Articles
The use of additive technologies for the production of parts is one of the main trends in recent years in the field of industrial production. Application of the technology of «layer-by-layer growing» provides savings in materials, a significant reduction in labor intensity, and allows you to create parts of any complexity and configuration.
To reduce the surface roughness values of parts manufactured using additive technology, the authors proposed a method of electrochemical treatment in acid electrolytes, which makes it possible to achieve a decrease in surface roughness values by more than 5 times compared to the original one, and to process parts of any complexity and configuration.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaitsev D.V., Prager S.M. Evolution of structure and properties of high-chromium heat-resistant alloy VZh159, obtained by selective laser alloying. Part I. Materialovedenie, 2019, no. 3, pp. 9–17. DOI: 10.31044/1684-579X-2019-0-3-9-17.
4. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
5. Grilikhes S.Ya. Electrochemical and Chemical Polishing: Theory and Practice. Influence on the property of metals. 2nd ed., Rev. Leningrad: Mashinostroyenie, 1987, pp. 17–19.
6. Shluger M.A., Azhogin F.F., Efimov E.A. Corrosion and protection of metals. Moscow: Metallurgy, 1981, p. 216.
7. Suslov A.G. The surface quality of the layer of machine parts. Moscow: Mashinostroenie, 2000, p. 320.
8. Amirkhanova N.A., Khamzina A.R. Electrochemical polishing of heat-resistant nickel-chromium alloys KhN45MVTYuBR and KhN50VMTYuB. Metalloobrabotka, 2008, no. 1 (43), pp. 17–21.
9. Grilikhes S.Ya. Electrochemical and chemical polishing. Moscow: Mashinostroenie, 1987, p. 27.
10. Engineering of the surface of the part. Ed. A.G. Suslova. Moscow: Mashinostroenie, 2008, p. 42.
11. Farafonov D.P., Leshchev N.E., Afanasiev-Khody- kin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
12. Rassokhina L.I., Bityutskaya O.N., Gamazina M.V., Echin A.B. Technological process de-velopment of casting details «diffuser» for gas turbine engines from VZh159 superalloy in the conditions of the machine-building enterprise. Trudy VIAM, 2019, no. 12 (84), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 11, 2021). DOI: 10.18577 / 2307-6046-2019-0-12-20-28.
13. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
14. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-saving technologies for the smelting of promising casting and wrought superheat-resistant alloys taking into account the processing of all types of waste. Electrometallurgiya, 2016, no. 9, pp. 30–41.
15. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Fatigue strength of heat-resistant nickel alloys produced by selective laser melting. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
16. Loshchinin Yu.V., Pakhomkin S.I., Razmakhov M.G. Phase transformation temperatures and calorimetric analysis of powder compositions of nickel-based superalloys. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-1-79-85.
17. Kogaev V.P., Makhutov N.A., Gusenkov A.P. Calculations of machine parts and structures for strength and durability. Moscow: Mashinostroenie, 1983, p. 224.
18. Shibaev B.A., Balmasov A.V. Electrochemical polishing of structural alloyed steels. Galvanotekhnika i obrabotka poverkhnosti, 2019, no. 2, pp. 24–25.
19. Dontsov M.G., Balmasov A.V., Semenova N.V. Chemical and electrochemical copper polishing - similarities and differences. II. Influence of the surface of layers. Izvestiya vuzov, ser.: Khimiya i khimicheskaya tekhnologiya, 2008, vol. 51, no. 12, pp. 54–58.
Based on the results of comparative studies and tests, the article shows the advantages of massive forgings with a reduced level of residual stresses made of 1933sb alloy balanced composition in comparison with similar serial semi-finished products. Massive forgings with a thickness of 100–150 mm from a 1933sb alloy of a balanced composition have a lower (more than 2 times) level of quenching residual stresses with strength characteristics increased (by 30–40 MPa and higher), especially in the direction of transverse in thickness (more than 10 %), the level of elongation and fracture toughness.
2. Kablov E.N. VIAM: Continuation of the way. Nauka v Rossii, 2012, no. 11, pp. 16–21.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020.Vol. 90, No. 4, pp. 331–334.
4. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
5. Laptev A.B., Pavlov M.R., Novikov A.A., Sla-vin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: April 8, 2021). DOI: 10.18577/2307-6046-2021-0-1-114-122.
6. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
7. Selivanov A.A., Tkachenko E.A., Popova O.I., Babanov V.V. High-strength wrought aluminum weldable V-1963 alloy for details of primary structure of modern aviation engineering. Trudy VIAM, 2017, no. 2 (50), paper no. 01. Available at: http://www.viam-works.ru (accessed: April 8, 2021). DOI: 10.18577/2307-6046-2017-0-2-1-1.
8. Duyunova V.A., Nechaikina T.A., Oglodkov M.S., Yakovlev A.L., Leonov A.A. Promising developments in the field of light materials for modern aerospace technology. Tekhnologiya legkikh splavov, 2018, no. 4, pp. 28–43.
9. Fridlyander I.N., Senatorova O.G., Tkachenko E.A., Molostova I.I. Development and application of high-strength alloys of the Al – Zn – Mg – Cu system for aerospace engineering. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 155–163.
10. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
11. Antipov V.V. Prospects for the development of light alloys for products of aerospace technology. Reports scientific and technical. conf. "Metallurgy and modern developments in the field of casting technologies, deformation and heat treatment of light alloys." Moscow: VIAM, 2016, paper no. 1. Availble at: http: //conf.viam/conf/203/proceedings (accessed: April 8, 2021).
12. Astashkin A.I., Babanov V.V., Selivanov A.A., Tkachenko E.A., Gusev D.V., Tsarev M.V. Improving the hardenability of massive forgings from alloys of the Al–Zn–Mg–Cu system by balanced alloying with zinc and magnesium. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), paper no. 04. Available at: http://www.journal.viam.ru (accessed: April 8, 2021). DOI: 10.18577/2713-0193-2021-0-2-35-42.
13. Davydov V.G., Zakharov V.V., Zakharov E.D., Novikov I.I. Diagrams of isothermal decomposition of a solution in aluminum alloys: handbook. Moscow: Metallurgiya, 1973, 152 p.
14. Fridlyander I.N. Creation, research and application of aluminum alloys: Selected works to the 100th anniversary of the birth. Ed. E.N. Kablov. Moscow: Nauka, 2013.291 p.
15. Aluminum alloys. Structure and properties of semi-finished products from aluminum alloys: reference guide. Ed. V.A. Livanov, V.I. Elagin. Moscow: Metallurgiya, 1985, vol. IV, 408 p.
Presents the results of the investigation of the influence of hot isostatic pressing and heat treatment on the structure and mechanical properties during tension of synthesized workpieces obtained by selective laser alloying from a metal-powder composition of VT6 alloy. The blanks were subjected to heat treatment at various temperatures in the state after synthesis, as well after HIP. The influence of different heat treatment modes was assessed by the results of tensile tests and structural researches.
2. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 2012, no. 57 (3), pp. 133–164.
4. Graf B., Gook SE, Gumenyuk AV, Retmayer M. Combined laser additive technologies for the production of turbine blades of complex geometric shape. Globalnaya yadernaya bezopasnost, 2016, no. 3 (20), pp. 34–42.
5. Garibov G.S. Metallurgy of granules – the basis for creating new materials for advanced aircraft engines. Permskie aviatsionnye dvigateli, 2012, no. 26, pp. 58–63.
6. Shishkovsky I.V. Fundamentals of High Resolution Additive Technologies. Saint Petersburg: Peter, 2016, 400 p.
7. Zlenko M.A., Popovich A.A., Mutylina I.N. Additive technologies in mechanical engineering. Saint Petersburg: Publishing house of Polytech University, 2013, 210 p.
8. Sufiyarov V.Sh., Popovich A.A., Borisov E.V., Polozov I.A. Selective laser melting of heat-resistant nickel alloy. Tsvetnye metally, 2015, no. 1, pp. 79–84.
9. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders. Trudy VIAM, 2015, no. 2, paper no. 02. Available at: http://www.viam-works.ru (accessed: May 12, 2021). DOI: 10.18577/2307-6046-2015-0-2-2-2.
10. Inozemtsev A.A., Bashkatov I.G., Koryakovtsev A.S. Titanium alloys in products developed by Aviadvigatel OJSC. Sovremennyye titanovyye splavy i problemy ikh razvitiya. Moscow: VIAM, 2010, pp. 43–46.
11. Dudikhin D.V., Saprykin A.A. Methods for producing spherical powders for additive laser technologies. Masters Journal, 2016, no. 1, pp. 51–55.
12. Dzunovich D.A., Lukina E.A., Yakovlev A.L. Influence of heat treatment parameters on producibility and mechanical properties of sheets made from high-strength titanium alloy VT23. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-3-3-10.
13. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
14. Gelchinsky B.R., Merkushev A.G., Dolmatov A.V. Application of protective coatings by plasma spraying on VT6 alloy products obtained by selective laser fusion. IV International Conference "Additive Technologies: Present and Future". Moscow, 2018, pp. 18–28.
15. Vasilev A.I, Putyrskiy S.V., Korotchenko A.Yu., Anisimova A.Yu. MIM technology as a method of manufacturing precision parts from metal-powder compositions, including titanium alloys (review). Trudy VIAM, 2021, no. 3 (97), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 12, 2021). DOI: 10.18577/2307-6046-2021-0-3-16-27.
16. Peskova A.V., Sukhov D.I., Mazalov P.B. Exami-nation of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
17. Ahlfors M., Bahbou F., Eklund A. HIP for AM – Optimized Material Properties by HIP. Proceedings of 12th International Conference on Hot Isostatic Pressing. Sydney, 2017, pp. 1–10.
18. Yamomoto Y., Fujikawa T. Mechanical Properties of Ti – 6Al – 4V Materials Prepared by Additive Manufacturing. Technology and HIP Process. Proceedings of 11th International Conference on Hot Isostatic Pressing. Stockholm, 2014, pp. 398–404.
19. Hjärne J., Ahlfors M. Hot Isostatic Pressing for AM parts. Quintus Technologies. Västerås, 2016, pp. –5.
20. Lukina E.A., Filonova E.V., Treninkov I.A. The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
An review of studies on the development of technologies for creating joints of intermetallic titanium alloys is presented. Today, electron beam welding is most common method for producing welded joints of this class of alloys. Brands of filler materials and solders used for intermetallic titanium alloys, as well as the properties that can be obtained when using them, are given. Approaches to the choice of welding technology that ensure the production of high-quality joints with the required characteristics are described.
