Articles
Microstructure, hardness and tribotechnical characteristics of beryllium-containing steel VNS32-VI were studied after strengthening heat treatment and final ion nitriding. It was found that the microstructure of samples processed according to various methods does not differ, and the thickness of the diffusion layer is 100 μm. The alloying element distribution study showed that the surface was dominated by Cr, Mo and Nb having a high affinity for nitrogen. The best tribotechnical properties were possessed by samples for which the dispersion hardening process was combined with final ion nitriding.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
4. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
5. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
6. Papirov I.I. Beryllium in alloys: a reference book. Moscow: Energoatomizdat, 1986, 184 p.
7. Zhubaev A.K., Bekturgan N.B., Kuvatbaeva K.K., Nurtazina A.S. Investigation of the phase-structural state of stainless steel with beryllium. Fundamentalnye problemy radioelektronnogo priborostroyeniya, 2014, vol. 14, no. 3, pp. 70–73.
8. Dvoretskov R.M., Volkova O.S., Radzikovskaya V.N., Burova V.N. Determination of beryllium in modern aviation materials by atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2016, no. 4, paper no. 5. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2016-0-4-5-5.
9. Naik B.G., Sivasubramanian N. Applications of beryllium and its alloys. Mineral Processing and Extractive Metullargy Review, 1994, vol. 13, no. 1, pp. 243–251.
10. Papirov I.I. Structure and properties of beryllium alloys: a reference book. Moscow: Energoizdat, 1981, 368 p.
11. Cherbakov A.I., Mosolov A.N., Kalicev V.A. Recovery of technology for the beryllium-containing steel VNS-32-VI obtaining. Trudy VIAM, 2014, no. 05, paper no. 01. Available at: http://www.viam-works.ru (accessed: February 1, 2022). DOI: 10.18577/2307-6046-2014-0-5-1-1.
12. Stainless PH steel: certificate of authorship 541374 USSR, no. 2120727/01; filed 03.04.75; publ. 15.05.91.
13. Mosolov A.N., Sevalnev G.S., Krylov S.A., Skugorev A.V., Chirkov I.A. Study of the structure and properties of beryllium-containing steel VNS32-VI. Trudy VIAM, 2022, no. 5 (111), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 01, 2022). DOI: 10.18577/2307-6046-2022-0-5-3-14.
14. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
15. Czerwinski F. Heat treatment – Conventional and Novel Applications. London: IntechOpen, 2012, 422 p.
16. Structural materials: a reference book. Ed. B.N. Arzamasov. Moscow: Mashinostroenie, 1990, 688 p.
17. Aleksandrov V.G., Bazanov B.I. Reference book on aviation materials and technology of their application. Moscow: Transport, 1979, 263 p.
18. Minkevich A.N. Chemical-thermal treatment of metals and alloys. Moscow: Mashinostroenie, 1965, 493 p.
19. Minkevich A.N. Chemical-thermal treatment of steel. Moscow: Mashgiz, 1950, 432 p.
20. Yao J., Yan F., Chen B. et al. Dual-strengthening of steel surface and bulk via synergistic effect of plasma nitriding: a case study of M50 steel. Surface and Coatings Technology, 2021, vol. 409, p. 126910.
21. Ooi S., HKDH B. Duplex hardening of steels for aeroengine bearings. Iron and Steel Institute of Japan International, 2012, vol. 52, no. 11, pp. 1927–1934.
22. Streit E., Trojahn W. Duplex Hardening for Aerospace Bearing Steels. ASTM special technical publication, 2002, vol. 1419, pp. 386–398.
23. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Yazvitsky M.Yu. Influence of the phase composition of austenitic-martensitic trip-steel VNS9-Sh on the characteristics of dry sliding friction in tribocontact with steel ShKh15. Deformatsiya i razrushenie materialov, 2021, no. 10, pp. 20–27. DOI: 10.31044/1814-4632-2021-10-20-27.
24. Arzamasov B.N., Bratukhin A.G., Eliseev Yu.S., Panayoti T.A. Ionic chemical-thermal treatment of alloys. Moscow: MSTU im. N.E. Bauman, 1999, 400 p.
25. Goodremont E. Special steels: in 2 vols. 2nd ed., rev. Moscow: Metallurgiya, 1966, vol. 2. 532 p.
26. Petrova L.G., Aleksandrov V.A., Zyuzin D.M. Regulated processes of nitriding of corrosion-resistant steels. Vestnik Moskovskogo avtomobilno-dorozhnogo instituta (gosudarstvennogo tekhnicheskogo universiteta), 2003, no. 1, pp. 20–26.
27. Lakhtin Yu.M., Kogan Ya.D. Nitriding of steel. Moscow: Mashinostroenie, 1976, 256 p.
28. Kuksenova L.I., Alekseeva M.S. Investigation of the structural state and wear resistance of nitrided iron alloys with different types of crystal lattice. Vestnik nauchno-tekhnicheskogo razvitiya, 2019, no. 9, pp. 21–29.
29. Eliseev E.A., Sevalnev G.S., Doroshenko A.V., Druzhinina M.E. Influence of time-temperature parameters of long-duration exposure on transformations in structural steels (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 02. Available at: http://www.journal.viam.ru (accessed: June 14, 2022). DOI: 10.18577/2713-0193-2021-0-2-15-23.
The effect of heat treatment regimes for sheets 2 mm thick of aluminum-lithium alloy V-1469 on the microstructure and microhardness has been studied. Hardening and one- and two-stage artificial aging with various holding times (from 1 to 12 hours) were carried out. Using optical and scanning electron microscopes, the microstructure was studied and a local chemical analysis of the phase components of the alloy was carried out. It is shown that with an increase in the time of one-stage artificial aging, the microhardness increases from 93 to 175 HV, and with an increase in the total exposure during two-stage aging, from 91 to 180 HV, as a result of structural-phase changes and an increase in the proportion of strengthening phases. Inclusions of a regular triangular shape, found after hardening, contain up to 17 % (by mass) of copper and have a size of 1.5–3.0 µm.
2. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Oglodkov M.S. Experience and prospects for the use of aluminum-lithium alloys in products of aviation and space technology. Metallurg, 2021, no. 1, pp. 62–70.
3. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
4. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
5. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the development of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
7. Antipov V.V. Scientific and technological foundations for the development of a new generation of layered aluminum-glass plastics with variable physical and mechanical properties based on low-density aluminum-lithium alloy sheets: thesis abstract, Dr. Sc. (Tech.). Moscow, 2020, 44 p.
8. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Aluminum-lithium alloys. 75 years. Aviation materials. Selected works of "VIAM" 1932–2007: anniversary. sci.-tech. coll. Moscow: VIAM, 2007, pp. 163–171.
9. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
10. Fomin V.M., Malikov A.G., Orishich A.M., Antipov V.V., Klochkov G.G., Skupov A.A. Heat treatment effect on structure of joint weld sheets from V-1469 alloy of Al–Cu–Li system manufactured by laser welding. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 9–18. DOI: 10.18577/2071-9140-2018-0-1-9-18.
11. Gordeeva M.I. Investigation of the influence of deformation, heat treatment and welding on the phase composition, texture and anisotropy of the mechanical properties of aircraft materials from aluminum-lithium alloys 1441, 1461 and 1469: thesis abstract, Cand. Sc. (Tech.). Moscow, 2017, 24 p.
