Articles
The development of industrial production in the modern world cannot do without the use of new technologies. This article discusses various methods for the additive manufacturing of magnesium alloy parts. There are several alternative methods for producing parts, such as selective laser fusion, direct laser deposition and arc welding. Depending on the additive manufacturing method, finished parts will differ in structure, phase composition and mechanical properties. The article presents a comparison of traditional and additive manufacturing methods for parts.
2. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
3. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
4. Leonov A.A., Trofimov N.V., Duyunova V.A., Uritia Z.P. Trends in the development of cast magnesium alloys with an increased ignition temperature (review). Trudy VIAM, 2021, no. 2 (96), paper no. 1. Available at: http://www.viam-works.ru (accessed: April 5, 2021). DOI: 10.18577/2307-6046-2021-0-2-3-9.
5. Volkova E.F., Mostyaev I.V., Akinina M.V. Comparative analysis of mechanical properties anisotropy and microstructure of semi-finished products from high-strength magnesium alloys with REE. Trudy VIAM, 2018, no. 5 (65), paper no. 4. Available at: http://www.viam-works.ru (accessed: March 25, 2021). DOI: 10.18577/2307-6046-2018-0-5-24-33.
6. Duyunova V.A., Molodtsov S.V., Leonov A.A., Trapeznikov A.V. Application of computer modeling methods in the manufacture of complex-contoured shaped casting. Trudy VIAM, 2019, no. 11 (83), paper no. 1. Available at: http://www.viam-works.ru (accessed: April 7, 2021). DOI: 10.18577/2307-6046-2019-0-11-3-11.
7. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufactu-rings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 2. Available at: http://www.viam-works.ru (accessed: April 8, 2021). DOI: 10.18577/2307-6046-2020-0-11-11-20.
8. Egorkin V.S., Gnedenkov S.V., Sinebryukhov S.L. et al. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surface and Coatings Technology, 2018, vol. 334, pp. 29–42.
9. Mohedano M., Blawert C., Zheludkevich M.L. Cerium-based sealing of PEO coated AM50 magnesium alloy. Surface and Coatings Technology, 2015, vol. 269, pp. 145–154.
10. Sinebryukhov S.L., Gnedenkov A.S., Mashtalyar D.V., Gnedenkov S.V. PEOcoating/substrate interface investigation by localised electrochemical impedance spectroscopy. Surface and Coatings Technology, 2010, vol. 205, pp. 1697–1701.
11. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. Microscale morphology and properties of the PEO-coating surface. Physics Procedia, 2012, vol. 23, pp. 98–101.
12. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. Protective properties of inhibitor-containing composite coatings on a Mg alloy. Corrosion Science, 2016, vol. 102, pp. 348–354.
13. Zhang Y., Blawert C., Tang S. et al. Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy. Corrosion Science, 2016, vol. 112, pp. 483–494.
14. Li Z., Jing X., Yuan Y., Zhang M. Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and solegel techniques. Corrosion Science, 2012, vol. 63, pp. 358–366.
15. Cui X., Lin X., Liu C. et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 2015, vol. 90, pp. 402–412.
16. Zhao J., Xie X., Zhang C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corrosion Science, 2017, vol. 114, pp. 146–155.
17. Guo X., Du K., Guo Q. et al. Experimental study of corrosion protection of a three-layer film on AZ31B Mg alloy. Corrosion Science, 2012, vol. 65, pp. 367–375.
18. Kruth J., Mercelis P., Van Vaerenbergh J. et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, vol. 11, pp. 26–36.
19. Wei K., Wang Z., Zeng X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Materials Letters, 2015, vol. 156, pp. 187–190.
20. Vyasaraj M., Gururaj P., Manoj G., Selective Laser Melting of Magnesium and Magnesium Alloy Powders: a Review. Metals, 2017, vol. 7, pp. 1–35.
21. Bar F., Berger L., Jauer L. et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomaterialia, 2019, vol. 98, pp. 36–49.
22. Gnedenkov S.V., Sinebryukhov S.L. Magnesium fabricated using additive technology: Specificity of corrosion and protection. Journal of Alloys and Compounds, 2019, vol. 808, pp. 151629.
23. Arrabal R., Mota J., Criado A. et al. Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy. Surface and Coatings Technology, 2012, vol. 206, pp. 4692–4703.
24. Song B., Dong S., Zhang B. et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials Letters, 2012, vol. 35, pp. 120–125.
25. ASTM F2792–12a. Standard Terminology for Additive Manufacturing. West Conshohocken, 2013, pp. 1–3.
26. Takagi H., Sasahara H., Abe T., Sannomiya H. et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arcbased additive manufacturing. Additive Manufacturing, 2018, vol. 24, pp. 498–507.