2. Kablov E.N., Lukin V.I. Intermetallic compounds based on titanium and nickel for new technology products. Avtomaticheskaya svarka, 2008, no. 11, pp. 76–82.
3. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
4. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
5. Antashev V.G., Nochovnaya N.A., Pavlova T.V., Ivanov V.I. Heat-resistant titanium alloys. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 3, pp. 7–8.
6. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
7. Cao J., Qi J., Song X., Feng J. Welding and Joining of Titanium Aluminides. Materials, 2014, no.7, pp. 4930–4962.
8. Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Materials at High Temperatures, 2016, no. 33 (4–5), pp. 549–559.
9. Loretto M.H., Godfrey A.B., Hu D. et al. The influence of composition and processing on the structure and properties of TiAl-based alloys. Intermetallics, 1998, no. 6 (7–8), pp. 663–666.
10. Panteleev M.D., Bakradze M.M., Skupov A.A., Scherbakov A.V., Belozor V.E. Technological features of fusion welding of aluminum alloy V-1579. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 11–17. DOI: 10.18577/2071-9140-2018-0-3-11-17.
11. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. The efficiency of rare earth metals for filler materials alloying. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 14–19. DOI: 10.18577/2071-9140-2017-0-3-14-19.
12. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and soldering is in the aerospace industry. Proceedings of All-Rus. Scientific and Practical Confference «Welding and safety». Yakutsk: IFTPS SB RAS, 2012, pp. 21–30.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Chen B., Xiongn H., Sun B. et al. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys. Progress in Natural Science: Materials International, 2014, no. 24, pp. 313–320.
15. Liu X.L., Wu S.J., Ji Y.P. et al. Ultrasonic frequency pulse tungsten inert gas welding of Ti2AlNb-based alloy. Chinese Journal of Rare Metals, 2014, vol. 38, no. 4, pp. 541–547.
16. Arenas M.F., Acoff V.L. An investigation of the cracking susceptibility of gamma titanium aluminide welds produced by gas tungsten arc welding. High temperature materials processes, 2014, vol. 23, no. 1, pp. 25–34.
17. Chaturvedi M.C., Richards N.L., Xu Q. Electron beam welding of a Ti–45Al–2Nb–2Mn + 0.8 vol. % TiB2 XD alloy. Material Science and Engineering: A, 1997, vol. 239–240, pp. 605–612.
18. Reisgen U., Olschok S., Backhaus A. Electron beam welding of titanium aluminides – Influence of the welding parameters on the weld seam and microstructure. Materialwissenschaft und Werkstofftechnik, 2010, vol. 41, no 11, pp. 897–907. DOI: 10.1002/mawe.201000683.
19. Kuwahara G., Yamaguchi S., Nanri K. et al. CO2 laser welding of titanium aluminide intermetallic compound. Proceedings of SPIE, 2000, vol. 3888, pp. 411–417.
20. Davies P.D., Davies H.M., Watkins I., Britton D.A. The joining of gamma titanium aluminides via the powder interlayer bonding method. The international journal of advanced manufacturing technology, 2020, no. 109, pp. 2049–2054.
21. Chen G.Q., Zhang B.G., Liu W., Feng J.C. Crack formation and control upon the electron beam welding of TiAl-based alloys. Intermetallics, 2011, no. 19, pp. 1857–1863.
22. Chaturvedi M.C., Xu Q., Richards N.L. Development of crack-free welds in a TiAl-based alloy. Journal of Materials Processing Technology, 2001, vol. 118, no. 1, pp. 74–78. DOI: 10.1016/S0924-0136(01)00870-6.
23. Lei Zh., Dong Zh., Chen Ya. et al. Microstructure and tensile properties of laser beam welded Ti–22Al–27Nb alloys. Materials & Design, 2013, vol. 46, pp. 151–156. DOI: 10.1016/j.mades.2010.10.022.
24. Auwal S.T., Ramesh S., Yusof F., Manladan S.M. A review on laser beam welding of titanium alloys. The International Journal of Advanced Manufacturing Technology, 2018, vol. 97, no. 1, pp. 1–28. DOI: 10.1007/s00170-018-2030-x.
25. Arenas M.F., Acoff V.L. Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding. Welding Journal, 2003, no. 5, pp. 110–115.
26. Wang L., Sun D., Li H. et al. Microstructures and mechanical properties of a laser-welded joint of Ti3Al–Nb alloy using pure Nb filler metal. Metals – Open Access Metallurgy Journal, 2018, vol. 8, no. 10, pp. 785. DOI: 10.3390/met8100785.
27. Cai X., Sun D., Li H. et al. Microstructure characteristics and mechanical properties of laser-welded joint of γ-TiAl alloy with pure Ti filler metal. Optics & Laser Technology, 2017, vol. 97, pp. 242–247. DOI: 10.1016/j.optlastec.2017.07.011.
28. Chen X., Xie F.Q., Mab T.J. et al. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy. Journal of alloys and compounds, 2015, vol. 646, pp. 490–496.
29. Shapiro A., Rabinkin A. State of the art of titanium-based brazing filler metals. Welding Journal, 2003, vol. 82, no. 10, pp. 36–43.
30. TiNiNbZr high-temperature brazing filler metal for TiAl alloy, preparation method and brazing method thereof: pat. CN 110605498A; filed 14.05.19; publ. 24.12.19.
31. Brazing filler metal for brazing titanium-containing material, preparation method and brazing method: pat. CN 110666395A; filed 21.10.19; publ. 10.01.20.
32. Ti–Zr–Cu–Ni–Co–Mo amorphous brazing filler metal and preparing method thereof: pat. CN 103949802A; filed 23.04.14; publ. 30.07.14.
33. Ti-based filler alloy compositions: pat. WO 2014169133A1; filed 10.04.14; publ. 16.10.14.
34. Titanium-based amorphous brazing alloy foil strip for brazing and preparation method for foil strip: pat. CN 102430874A; filed 01.11.11; publ. 02.05.12.
This article discusses cast titanium alloys used in the construction of aircraft products and engines. Descriptions of the casting properties of titanium alloys are presented. The requirements for castings made of titanium alloys specified in the industry regulatory and technical documentation are set out. The main characteristics of their properties, advantages and disadvantages are considered. Some methods of increasing the parameters of mechanical properties are described. Conclusions are drawn about the current situation in the field of aviation foundry titanium alloys and products made from them.
2. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference book. Moscow: VILS–MATI, 2009, 520 p.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
4. Duyunova V.A., Leonov A.A., Molodtsov S.V. VIAM's contribution to the development of light alloys and the corrosion control of rocket and space technology products. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: February 26, 2021). DOI: 10.18577/2307-6046-2020-0-2-22-30.
5. Bibikov E.L., Ilyin A.A. Casting of titanium alloys: textbook. Moscow: Alpha-M: INFRA-M, 2014, 304 p.
6. Bratukhin A.G., Bibikov E.L., Glazunov S.G. et al. Production of shaped castings from titanium alloys. 2nd ed., rev. and add. Moscow: VILS, 1998, 292 p.
7. Moiseev V.N. Titanium and titanium alloys. Mechanical engineering: encyclopedia: in 40 vols. Ed. K.V. Frolov. Moscow: Mechanical Engineering, 2001, vol. II-3: Non-ferrous metals and alloys, pp. 272–353.
8. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanium alloys from different countries. Moscow: VILS, 2000, 318 p.
9. Titanium and titanium alloys. Fundamentals and applications. Ed. C. Leyens, M. Peters. Wiley-VCH, 2003, 513 p.
10. Aviation materials: reference book: in 12 vols. Ed. E.N. Kablova. 7th ed., rev. and add. Moscow: VIAM, 2010, vol. 6: Titanium alloys, 96 p.
11. OST 1 90060-92. Shaped castings from titanium alloys. Technical requirements.
12. Kuzmicheva L.G. Vvedenskaya E.K., Shakhanova G.V., Yanovskaya N.V. Development and industrial application of high-temperature gas-static treatment of titanium and heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 1998, no. 2, pp. 20–24.
13. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
14. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablova. 2nd ed., rev. and add. Moscow: VIAM, 2019, 316 p.
15. Rakhmankulov M.M., Prashchenko V.M. Casting technology for high-temperature alloys. Moscow: Intermet Inzhiniring, 2000, 464 p.
16. Illarionov A.G., Popov A.A. Technological and operational properties of titanium alloys: textbook. Ekaterinburg: Ural University Publishing House, 2014, 137 p.
17. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanium alloys in the design and production of aircraft engines and aerospace technology. Moscow: MAI Publishing House, 2001, 412 p.
18. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy. Trudy VIAM, 2018, no. 1 (61), paper no. 07. Available at: http://www.viam-works.ru (accessed: March 24, 2021). DOI: 10.18577/2307-6046-2018-0-1-7-7.
19. Borisova E.A., Bochvar G.A., Brun M.Ya. et al. Titanium alloys. Metallography of titanium alloys. Moscow: Metallurgiya, 1980, 464 p.
20. Bratukhin A.G., Kolachev B.A., Sadkov V.V. et al. Technology of production of titanium aircraft structures. Moscow: Mashinostroenie, 1995, 448 p.
21. Alloy based on titanium and a product made from it: pat. 2222627 Rus. Federation; filed 03.06.02; publ. 27.01.04.
22. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Modern economically alloyed titanium alloys: application and development prospects. Metallovedeniye i termicheskaya obrabotka metallov, 2016, no. 9 (735), pp. 8–15.
23. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation. Trudy VIAM, 2016, no. 9, paper no. 05. Available at: http://www.viam-works.ru (accessed: March 25, 2021). DOI: 10.18577/2307-6046-2014-0-9-5-5.
24. Kochetkov A.S., Panin P.V., Nochovnaya N.A., Makushina M.A. Study of chemical inhomogeneity in beta-solidifying TiAl alloys of various composition. Metallurg, 2021, vol. 64, no. 9-10, pp. 962–973. DOI: 10.1007/s11015-021-01077-1.
25. Gorlov D.S., Aleksandrov D.A., Zaklyakova O.V., Azarovskiy E.N. Investigation of the possibility of protection of intermetallic titanium alloy against fretting wear by ion-plasma coating. Trudy VIAM, 2018, no. 4 (64), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 12, 2021). DOI: 10.18577/2307-6046-2018-0-4-51-58.