12. Kablov E.N., Nochovnaya N.A., Shiryaev A.A., Davydova E.A. Investigation of structural and phase transformations in metastable β-titanium alloys and effect of cooling rate from homogenization temperature on structure and properties of VT47 alloy. Part 2. Trudy VIAM, 2020, no. 8 (90), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 25, 2020). DOI: 10.18577/2307-6046-2020-0-8-20-34.
13. Knyazev M.I. Development of quantitative methods for studying the phase composition, texture and anisotropy of the properties of aluminum-lithium alloys: thesis, Cand. Sc. (Tech.). Moscow, 2016, 178 p.
14. Betsofen S.Ya., Antipov V.V., Knyazev M.I. Phase composition, texture and anisotropy of mechanical properties of Al–Cu–Li and Al–Mg–Li alloys (review). Deformatsiya i razrusheniye materialov, 2015, no. 11, pp. 10–26.
15. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
16. Novikov I.I. Theory of heat treatment of metals: textbook for universities. 4th ed., rev. and add. Moscow: Metallurgiya, 1986, 480 p.
17. Istomin-Kastrovskii V.V., Shamrai V.F., Grushko O.E. et al. Effect of additives of silver, magnesium, zirconium on the aging of the V-1469 alloy of the Al–Cu–Li system. Metally, 2010, no. 5, pp. 73–78.
Presents the results of studies of the uniformity of the distribution of alloying elements in ingots from economically alloyed casting titanium alloy VT40L. Experimental ingots obtained by double vacuum-arc remelting, for which the main technological parameters of melting calculated. Statistical processing of the results of chemical analysis was carried out using Shewhart control charts, and indicators of process capabilities were also evaluated. Suggestions are made about methods for achieving the best stability indicators.
2. Putyrskiy S.V., Yakovlev A.L., Nochovnaya N.A., Krokhina V.A. Research of different heat treatment modes influence on properties of semi-finished products and welded joints from titanium alloy ВТ22М. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 3–10. DOI: 10.18577/2071-9140-2019-0-1-3-10.
3. Krokhina V.A., Putyrskiy S.V., Gribkov M.S. Analysis of structure and mechanical properties of welded joint from titanium alloy VT22M. Aviation materials and technologies, 2022, no. 2 (67), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 16, 2022). DOI: 10.18577/2713-0193-2022-0-2-52-62.
4. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
5. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
6. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: a reference book. Moscow: VILS; MATI, 2009, 520 p.
7. Aviation materials: a reference book in 12 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2010, vol. 6: Titanium alloys, 96 p.
8. Tarasenko E.N., Prokhodtseva L.V., Rudakov A.G. High-strength economically alloyed titanium alloy with increased durability for precision shaped casting. Aviacionnye materialy i tehnologii, 2005, no. 2, pp. 37–42.
9. Yasinsky K.K., Tarasenko E.N. New high-strength cast titanium alloy VT40L. Aviacionnye materialy i tehnologii, 2007, no. 1, pp. 58–60.
10. Kochetkov A.S., Nochovnaya N.A., Bokov K.A. Specifics of production process of VT40 titanium alloy castings. Trudy VIAM, 2016, no. 3, paper no. 04. Available at: http://www.viam-works.ru (accessed: September 14, 2022). DOI: 10.18577/2307-6046-2016-0-3-4-4.
11. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
12. Shiryaev A.A., Nochovnaya N.A. Study of structure and chemical composition of pilot high-alloyed titanium alloy ingots. Trudy VIAM, 2015, paper no. 9, no. 06. Available at: http://www.viam-works.ru (accessed: September 23, 2022). DOI: 10.18577/2307-6046-2015-0-9-6-6.
13. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
14. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
15. Kochetkov A.S., Panin P.V., Nochovnaya N.A., Makushina M.A. Investigation of the chemical inhomogeneity of ingots of a beta-hardening TiAl-alloy of variable composition. Metallurg, 2020, no. 9, pp. 93–100.
16. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 15, 2022). DOI: 10.18577/2071-9140-2022-0-1-30-40.
17. Dobatkin V.I., Anoshkin N.F., Andreev A.L., Bochvar G.A., Musatov M.I., Tetyukhin V.V., Chistyakov E.P. Ingots of titanium alloys. Moscow: Metallurgiya, 1966, 287 p.
18. Sergeev V.V., Galitsky N.V., Kiselev V.P., Kozlov V.M. Titanium metallurgy. Moscow: Metallurgiya, 1971, 320 p.
19. State Standard R 50779.42–99. Statistical methods. Shewhart control charts. Moscow: Publishing house of standards, 1999, 32 p.
20. State Standard R 50779.44–2001. Statistical methods. Process capability indicators. Basic methods of calculation. Moscow: Publishing house of standards, 2001, 16 p.
The trends of modern technologies for the manufacture of magnesium alloys and products from them are considered. The results of research and developed technologies of foreign scientists and world companies in the field of magnesium alloys and magnesium-based materials are presented. Research is focused on selective laser melting (SLM), since it is possible to form high-precision parts of any shape with it help. The fine magnesium or magnesium alloy powders used for SLM are difficult to manufacture due to their rapid oxidation. In connection with this feature, more and more attention is paid to the technology of using wire. The review considers such technologies as laser cladding and gas-dynamic spraying. The presented research and development will expand the scope of application and, in the future, master improved traditional and modern promising additive technologies.
2. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Lukina E.A., Zavodov A.V., Efimochkin I.Yu. The formation of structure in ultrafine WC–Cо carbide material in the presence of inhibitory additives. Trudy VIAM, 2020, no. 4–5 (88), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 05, 2022). DOI: 10.18577/2307-6046-2020-0-45-89-99.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
6. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
7. Istomin A.V., Kolyshev S.G. Electrostatic method of forming ultrathin fibers of refractory oxides. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 40–46. DOI: 10.18577/2071-9140-2019-0-2-40-46.
8. Song B., Dong S., Zhang B., Liao H., Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials Desing, 2012, no. 35, pp. 120–125.
9. Takagi H., Sasahara H., Abe T. et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arcbased additive manufacturing. Additive Manufacturing, 2018, no. 24, pp. 498–507.
10. Wei K., Wang Z., Zeng X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Materials letters, 2015, no. 156, pp. 187–190.
11. Bär F., Berger L., Jauer L. et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomaterialia, 2019, no. 98, pp. 36–49.
12. Manakari V., Parande G., Gupta M. Selective laser melting of magnesium powders and magnesium alloys. Review. Metally, 2016, no. 7, pp. 2–3.
13. Lin X., Huang W. Highly efficient metal additive manufacturing technology applied in the field of aviation. Materials China, 2015, no. 34, pp. 684–688.
14. Dong H., Yong B., Chjan D. et al. Experimental study of selective laser melting of bulk pure. Manufacturing process, 2015, no. 30, pp. 1298–1304.
15. Guo J., Zhou Y., Liu K. et al. Additive manufacturing by magnesium alloy AZ31 wire arc: grain grinding by adjusting pulse frequency. Materials, 2016, no. 9, pp. 823–824.
16. Knezovis N., Topis A. Additive production of wire and arc – new achievement in production. Springer international publishing, 2019, no. 36, p. 65–71.
17. Zhang H., Hu S., Wang Z., Liang Y. The effect of welding speed on the microstructures of the deposited coating of magnesium alloy AZ31 by cold metal transfer. Materials Design, 2015, no. 86, pp. 894–901.
