primary water. Corrosion Science, 2017, pp. 57–70. DOI: 10.1016/j.corsci.2017.10.022.
32. Karpenko O., Oterkus S., Oterkus E. Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach. International Journal of Fatigue, 2022, no. 162, art. 107023.
33. Liao X., Li Y., Qiang B. et al. An improved crack growth model of corrosion fatigue for steel in artificial seawater. International Journal of Fatigue, 2022, no. 160, art. 106882.
Light-metal alloys
Khodakova E.A., Sviridov A.V., Skupov A.A., Stelnikovich A.Yu. Creation of plasma welding joints (review)
Polymer materials
Pravada E.S., Vakhrusheva Yа.A., Gerasimov D.M., Chaikun A.M. Rubber-based sealants (review)
Composite materials
Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D. Сarbon fiber based on a volume-reinforcing braided preform for an element of a propeller blade
Korolev D.V., Valeev R.A., Morgunov R.B., Piskorsky V.P. Effect of heat treatment of sintered Pr–Dy–Fe–Co–B magnets on their coercivity
Ivanov M.S., Sagomonova V.A., Morozova V.S. Domestic thermoplastic carbon plastic based on polyetheretherketone
Khodykin L.G., Nyafkin A.N., Kosolapov D.V., Zhabin A.N. Laser welding of metal composite materials based on aluminium alloy reinforced with refractory particles SiC (review)
Ponomarenko L.A. Mechanical properties of polymer composite materials based on knitted fillers with modified structure (review)
Protective and functional
coatings
Alexandrov D.A., Gorlov D.S. The Research of erosion resistance and residual stresses in layered ion-plasma coatings
Kozlov I.A., Fomina M.A., Demin S.A., Benarieb I., Khmeleva K.M. Use of metal powder compositions to remove defects of parts from VAS-1 alloy by cold gas-dynamic spraying method
Material tests
Chertishchev V.Yu., Boichuk A.S., Dikov I.A., Gorbovets M.A. Estimation of defect depth in multilayer PCM honeycomb during impedance testing with serial detectors
Laptev A.B., Zheleznyak V.G., Tourova T.P., Sokolova D.Sh., Nazina T.N. The effect of the presence of toxic additives in the polymer material on the processes of its biodegradation in seawater
Gorbovets M.A., Khodinev I.A., Monin S.A. Tests of structural metallic materials for the fatigue crack growth rate in a corrosive environment (review)