26. Kochetkov A.S. The structure and properties of casting titanium alloys of various alloying systems in thin-walled shaped castings: thesis abstract, Cand. Sc. (Tech.). Moscow: VIAM, 2016, 23 p.
27. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
The study of the influence of the temperature of polyethylene printing on the dimensional stability of samples obtained by the method of FDM printing has been carried out. It is shown that a change in the temperature of the nozzle from 200 to 260 °C leads to a decrease in the deviation from the plane by a factor of eight. In this case, the tensile strength remains practically unchanged, and the elongation increases by 30 %. It has been established by the methods of rheological and microstructural studies that the observed effect is associated with a change in the structure of polyethylene, which is initiated by an increased temperature of the printer's extruder head. It has been suggested that the likely reason for the change in the structure of polyethylene is a change in the course of the crystallization process due to partial thermal oxidative destruction of the polymer matrix in the extruder head of a 3D printer.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
4. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Thermoplastic materials of new generation for aviation. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
5. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
6. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
7. Kondrashov S.V., Pykhtin A.A., Larionov S.A., Sorokin A.E. Influence of the technological FDM-modes of the press and structure of used materials on physic-mechanical cha-racteristics of FDM-models (review). Trudy VIAM, 2019, no. 10 (82), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 1, 2021). DOI: 10.18577/2307-6046-2019-0-10-34-49.
8. Zhao F., Li D., Jin Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials, 2018, vol. 11, no. 2, pp. 288–299.
9. Rinaldi M., Ghidini T., Cecchini F. et al. Additive layer manufacturing of poly (ether ether ketone) via FDM. Composites Part B: Engineering, 2018, vol. 145, pp. 162–172.
10. Zhang X., Fan W., Liu T. Fused deposition modeling 3D printing of polyamide-based composites and its applications. Composites Communications, 2020, vol. 21, pp. 100413.
11. Peng X., Zhang M., Guo Z. et al. Investigation of processing parameters on tensile performance for FDM-printed carbon fiber reinforced polyamide 6 composites. Composites Communications, 2020, vol. 22, pp. 100478.
12. Geng P., Zhao J., Gao Z. et al. Effects of Printing Parameters on the Mechanical Properties of High-Performance Polyphenylene Sulfide Three-Dimensional Printing. 3D Printing and Additive Manufacturing, 2021, vol. 8, no. 1, pp. 33–41.
13. El Magri A., Vaudreuil S., El Mabrouk K. et al. Printing temperature effects on the structural and mechanical performances of 3D printed Poly-(phenylene sulfide) material. Materials Science and Engineering: IOP Conference Series, 2020, vol. 783, no. 1, pp. 012001.
14. Mohamed O.A., Masood S.H., Bhowmik J.L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 2015, vol. 3, no. 1, pp. 42–53.
15. Kochesfahani S.H. Improving PLA-based material for FDM 3D-printers using minerals (principles and method development). Proceedings of the Society of Plastics Engineers Annual Technical Conference, 2016, pp. 1958–1614.
16. Turner B.N., Gold S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 2015, vol. 21, no. 3, pp. 250–261.
17. Duty C., Ajinjeru C., Kishore V. et al. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. Journal of Manufacturing Processes, 2018, vol. 35, no. 10, pp. 526–537.
18. Mark J.E. Physical properties of polymers handbook. New York: Springer, 2007, p. 825.
19. Tager A.A. Physicochemistry of polymers. Moscow: Nauchnyy mir, 2007, 573 p.
20. Spoerk M., Holzer C., Gonzalez‐Gutierrez J. Material extrusion‐based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science, 2020, vol. 137, no. 12, pp. 48545.
21. Rosli A.A., Shuib R.K., Ishak K.M. et al. Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM). AIP Conference Proceedings, 2020, vol. 2267, no. 1, pp. 020072.
22. Alsoufi M.S., Elsayed A.E. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system. International Journal of Mechanical and Mechatronics Engineering, 2017, vol. 17, pp. 7–16.
23. Peng A.H. Research on the interlayer stress and warpage deformation in FDM. Advanced Materials Research, 2012, vol. 538, pp. 1564–1567.
24. Noriega A., Blanco D., Alvarez B.J. et al. Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm. The International Journal of Advanced Manufacturing Technology, 2013, vol. 69, no. 9–12, pp. 2301–2313.
25. Dilberoglu U.M., Simsek S., Yaman U. Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes, 2019, vol. 34, no. 9, pp. 993–998.
26. Pickering K., Stoof D. Sustainable composite fused deposition modeling filament using post-consumer recycled polypropylene. Journal of Composites Science, 2017, vol. 1, no. 2, pp. 17.
27. Dong M., Zhang S., Gao D. et al. The study on polypropylene applied in fused deposition modeling. AIP Conference Proceedings, 2019, vol. 2065, no. 1, pp. 030059.
28. Spoerk M., Sapkota J., Weingrill G. et al. Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing. Macromolecular Materials and Engineering, 2017, vol. 302, no. 10, pp. 1700143.
29. Chatham C.A., Zawaski C.E., Bobbitt D.C. et al. Semi‐Crystalline Polymer Blends for Material Extrusion Additive Manufacturing Printability: A Case Study with Poly (ethylene terephthalate) and Polypropylene. Macromolecular Materials and Engineering, 2019, vol. 304, no. 5, pp. 1800764.
30. Das A., Marnot A.E.С., Fallon J.J. et al. Material extrusion-based additive manufacturing with blends of polypropylene and hydrocarbon resins. ACS Applied Polymer Materials, 2019, vol. 2, no. 2, pp. 911–921.
31. Spiegel G., Paulik C. Polypropylene Copolymers Designed for Fused Filament Fabrication 3D‐Printing. Macromolecular Reaction Engineering, 2020, vol. 14, no. 1, pp. 1900044.
32. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
33. Kim B.K., Kim K.J. Cross‐Linking of polypropylene by peroxide and multifunctional monomer during reactive extrusion. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 1993, vol. 12, no. 3, pp. 263–269.
34. Chodak I., Zimanyova E. The effect of temperature on peroxide initiated crosslinking of polypropylene. European Polymer Journal, 1984, vol. 20, no. 1, pp. 81–84.
35. Krajenta J., Safandowska M., Pawlak A. The re-entangling of macromolecules in polypropylene. Polymer, 2019, vol. 175, pp. 215–226.
36. Tuskaev V.A., Gagieva S.C., Kurmaev D.A. et al. Novel titanium (IV) diolate complexes with additional O‐donor as precatalyst for the synthesis of ultrahigh molecular weight polyethylene with reduced entanglement density: Influence of polymerization conditions and its implications on mechanical properties. Applied Organometallic Chemistry, 2021, pp. e6256.
37. Measurement of viscosity and activation energy of liquid molecules. Available at: http://genphys.phys.msu.ru/rus/lab/mol/Lab208(2018).pdf (accessed: May 30, 2021).
38. Bertolino M., Battegazzore D., Arrigo R. et al. Designing 3D printable polypropylene: Material and process optimization through reology. Additive Manufacturing, 2021, vol. 40, pp. 101944.
An overview of applied sound-proof designs, and also the directions of researches on improvement both designs, and materials applied to their manufacturing. The advantages and disadvantages of the existing ZPK options are considered. The main approaches to the solution of question of increase of acoustic efficiency of sound-proof designs are classified and described. Advantages and shortcomings of practical implementation of each approach are given. The conclusion is drawn on the most perspective direction of researches.
2. Velichko S.A., Ostrikov N.N., Kopiev V.F. Experience of presenting the TU-204 aircraft to the ANP ICAO international database. Reports of the III open All-Russian conf. on aeroacoustics. Moscow: TsAGI, 2013, pp. 235–237.
3. Dmitriev V.G., Munin A.G., Samokhin V.F. The program for reducing the noise of domestic aircraft. Polet (aviatsiya, raketnaya tekhnika i kosmonavtika), 2003, no. 3, pp. 7–11.
4. Astley J. Propulsion System Noise: Turbomachinery, Encyclopedia of Aerospace Engineering. John Wiley & Sons, Ltd, 2010.
5. Samokhin V.F. GTE noise. Introduction to Aviation Acoustics. Moscow: Publ. House MAI, 2007, p. 152.
6. Ostrikov N.N., Denisov S.L., Sobolev A.F. et al. Features of noise shielding for integrated airplanes. Collection of XXVI scientific and technical conf. on aerodynamics. Moscow: TsAGI, 2015, pp. 176–177.
7. Munin A.G., Efimtsov B.M., Kudisova L.Ya. Aviation acoustics: in 2 parts. Moscow: Mashinostroenie, 1986, part 1, 243 p.
8. Golubkova T.A. Promising directions for improving materials and technologies for the engine and airframe of a new generation of aviation technology: a review of foreign information. Moscow: VIAM, 2002, 22 p.
9. Gofin M.Ya., Ivanov A.A. Mechanics of honeycomb structures. Moscow: Mir, 2010, vol. 1: Design and development of honeycomb structures. Experimental research, 496 p.
10. Bogdanov S.A. Calculation of the impedance of a sound-absorbing structure with a filler in the form of a folded structure. Izvestiya Samarskogo nauchnogo tsentra RAN, 2006, vol. 8, no. 4, pp. 1100–1105.
11. Zakharov A.G., Anoshkin A.N., Pankov A.A., Pisarev P.V. Acoustic resonance characteristics of two- and three-layer honeycomb sound-absorbing panels. Vestnik PNIPU. Ser.: Aerospace engineering, 2016, no. 46, pp. 144–159.
12. Rudenko O.V., Khirnykh K.L. Model of a Helmholtz resonator for the absorption of intense sound. Akusticheskiy zhurnal, 1990, vol. 36, no. 3, pp. 527–534.
13. Zaikin A.A., Rudenko O.V. Nonlinear model of a Helmholtz resonator with a movable wall. Akusticheskiy zhurnal, 1996, vol. 42, no. 3, pp. 378–382.
14. Kablov E.N., Gunyaev G.M. New materials for improving the environmental friendliness of power plants. Nauka i proizvodstvo, 2003, no. 2, pp. 28–29.
15. Sobolev A.F., Ostrikov N.N. Problems of creating high-efficiency ZPK for aircraft engines of promising aircraft. Reports of the III open All-Russian conf. on aeroacoustics. Moscow: TsAGI, 2015, pp. 60–63.
16. Kopiev V.F., Ostrikov N.N., Yakovets M.A., Ipatov M.S. Problems of the creation of effective ZPK for promising turbofan engines with a high degree of bypass. Proceedings of II All-Russian scientific and technical conf. "Functional materials for reducing aircraft noise in the cabin and on the ground". Moscow: VIAM, 2017, pp. 4.