18. Hu S., Zhang H., Wang Z. et al. Arc characteristics during cold metal transfer welding with magnesium alloy wire AZ31. Journal Manufacturing process, 2016, no. 24, pp. 298–306.
19. Vyasaraj M., Gururaj P., Manoj G. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals, 2016, no. 51, pp. 1–35.
20. Vorndran E., Moseke C., Gbureck U. 3D printing of ceramic implants. Materials Research Society Bulletin, 2015, no. 40, pp. 127–136.
21. Meininger S., Moseke C., Spatz K. et al. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Materials Science and Engineering, 2019, no. 98, pp. 1145–1158.
22. Meininger S., Mandal S., Kumar A. et al. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia, 2016, no. 31, pp. 401–411.
23. Salehi M., Maleksaeedi S., Sapari M.A.B. et al. Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Materials Desing, 2019, no. 169, pp. 115–124.
24. Mukhina I.Yu., Mukhametov A.A.-Kh., Koshelev A.O. Elimination of surface casting defects on magnesium alloy castings by gas-dynamic spraying. Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 4, pp. 34–39.
The paper considers self-lubricating antifriction materials reinforced with fabric based on organic fibers. Experimental fabrics of various composition and textile structure were designed and manufactured. Fabrics contain fibers of PTFE and other organic polymers. Samples of fabrics and antifriction organoplastics based on them have been studied, their physical-mechanical and tribological properties have been determined. It is shown that organoplastics based on experimental tissues can be considered as self-lubricating antifriction materials.
2. Pogosyan A.K. Friction and wear of filled polymeric materials. Moscow: Nauka, 1977, 138 p.
3. Myshkin N.K., Petrokovets M.I. Tribology. Principles and applications. Gomel: IMMS NASB, 2002, 310 p.
4. Semenov A.P., Savinsky Yu.E. Metallic fluoroplastic bearings. Moscow: Mashinostroenie, 1967, 354 p.
5. Mashkov Yu.K., Ovchar Z.N., Baibaratskaya M.Yu., Mamaev O.A. Polymer composite materials in tribotechnics. Moscow: Nedra-Businesscenter, 2004, 262 p.
6. Voronkov B.D. Dry friction bearings. Leningrad: Mashinostroenie, 1979, 224 p.
7. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermo-plastic polymer composite materials based on polyether-etherketones of various manufacturers. Trudy VIAM, 2022, no. 1 (107), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 01, 2022). DOI: 10.18577/2713-0193-2022-0-1-41-50.
8. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2012, 624 p.
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
10. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 05, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-23.
11. Craig W.D., Remorenko R.P. Initial wear of PTFE lined bearings. Lubrication Engineering, 1966, vol. 22, no. 5, pp. 181–186.
12. Anti-friction fabric: pat. 590383 USSR, no. 2319403/28-12; filed 15.12.75; publ. 30.01.78.
13. Kuzharov A.S., Ryadchenko V.G., Grechko V.O. Study of tribotechnical properties of various textile structures based on fibrous polytetrafluoroethylene. Trenie i iznos, 1986, vol. 7, no. 5, pp. 945–950.
14. Kuzharov A.S., Ryadchenko V.G. Composite antifriction coatings based on polytetrafluoroethylene fibers. Wearlessness: Interuniver. collection of scientific papers. Rostov-on-Don: RISHM, 1992, is. 2, pp. 140–147.
15. Ampep X-l an improved bearing material. Industrial lubrication and Tribology, 1975, vol. 97, no. 2, pp. 54–56.
16. Antifriction organoplastic prepreg and product made from it: pat. 2404202 Rus. Federation, no. 2009111566/05; filed 31.03.09; publ. 20.11.10.
17. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
18. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
19. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
20. Solomentseva A.V., Fadeeva V.M., Zhelezina G.F. Antifriction organoplastics for heavy loaded sliding friction units of aircraft structures. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 30–34. DOI: 10.18577/2071-9140-2016-0-2-30-34.
21. Kan A.Ch., Kulagina G.S., Ayupov T.R., Zhelezina G.F. The influence of environmental factors on the characteristics of antifriction organoplasty Orgalon AF-1M. Trudy VIAM, 2018, no. 3 (109), paper no. 09. Available at: http://www.viam-works.ru (accessed: October 06, 2022). DOI: 10.18577/2307-6046-2022-0-3-91-101.
22. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriction organoplastics for high-loaded friction knots. Trudy VIAM, 2019, no. 2 (74), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 05, 2022). DOI: 10.18577/2307-6046-2019-0-2-89-96.
23. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
The need to manufacture permanent magnets based on rare-earth metals of complex shape and with increased thermal stability of magnetic properties forces the use of heavy rare-earth metal dysprosium and transition metal cobalt in the chemical composition of the alloy. In this regard, the phase composition of the permanent magnet material changes. The study of the magnetic properties of secondary phases and their contribution to the magnetic properties of permanent magnets is necessary to find the optimal composition that allows to obtain permanent magnets with the necessary level of properties.
2. Arnold R.R. Calculation and design of magnetic systems with permanent magnets. Moscow: Energiya, 1969, 184 p.
3. Kablov E.N., Piskorsky V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Thermally stable ring magnets with radial texture based on Nd(Pr)–Dy–Fe–Co–B. Fizika i khimiya obrabotki materialov, 2011, no. 3, pp. 43–47.
4. Kablov E.N., Petrakov A.F., Piskorsky V.P., Valeev R.A., Nazarova N.V. Influence of dysprosium and cobalt on the temperature dependence of magnetization and phase composition of the material of the Nd–Dy–Fe–Co–B system. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 4, pp. 3–10.
5. Christodoulou C.N., Wallace W.E., Massalski T.B. Magnetic hardening of Pr–Co–B sintered magnets. Journal of Applied Physics, 1989, vol. 66, pp. 2749–2751.
6. Gros Y., Hartmann-Boutron F., Meyer C. et al. Mossbauer study of compounds RCo4–xFexB and RFe4B. Journal de Physique, 1988, vol. 49, pp. C8-547–C8-548.
7. Gros Y., Hartmann-Boutron F., Meyer C. et al. Preparation and 57Fe Mossbauer study of PrCo3FeB, NdCo3FeB, SmCo3FeB and SmCo2Fe2B. Journal of Magnetism and Magnetic Materials, 1988, vol. 74, pp. 319–326.
8. Herve M., Oliver I., Fernande G., Gary J.L. A structural magnetic and Mossbauer spectral study of the DyCo4–xFexB compounds with x = 0–3. Faculty Research Creative Works. Available at: http//scholarsmine.mst.edu/faculty_work/39 (accessed: June 15, 2022).
9. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
11. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
12. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 7. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2019-0-11-60-67.
13. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2019-0-7-67-75.
14. Pedziwiatr A.T., Jiang S.Y., Wallace W.E. et al. Magnetic properties of RCo4B compounds where R = Y, Pr, Nd, Gd and Er. Journal of Magnetism and Magnetic Materials, 1987, vol. 66, pp. 69–73.
15. Liao L.X., Altounian Z., Ryan D.H. Cobalt site preferences in iron rare-earth-based compounds. Physical Review B, 1993, vol. 47, no. 17, pp. 11230–11241.
16. Bolzoni F., Leccabue F., Moze O. et al. 3d and 4f magnetism in Nd2Fe14–xCoxB and Y2Fe14–xCoxB compounds. Journal of Applied Physics, 1987, vol. 61, pp. 5369–5373.