27. Vorndran E., Moseke C., Gbureck U. 3D printing of ceramic implants. MRS Bulletin, 2015, vol. 40, pp. 127–136.
28. Meininger S., Moseke C., Spatz K. et al. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Materials Letters, 2019, vol. 98, pp. 1145–1158.
29. Ji B., Junqi S.,Shengsun H. et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing. Materials Letters, 2020, vol. 276, pp. 128185.
30. Yangyang G., Houhong P., Lingbao R., Gaofeng Q. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy. Materials Letters, 2019, vol. 247, pp. 4–6.
The article provides an overview of studies on the influence of HIP on the density, roughness and mechanical properties of cast aluminum alloys. As a result of HIP, the density of the alloy, its ductility, and cyclic characteristics increase, and the scatter of mechanical properties determined during tensile and long-term strength tests decreases. The use of HIP increases the yield of good casting due to the reduction of rejects due to unacceptable porosity detected during х-ray inspection. Thus, the casting acquires a homogeneous, completely dense structure.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
3. Kablov E.N., Tolorajya V.N. VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 105–117.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
7. Ivanova E., Tagirov D., Kaibyshev R. Effect of Liquid Hot Isostatic Pressing on Structure and Mechanical Properties of Aluminum Gravity Die Castings. Materials Science Forum. Switzerland, 2012, vol. 706–709, pp. 408–413. Available at: https://www.researchgate.net/publication/272608833 (accessed: March 29, 2021). DOI: 10.4028/www.scientific.net/MSF.706-709.408.
8. Lee M.H., Kim J.J., Kim K.H. et al. Effects of HIPping on high-cycle fatigue properties of investment cast A356 aluminum alloys. Materials Science and Engineering A, 2003, vol. 340, pp. 123–129. DOI: 10.1016/S0921-5093(02)00157-0.
9. Brummer M., Hoffmann H., Werner E. Heat Treatment of Aluminum Castings Combined with Hot Isostatic Pressing. Proceedings of the 12th International Conference on Aluminium Alloys. Yokohama, 2010, pp. 1095–1100.
10. Ostermeier M., Hoffmann H., Werner E. The Effects of Hot Isostatic Pressing on Aluminium Castings. Key Engineering Materials, 2007, vol. 345–346, pp. 1545–1548. DOI: 10.4028/www.scientific.net/KEM.345-346.1545.
11. Shurkin P.K., Akopyan T.K., Korotkova N.O. Influence of hot isostatic pressing on the structure and mechanical properties of castings of economically alloyed aluminum alloy АЦ6Н0.5Ж with increased lead content. Tsvetnye metally, 2016, no. 9, pp. 89–95. DOI: 10.17580/tsm.2016.09.13.
12. Pedram Y. Pore formation in aluminum casting: theoretical calculation and extrinsic effect of entrained surface oxide films: Masters thesis. UNF Graduate Theses and Dissertations. Pennsylvania State University, 2017, pp. 101. Available at: https://digitalcommjns.unf.edu/etd/761 (accessed: March 29, 2021). DOI: 10.13140/RG.2.2.31160.85769/2.
13. Staley Jr. J.T., Tiryakio'glu M., Campbell J. The effect of increased HIP temperatures on bifilms and tensile properties of A206-T71 aluminum castings. Materials Science and Engineering A, 2007, vol. 460–461, pp. 324–334. DOI: 10.1016/j.msea.2007.01.049.
14. Staley Jr. J.T., Tiryakio'glu M., Campbell J. The effect of hot isostatic pressing (HIP) on the fatigue life of A206–T71 aluminum castings. Materials Science and Engineering A, 2007, vol. 465, pp. 136–145. DOI: 10.1016/j.msea.2007.02.009.
15. Ceschini L., Morri A. The effect of hot isostatic pressing on the fatigue behavior of sand-cast A356 – T6 and A204 – T6 aluminum alloys. Journal of Materials Processing Technology, 2008, vol. 204 (1), pp. 231–238. DOI: 10.1016/j.jmatprotec.2007.11.067.
16. Belov E.V., Duyunova V.A., Leonov A.A., Trapeznikov A.V. Method of increasing tightness and hardening of cast corrosion-resistant welded magnalias. Trudy VIAM, 2020, no. 6–7 (89), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 20, 2021). DOI: 10.18577/2307-6046-2020-0-67-11-18.
17. Belov E.V., Duyunova V.A., Leonova A.A., Trapeznikov A.V. Features of the formation of physical and mechanical properties and structure in the crystallization range of casting Al – Mg alloys. Metally, 2020, no. 3, pp. 28–35.
18. Levchuk V.V., Trapeznikov A.V., Pentyukhin S.I. Corrosion-resistant foundry aluminum alloys (review). Trudy VIAM, 2018, no. 7 (67), paper no. 4. Available at: http://www.viam-works.ru (accessed: February 14, 2021). DOI: 10.18577/2307-6046-2018-0-7-33-40.