17. Kuznetsov V.M. Problems of noise reduction in passenger aircraft (review). Akusticheskiy zhurnal, 2003, vol. 49, no. 3, pp. 293–317.
18. Romashin A.G., Shul G.S. Non-metallic compositions for sound-absorbing structures. Nauka i proizvodstvo, 2003, no. 2, pp. 32–33.
19. Gusev S.A., Kostyuchenko V.N., Miychenko I.P. Imidoglassotoplasts for heat-loaded sound-absorbing structures. Izvestiya Samarskogo nauchnogo tsentra RAN, 2010, vol. 12, no. 1 (2), pp. 330–334.
20. Dudarev A.S. Analysis of the manufacturability of the structures of the filler of sound-absorbing panels of aircraft engines. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 3 (72), pp. 68–73.
21. Efimik V.A., Chekalkin A.A. Analysis of natural vibrations of sound-absorbing perforated fiberglass and carbon fiber panels with a system of tubular cells. Vestnik Bashkirskogo universiteta, 2012, vol. 17, no. 2, pp. 853–857.
22. Sobolev A.F. Increasing the efficiency of noise reduction in a channel with a flow in the presence of sound-absorbing linings. Akusticheskiy zhurnal, 1999, vol. 45, no. 3, pp. 404–413.
23. Baklanov V.S. Expected noise and vibration spectra of aircraft with new generation engines. Proceedings of II All-Russian scientific and technical conf. "Functional materials for reducing aircraft noise in the cabin and on the ground". Moscow: VIAM, 2017, p. 3.
24. Gorodkova N.A., Chursin V.A., Bersenev Yu.V. Analytical determination of resonant frequencies of multilayer sound-absorbing structures. Reports of the III All-Russian Scientific-Practical Conf. with Int. Participation "Protection of the population from increased noise exposure". Saint Petersburg: INNOVA, 2011, pp. 353–362.
25. Munin A.G., Kuznetsov V.M., Leontiev E.A. Aerodynamic noise sources. Moscow: Mashinostroenie, 1981, 248 p.
26. Baklanov V.S., Postnov S.S., Postnova E.A. Calculation of resonant sound-absorbing structures for modern aircraft engines. Matematicheskoye modelirovanie, 2007, vol. 19, no. 8, pp. 22–30.
27. Ostrikov N.N., Ipatov M.S., Lavrukhina M.P. et al. Investigation of nonlinear properties of cellular ZPK at high levels of sound pressure. Reports of the V open All-Russian conf. on aeroacoustics. Moscow: TsAGI, 2017, p. 118.
28. Ipatov M.S., Ostroumov M.N., Sobolev A.F. Influence of the spectrum of a high-intensity sound source on the sound-absorbing properties of resonant-type facings. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 465–472.
29. Wendoloski J.C. Sound absorption by an orifice plate in flow duct. Journal of the Acoustical Society of America, 1998, vol. 104, no. 1, pp. 122–132.
30. Igolkin A.A., Rodionov L.V., Shakhmatov E.V., Koh A.I. Sound absorption. Measurement methods: electron. allowance. Samara: SSAU, 2010, p. 59. Available at: https://studylib.ru (accessed: May 17, 2021).
31. Nikitin S.A., Osipov A.A. Features of testing sound-proof and sound-absorbing materials. Nauchny vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta, 2012, no. 1, pp. 115–117.
32. Pisarevsky N, pp., Golubkova L. V. Experimental setup for measuring the characteristics of sound-absorbing structures by the interference method at high levels of sound pressure. Trudy TsAGI, 1976, is. 1806, pp. 54–73.
33. Ostrikov N.N., Yakovets M.A., Palchikovsky V.V. Problems of impedance extraction on installations of the "interferometer with flow" type. Aerokosmicheskaya tekhnika, vysokiye tekhnologii i innovatsii, 2017, vol. 1, pp. 176–181.
34. Sobolev A.F. Semi-empirical theory of single-layer honeycomb sound-absorbing structures with a perforated front panel. Akusticheskiy zhurnal, 2007, vol. 53, no. 6, pp. 861–872.
35. Myakotnikova A.S., Siner A.A. A numerical study of the acoustic properties of sound-absorbing structures. Uchenye zapiski TsAGI, 2007, vol. XLIII, no. 4, pp. 95–106.
36. Dmitriev V.G., Samokhin V.F. Complex of algorithms and programs for calculating aircraft noise on the ground. Uchenye zapiski TsAGI, 2014, vol. XLV, no. 2, pp. 136–152.
37. Kopiev V.F., Chernyshev S.L. Development of methods of computational aeroacoustics at TsAGI. Proceedings of VI Int. conf. Parallel Computing and Control Problems RASO 2012: in 3 vols. Moscow: TsAGI, 2012, vol. 2, pp. 254–265.
38. Postnov V.I., VyakinV.N., VeshkinE.A. Research and optimization of the choice of sound-absorbing structures. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 3 (27), pp. 55–64.
39. Extended reaction acoustic liner for jet engines and the like: pat. US 5923003A; filed 02.12.97; publ. 13.07.99.
40. Sobolev A.F., Solovieva N.M., Filippova R.D. Expansion of the frequency band of sound absorption of linings of aircraft power plants. Akusticheskiy zhurnal, 1995, vol. 41, no. 1, pp. 146-152.
41. Khaletskiy Yu.D. The effectiveness of combined mufflers for aircraft engines. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 556–562.
42. Silencer: pat. 2396441 Rus. Federation, no. 2008136469/06; filed 11.09.08; publ. 10.08.10.
43. Heat and sound insulating multilayer panel: pat. 52877 Rus. Federation, no. 2005134541/22; filed 07.11.05; opubl. 27.04.06.
44. Molod M.V., Maksimenkov V.I., Fedoseev V.I. Features of sound-absorbing corrugated structures for the hot part of the engine (TRD). Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, vol. 13, no. 3, pp. 98–101.
45. Khaliulin V.I., Konstantinov D.Yu., Dvoeglazov I.V., Batrakov V.V. Experience in creating lightweight aggregates with a folded structure for sound-absorbing structures. Proceedings of II All-Russian scientific and technical conf. "Functional materials for reducing aircraft noise in the cabin and on the ground". Moscow: VIAM, 2017, pp. 5.
46. Anoshkin A.N., Zakharov A.G., Gorodkova N.A., Chursin V.A. Computational and experimental studies of resonant multilayer sound-absorbing structures. Vestnik PNIPU. Ser.: Mechanics, 2015, no. 1, pp. 5–20.
47. Zakharov A.G., Anoshkin A.N., Kopiev V.F. Investigation of new types of fillers made of polymer composite materials for multilayer sound-absorbing structures. Vestnik PNIPU. Ser.: Aerospace engineering, 2017, no. 51, pp. 95–103.
48. Anoshkin A.N., Zakharov A.G., Shustova E.N. Cellular fillers of the sound-absorbing contour of an aircraft engine. Nauchno-tekhnicheskiy vestnik Povolzhya, 2011, no. 3, pp. 25–29.
49. Yu J., Kwan H.W., Chiou S. Microperforate plate acoustic property evaluation. 5th AIAA /CEAS Aeroacoustics Conference, 1999, pp. 547–557.
50. Sobolev A.F. Sound-absorbing structures with an extended attenuation band for aircraft engine channels. Akusticheskiy zhurnal, 2000, vol. 46, no. 4, pp. 536–544.
51. Shuldeshova P.M., Zhelezina G.F., Solovieva N.A., Shuldeshov E.M. Aramid organoplastics for sound-absorbing structures. Voprosy materialovedeniya, 2016, no. 4 (88), pp. 42–49.
52. Zhelezina G.F., Bader E.Ya., Raskutin A.E., Migunov V.P., Stolyankov Yu.V. Materials for sound-absorbing structures. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 4, pp. 12–16.
53. Method of fabricating an acoustic liner: pat. US 6176964B1; filed 20.10.97; publ. 23.06.01.
54. High efficiency broadband acoustic resonator and absorption panel: pat. US 4421201A; filed 29.09.81; publ. 20.12.83.
55. Acoustic septum cap honeycomb: pat. US 8066098B2; filed 06.12.10; publ. 29.11.11.
56. Syed A.A., Ichihashi F., Smith C.R., Ayle E. Development of the Acousti-Cap technology for double-layer acoustic liners in aircraft engine nacelles // SAE Technical Paper. 2007. Available at: https://docs.cntd.ru/document/440208 (accessed: May 20, 2021).
57. HexWeb® Acousti-Cap® Sound Attenuating Honeycomb. Noise-reducing honeycomb for aircraft engines. Available at: www.hexcel.com/Products/Honeycomb/HexWeb-Acousti-Cap (accessed: December 14, 2020).
58. Pochkin Y.S., Khaletsky Yu.D. Investigation of the acoustic efficiency of models of turbofan engine noise mufflers using porous material. Reports of the IV open All-Russian conf. on aeroacoustics. Moscow: TsAGI, 2015, pp. 135–317.
59. Sobolev A.F., Ushakov V.G., Filippova R.D. Sound-absorbing structures of homogeneous type for aircraft engine channels. Akusticheskiy zhurnal, 2009, vol. 55, no. 6, pp. 749–759.
60. Israfilov I.Kh., Shafigullin L.N. Sound-absorbing materials of light industry used in mechanical engineering. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 1, pp. 81–83.
61. A method of manufacturing parts from non-woven material MR on a wire basis and a machine for its manufacture: pat. 2195381 Rus. Federation, no. 2001107370/12; filed 19.03.01; publ. 27.12.02.
62. Igolkin AA, Izzheurov EA, Hunyuan Ts., Gouchi U. Investigation of the acoustic characteristics of the MR material. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva, 2006, no. 2-2 (10), pp. 165–169.
63. Farafonov D.P., Migunov V.P., Degovec M.L., Aleshina R.Sh. Porous-fibrous metallic material for sound-absorbing structures of aircraft GTE. Trudy VIAM, 2016, no. 4, paper no. 1. Available at: http://www.viam-works.ru (accessed: December 19, 2020). DOI: 10.18577/2307-6046-2016-0-4-1-1.
64. Ahuja K.K., Gaeta R.J. A new wide-band acoustic liner with high temperature capability. 3rd AIAA/CEAS Aeroacoustics Conference, 1997, pp. 847–864.