17. Buschow K.H.J., de Mooij D.B., Sinnema S. et al. Magnetic and crystallographic properties of ternary rare earth compounds of the type R2Co14B. Journal of Magnetism and Magnetic Materials, 1985, vol. 51, pp. 211–217.
18. Ende M.V., Jung I., Kim Y.H., Kim T. Thermodynamic optimization of the Dy–Nd–Fe–B system and application in the recovery and recycling of rare earth metals from NdFeB magnet. Green Chemistry, 2015, vol. 17, pp. 2246–2261.
The article presents the results of changes in the properties of high-temperature carbon fiber reinforced plastic VKU-61 for aviation purposes after testing for fungus resistance, obtained using various test methods. The retention of strength in static bending is 79–92 %, regardless of the method of testing for fungus resistance. For comparison, data on the fungus resistance of carbon plastics based on polymer binders of various chemical nature are given. The results of preservation of the mechanical properties of the considered carbon plastics after 3 months of exposure to heat and humidity conditions, including after exposure to mold fungi, are presented.
2. Kablov E.N., Startsev V.O. The influence of internal stresses on the aging of polymer composite materials: a review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576.
3. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 11, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
4. Mukhametov R.R., Petrova A.P. Thermoreactive binders for polymer composite materials: textbook. Ed. E.N. Kablov. M.: NIC "Kurchatov Institute" – VIAM, 2021, 528 p.
5. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
6. Evdokimov A.A., Raskutin A.E., Mishkin S.I., Mikhaldykin E.S. Arkal bridges with the use of carbon fiber arched elements. Konstruktsii iz kompozitsionnykh materialov, 2019, no. 2, pp. 22–29.
7. Veshkin E.A. The experience of using vacuum-infusion technologies in the production of structures from the PKM. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4 (3), pp. 344–350.
8. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. Ed. A.A. Berlin. St. Petersburg: Professiya, 2008, 560 p.
9. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
10. Mikhailin Yu.A. Heat, heat and fire resistance of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 416 p.
11. Raskutin A.E. Heat-resistant carbon fiber for the structures of aviation equipment operated at temperatures up to 400 °C: thesis, Cand. Sc. (Tech.). Moscow, 2007, 166 p.
12. Valueva M.I., Zelenina I.V., Akhmadieva K.R., Zharinov M.A., Khaskov M.A. Development of the FSUE "VIAM" in the field of high-temperature carbon fiber: directions and prospects. Materials of the IV All-Rus. Conf. “The role of fundamental research in the implementation of “Strategic directions for the development of materials and technologies for their processing for the period until 2030”. Moscow: VIAM, 2018, pp. 71–76.
13. A way to obtain melting polyimide binders of a polymerization type: pat. 2666734 Rus. Federation, no. 2017135540; filed 05.10.17; publ. 12.09.18.
14. Valevin E.O., Zelenina I.V., Marakhovsky P.S., Gulyaev A.I., Bukharov S.V. Study of the influence of thermal effects on the flutalonitrile matrix. Materialovedenie, 2015, no. 9, pp. 15–19.
15. Valueva M.I., Zelenina I.V., Stararkina A.V., Lonsky S.L. The impact of thermal effect on the structure and properties of polyimide carbon fiber. Voprosy materialovedeniya, 2022, no. 2 (110), pp. 90–101. DOI: 10.22349/1994-6716-2022-110-2-90-101.
16. Nikolaev E.V., Slavin A.V., Startsev V.O., Laptev A.B. Modern approaches to assessing the impact of external factors on materials and complex technical systems (to the 120th anniversary of G.V. Akimov). Trudy VIAM, 2021, no. 9 (103), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 12, 2022). DOI: 10.18577/2307-6046-2021-0-9-117-130.
17. Startsev V.O. The climatic resistance of polymer composite materials and protective coatings in a moderate-terribly climate: thesis, Dr. Sc. (Tech.). Moscow: VIAM, 2018, 308 p.
18. Valevin E.O. The effect of thermal effects on the properties of thermal-resistant polymer composite materials based on the flualonitrile matrix: thesis, Cand. Sc. (Tech.). Moscow: MAI, 2018, 130 p.
19. Kanevskaya I.G. Biological damage to industrial materials. Leningrad: Nauka, 1984, 232 p.
20. Bocharova B.V., Gerasimenko A.A., Korovina I.A. Bio resistance of materials. Resistance to mushrooms. Moscow: Nauka, 1986, 210 p.
21. Zlochevskaya I.V. Ecological groups of mushrooms that damage materials and their features. Biologicheskiye nauki, 1987, no. 8, pp. 81–87.
22. Lagauskas A.Yu., Mikulskene A.I., Shlyaugene D.Yu. The catalog of micromycetes – dietary supplements of polymeric materials. Moscow: Nauka, 1987, pp. 258–259.
23. Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology, 2017, vol. 5, no. 1, pp. 8–19.
24. Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 2008, vol. 26, pp. 246–265.
25. Krivushina A.A., Bobyreva T.V., Yakovenko T.V., Nikolaev E.V. Methods of microorganisms-destructors storage in FSUE «VIAM» collection (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 89–94. DOI: 10.18577/2071-9140-2019-0-3-89-94.
26. Krivushina A.A., Goryashnik Yu.S. Ways of protection of materials and products from microbiological damage (review). Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
27. Krivushina A.A., Bobyreva T.V., Goryashnik Yu.S., Bukharev G.M. Study of microorganisms the destructors of functional polymeric materials exposed under conditions of tropical climate simulation. Trudy VIAM, 2019, no. 7 (79), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 12, 2022). DOI: 10.18577/2307-60460-2019-0-7-76-83.
28. Krivushina A.A., Terekhov I.V., Moskvitina K.N., Malysheva S.F., Kuimov V.A. Efficiency of new fungicide compounds based on modified polysept for protection of polymer materials against biodeterioration. Trudy VIAM, 2021, no. 12 (106), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 12, 2022). DOI: 10.18577/2307-6046-2021-0-12-107-116.
29. Industry Standard 1 90264–77. Non-metallic aviation materials. The method of laboratory tests on resistance to molds. Moscow: Printing house MAP, 1978, 14 p.
30. State Standard 9.048–89. A unified system of protection against corrosion and aging. Technical products. Methods of laboratory tests on resistance to mold mushrooms. Moscow: Publishing House of Standards, 1994, 23 p.
31. State Standard 9.049–91. A unified system of protection against corrosion and aging. The materials are polymer and their components. Methods of laboratory tests on resistance to mold mushrooms. Moscow: Publishing House of Standards, 1992, 15 p.
32. Mukhametov R.R., Shimkin A.A., Dolgova E.V., Merkulova Yu.I. Polyfunctional cyane ethers for the manufacture of composite materials. Zhurnal prikladnoy khimii, 2014, vol. 87, no. 12, pp. 1836–1840.
33. Dolgova E.V., Mukhametov R.R. Polisianurate binder for spheroplasts. Zhurnal prikladnoy khimii, 2014, vol. 87, no. 8, pp. 1188–1192.
34. Perov N.S., Startsev V.O., Chutskova E.Yu., Golyaev A.I., Abramov D.V. Properties of carbon fiber based on a polycynurate binder after the exposition in various natural and artificial environments. Materialovedenie, 2017, no. 2, pp. 3–9.