19. Hafenstein S., Werner E. Simultaneous hot isostatic pressing and solution annealing of aluminum cast alloys followed by instantaneous aging at elevated temperatures. Materials Science and Engineering, 2018, vol. 416, pp. 1–9. DOI: 10.1088/1757-899X/416/1/012084.
20. Guan L., Wei Z., Mao H. et al. Influence of Hot Isostatic Pressing Temperature on the Microstructure and Properties of AlSi7Cu2Mg Alloys. Journal of Wuhan University of Technology, Materials Science Edition, 2020, vol. 35, pp. 1135–1141.
21. Method for hot isostatic pressing of castings from aluminum alloys: pat. 2501880 Rus. Federation, no. 2012150383/02; filed 26.11.012; publ. 20.12.13.
The article provides an overview of the literature in the field of composite materials (CM) based on metal matrices reinforced with carbon fibers. The main structural, physical and mechanical properties and morphology of such CMS are briefly described. The structure and properties of new CMS from multilayer metal-intermetallic multilayer laminates reinforced with carbon and ceramic fibers are also presented. Application of the method of ultrasonic consolidation for the manufacture of multilayer fibrous CMs based on metal-intermetallic laminates provides high adhesion of fibers with an intermetallic layer.
2. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2 (143), pp. 40–46.
4. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Akmeev A.R., Gulyaev I.N., Ilyichev A.V., Ivanov N.V Research of mechanical behav-ior of metal composite (aluminum and car-bon fiber-reinforced polymer) with an adap-tive reinforcement scheme. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 43–49. DOI: 10.18577/2071-9140-2017-0-3-43-49.
6. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
7. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Prospects for the use of titanium alloys in laminated composite materials. Trudy VIAM, 2015, no. 10, paper no. 04. Available at: http://www.viam-works.ru (accessed: February 26, 2021). DOI: 10.18577/2307-6046-2015-0-10-4-4.
8. Valueva M.I., Zelenina I.V., Khaskov M.A., Gulyaev A.I. Preparation of carbon fibers to interphase coating deposition for ceramic matrix composites. Trudy VIAM, 2017, no. 10 (58), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 3, 2021). DOI: 10.185577/2307-6046-2017-0-10-9-9.
9. Mahaviradhan N., Sivaganesan S., Sravya N.P., Parthiban A. Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite. Materials Today: Proceedings, 2021, vol. 39, part 1, pp. 743–747.
10. Deshpande M., Gondil R., Rahul S.V.S. et al. Processing and characterization of carbon fiber reinforced aluminum 7075. Materials Today: Proceedings, 2018, vol. 5 (2), pp. 7115–7122.
11. Deshpande M., Ramesh S. V. S., Gondil R. et al. Studies on 7075 aluminum alloy MMCs with milled carbon fibers as reinforcements. Transactions of the Indian Institute of Metals, 2018, vol. 71 (4), pp. 993–1002.
12. Tamilarasan U., Karunamoorthy L., Palanikumar K. Mechanical properties evaluation of the carbon fiber reinforced aluminum sandwich composites. Materials Research, 2015, vol. 18 (5), pp. 1029–1037.
13. Even C., Arvieu C., Quenisset J.M. Powder route processing of carbon fibers reinforced titanium matrix composites. Composites Science and Technology, 2008, vol. 68, pp. 1273–1281.
14. Arvieu C., Manaud J.P., Quenisset J.M. Interaction between titanium and carbon at moderate temperatures. Journal of Alloys and Compounds, 2004, vol. 68, pp. 116–122.
15. Sidorov D.V., Serpova V.M., Zavodov A.V., Shavnev A.A. Investigation of interphase interaction at the interface in the Ti – C system with domestic titanium alloys of classes α + β and pseudo-α. Fizika i khimiya obrabotki materialov, 2020, no. 5, pp. 75–81. DOI: 10.30791/0015-3214-2020-5-75-81.
16. Jiao F., Liu M., Jiang F. et al. Continuous carbon fiber reinforced Ti / Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering. Materials Science & Engineering A, 2019, vol. 765, pp. 1–21.
17. Han Y., Lin C., Han X. et al. Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal-intermetallic laminated (CCFR-MIL) composite. Materials Science & Engineering A, 2017, vol. 688, pp. 338–345.
18. Ji C., Wang B., Hu J. et al. Effect of different preparation methods on mechanical behaviors of carbon fiber-reinforced PEEK-Titanium hybrid laminates. Polymer Testing, 2020, vol. 85, pp. 1–10. DOI: 10.1016/j.polimertesting.2020.106462.
19. Vecchio K.S., Jiang F. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites. Materials Science & Engineering A, 2016, vol. 649, pp. 407–416.