65. Yu J., Kwan H. W., Yasukawa R.D. Use of HTP ceramic foam for aeroacoustic application. 3rd AIAA/CEAS Aeroacoustics Conference, 1997, pp. 887–897.
66. Sound-absorbing material of the VTI-7 brand. Electronic catalog of FSUE "VIAM". Available at: https://catalog.viam.ru/catalog/vti_7/zvukopogloshchayushchiy-material-marki-vti-7 (accessed: December 19, 2020).
67. Platonov M.M., Zhelezina G.F., Nesterova T.A. Porous fibrous polymer materials for wide range sound absorbing structures and investigation of their acoustical properties. Trudy VIAM, 2014, no. 6, paper no. 9. Available at: http://viam-works.ru (accessed: December 19, 2020). DOI: 10.18577/2307-6046-2014-0-6-9-9.
68. Lester H.C., Presser J.S., Parott T.L. Design and flight test of Kevlar acoustic liner. Journal of Aircraft. 1984, vol. 7, no. 21, pp. 491–497.
69. Klempner D., Sendjarevich V. Polymer foams and foaming technologies. Saint Petersburg: Professiya, 2009, 600 p.
70. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concen-tration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
71. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
72. Shuldeshova P.M., Zhelezina G.F. An influence of atmospheric condition and dust loading on properties of structural organic plastics. Aviacionnye materialy i tehnologii, 2014, no. 1, pp. 64–68. DOI: 10.18577/2071-9140-2014-0-1-64-68.
73. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
This paper is devoted to one of the most pressing problems of modern non – metallic materials science-chemical modification of thermosetting systems based on epoxy oligomers with active diluents and bismaleimides: polymer binders for reinforced plastics, adhesives, compounds, sealants, and protective paint coatings. Based on the analysis of domestic and foreign scientific literature, as well as patents for inventions, a conclusion was made about the prospects for further research in this direction. The use of these types of modifiers can increase the chemical resistance, crack resistance, strength, impact strength, heat resistance and other valuable properties of polymer composite materials (PCM) based on an epoxy polymer matrix.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Solovyanchik L.V., Kondrashov S.V., Yurkov G.Yu., Buznik V.M. et al. Electrically conductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers. Rossiyskie nanotekhnologii, 2016, vol. 11, no. 11–12. S. 91–97.
4. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
5. Mukhametov R.R., Petrova A.P. Properties of epoxy polymer binders and their processing into polymer composite materials. News of Materials Science. Science and technology. Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 3-4 (30), paper no. 06. Available at: http://www.mterialsnews.ru (accessed: June 1, 2021).
6. Muhametov R.R., Petrova A.P., Ponomarenko S.A., Dolgova E.V., Pavlyuk B.F. Properties of binder EDT-69N and polymer composites on its basis. Trudy VIAM, 2018, no. 4 (64), paper no. 04. Available at: http//www.viam-works.ru (accessed: June 1, 2021). DOI: 10.18577/2307-6046-2018-0-4-28-37.
7. Tkachuk A.I., Gurevich Ya.M., Guseva M.A., Mishurov K.S. Technological and operational characteristics and fields of application of the epoxy binder VSE-1212, processed using prepreg technology. Klei. Germetiki. Tekhnologii, 2018, no. 4, pp. 29–34.
8. Terekhov I.V., Shlenskiy V.A., Kurshev E.V., Lonskiy S.L., Dyatlov V.A. Researches of factors affecting the formation of epoxy-containing microcapsules for the self-healing compositions. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 27–34. DOI: 10.18577/2071-9140-2018-0-3-27-34.
9. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ya.M. The main methods of modifying epoxy polymer materials in Russia. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 9, pp. 10–17.
10. Babaevsky P.G., Kulik S.G. Crack Resistance of Cured Polymer Compositions. Moscow: Khimiya, 1991.336 p.
11. Chebotareva E.G., Ogrel L.Yu. Modern trends in the modification of epoxy polymers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
12. Kochergin Yu.S., Grigorenko T.I. Influence of liquid reactive rubbers on wear resistance of epoxy adhesive compositions. Klei. Germetiki. Tekhnologii, 2013, no. 11, pp. 22–28.
13. Nasonov F.A., Aleksashin V.M., Melnikov D.A., Bukharov S.B. Investigation of the modification of an epoxy binder and carbon fiber-reinforced plastic based on it with zinc stearate. Klei. Germetiki. Tekhnologii, 2018, no. 9, pp. 24–31.
14. Anikhovskaya L.I., Batizat D.V., Baturina E.I., Leshchun E.V., Sakharov A.M. Non-combustible film glue and adhesive prepreg based on it. Klei. Germetiki. Tekhnologii, 2013, no. 6, pp. 2–5.
15. Tatarintseva O.S., Zimin D.E., Samoilenko V.V. Influence of modification on technological and mechanical properties of an epoxyanhydride binder. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2015, vol. 21, no. 4, pp. 489–500.
16. Akopova T.A., Olikhova Yu.V., Osipchik V.S. Study of the curing process of epoxy-amine binders modified with epoxy-containing silsesquioxane by thermoanalytical methods. Klei. Germetiki. Tekhnologii, 2014, no. 11, pp. 22–26.
17. Rakhmatullina A.P., Satbaeva N.S., Cherezova E.N. Modification of epoxy compositions with an oligomer based on polyethylene terephthalate destructate. Klei. Germetiki. Tekhnologii, 2018, no. 3, pp. 18–21.
18. Golovkov P.V., Korotkova N.P., Potapochkina I.I. Influence of the type of active diluent on the protective properties of epoxy coatings. Lakokrasochnyye materialy i ikh primenenie, 2008, no. 6, pp. 18–21.
19. Akulinicheva A.A., Korotkova N.P., Styunina A.O. The choice of a monofunctional active diluent for modifying the properties of the epoxy system. Lakokrasochnyye materialy i ikh primenenie, 2020, no. 4, pp. 38–40.
20. Makhin M.N., Terekhov A.V., Dmitriev G.S. et al. Composite materials: properties of a polymer matrix based on epoxy resin and mono-epoxy diluent-p-tert-butylphenol glycidyl ether. Zhurnal prikladnoy khimii, 2018, vol. 91, no. 5, p. 749–754.
21. Zarubina A.Yu., Kozhevnikov V.S., Trofimov A.N. et al. The influence of an active diluent on the rheokinetics of a heat-resistant binder based on a polyfunctional epoxy oligomer. Vestnik MITKHT im. M.V. Lomonosova, 2013, vol. 8, no. 4, pp. 99–102.
22. Trofimov AN, Apeksimov NV, Simonov-Emelyanov ID, Prokhorova Yu.S. Influence of diluents on the kinetics of volumetric shrinkage and stresses during curing of epoxydian oligomers. Tonkie khimicheskiye tekhnologii, 2016, vol. 11, no. 6, pp. 103–107.
23. Pakhomov K.S., Zarubina A.Yu., Antipov Yu.V., Simonov-Emelyanov I.D. Influence of modifiers on rheokinetics of curing of chlorine-containing epoxy binders. Plasticheskiye massy, 2012, no. 5, pp. 19–22.
24. Gorbatkina Yu.A., Ivanova-Mumzhieva V.G., Kuperman A.M. Adhesion of modified epoxy matrices to reinforcing fibers. Vysokomolekulyarnyye soyedineniya, series A, 2016, vol. 58, no. 5, pp. 439–447.
25. Nizina T.A., Selyaev V.P., Startsev O.V., Molokov M.V., Nizin D.R. Using the method of dynamic mechanical analysis to determine the characteristic temperature of the α′-transition of polymer composite materials based on low-viscosity epoxy binders. Polimery v stroitelstve, 2015, no. 1 (3). S. 55–68.
26. Potapochkina I.I., Korotkova N.P., Tarasov V.N., Lebedev V.S. Modifiers of epoxy resins produced by NPP «Makromer». Klei. Germetiki. Tekhnologii, 2006, no. 7, pp. 14–17.
27. Tuisov A.G., Belousov A.M., Bystrova O.V. Investigation of the effect of modifying an epoxy binder for fiberglass with an active diluent laproxide 301G and laproxide 603. Plasticheskiye massy, 2008, no. 6, pp. 29–31.
28. Khozin V.G. Reinforcement of epoxy polymers. Kazan: Dom pechati, 2004, 446 p.
29. Epoxy resin composition: pat. 10655005 USA, no. 15/560773; filed 22.03.16; publ. 19.05.20.
30. Li Y., Li B., Chen W. A study on the reactive diluent for the solvent-free epoxy anticorrosive coating. Journal of Chemical and Pharmaceutical Research, 2014, vol. 6, no. 7, pp. 2466–2469.
31. Shen L., Wang Y., Zhao Q. et al. Influence of a long-side-chain-containing reactive diluent on the structure and mechanical properties of UV-cured films. Polymer International, 2016, vol. 65, pp. 1150–1156. DOI: 10.1002/pi.5163.
32. Multilayer structural adhesive film: pat. 10632707 USA, no. 15/774621; filed 14.11.16; publ. 28.04.20.
33. Two-component mortar compound and use thereof: pat. 10633286 USA, no. 16/326386; filed 20.07.17; publ. 28.04.20.
34. Marcos da Silva W., Ribeiro H., Cardoso Neves J. et al. Improved impact strength of epoxy by the addition of functionalized multiwalled carbon nanotubes and reactive diluent. Journal of Applied Polymer Science, 2015. DOI: 10.1002/APP.42587.
35. Ali M., Hammami A. Experimental Modeling of the Cure Behavior of a Formulated Blend of DGEBA Epoxy and C12-C14 Glycidyl Ether as a Reactive Diluent. Polymer Composites, 2005. DOI: 10.1002/pc.20131.
36. Flores H.A., Ayude M.A., Riccardi C.C., Fasce L.A. Influence of a Reactive Diluent on Curing Kinetics, Internal Curing Process, and Mechanical Performance of Filament Wound Glass Fiber-Reinforced Epoxy Composite Pipes. Polymer Engineering and Science, 2018. DOI: 10.1002/pen.24911.
37. Cicala G., Recca G., Carciotto S., Restuccia C.L. Development of Epoxy/Hyperbranched Blends for Resin Transfer Molding and Vacuum Assisted Resin Transfer Molding Applications: Effect of a Reactive Diluent. Polymer Engineering and Science, 2009, vol. 49, no. 3, pp. 577–584. DOI: 10.1002/pen.21282.
38. Epoxy composition for the manufacture of products from polymer composite materials by vacuum infusion: pat. 2488612 Rus. Federation, no. 2012115497/04; filed 18.04.12; publ. 27.07.13.