Despite the problems currently caused by the pandemic, accidents and sanctions, it is planned to increase the production of structures made of polymer composite materials (PCM) in the aircraft industry. Widespread use of PCM in aircraft structures in 2025–2035. will be accompanied by increased introduction of automated processes, mathematical modeling at the stages of design, manufacture and life cycle of such structures, the use of combinations of thermoplastic and thermosetting matrices and metal elements in their production, as well as the transition to autoclave-free technologies.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 17, 2022). DOI: 10.18577/2307-6046-2020-0-67-38-44.
6. The solution of the All-Russian Scientific and Technical Conference «Functional and Polymer materials for aviation glazing» (Moscow, Dec. 10, 2021). Trudy VIAM, 2022, no. 1 (107), paper no. 13. Available at: https://viam-works.ru (accessed: June 10, 2022).
7. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: February 18, 2022). DOI: 10.18577/2713-0193-2021-0-2-51-61.
8. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 16, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), no. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
10. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N., Composite materials for non-autoclave technology (review). Trudy VIAM, 2018, no. 3 (63), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 17, 2022). DOI: 10.18577/2307-6046-2018-0-3-37-48.
11. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 16, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-23.
12. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience of application vacuum infusion technologies in production of designs from PCM. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4–3, pp. 344–350.
13. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: April 15, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
14. Goncharov V.A., Raskutin A.E. Computer modeling of the infusion process in the manufacture of composite arched element. Trudy VIAM, 2015, no. 7, paper no. 11. Available at: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2015-0-7-11-11.
15. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Features of prepregs intended for automated laying by ATL and AFP technologies. Trudy VIAM, 2015, no. 3, paper no. 06. Available at: http://www.viam-works.ru (accessed: April 15, 2022). DOI: 10.18577/2307-6046-2015-0-3-6-6.
16. Popov Yu.O., Koloкoltseva T.V., Gromova A.A., Gusev Yu.A. Influence of operational factors on the main physical and mechanical properties of a fiberglass product VPS-31. Trudy VIAM, 2021, no. 11 (105). paper no. 08. Available at: http://www.viam-works.ru (accessed: May 10, 2022). DOI: 10.18577/2307-6046-2021-0-11-82-90.
17. Aero-Engine Composites Market Research Report by Component, Application, Region – Global Forecast to 2027 – Cumulative Impact of COVID-19. Report Linker. Available at: https://www.reportlinker.com/p06080221/Aeroengine-Composites-Market-Research-Report-by-
Component-by-Application-by-Region-Global-Forecast-to-Cumulative-Impact-of-COVID-19.html (accessed: October 26, 2022).
18. A Multitude of Markets. Composites World. Available at: https://www.compositesworld.com/articles/a-multitude-of-markets (accessed: January 26, 2022).
19. MS-21 is an airliner with a "black" wing. Aviation of Russia. Available at: https://aviation21.ru/ms-21-lajner-s-chyornym-krylom/ (accessed: February 16, 2022).
20. Richardson M. MTorres made AFP sole supplier for A350 XWB wing skins. Available at: https://www.aero-mag.com/mtorres-made-afp-sole-supplier-for-a350-xwb-wing-skins (accessed: October 26, 2022).
21. Hindersmann A. Confusion about infusion: An overview of infusion processes. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 126, pp. 55–83.
22. Williams C., Summerscales J., Grove S. Resin Infusion under Flexible Tooling (RIFT): a review. Composites. Part A: Applied Science and Manufacturing, 1996, vol. 27 (7), pp. 517–524.
23. Trends and drivers in composites. Available at: https://umatex.com/news/trendy-i-drayvery-v-kompozitakh (accessed: May 26, 2022).
24. Mason K. Thermoplastic primary aerostructures take another step forward. CompositesWorld. Available at: https://www.compositesworld.com/articles/thermoplastic-primary-aerostructures-take-another-step-forward (accessed: January 26, 2022).
25. What is Industry 4.0 and what you need to know about it. Available at: https://trends.rbc.ru/trends/industry/5e740c5b9a79470c22dd13e7 (accessed: May 26, 2022).
In this work the main attention has been given to choice of recipe of inhibitive pigments and fillers, and also definition of their optimum ratio in the polymeric film-forming. For researches the epoxy compositions modified by liquid polysulphide rubber, containing inhibitive pigments and fillers of different structure have been used. For curing of primer compositions organic silicon ammine has been used. For acceleration of process of curing of primer compositions, it was used tertiary amine UP-606/2. As a part of pigmental composition the inhibitive pigments as well as structure-forming fillers, have been investigated.
2. Kablov E.N. Aviation materials science: results and prospects. Vestnik Rossiyskoy akademii nauk, 2002, vol. 72, no. 1, pp. 3–12.
3. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
4. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: October 24, 2022). DOI: 10.18577/2713-0193-2022-0-1-120-128.
5. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
6. Pyrikov A.V., Loiko D.P., Kochergin Yu.S. Modification of epoxy resins with liquid polysulfide and carboxylate butadiene rubbers. Klei. Germetiki. Tekhnologii, 2010, no. 1, pp. 28–33.
7. Kuznetsova V.А., Zheleznyak V.G., Kurshev E.V., Yemelyanov V.V. Research of fuel- and water resistance of coatings based on the filled epoxy-thiokol polymeric compositions. Aviation materials and technologies, 2021, no. 2 (63), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 24, 2022). DOI: 10.18577/2713-0193-2021-0-2-93-102.
8. Ashuyko V.A., Ivanova N.P., Salychits O.I. Properties of anticorrosive phosphate-containing pigments for paint and varnish coatings of metals. Energy and material-saving environmentally friendly technologies: abstracts of the X Intern. conf. Grodno, 2013, pp. 117–118.
9. Skorokhodova O.N., Kazakova E.E. New pigments and fillers for the production of coatings. Lakokrasochnaya promyshlennost, 2017, no. 6, pp. 20–23.
10. Emirova I.V., Alekseev A.A. New anticorrosion pigments. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2009, vol. 52, pp. 113–114.
11. Orekhova S.E., Ashuiko V.A., Kurilo I.I., Salychits O.I. Synthesis and properties of pigments for paints and varnishes with anticorrosive properties. Energy and material-saving environmentally friendly technologies: abstracts of the IX Intern. conf. Grodno, 2011, pp. 42–43.
12. Zhavoronok E.S., Senchikhin I.N. Evaluation of the crosslink density of a densely reticulated polymer taking into account the rigidity of the chain fragment between the network nodes. Vysokomolekulyarnye soyedineniya. Series B, 2019, vol. 61, no. 4, pp. 282–288.
13. Pyrikov A.V., Loiko D.P., Kochergin Yu.S. Modification of epoxy resins with liquid polysulfide and carboxylate butadiene rubbers. Klei. Germetiki. Tekhnologii, 2010, no. 1, pp. 28–33.
14. Eselev A.D., Bobylev V.A. Epoxy resins and hardeners for the production of paints and varnishes. Lakokrasochnye materialy i ikh primenenie, 2005, no. 10, pp. 16–25.
15. Kochnova Z.A., Zhavoronok E.S., Chalykh A.E. Epoxy resins and hardeners: industrial products. Moscow: Paint Media, 2006, 200 p.