Presents a literature review in the field of methods for strengthening titanium and its alloys by introducing various refractory particles into the matrix. The main problematic issues related to the chemical nature of refractory particles and titanium alloys that arise during hardening are briefly described. The main structural, physical and mechanical properties and morphology of such metal composite materials are described. The dependence of the influence of various refractory particles and their amount, as well as the effect of heat treatment on the physical and mechanical properties of microns based on titanium alloys, is presented.
2. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
3. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 7. Available at: http://www.viam-works.ru (accessed: June 2, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Krasnov E.I., Kurbatkina E.I., Shavnev A.A., Serpova V.M., Zhabin A.N. Application of the active brazing method for connecting fiber materials with ceramic materials (review). Trudy VIAM, 2020, no. 10 (92), paper no. 7. Available at: http://www.viam-works.ru (accessed: June 2, 2021). DOI: 10.18577/2307-6046-2020-0-10-63-72.
6. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Tian Y.S., Chen C.Z., Chen L.B., Liu J.H. Wear properties of alloyed layers produced by laser surface alloying of pure titanium with B4C and Ti mixed powders. Journal of Materials Science, 2005, no. 40, pp. 4387–4390. DOI: 10.1007/s10853-005-0736-2.
8. Fouvry S., Paulin C., Deyber S. Impact of contact size and complex gross-partial slip conditions on Ti–6Al–4V/Ti–6Al–4V fretting wear. Tribology International, 2009, vol. 42, is. 3, pp. 461–474. DOI: 10.1016/j.triboint.2008.08.005.
9. Qin Y.L., Geng L. Dry sliding wear behavior of titanium matrix composites hybrid-reinforced by in situ TiB whisker and TiC particle. Journal of Materials Science, 2011, no. 46 (14), pp. 4980–4985. DOI: 10.1007/s10853-011-5415-x.
10. Peng W.W., Zeng W.D., Wang Q.J., Yu H.Q. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Materials and Design, 2013, vol. 51, pp. 95–104. DOI: 10.1016/j.matdes.2013.04.009.
11. Popov A., Rossina N., Popova M. The effect of alloying on the ordering processes in near-alpha titanium alloys. Materials Science and Engineering A, 2013, vol. 564, pp. 284–287. DOI: 10.1016/j.msea.2012.11.043.
12. Fu B.G., Wang H.W., Zou C., Wei Z. The effects of Nb content on microstructure and fracture behavior of near α titanium alloys. Materials and Design, 2015, vol. 66, part A, pp. 267–273. DOI: 10.1016/j.matdes.2014.10.069.
13. Jia W.J., Zeng W.D., Liu J.R. Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy. Materials Science and Engineering A, 2011, vol. 530, pp. 511–518. DOI: 10.1016/j.msea.2011.10.011.
14. Soorya Prakash K., Gopal P.M., Anburose D., Kavimani V. Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti–6Al–4V/B4C metal matrix composites. Ain Shams Engineering Journal, 2018, vol. 9, is. 4, pp. 1489–1496. DOI: 10.1016/j.asej.2016.11.003.
15. Balaji V.S., Kumaran S. Dry sliding wear behavior of titanium (TiB + TiC) in situ composite developed by spark plasma sintering. Tribology Transactions, 2015, vol. 58, is. 4, pp. 698–703. DOI: 10.1080/10402004.2014.993780.
16. Zheng B., Dong F., Yuan X. et al. Microstructure and tribological behavior of in situ synthesized (TiB + TiC)/Ti6Al4V (TiB/TiC = 1/1) composites. Tribology International, 2020, vol. 145. Reference 106177. DOI: 10.1016/j.triboint.2020.106177.
17. Mohanavel V., Vijayakumar M.D. Mechanical properties of titanium matrix composites fabricated via powder metallurgy method. Materials Today: Proceedings, 2020, pp. 5–10. DOI: 10.1016/j.matpr.2020.04.569.
18. Fereiduni E., Ghasemi A., Elbestawi M. Selective laser melting of hybrid ex-situ/in-situ reinforced titanium matrix composites: Laser/powder interaction, reinforcement formation mechanism, and non-equilibrium microstructural evolutions. Materials & Design, 2019, vol. 184. Reference 108185. DOI: 10.1016/j.matdes.2019.108185.
19. Loretto M.H., Konitzer D.G. The effect of matrix reinforcement reaction on fracture in Ti–6Ai–4V-base composites. Metallurgical Transactions A, 1990, vol. 21А, pp. 1579–1587. DOI: 10.1007/BF02672573.
20. Reeves A.J., Dunlop H., Clyne T.W. The effect of interfacial reaction layer thickness on fracture of titanium-SiC particulate composites. Metallurgical Transactions A, 1992, vol. 23, is. 3, pp. 977–988. DOI: 10.1007/BF02675572.
21. Tong W., Ravichandran G., Christman T., Vreeland T. Processing SiC-particulate reinforced titanium-based metal matrix composites by shock wave consolidation. Acta Metallurgica et Materialia, 1995, vol. 43, is. 1, pp. 235–250. DOI: 10.1016/0956-7151(95)90279-1.