39. Epoxy composition for the manufacture of products from polymer composite materials by vacuum infusion: pat. 2606443 Rus. Federation, no. 2015143321; filed 13.10.15; publ. 10.01.17.
40. Heat-resistant epoxy binder for the manufacture of products by impregnation under pressure: pat. 2590563 Rus. Federation, no. 2015115289/05; filed 23.04.15; publ. 10.07.16
41. Epoxy adhesive composition: pat. 2184131 Rus. Federation, no. 2000107500/04; filed 27.03.00; publ. 27.06.02.
42. Compound for antifriction coatings: pat. 2621115 Rus. Federation, no. 2016133878; filed 18.08.16; publ. 31.05.17.
43. Epoxy adhesive: pat. 2520479 Rus. Federation, no. 2012153357/05; filed 10.12.12; publ. 27.06.14.
44. Electrical insulating filling and impregnating compound: pat. 2672094 Rus. Federation, no. 2017144361; filed 18.12.17; publ. 12.11.18.
45. Highly filled compound for the manufacture of ferromagnetic cores: pat. 2680999 Rus. Federation, no. 2017144397; filed 18.12.17; publ. 01.03.19.
46. A method of obtaining anti-adhesive coatings: pat. 2490292 Rus. Federation, no. 2011151675/05; filed 16.12.11; publ. 20.08.13.
47. A method of obtaining antifriction materials for binary surfaces: pat. 2487904 Rus. Federation, no. 2012104096/05; filed 06.02.12; publ. 20.07.13.
48. Glue composition (its variants): pat. 2174139 Rus. Federation, no. 2000132253/04; filed 22.12.00; publ. 27.09.01.
49. Vibration-absorbing epoxy composition: pat. 2507228 Rus. Federation, no. 2012130493/05; filed 17.07.12; publ. 20.02.14.
50. Adhesive composition: pat. 2285027 Rus. Federation, no. 2005118802/04; filed 17.06.05; publ. 10.10.06.
51. Polymer composition: pat. 2507227 Rus. Federation, no. 2011132574/05; filed 03.08.11; publ. 20.02.14.
52. Method of strengthening power structures: pat. 2516185 Rus. Federation, no. 2011153594/02; filed 28.12.11; publ. 20.05.14.
53. Highly filled composite structural material: pat. 2657060 Rus. Federation, no. 2016125606; filed 27.06.16; publ. 08.06.18.
54. Polymer composition: pat. 2506291 Rus. Federation, no. 2011153590/04; filed 28.12.11; publ. 10.02.14.
55. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 38–42.
56. Vavilova M.I., Sokolov I.I., Akhmadieva K.R., Yamshchikova G.A. Polymer composite materials with low porosity obtained by the technology of impregnation with a film binder. Voprosy materialovedeniya, 2017, no. 1 (89). S. 140-146.
57. Mosiyuk V.N., Tomchani O.V. Evaluation of properties of glass-fibre-reinforced plastics based on epoxybisma-leimide resin, produced by different non-autoclave mol-ding techniques. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 47–52. DOI: 10.18577 / 2071-9140-2019-0-2-47-52.
58. Mikhailin Yu.A. Heat-resistant polymers and polymer materials. Moscow: Professiya, 2006.624 p.
59. Bismaleimide-epoxy compositions and prepregs: pat. 4510272 USA, no. 475836; filed 16.03.83; publ. 09.04.85.
60. Rao B.S. Novel bismaleimides via epoxy-carboxy addition reaction: synthesis characterization and thermal stability. Journal Polymer Science, 1988, no. 1, pp. 3–10.
61. Yerlikaya Z., Erinc N.К., Oktem Z. et al. Chain-extended bismaleimides. II. A study of chain-extended bismaleimides as matrix elements in carbon fiber composites. Journal of Applied Polymer Science, 1996, vol. 59, no. 3, pp. 537–542.
62. Mikhaylin Yu.A., Minchenko I.P. Maleimide binders (review). Plasticheskiye massy, 1992, no. 5, pp. 56–64.
63. Jena R.K., Yue C.Y., Sk M.M., Ghosh K.A. Novel high performance bismaleimide/diallyl bisphenol A (BMI/DBA) – epoxy interpenetrating network resin for rigid riser application. RSC Advances, 2015, no. 5 (97), pp. 79888–79897.
64. Xiong X., Chen P., Zhang J. et al. Preparation and Properties of High Performance Phthalide-Containing Bismaleimide Modified Epoxy Matrices. Journal of Applied Polymer Science, 2011, vol. 121, pp. 3122–3130. DOI: 10.1002/app.33588.
65. Xiong X., Chen P., Zhu N. et al. Synthesis and Properties of a Novel Bismaleimide Resin Containing 1,3,4-Oxadiazole Moiety and the Blend Systems Thereof With Epoxy Resin. Polymer Engineering and Science, 2011, vol. 51, no. 8, pp. 1599–1606. DOI: 10.1002/pen.21942.
66. Suresh Kumar R., Alagar M. Studies on Mechanical, Thermal, and Morphology of Diglycidylether-Terminated Polydimethylsiloxane-Modified Epoxy-Bismaleimide Matrices. Journal of Applied Polymer Science, 2006, vol. 101, pp. 668–674. DOI: 10.1002/app.23799.
67. Mahesh K.P.O., Alagar M., Jothibasu S. A Comparative Study on the Preparation and Characterization of Aromatic and Aliphatic Bismaleimides-Modified Polyurethane-Epoxy Interpenetrating Polymer Network Matrices. Journal of Applied Polymer Science, 2006, vol. 99, pp. 3592–3602. DOI: 10.1002/app.22982.
68. Ambika Devi K., Bibin J., Reghunadhan Nair C.P., Ninan K.N. Syntactic Foam Composites of Epoxy-Allyl Phenol-Bismaleimide Ternary Blend Processing and Properties. Journal of Applied Polymer Science, 2007, vol. 105, pp. 3715–3722. DOI: 10.1002/app.26316.
69. Shenoy M.A., Patil M., Shetty A. Modification of Epoxy Resin by Addition of Bismaleimide and Diallyl Phthalate. Polymer Engineering and Science, 2007, vol. 47, no. 11, pp. 1881–1888. DOI: 10.1002/pen.20901.
70. Yuan L., Liang G., Gu A. Novel fiber reinforced bismaleimide/diallyl bisphenol A/microcapsules composites. Polymers for Advanced Technologies, 2011, vol. 22, pp. 2264–2272. DOI: 10.1002/pat.1755.
71. Zhou B.X., Huang Y.J., Zhang X.H. et al. Thermal Properties of an Epoxy Cresol-Formaldehyde Novolac/Diaminodiphenyl Sulfone System Modified by Bismaleimide Containing Tetramethylbiphenyl and Aromatic Ether Structures. Polymer Engineering and Science, 2009, vol. 49, no. 8, pp. 1525–1532. DOI: 10.1002/pen.21381.
72. The composition of the epoxy-bismaleimide binder for prepregs (options), a method for producing epoxy-bismaleimide binder (options), prepreg and product: pat. 2335514 Rus. Federation, no. 2006147031/04; filed 27.12.06; publ. 10.10.08.
73. Composition of epoxy-bismaleimide binder for prepregs, prepreg and product: pat. 2427598 Rus. Federation, no. 2009139831/05; filed 15.12.14; publ. 20.06.16.
74. Composition of epoxy-bismaleimide resin and method for its production: pat. 2587169 Rus. Federation, no. 2014150885/05; filed 15.12.14; publ. 20.06.16.
Influence of nickel sulfate additives in silicate-alkaline electrolyte for microarc oxidation of titanium alloys on properties of formed electrolyte-plasma coatings was investigated. The influence of the component composition of the electrolyte on the chemical composition of the coatings, their protective ability, porosity and electrical characteristics was established. It is shown that the most corrosion-resistant coatings are formed from electrolytes with a low content of nickel sulfate, and an increase in the content of nickel in the coating does not lead to a significant change in its electrical conductivity.
2. Tomashov N.D. Titanium and corrosion-resistant alloys based on it. Moscow: Metallurgiya, 1985, 80 p.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Corrosion or life. Nauka i zhizn, 2012, no. 11, pp. 16–21.
5. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Development of a pilot industrial technology for the manufacture of semi-finished products from pseudo-alpha titanium alloy VT4. Titan, 2016, no. 2 (52), pp. 33–42.
6. Molitor P., Young T. Adhesives bonding of a titanium alloy to a glass fiber reinforced composite material. International Journal of Adhesion and Adhesives, 2002, vol. 22, pp. 101-107.
7. Ditchek B.M., Breen K.R., Sun T.S., Venables J.D. Morphology and composition of titanium adherends prepared for adhesive bounding. Proceedings of 25th National SAMPE Symposium, 1980, pp. 13–24.
8. Method of coating titanium articles and product thereof: pat. US 2864732; filed 05.10.53; publ. 16.12.58.
9. Mahoon A. Titanium adherens. Durability of structural adhesives. London: Applied Science Publishers, 1983, p. 255.
10. Gorlov D.S., Aleksandrov D.A., Zaklyakova O.V., Azarovskiy E.N. Investigation of the possibility of protection of intermetallic titanium alloy against fretting wear by ion-plasma coating. Trudy VIAM, 2018, no. 4 (64), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 8, 2021). DOI: 10.18577/2307-6046-2018-0-4-51-58.
11. Belkin P.N., Kusmanov S.A. Nitriding of commercial titanium during anodic electrolytic-plasma treatment. Fast-hardened materials and coatings: materials of the 13th Intern. scientific and technical conf. (Moscow, November 25–26, 2014). Moscow: MATI, 2014, pp. 273–276.
12. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
13. Gnedenkov S.V., Sidorova M.V., Sinebrjuhov S.L., Antipov V.V., Buznik V.M., Volkova E.F., Sergienko V.I. Structure and properties of the coverings received by method of plasma electrolytic oxidation on aviation magnesium alloys. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 36–45.
14. Sibileva S.V., Kozlova L.S. Review of technologies of applying coatings to titanium alloys by plasma electrolytic oxidation. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 3–10. DOI: 10.18577/2071-9140-2016-0-S2-3-10.
15. Shashkina G.A., Ivanov M.B., Legostaeva E.V., Sharkeev Yu.P. et al. Bioceramic coatings with a high calcium content for medicine. Fizicheskaya mezomekhanika, 2004, vol. 7, no. S1-2, pp. 123–126.