16. Chebotareva E.G., Ogrel L.Yu. Modern trends in the modification of epoxy oligomers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
17. Chalykh A.E., Kochnova Z.A., Zhavoronok E.S. Baru R.L. Chemical transformations and rheokinetics in the system carboxyl-containing rubber–epoxy oligomer. Izvestiya vuzov. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2007, vol. 50, no. 1, pp. 43–47.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Kuznetsova V.A., Semenova L.V., Shapovalov G.G. Development trends in the field of anticorrosive polymeric systems for corrosion protection of fixing connections of contact couples of combined structures (review). Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 25–31. DOI: 10.18577/2071-9140-2017-0-1-25-31.
20. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
21. Chalykh A.E., Zhavoronok E.S., Kochnova Z.A. Interaction of carboxyl-containing nitrile rubber and epoxy oligomer. Vysokomolekulyarnye soyedineniya. Series B, 2010, vol. 52, no. 5, pp. 880–887.
The paper examines modern directions of development and features of the electroforming method in relation to nickel and its alloys. An overview of the electroforming method is presented, indicating reference sources, features of the method used and various materials. The compositions of electrolytes for nickel electroforming and the physical properties of the coatings obtained from them are presented. The peculiarities of the influence of various additives in electrolytes on the quality and consumer properties of products were considered. Different types of mandrels and materials for their production are described. Their comparison is carried out; the positive and negative aspects of different types of mandrels are considered. Considerable attention is paid to the consideration of the effect of internal stresses on the properties of materials obtained by electroforming.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Salakhova R.K., Tikhoobrazov A.B. Thermal resistance of electrolytic chromium coatings. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 60–67. DOI: 10.18577/2071-9140-2019-0-2-60-67.
4. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
5. Buznik V.M., Kablov E.N. Arctic materials science. Tomsk: Tomsk State University, 2018, vol. 3, 44 c.
6. Khmeleva K.M., Kozlov I.A., Nikitin Ya.Yu., Nikiforov A.A. Modern trends of protective galvanic coatings working at high temperatures (review). Trudy VIAM, 2020, no. 12 (94), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 03, 2022). DOI: 10.18577/2307-6046-2020-0-12-75-86.
7. Salakhova R.K., Tikhoobrazov A.B., Farafonov D.P., Smirnova T.B. Features of electrolytic deposition of abrasive-wear-resistant nickel-based coatings. Trudy VIAM, 2022, no. 2 (108), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 03, 2022). DOI: 10.18577/2307-6046-2022-0-2-99-110.
8. Di Bari G.A. Electroforming: Electroplating Engineering Handbook. Ed. L.J. Durney. 4th ed. New York: Van Nostrand Reinhold, 1984, pp. 474–490.
9. Huang C.H., Wu H.M., Hon Y.H. High-Strength Electroformed Nickel. Plating and Surface Finishing, 1990, vol. 77, pp. 56–59.
10. Safranek W.H. The Properties of Electrodeposited Metals and Alloys. A Handbook. Journal of The Electrochemical Society, 1975, vol. 122 (8), p. 270C. DOI: 10.1149/1.2134416.
11. Wearmouth W.R., Belt K.C. Electroforming with Heat-Resistant Sulfur-Hardened Nickel. Plating and Surface Finishing, 1979, vol. 10, pp. 53–57.
12. Dini J.W., Johnson H.R., Brooks J.A. Zinc in Sulfamate Nickel Deposits – Influence on Weldability of Electroforms. Metal Finishing, 1979, vol. 77, no. 2, pp. 99–101.
13. Brooks J.A., Dini J.W., Johnson H.R. Effects of Impurities on the Weldability of Electroformed Nickel. US Sandia Laboratories, 1978, p. 36.
14. Dini J.W., Johnson H.R. Some Property Data for Nickel-Cobalt Electrodeposits. Journal of Materials Science, 1976, vol. 11, no. 9, pp. 1779–1780.
15. Wearmouth W.R., Belt K.C. Mechanical Properties and Electroforming Applications of Nickel-Cobalt Electrodeposits. Transactions of the Institute of Metal Finishing, 1974, vol. 52, no. 3, pp. 114–118.
16. Snaith D.W., Groves P.D. Some Further Studies of the Mechanism of Cermet Electrodeposition. Transactions of the Institute of Metal Finishing, 1977, vol. 55, no. 3, pp. 136–140.
17. Sykes J.M., Allner D.J. Mechanisms for the Formation of Electrodeposited Composite Coatings. Transactions of the Institute of Metal Finishing, 1974, vol. 52, p. 28.
18. Malone G.A. Electrodeposition of Dispersion Strengthened Alloys. Symposium on Electrodeposited Metals for Selected Applications, Battelle Memorial Laboratories, 1991, vol. 78, pp. 58–62.
19. Harris S.J., Boden P.J. Electroforming with Composite Materials. Electroplating Metal Finishing, 1973, vol. 26, no. 5, pp. 9–13.
20. Bazzard R., Boden P.J. Codeposition of Chromium Particles in a Nickel Matrix. Transactions of the Institute of Metal Finishing, 1972, vol. 50, no. 2, pp. 63–69.
21. Harris S.J., Baker A.A., Hall A.F., Bache R.J. Electroforming Filament Winding Process – Method of Producing Metal Matrix Composites. Transactions of the Institute of Metal Finishing, 1971, vol. 49, no. 5, pp. 205–213.
22. Cooper G. Forming Processes for Metal Matrix Composites. Composites, 1970, vol. 1, no. 3, pp. 153–159.
23. Wallace W.A., Greco V.P. Electroforming High-Strength Continuous Fiber-Reinforced Composites. Plating, 1970, vol. 57, no. 4, pp. 342–348.
24. Dean A.V. Further Developments in the Use of Cast and Sprayed Backings on Electroformed Molds and Dies. Metallurgia, 1978, vol. 45, no. 5, pp. 243–248.
25. Wearmouth W.R. Application of New Developments in Electroforming Technology in the Toolmaking Industry. Interfinish 76 – Proceedings of the Ninth World Conference on Metal Finishing. Amsterdam, 1976, pp. 1–21.
26. Watson S.A. Recent Developments in Nickel Electroforming and Backing of Mold Cavities. Het Ingenieursblad, 1976, vol. 45, no. 9, pp. 279–287.
27. Dean A.V., Wearmouth W.R. New Backing Techniques for Electroformed Molds and Dies. Electroplating & Metal Finishing, 1975, vol. 28, no. 12, pp. 18–23.
28. Bertucio E.C. Electroforming with Collapsible Mandrels. Metal Finishing, 1966, vol. 64, pp. 61–66.
29. Marti J.L. The Effects of Some Variables upon Internal Stress of Nickel as Deposited from Sulfamate Electrolytes. Plating, 1966, vol. 53, no. 1, pp. 61–71.
30. Dini J.W., Johnson H.R., Saxton H.J. Influence of Sulfur Content on the Impact Strength of Electroformed Nickel. Electrodeposition Surface Treatment, 1974, vol. 2, no. 3, pp. 165–176.
31. Whitehurst M.L. Strength and Ductility of Electroformed Nickel. Symposium on Electrodeposited Metals for Selected Applications. Columbus, 1972, pp. 53–64.
32. Notley J.M. Corner Weakness in Nickel Electroforms. Transactions of the Institute of Metal Finishing, 1972, vol. 50, no. 1, pp. 6–10.
33. MacInnis R.D., Gow K.V. Tensile Strength and Hardness of Electrodeposited Nickel-Iron Alloy Foil. Plating, 1971, vol. 58, no. 2, pp. 135–136.
34. Hammond R.A.F. Nickel Plating from Sulphamate Solutions. Part 3 – Structure and Properties of Deposits from Conventional Solutions. Metal Finishing Journal, 1970, vol. 16, no. 188, pp. 234–243.