22. Wang B., Huang L.J., Geng L. Effects of heat treatments on the microstructure and mechanical properties of as-extruded TiBw/Ti6Al4V composites. Materials Science & Engineering A, 2012, vol. 558, pp. 663–667. DOI: 10.1016/j.msea.2012.08.071.
23. Huang L.J., Geng L., Li A.B. et al. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scripta Materialia, 2009, vol. 60, is. 11, pp. 996–999. DOI: 10.1016/j.scriptamat.2009.02.032.
24. Wang B., Huang L.J., Geng L. et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites. Materials and Design, 2015, vol. 85, pp. 679–686. DOI: 10.1016/j.matdes.2015.07.058.
25. Badini C., Ubertalli G., Puppo D., Fino P. High temperature behaviour of a Ti–6Al–4V/TiCp composite processed by BE-CIP-HIP method. Journal of Materials Science, 2000, vol. 35, pp. 3903–3912. DOI: 10.1023/A:1004893700762.
The main technological factors when using ATL and AFP technologies are material temperature, laying speed, rolling pressure and no deviation from the required laying trajectory. The article discusses the influence of technological factors on some characteristics of polymer composite materials. The optimum laying temperature should provide the required adhesion. The rate of laying should provide heating of the material without its technological properties. The rolling pressure during laying should ensure optimal porosity and thickness of the material.
2. Grant C. Automated processes for composite aircraft structure. Industrial Robot, 2006, vol. 33(2), pp. 117–121.
3. Composite tape laying machine with pivoting presser member: pat. US 4627886A; filed 06.04.71; publ. 09.12.86.
4. Geodesic path length compensator for composite-tape placement method: pat. US 3810805A; filed 14.04.72; publ. 14.05.74.
5. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
6. Lossie M., van Brussel H. Design principles in filament winding. Composites Manufacturing, 1994, vol. 5 (1), pp. 5–13.
7. Huber J. Automated lamination of production advanced composite aircraft structures. SAE International Congress and Exposition, 1981, vol. 90, pp. 1794–1803.
8. Lukaszewicz D.H.J.A., Ward C., Potter K.D. The engineering aspects of automated prepreg layup: History, present and future. Composites. Part B: Engineering. 2012, vol. 43 (3), pp. 997–1009.
9. Introduction to composite materials and smart structures. Structural health monitoring of composite structures using fiber optic methods. Ed. B.G. Prusty, G. Rajan. New York: CRC Press, 2016, 491 p.
10. Mazumdar S.K. Composites manufacturing: materials, product, and process engineering. United States of America: CRC Press LLC, 2002. 416 p.
11. Timoshkov P.N., Usacheva M.N., Khrulkov A.V. Stickiness and possibility of using prepregs for automated technologies (review). Trudy VIAM, 2018, no. 8 (68), paper no. 04. Available at: http://www.viam-works.ru (accessed: February 12, 2021). DOI: 10.18577/2307-6046-2018-0-8-38-46.
12. Orlov E.V., Gusev Yu.A., Khrulkov A.V., Korotkov I.A. Comparative analysis of stickiness determination methods of prepreg. Trudy VIAM, 2016, no. 7, paper no. 09. Available at: http://www.viam-works.ru (accessed: February 12, 2021). DOI: 10.18577/2307-6046-2016-0-7-9-9.
13. Béland S. High performance thermoplastic resins and their composites. Noyes Data Corp, 1990, 181 p.
14. August Z., Ostrander G., Michasiow J., Hauber D. Recent development in automated fibre placement of Thermoplastic composites. SAMPE, 2014, vol. 50 (2), pp. 30–37.
15. Stokes-Griffin C.M., Compston P. Laser-assisted tape placement of thermoplastic composites: The effect of process parameters on bond strength. Sustainable Automotive Technologies 2013. New York: Springer, 2014, pp. 295.
16. Stokes-Griffin C.M., Compston P. The effect of processing temperature and placement rate on the short beam strength of carbon fibre–PEEK manufactured using a laser tape placement process. Composites. Part A: Applied Science and Manufacturing, 2015, vol. 78, pp. 274–283.
17. Chauncey Wu K., Stewart B.K., Martin R.A. ISAAC – A Testbed for Advanced Composites Research. The Second International Symposium on Automated Composites Manufacturing, 2015, pp. 1–10.
18. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
19. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. A Study of Epoxide–Polysulfone Polymer Systems for High-Strength Adhesives of Aviation Purpose. Polymer Science, series D, 2017, vol. 10, no. 3, pp. 225–229.
20. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concen-tration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
21. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technologies, 2021, no. 1 (62), paper no. 3. Available at: http://www.journal.viam.ru (accessed: February 19, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-33.
22. Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of the structure and reinforcement transmission shafts made of polymer composite materials (review). Trudy VIAM, 2021, no. 1 (95), paper no. 9. Available at: http://www.viam-works.ru (accessed: March 1, 2021). DOI: 10.18577/2307-6046-2021-0-1-85-96.
23. Timoshkov P.N., Hrulkov A.V., Grigoreva L.N. Сarbon fiber transmission shaft. Materials and technology (review). Trudy VIAM, 2020, no. 8 (90), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 1, 2020). DOI: 10.18577/2307-6046-2020-0-8-46-53.
24. Di Francesco M., Giddings P., Potter K. On the layup of convex corners using Automated Fibre Placement: an evaluation method. The Second International Symposium on Automated Composites Manufacturing, 2015, pp. 1–10.
25. Woigka W., Halletta S.R., Jonesa M.I. et al. Experimental investigation of the effect of defects in Automated Fibre Placement produced composite laminates. Composite Structures. 2018, vol. 201, pp. 1004–1017.
26. Croft K., Lessard L., Pasini D. et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates. Composites, part A: Applied Science and Manufacturing. 2011, vol. 42, is. 5, pp. 484–491.
27. Pitchumani R., Gillespie Jr.J.W., Lamontia M.A. Design and optimization of a thermoplastic tow-placement process with in-situ consolidation. Journal of Composite Materials, 1997, vol. 31, is. 3, pp. 244–275.
28. Qureshi Z., Swait T., Scaife R., El-Dessouky H.M. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: potential and possibilities. Composites. Part B: Engineering, 2014, vol. 66, pp. 255–267.
29. Bendemra H., Vincent M.J., Compston P. Optimisation of compaction force for automated fibre placement. 8th Australasian Congress on Applied Mechanics (ACAM 8). Melbourne: Engineers Australia, 2014, pp. 957–965.
30. Senthil K., Arockiarajan A., Palaninathan R. et al. Defects in composite structures: Its effects and prediction methods – a comprehensive review. Composite Structures. 2013, vol. 106, pp. 139–149.
31. Bolotin V.V. Delaminations in composite structures: Its origin, buckling, growth and stability. Composites, Part B: Engineering, 1996, vol. 27, is. 2, pp. 129–145.
32. Nixon-Pearson O.J., Belnoue J.P.-H., Ivanov D.S., Hallett S.R. The compaction behavior of un-cured prepregs. The 20th International Conference on Composite Materials. Copenhagen, 2015. Available at: https://www.researchgate.net/publication/303880867_THE_COMPACTION_BEHAVIOUR_ OF_UN-CURED_PREPREGS (accessed: March 29, 2021).
33. Sun H., Godin D., Dong A. et al. Effect of Process Parameters on the Quality of Laminates made by Automated Fiber Placement (AFP) Using Out-Ofautoclave (OOA) Prepregs. 17th European Conference on Composite Materials, 2016. pp. 1–12.
34. Khan M.A., Mitschang P., Schledjewski R. Identification of some optimal parameters to achieve higher laminate quality through tape placement process. Advances in Polymer Technology, 2010, vol. 29, is. 2, pp. 98–111.
35. Çelik O., Peeters D., Dransfeld S., Teuwen J. Intimate contact development in laser assisted fiber placement. Microstructure and effect of process parameters. Composites, Part A: Applied Science and Manufacturing, 2020, vol. 134, pp. 1–13.
36. Ivanov D., Li Y., Ward C., Potter K. Transitional behaviour of prepregs in Automated fibre deposition processes. The 19th International Conference on Composite Materials, 2013, pp. 1–11.
37. Ilcewicz L.B., Murphy B. Safety & Certification Initiatives for Composite Airframe Structure. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005, pp. 1–12.
38. Chauncey Wu K. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement. American Society for Composites 23rd Technical Conference, 2008. Available at: https://www.researchgate.net/publication/273144777_Design_and_Analysis_of_Tow-Steered_Composite_Shells_Using_Fiber_Placement (accessed: March 30, 2021).
39. Measom R., Sewell K. Fiber placement low-cost production for complex composite structures. Proceedings. American Helicopter Society International Annual Forum. Washington, 1996, vol. 52, is. 1, pp. 611–622.
40. Wu K., Tatting B., Smith B. et al. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, 2009, pp. 1–18.
41. Tatting B.F., Gürdal Z. Automated finite element analysis of elastically-tailored plates. NASA Scientfic and Technical Information, 2003, pp. 1–47.
42. Kim B.C., Hazra K., Weaver P., Potter K. Limitations of fibre placement techniques for variable angle tow composites and their process-induced defects. 18th International Conference on Composite Materials, 2011. Available at: https://www.researchgate.net/publication/259267107_Limitations_ of_fibre_placement_techniques_for_variable_angle_tow_composites_and_their_process-induced_defects (accessed: March 30, 2021).