16. Pecherskaya E.A., Golubkov P.E., Karpanin O.V. Research of the influence of technological parameters of the process of microarc oxidation on the properties of oxide coatings. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika, 2019.Vol. 24, no. 4, pp. 363–369. DOI: 10.24151/1561-5405-2019-24-4-363-369.
17. Legostaeva E.V., Komarova E.G., Sharkeev Yu.P., Uvarkin P.V. Investigation of the effect of microarc oxidation stress on the physicochemical properties of calcium phosphate coatings on titanium. Perspektivnyye materialy, 2011, no. S13, pp. 456–465.
18. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
19. Sibileva S.V., Knyazev A.V., Leshko S.S., Chesnokov D.V. Plasma electrolytic oxidation of titanium alloys for the purpose of protection against contact corrosion of conjugated elements made of aluminum alloys. Corrosion: materials, protection. Korroziya: materialy, zashchita, 2019, no. 6, pp. 1–6. DOI: 10.31044/1813-7016-2019-0-6-1-6.
20. Shtefan V.V., Smirnova A.Yu. Obtaining Ce-, Zr-, Cu-containing oxide coatings on titanium by the method of microarc oxidation. Elektrokhimiya, 2015, vol. 51, no. 12, pp. 1309–1316. DOI: 10.7868 / S0424857015120105.
21. Nechaev G.G. Microarc oxidation of titanium alloys in alkaline electrolytes. Kondensirovannye sredy i mezhfaznyye granitsy, 2012, vol. 14, no. 4, pp. 453–455.
22. Mitroshin A.N., Ivanov P.V., Rosen A.E. et al. Comparative evaluation of osseointegration of screw conical and cylindrical titanium implants processed by the method of microarc oxidation. Fundamentalnye issledovaniya, 2011, no. 9-3, pp. 447–451.
23. Legostaeva E.V., Tolkacheva T.V., Komarova E.G. et al. Microstructure and physical and mechanical properties of calcium phosphate coatings obtained by microarc oxidation and detonation gas spraying. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty), 2013, no. 1 (58), pp. 63‒68.
24. Andreev A.S., Snezhko A.A. The influence of electrolyte composition on the structure and properties of oxide coatings formed on titanium alloys by microarc oxidation. Reshetnevskie readings: materials of the XIII Intern. scientific conf. (Krasnoyarsk, November 10–12, 2009): at 2 parts. Krasnoyarsk, 2009, part 1, pp. 307–308.
25. Legostaeva EV, Sharkeev Yu.P., Epple M., Primak O. Structure and properties of microarc calcium phosphate coatings on the surface of titanium and zirconium alloys. Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 2013, vol. 56, no. 10, pp. 23‒28.
26. Pecherskaya E.A., Golubkov P.E., Karpanin O.V. Research of the influence of technological parameters of the process of microarc oxidation on the properties of oxide coatings. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika, 2019, vol. 24, no. 4, pp. 363–369.
27. Gerasimov M.V., Bogdashkina N.L., Zalavutdinov R.Kh. et al. Influence of Ni, Co and Fe additives in silicate-alkaline electrolyte for microarc oxidation on the characteristics of coatings formed on titanium. Korroziya: materialy, zashchita, 2018, no. 11, pp. 35–40.
28. Alyakretskiy R.V., Ravodina D.V., Trushkina T.V. Research of corrosion resistance of protective coatings on titanium alloys obtained by microarc oxidation. Reshetnevskie readings: materials of the XVIII Intern. scientific conf. (Krasnoyarsk, November 11–14, 2014): at 2 parts. Krasnoyarsk, 2014. Part 1, pp. 7–8.
29. Kuznetsov Yu.A., Kulakov K.V. Investigation of the microhardness of coatings formed by microarc oxidation. Naukoví notatki, 2011, no. 33, pp. 104–106.
The article is devoted to the evaluation of the effect of porosity on the effective thermal conductivity of thermal insulation materials. The main factors influencing the thermal conductivity of the material, such as density, the type of porous structure of the material and humidity, are considered. The method of measuring the thermal conductivity by the stationary heat flow method and the hot zone method is described. A method for calculating the effective thermal conductivity of fibrous materials is presented. A computational and experimental study of the effective thermal conductivity is carried out and the results are analyzed.
2. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
5. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
6. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
7. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
8. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
9. Tikhonov V.B., Kolesnichenko M.P. Features of the use of modern polymer-based thermal insulation materials. Energobezopasnost i energosberezhenie, 2011, no. 1, pp. 24–27.
10. Treshchalin M.Yu., Tyumenev Yu.Ya., Treshchalin A.V., Puzanova N.V. Design of nonwovens that reduce the technogenic impact on the environment (for example, geotextile fabrics). Moscow: PAIMS, 2001, 132 p.
11. Tarasov V.A., Timofeev M.P., Ermakova Yu.V., Boyarskaya R.V. Analysis of the properties and features of the functioning of highly porous heat-insulating materials based on basalt fiber. Vestnik MGTU im. N.E. Bauman. Ser.: Mechanical engineering, 2013, no. 4, pp. 129.
12. Yu.P. Gorlov Heat-insulating materials technology. Moscow: Stroyizdat, 1980, 396 p.
13. Bolshakova N.V., Kostenok O.M. Thermal conductivity of basalt fiber materials. Refractories, 1995, vol. 36, pp. 331–332. DOI: 10.1007/BF02227481.
14. Dulnev G.N., Zarichnyak Yu.P. Thermal conductivity of mixtures and composite materials. Leningrad: Energiya, 1974, 264 p.
15. Timrot D.L. Determination of thermal conductivity of building and insulation materials. Moscow: Energoizdat, 1932, 120 p.
16. Kaufman B.N. Thermal conductivity of building materials. Moscow: GILSA, 1955, 82 p.
17. Chudnovsky A.F. Heat transfer in dispersed media. Moscow: GITSL, 1954, 444 p.
18. Zhang B.-M., Zhao S.-Y., He X.-D. Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, vol. 109, pp. 1309–1324.
19. Daryabeigi K. Heat Transfer in High-Temperature Fibrous Insulation. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, 2002. DOI: 10.2514/6.2002-3332.
20. Wang M., Pan N. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering, 2008, vol. 63, pp. 1–30.
21. Zhou H., Zhang S., Yang M. The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials. Composites Science and Technology, 2007, vol. 67, pp. 1035–1040. DOI: 10.1016/j.compscitech.2006.06.004.
22. MDS 41-7.2004. Methodology for assessing the effect of humidity on the efficiency of thermal insulation of equipment and pipelines. Moscow: Teploproekt., 2004. Available at: http://base1.gostedu.ru/44/44607 (accessed: April 17, 2021).
23. Wang Q.L., Not J.H., Li Z.B. Fractional Model for Heat Conduction in Polar Bear Hairs. Thermal Science, 2021, vol. 16, is. 2, pp. 339–342.
24. He J.-H. A New Fractal Derivation. Thermal Science, 2011, vol. 15, is. suppl. 1, pp. S145–S147. DOI: 10.2298/TSCI11S1145H.
In this work, Al, Cr, Cu, Fe, Ni, Si and Y were determined in SDP-6 cathodes based on cobalt and SDP-1 and AZh8 nickel-based cathodes by x-ray fluorescence spectroscopy. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. A standard-free analysis was carried out using the method of fundamental parameters. The correctness of the results obtained was confirmed by a comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
4. Budinovskiy S.A., Muboyadzhyan S.A., Kosmin A.A. Ion-plasma coatings for the protection of industrial turbine blades from sulfide-oxide corrosion. Nauka i tekhnika v gazovoy promyshlennosti, 2010, no. 3, pp. 61–68.
5. Farafonov D.P., Leshchev N.E., Afanasiev-Khody- kin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
7. State Standard 13047.10–2014. Nickel. Cobalt. Methods for the determination of copper. Moscow: Standartinform, 2015, pp. 2–4.
8. State Standard 13047.8–2014. Nickel. Cobalt. Methods for the determination of silicon. Moscow: Standartinform, 2015, pp. 1–4.
9. State Standard 13047.17–2014. Nickel. Cobalt. Methods for the determination of iron. Moscow: Standartinform, 2015, pp. 4–6.
10. State Standard 13047.5–2014. Nickel. Cobalt. Methods for the determination of nickel in cobalt. Moscow: Standartinform, 2015, pp. 4–6.
11. State Standard 8776–2010. Cobalt. Methods of chemical-atomic-emission spectral analysis. Moscow: Standartinform, 2011, pp. 12–18.
12. Blokhin M.A. X-ray spectral research methods. Moscow State Publ. House of Phys.-Math. Literature, 1959, 388 p.
13. Handbook of x-ray spectrometry. Ed. R.E. Van Grieken, A.A. Marcowicz. 2nd ed., rev. and expanded. New York: Marcel Dekker, Inc., 2001, pp. 14–56.
14. Criss J.W., Birks L.S. Calculation methods for fluorescent X-ray spectrometry. Empirical coefficients vs. fundamental parameters. Analytical Chemistry, 1968, vol. 40, pp. 1080–1086.
15. Mashin N.I., Lebedeva R.V., Tumanova A.N. X-ray fluorescence analysis of Ni – Fe – Mn – Cr systems. Analitika i kontrol, 2004, vol. 8, no. 2, pp. 160–164.
The main life stages of a doctor of technical sciences, professor, honored worker of science and technology of the RSFSR, a major specialist in the field of creation and implementation of polymers for new aviation materials, whose name was Nikolai Semenovich Leznov (12/17/1904–06/25/1984), were considered. The scientific works and achievements of the founder of the laboratory for the synthesis of polymers, binders for non-metallic materials, special liquids and physical and chemical studies of polymer materials of VIAM were analyzed and described.
2. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48-51.
3. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
4. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
6. Perov NS, Gulyaev A.I. About the im-portance of structure evolution control of polymer composite materials with the microheterogeneous matrix for ser-vice life forecasting. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 75–85. DOI: 10.18577 / 2071-9140-2017-0-1-75-85.
7. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecu-lar mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, 520 p.
10. Kitaeva N.S., Minakov V.T., Shvets N.I., Deev I.S., Babin A.N., Ponitkova E.M. 50 years of the laboratory "Polymer binders for non-metallic materials and special fluids". Ed. E.N. Kablov. Moscow: VIAM, 2010, 29 p.