35. Sample C.H., Knapp B.B. Physical and Mechanical Properties of Electroformed Nickel at Elevated and Subzero Temperatures. Special Technical Publication, 1962, no. 318, pp. 32–43. DOI: 10.1520/STP46002S.
36. Zentner V., Brenner A., Jennings C.W. Physical Properties of Electrodeposited Metals. Part I – Nickel. American Society for Testing and Materials, 1952, vol. 39, no. 8, pp. 865–927.
37. McGeough J.A., Rasmussen H. Analysis of Electroforming with Direct Current. Journal of Mechanical Engineering Science, 1977, vol. 19, no. 4, pp. 163–166.
38. Dalby S., Nickelsen J., Alting L. Metal Distribution in Electroplating. Electroplating Metal Finishing, 1975, vol. 28, no. 10, pp. 18–23.
39. Watson S.A. The Throwing Power of Nickel and Other Plating Solutions. Transactions of the Institute of Metal Finishing, 1960, vol. 37, pp. 28.
40. Edwards R. Electroforming for Holographic Reproduction. Plating and Surface Finishing, 1988, vol. 75, no. 3, pp. 30–31.
41. Legierse P.E.J. Electroformed Molds for Optical Readout Disks. Plating and Surface Finishing, 1984, vol. 71, no. 12, pp. 20–25.
42. Legierse P.E.J. New Developments for Mastering and Electroforming Optical Disks. Plating and Surface Finishing, 1990, vol. 77, no. 1, pp. 48–50.
43. Schmidt F.J., Hess I.J. Properties of Electroformed Aluminum. Plating, 1966, vol. 55, no. 2, pp. 229–234.
44. Senderoff S. Electrodeposition of Refractory Metals. Metallurgical Review, 1966, vol. 11, pp. 97–112.
45. Silman H. Electrodeposition from Molten Salts. Finishing Industry, 1980, vol. 4, no. 4, pp. 8–90.
This work is devoted to the issues of comparison of domestic and foreign standard samples (certified reference materials) of nickel alloys of various grades. Using the method of x-ray fluorescence spectrometry on sets of State standard samples of alloys VZh172 and VZhL21 containing elements such as Al, Co, Cr, Mo, Ti, W, Zr, Fe, Mn, calibration dependences of the mass fraction of elements on the intensity of the signal – the characteristicx-ray radiation. Using statistical techniques, an assessment was made of the possibility of joint use of sets in the construction of general calibration characteristics for the simultaneous determination of Al, Co, Cr, Mo, Nb, Ta, Ti, W, Zr, Fe, Mn in nickel alloys of similar composition.
2. Karpov Yu.A., Baranovskaya V.B. Analytical control – an integral part of the diagnosis of materials. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1, pp. 5–12.
3. Karpov Yu.A., Baranovskaya V.B. Problems of standardization of chemical analysis methods in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1-2, pp. 5–14.
4. Kablov E.N. Quality control of materials – a guarantee of the safety of the operation of aviation equipment. Aviacionnnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
5. Karpov Yu.A., Baranovskaya V.B. The role and possibilities of analytical control in metallurgy. Tsvetnye metally, 2016, no. 8 (884), pp. 63–67. DOI: 10.17580/TSM 2016.08.09.
6. Chernikova I.I., Kostrikina T.V., Tyumneva K.V., Ermolaeva T.N. The use of standard samples of domain, steelmaker, converter slag and welding flows in the development of a methodology for analyzing slag-forming mixtures using the atomic-emission spectrometry with inductively connected plasma. Standartnyye obraztsy, 2017, no. 3–4, pp. 29–40. DOI: 10.20915/2077-1177-2017-13-3-4-29-40.
7. Kablov E.N., Cabina E.B., Morozov G.A., Muravskaya N.P. Assessment of compliance of new materials using high -level CO and MI. Kompetentnost, 2017, no. 2 (143), pp. 40–46.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
9. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
10. Muravskaya N.P., Ivanov A.V., Ermakova Y.I., Zyablikova I.N. The testing methodology for standard samples using the state primary standard GET 196–2011. II Int. Sc. Conf. “Standard samples in measurements and technologies”: a collection of works. Ekaterinburg: Ural Scientific-Iser. Institute of Metrology, 2015, pp. 46.
11. Lutsenko A.N., Letov A.F., Karachevtsev F.N. Problematic issues of the development of standard samples of composition and the properties of aviation materials. Standartnye obraztsy, 2016, no. 4, pp. 31–41.
12. Eroshkin S.G., Orlov G.V. Research of material inhomogeneity of reference samples made of wrought Ni-based superalloy VZH175-ID. Trudy VIAM, 2015, no. 8, paper no. 11. Available at: http://viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2015-0-8-11-11.
13. The Federal Information Fund for Ensuring the Uniformity of Measurements. Available at: http://fundmetrology.ru (accessed: June 22, 2022).
14. Orlov G.V., Titov V.I. X-ray-fluorescent and optical-emission methods of analysis of aviation alloys. Metallurgiya mashinostroeniya, 2018, no. 3, pp. 31–33.
15. Afonin V.P., Komyak N.I., Nikolaev V.P., Plotnikov R.I. X-ray-fluorescence analysis. Novosibirsk: Nauka, 1991, 173 p.
16. Stepanovsky V.V. Standard cast iron samples and steel for spectral analysis developed by the Institute of Standard Samples CJSC. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1, part II, pp. 70–77.
17. Saprygin A.V., Golik V.M., Makarov A.A., Dzhavaev B.G., Kudryavtsev V.N. Closure of standard samples of the isotopic composition of uranium production NBL (USA) and UECC. Standartnye obraztsy, 2007, no. 2, pp. 39–48.
18. Nalobin D.P., Osintseva E.V. Methods of comparing standard samples of the composition of substances and materials. Standartnye obraztsy, 2006, no. 1 (3), pp. 36–44.
19. Stepanovsky V.V., Guzeev L.I. Mixing of domestic and foreign standard samples on the SA-2000. Analitika i kontrol, 2000, vol. 4, no. 3, pp. 293–297.
20. Maryina G.E. Analytical control of ferroalloys by radiofluorescent spectrometry: thesis, Cand. Sc. (Tech.). Moscow, 2012, pp. 33–40.
21. Dudik S.L., Kalinin B.D., Rudnev A.V., Sergeev Yu.I. Analysis of steels and alloys on x-ray spectrometers of the Spectroscan Max series. Zavodskaya laboratoriya. Diagnostika materialov, 2014, vol. 80, no. 1, pp. 19–26.
22. Kalinin B.D., Plotnikov R.I. X-ray-fluorescent determination of alloying and impurity elements in homogeneous materials in the absence of adequate calibration samples. Analitika i kontrol, 2010, vol. 14, no. 4, pp. 236–242.
23. RMG 56–2002 GSI. Sets of standard samples of the composition of substances and materials. Methods of mutual comparison. Moscow: Publishing House of Standards, 2004, 10 p.
24. MI 3257–2009 GSI. Standard materials (substances). Methods of mutual comparison. Ekaterinburg: UNIIM, 2009, 36 p.
25. Dvoretskov R.M., Slavin А.V., Karachevtsev F.N., Zagvozdkina Т.N. Comparisons of the nickel alloys VZh172 and VZhL21 reference materials kits using the AES ICP method. Trudy VIAM, 2021, no. 11 (105), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 22, 2022). DOI: 10.18577/2307-6046-2021-0-11-120-132.
26. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Kablov E.N. Aviation materials science in the 21st century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS–VIAM, 2002, pp. 23–47.
28. Kablov E.N. Trends and guidelines of innovative development of Russia: collections scientific-inform. materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
29. Letov A.F., Karachevtsev F.N., Zagvozdkina T.N. Development the set of methods measurements of the chemical composition of nickel-based alloys. Trudy VIAM, 2018, no. 8 (68), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2018-0-8-89-97.
30. Osintseva E.V. Separation of standard samples: experiment planning and processing measurement results. Standartnye obraztsy, 2016, no. 4, pp. 3–14. DOI: 10.20915/2077-1177-2016-0-4-3-14.
31. Derffel K. Statistics in analytical chemistry. Moscow: Mir, 1994, 268 p.
32. Garmash A.V., Sorokina N.M. Metrological foundations of analytical chemistry. Moscow: Lomonosov Moscow State University, 2012, 47 p.
Because of limited resistance of glass fiber reinforced plastic (GFRP) to influence of climatic factors it is interesting to make natural weathering tests in different climatic conditions. The study of strength and thermomechanical properties changing of GFRP VPS-48/7781 (with or without coating) after 3 year environmental exposure in different climatic zones. It was shown that applying of coating based on VE-69 provides saving strength and thermomechanical properties on the initial level.
2. Tkachuk A.I., Gurevich Ya.M., Guseva M.A., Mishurov K.S. Technological and operational characteristics and applications of the epoxy binder VSE-1212, processed by prepreg technology. Klei. Germetiki. Tekhnologii, 2018, no. 4, pp. 29–34.
3. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
4. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: June 29, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
5. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes.
I. Evaluation of the influence of significant factors of influence. Deformatsiya i razrushenie materialov, 2019, no. 12, pp. 7–16. DOI: 10.31044/1814-4632-2019-12-7-16.
6. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of methods for studying the early stages of aging. Deformatsiya i razrushenie materialov, 2020, no. 1, pp. 15–21. DOI: 10.31044/1814-4632-2020-1-15-21.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016. no. 6, paper no. 11. Available at: http://www.viam-works.ru (accessed: June 29, 2022). DOI: 10.18577/2307-6046-2016-0-6-11-11.
8. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
9. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Investigation of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9. DOI: 10.31044/1994-6260-2020-0-3-2-9.
10. Osadchiy N.V., Malyshev V.A., Shepel V.T. Investigation of the deformation of a five-layer beam with a shear-compliant filler under concentrated force loading. Deformatsiya i razrusheniye materialov, 2018, no. 7, pp. 11–16.
11. Raskutin A.E. Structural carbon plastics based on new melt-type binders and Porcher fabrics. Novosti materialovedeniya. Nauka i tekhnika, 2013, no. 5, art. 01. Available at: http://materialsnews.ru (date of access: 07/08/2022).
12. Gulyaev A.I., Yakovlev N.O., Krylov V.D., Shurtakov S.V. Fracture micromechanics of glass-reinforced plastics during delamination by modes I and II. Materialovedenie, 2016, no. 2, pp. 13–22.
13. Gulyaev A.I., Yakovlev N.O., Krylov V.D., Lashov O.A. Application of fractographic analysis in the study of interlayer fracture of PCM. Aviaсionnye materialy i tehnologii, 2017, no. 3 (48), pp. 65–73. DOI: 10.18577/2071-9140-2017-0-3-65-73.
14. Semyonova L.V., Nefyodov N.I. Recovery technology for PWC systems with polyurethane enamel for the operating aviation articles after wornout PLC removal. Aviacionnye materialy i tehnologii, 2014, no. S3, pp. 47–50. DOI: 10.18577/2071-9140-2014-0-s3-47-50.
15. Nefedov N.I. Issues of import substitution in the paint and varnish industry. All materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2015, no. 8, pp. 25–28.
16. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 29, 2022). DOI: 10.18577/2307-6046-2021-0-5-114-126.
17. Vavilova M.I., Sokolov I.I., Akhmadieva K.R., Yamschikova G.A. Polymer composite materials with low porosity obtained by the technology of impregnation with a film binder. Voprosy materialovedeniya, 2017, no. 1 (89), pp. 140–146. DOI: 10.22349/1994-6716-2017-89-1-140-146.
18. Lobanov D.S., Zubova E.M. Influence of temperature aging on the mechanical behavior of structural fiberglass during interlaminar shear.Works of XXXI Intern. innovative conf. young scientists and students on problems of mechanical engineering. Moscow: Blagonravov Institute of Mechanical Engineering of RAS, 2020, pp. 779–782.
19. Nikolaev E.V., Pavlov M.R., Andreeva N.P., Slavin A.V., Skirta A.A. Investigation of the aging processes of polymer composite materials in natural conditions of the tropical climate of North America. Novosti materialovedeniya. Science and technology, 2018, no. 3–4 (30), art. 8. Available at: http://materialsnews.ru (accessed: July 08, 2022).
20. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymeric composite materials in conditions of extremely cold climate. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111). pp. 41–51. DOI: 10.14258/izvasu(2020)1-06.
Heat-resistant alloys and steels
Sevalnev G.S., Druzhinina M.E., Dulnev K.V., Mosolov A.N., Fomina L.Р., Chirkov I.A. Improvement of the tribotechnical characteristics of beryllium-containing steel VNS32-VI by surface modification
Light-metal alloys
Antipov K.V., Oglodkova Yu.S., Kuryntsev S.V., Safiullin E.I. Investigation of the influence of heat treatment modes on the structure and properties of sheets of aluminum-lithium alloy V-1469
Makushina M.А., Kochetkov A.S., Vinogradov I.D. Statistical evaluation of the homogeneity of the chemical composition of vacuum-arc remelting ingots from economic alloy titanium VT40L
Uridiya Z.P., Tokarev M.S., Leonov A.A., Trofimov N.V. Trends in the development of modern manufacturing technologies and methods for improving the surface properties of magnesium alloys (review)
Polymer materials
Kulagina G.S., Kan A.Ch., Zhelezina G.F., Levakova N.M. Antifriction materials based on polymer fibers
Composite materials
Valeev R.A., Korolev D.V., Morgunov R.B.,Piskorsky V.P. The contribution of phases to the magnetization of sintered materials Nd–Dy–Fe-Co–B
Valueva M.I., Zelenina I.V., Nacharkina A.V., Goryashnik Yu.S. Properties of high-temperature carbon fiber reinforced plastics after tests for fungus resistance
Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review)
Protective and functional
coatings
Kuznetsova V.A., Yemelyanov V.V., Marchenko S.A., Kurshev E.V. Influence of recipe of chromate-free quick-drying primer on structure and properties of protective coating
Tolmachev J.V., Kravchenko D.V., Kozlov I.A., Gerasimov M.V., Nikiforov A.A. Peculiarities of the development and use of the electroforming method for nickel and its alloys (review)
Material tests
Dvoretskov R.M., Karachevtsev F.N., Petrov P.S. Comparisons of the nickel alloys VZh172 and VZhL21 reference materials using the
x-ray fluorescence analysis method
Veligodskiy I.M., Koval T.V., Kurnosov A.O., Marakhovskiy P.S. Study of resistance of glass fiber reinforced plastic to natural weathering in different climatic conditions