11. Andrianov K.A. Methods of organoelement chemistry. Silicon. Moscow: Nauka, 1968, 699 p.
12. Leznov N.S., Sabun L.A., Andrianov K.A. Polydiethylsiloxane liquids. I. The action of sulfuric acid on diethyldiethoxysilane and its mixtures with triethylethoxysilane. Zhurnal obshchey khimii, 1959, vol. 29, no. 4, pp. 1270–1276.
13. Leznov N.S., Sabun L.A., Andrianov K.A. Polydiethylsiloxane liquids. II. The action of phosphoric and boric acids on diethyldiethoxysilane and its mixture with triethylethoxysilane. Zhurnal obshchey khimii, 1959, vol. 29, no. 4, pp. 1276–1282.
14. Leznov N.S., Sabun L.A., Andrianov K.A. Polydiethylsiloxane liquids. III. The effect of carboxylic acids on diethyldiethoxysilane. Zhurnal obshchey khimii, 1959, vol. 29, no. 5, pp. 1508–1514.
15. Leznov N.S., Sabun L.A., Andrianov K.A. Polydiethylsiloxane fluids. IV. The action of aldehydes and acetone on diethyldiethoxysilane. Zhurnal obshchey khimii, 1959, vol. 29, no. 5, pp. 1514–1518.
16. Leznov N.S., Sabun L.A., Andrianov K.A. Polydiethylsiloxane fluids. V. To the question of the mechanism of the reaction of diethyldiethoxysilane with acetic acid. Zhurnal obshchey khimii, 1959, vol. 29, no. 5, pp. 1518–1522.
17. Slikter Ch. Fundamentals of the theory of magnetic resonance. Moscow: Mir, 1981, 445 p.
18. Leznov N.S. Study of the reaction of formation of polyorganosiloxane liquids from akyl (alkylaryl) ethoxysilanes and development of an industrial production method: thesis abstract, Dr. Sc. (Tech.). Moscow: VIAM, 1956, 33 p.
19. Glue: a. c. 447425 USSR, no. 1876154 / 23-5; filed 19.01.73; publ. 25.10.74
20. Sealing composition: a. c. 478855 USSR, no. 997215 / 23-5; filed 01.08.68; publ. 30.07.75.
21. Method of obtaining fluorosiloxane sealant: a. c. 1811204 USSR, no. 1522910/25; filed 03.08.70; publ. 10.10.92.
22. A method of obtaining optically transparent spatial polymers: a. c. 882207 USSR, no. 978536/23-05; filed 23.11.66; publ. 14.07.81.
23. Binder for the manufacture of large-sized products from fiberglass based on epoxy resins: a. c. 1688569 USSR, no. 4808426/23; filed 17.07.64; publ. 01.07.91.
24. Prepreg: a. c. 548039 USSR, no. 2315404/05; filed 20.01.76; publ. 28.10.76.
25. Ivanov A.P., Chursova L.V., Ivanov P.V. Methanolysis of acetoxysilanes Leznova N.S., Sabun L.A. and Andrianova K.A. Abstracts reports of the XI Andrianovskaya conf. “Organosilicon compounds. Synthesis, properties, application”. Moscow: INEOS RAN, 2010, p. 92.
26. Ivanov A.G., Kopylov V.M., Ivanova V.L., Sokolskaya I.B., Khazanov I.I. Investigation of the process of partial acidolysis of organotrialkoxysilanes. Abstracts. reports of the XI Andrianovskaya conf. “Organosilicon compounds. Synthesis, properties, application”, Moscow: INEOS RAN, 2010, p. 91.
27. Ivanov A.P. Synthesis of oligoorganosiloxanes by alcoholysis of organoacetoxysilanes: master's thesis. Moscow: MITKhT im. Lomonosov, 2005, 72 p.
28. Khananashvili L.M. Chemistry and technology of organoelement monomers and polymers. Moscow: Khimiya, 1998, 528 p.
29. A method of obtaining polyorganoalkoxysilanes: a. c. 27 4359 USSR, no. 1166804/23-5; filed 23.06.67; publ. 24.06.70.
30. Mikhalskiy A.I., Kiselev B.A., Nikiforov A.V., Tikhonova G.N., Leznov N.S. Thermal analysis of crosslinked polyorganosiloxanes. Plastic mass, 1975, no. 9, pp. 62–63.
31. Miroshnikova I.I., Kitaeva N.S., Minakov V.T. Oligoorganosiloxanes obtained in anhydrous medium. Properties, structure, modification possibilities, application. Abstracts reports of interdisciplinary scientific and technical. conf. "Heat-resistant binders for non-metallic materials". Moscow: VIAM, 1987, pp. 3–4.
32. Kitaeva N.S., Minakov V.T., Baranovskaya N.B., Savenkova A.V. Oligoalkyl (aryl) alkoxysiloxanes as structuring agents of sealing compositions based on polydiorganylsiloxanes. Aviation Materials. New binders for composite and other non-metallic materials. Moscow: ONTI VIAM, 1981, pp. 30–41.
33. Kitaeva N.S., Basov A.A., Minakov V.T. Synthesis of liquid thermosetting organosilicon oligomers and investigation of their properties. Reports of the V All-Union. conf. on chemistry and application of organosilicon compounds. Tbilisi: OIHF AN SSSR, 1980, p. 273.
34. Savenkova A.V., Baranovskaya N.B., Kitaeva N.S. Unfilled elastomer-oligomeric compounds of increased strength. Reports of the V All-Union. conf. on chemistry and application of organosilicon compounds. Tbilisi: OIHF AN SSSR, 1980, p. 421.
35. Kudishina V.A., Mokshina I.V., Potashova V.N. Organosilicon oligomeric binder for composite materials. Aviation materials. New binders for composite and other non-metallic materials. Moscow: ONTI VIAM, 1983, pp. 12–16.
36. Miroshnikova I.I., Leznov N.S., Minakov V.T., Basov A.A. Carborane-containing oligoorganosiloxanes for heat-resistant nonmetallic materials. Aviation materials. New binders for composite and other non-metallic materials. Moscow ONTI VIAM, 1983, pp. 26–30.
37. Ivanov A.G. Controlled acidohydrolytic polycondensation of alkoxy (organo) -silanes and siloxanes: thesis, Cand. Sc. (Chem.). Moscow: FGUP GNIIKHTEOS, 2013, 141 p.
38. Yegorova E.V., Vasilenko N.G., Demchenko N.V., Tatarinova E.A., Muzafarov A.M. Polycondensation of alkoxysilanes in an active medium – a universal method for the preparation of polyorganosiloxanes. Doklady Akademii Nauk, 2009, vol. 424, no. 2, pp. 200–204.
39. Kalinina A.A., Vasilenko N.G., Demchenko N.V., Demchenko A.I., Storozhenko P.A., Muzafarov A.M. Polycondensation of diorganodialkoxysilanes in an active medium - a chlorine-free method for producing polydiorganosilanes. Reports of the Sixth All-Russian Karginsky conf. "Polymers-2014" (Moscow, January 27–31, 2014): in 2 vols. Moscow: Lomonosov Moscow State University, 2014, vol. 1, p. 106.
40. A method of obtaining linear polymethylphenylsiloxane with terminal hydroxyl groups by polycondensation of methylphenyldialkoxysilane in an active medium: pat. 2456307 Rus. Federation, no. 201110560/04; filed 22.03.11; publ. 20.07.12.
41. A method of obtaining linear polydimethylsiloxanes with terminal hydroxyl groups by polycondensation of dimethylalkoxysilanes in an active medium: pat. 2456308 Rus. Federation, no. 2010130782/04; filed 23.07.10; publ. 20.07.12.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Andrey V. Alekseev |
Researcher, Candidate of Sciences (Bio.) |
Alexander I. Astashkin |
Second Category Engineer |
Alexander N. Afanasev-Khodykin |
Head of Sector |
Vitaly V. Babanov |
Leading Engineer |
Dmitry Ya. Barinov |
Second Category Engineer |
Anton I. Vasilev |
Engineer |
Nikita N. Vorobev |
Engineer |
Marina A. Guseva |
Senior Researcher, Candidate of Sciences (Chem.) |
Semyon A. Demin |
Leading Engineer |
Victoria A. Duyunova |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Artem G. Zagora |
Second Category Engineer |
Andrey V. Zuev |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Evgeny N. Kablov |
Director General, academician of RAS |
Natalya S. Kitaeva |
Leading Engineer |
Andrey V. Knyazev |
Leading Engineer |
Ilya A. Kozlov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Stanislav V. Kondrashov |
Deputy Head of the Laboratory for Science, Doctor of Sciences (Tech.) |
Alexey S. Kochetkov |
Head of Sector, Candidate of Sciences (Tech.) |
Ivan D. Kraev |
First category engineer-technologist |
Sergey A. Larionov |
First Category Engineer |
Marina A. Makushina |
Engineer |
Andrey A. Melnikov |
Leading Researcher, Candidate of Sciences (Tech.) |
Ramil R. Mukhametov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Andrey A. Nikiforov |
Head of Sector |
Nadezhda A. Nochovnaya |
Deputy Head of Laboratory, Doctor of Sciences (Tech.) |
Elena P. Obraztsova |
Engineer-technologist |
Mikhail S. Oglodkov |
Deputy Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Gennady V. Orlov |
Leading Engineer |
Sergey A. Pavlenko |
Second Category Engineer |
Pavel V. Panin |
Leading Researcher, Candidate of Sciences (Tech.) |
Stanislav I. Pakhomkin |
Leading Engineer |
Pavel S. Petrov |
First Category Technician |
Stanislav V. Putyrskiy |
Deputy Head of Laboratory |
Alexander A. Pykhtin |
Candidate of Sciences (Tech.) |
Aleksey M. Rogalev |
Head of Sector |
Alexander V. Sviridov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Andrey A. Selivanov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Aleksey A. Skupov |
Head of Sector, Candidate of Sciences (Tech.) |
Ivan V. Terekhov |
Senior Researcher, Candidate of Sciences (Chem.) |
Evgeniya A. Tkachenko |
Senior Researcher |
Anatoly I. Tkachuk |
Head of Sector, Candidate of Sciences (Chem.) |
Ksenia M. Khmeleva |
Technician |
Elizaveta A. Khodakova |
Leading Engineer |
Yulia M. Shiryakina |
Senior Researcher, Candidate of Sciences (Chem.) |
Roman O. Shitov |
Second Category Engineer |
Evgeny M. Shuldeshov |
Candidate of Sciences (Tech.) |
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Mikhail V. Gerasimov |
Senior Researcher, Candidate of Sciences (Tech.) |