43. Oromiehie E., Prusty B.G., Compston P., Rajan G. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques. Composite Structures, 2019, vol. 224, pp. 1–14.
44. Langley P. Finite element modeling of tow-placed variable-stiffness composite laminates. Virginia Polytechnic Institute and State University, 1999, 127 p.
Various methods of applying lubricants to the surface of ceramic oxide fibers after firing have been tested. It is shown that the contactless method of applying the lubricant reduces the breakage of fibers during rewinding. The selection and testing of lubricant compositions that improve technological properties during textile processing operations have been carried out. Comparative tests for breaking load and flexibility of multifilament yarns oiled with different compositions have been carried out. Rigidity, adhesion and breakage during unwinding from the package are assessed.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Armor for "Buran". Materials and technologies of VIAM for the ISS "Energia-Buran". Ed. E.N. Kablova. Moscow: Science and Life, 2013, 128 p.
4. Kablov E.N. The key problem is materials. Trends and guidelines for innovative development in Russia. Moscow: VIAM, 2015, pp. 458–464.
5. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Balinova Yu.A. Continuous polycrystalline fibers of aluminum oxide for composite materials: thesis abstract, Cand. Sc. (Tech.). Moscow: VIAM, 2012, 19 p.
7. Balinova Yu.A., Kirienko T.A. Continuous high-temperature oxide fibers for heat-shielding, heat-insulating and composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 4, pp. 24–29.
8. Preparation of inorganic oxide monofilaments: pat. US 3311689A; filed. 17.01.63; publ. 28.03.68.
9. Alumina fiber: pat. US 3808015A; filed 12.05.72; publ. 30.04.74.
10. Fibers from oxide ceramics: pat. 2396388 Rus. Federation; filed 10.02.10; publ. 10.08.10.
11. Afanasov I.M., Lazoryak B.I. High temperature ceramic fibers. Moscow: Moscow State University M.V. Lomonosov, 2010, 51 p.
12. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, No. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
13. Shavnev A.A., Babashov V.G., Varrik N.M. Continuous fibers based on alumina (review). Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 27–34. DOI: 10.18577/2071-9140-2020-0-4-27-34.
14. Surnina N.F., Martynova A.A. Weaving technology and equipment. Moscow: Legkaya industriya, 1981, pp. 44–67.
15. Ginzburg L.N., Komarov V.G., Zabelin V.A. Spinning of bast and chemical fibers and production of twisted products. Moscow: Legkaya industriya, 1971, pp. 81–82.
16. Lipenkov Y. Ya. Spinning wool. Moscow: Legkaya industriya, 1979, pp. 98–105.
17. Chernyak M.G. Continuous glass fiber. Fundamentals of technology and properties. Moscow: Khimiya, 1965, 320 p.
18. Rogovin Z.A. Fundamentals of chemistry and technology of chemical fibers: in 2 vol. Moscow: Leningrad, 1964, vol. 1, 518 p.
19. Makarov M.S., Kazankov Yu.V. Manufacture of fiberglass products. Leningrad: Khimiya, 1973, p. 11.
20. Pakshver A.B. Physical and chemical foundations of the technology of chemical fibers. Moscow: Khimiya, 1972, 432 p.
21. Zyabitsky A. Theoretical foundations of fiber formation. Moscow: Khimiya, 1979, pp. 479–494.
22. A method of obtaining high-temperature fiber based on aluminum oxide: pat. 2212388 Rus. Federation; filed 19.11.01; publ. 20.09.03.
23. Zimichev A.M., Varrik N.M., Sumin A.V. Research of the process of extrusion of continuous high-melting fibers. Trudy VIAM, 2017, no. 1 (49), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 30, 2021). DOI: 10.18577/2307-6046-2017-0-1-6-6.
24. Schwartz A., Perry J., Birch J. Surfactants and detergents. Moscow: Inostrannaya literatura, 1960, pp. 420–556.
25. Zimichev A.M., Varrik N.M., Sumin A.V. Threads of refractory oxides for sealing thermal insulation. Trudy VIAM, 2015, no. 6, paper no. 05. Available at: http://www.viam-works.ru (accessed: March 30, 2021). DOI: 10.18577/2307-6046-2015-0-6-5-5.
Presents the results of a study of the effect of the final curing temperatures on the complex of properties of the developed epoxy binder grade VSE-65 and glass-fiber-reinforced plastic based on it. It was found that with a decrease in the final curing temperature, the residual heat effect increases and, in turn, a decrease in the conversion of epoxy groups occurs. Presents the results of a comparative analysis of VKG-6 glass-carbon plastic samples prepared by vacuum infusion and pressure impregnation. Based on the results of the analysis, it has been established that the technologies make it possible to realize the required level of physical and mechanical properties.
2. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
3. Kablov E.N. Trends and guidelines for innovative development in Russia: collection of inform. materials. 3rd ed., rev. and add. Moscow: VIAM, 2015, 720 p.
4. Satdinov R.A., Istyagin S.E., Veshkin E.A. Analysis of the temperature-time parameters mode curing PCM with specified characteristics. Trudy VIAM, 2017, no. 3, paper no. 9. Available at: http://www.viam-works.ru (accessed: April 16, 2021). DOI: 10.18577/2307-6046-2017-0-3-9-9.
5. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp.20–26.
6. Zagora A.G., Kondrashov S.V., Antyufeeva N.V., Pykhtin A.A. Research of influence of technological modes of production of epoxy nanocomposites with carbon nanotubes on their heat resistance. Trudy VIAM, 2019, no. 1 (73), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 16, 2021). DOI: 10.18577/2307-6046-2019-0-1-64-73.
7. Melnikov D.A., Khaskov M.A., Guseva M.A., Antyufeeva N.V. To the question of the development of pressing mode for laminated PCMs based on prepregs. Trudy VIAM, 2018, no. 2, paper no. 09. Available at: http://www.viam-works.ru (accessed: April 16, 2021). DOI: 10.18577/2307-6046-2018-0-2-9-9.
8. Kogan D.I., Dushin M.I., Borshchev A.N., Veshkin E.A., Abramov P.A., Makrushin K.V. Properties of structural carbon-fiber reinforced plastics made by impregnation under vacuum. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 4 (2), pp. 762–766.
9. Antyufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Practice of the calorimetric control reactionary ability prepreg KMU-11tr. Trudy VIAM, 2014, no. 2, paper no. 06. Available at: http://viam-works.ru (accessed: April 16, 2021). DOI: 10.18577/2307-6046-2014-0-2-6-6.
10. Ustinova A.M., Oleinikova E.V., Lipskaya V.A. et al. Fast-curing epoxy binder. Plasticheskiye massy, 1983, no. 3, pp. 34–42.
11. Khaskov M.A., Melnikov D.A., Kotova E.V. Selection of temperature-time modes of curing epoxy binders taking into account the scale factor. Klei. Germetiki. Tekhnologii, 2017, no. 10, p. 24.
12. Dmitriev O.S., Kirillov V.N., Zuev A.V., Cherepakhina A.A. Influence of the type of filler on the optimal modes of solidification of thick-walled PCM. Klei. Germetiki. Tekhnologii, 2011, no. 11, p. 27.
13. Veshkin E.A. Features of out-of-autoclave forming of poor-porous PCM. Trudy VIAM, 2016, no. 2 (38), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 16, 2021). DOI: 10.1857/2307-6046-2016-0-2-7-7.
14. Kolpachkov E.D., Kurnosov A.O., Petrova A.P., Raskutin A.E. Hybrid composite materials for aviation based on fibrous fillers (review). Voprosy materialovedeniya, 2020, no. 1 (101), pp. 126–138.
15. Kolpachkov ED, Gurevich Ya.M., Kurnosov A.O., Marakhovsky PS, Petrova A.P. Investigation of the characteristics of glass-carbon plastics based on binders with a low curing temperature. Vse materialy. Entsiklopedicheskiy spravochnik, 2021, no. 6, pp. 41–45.
In this paper, the main properties of glass fiber laminates – dielectric composite materials for printed circuit boards are considered: glass transition temperature, temperature coefficient of linear expansion, ultimate strength in bending, water resistance. The influence of climatic influences (increased ambient temperature, low ambient temperature, increased air humidity, the effect of temperature changes, the effect of salt fog) on the dielectric constant of glass fiber laminates has been evaluated.
2. Medvedev A.M., Mozharov V.A., Mylov G.V. Printed circuit boards. The current state of basic materials. Pechatnyy montazh, 2011, no. 5 (34). S. 148-149.
3. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 1, 2021). DOI: 10.18577/2307-6049-2019-0-7-26-33.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Mishkin S.I., Malakhovskiy S.S. Fast curing resins and prepregs: receiving, properties and areas of application (review). Trudy VIAM, 2019, no. 5 (77), paper no. 04. Available at: http://viam-works.ru (accessed: March 1, 2021). DOI: 10.18577/2307-6046-2019-0-5-32-40.
6. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
7. Medvedev A.P. Printed circuit boards. Constructions and materials. Moscow: Tekhnosfera, 2005, 304 p.
8. Medvedev A.M. Materials for flexible printed circuit boards. Tekhnologii v elektronnoy promyshlennosti, 2011, no. 3, pp. 12–19.
9. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. III. Significant factors of aging. Deformatsiya i razrusheniye materialov, 2011, no. 1, pp. 34–40.
11. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. I. Mechanisms of aging. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 19–27.
12. Kirillov V.N., Startsev O.V., Efimov V.A. Climatic firmness and damageability of polymeric composite materials, problems and solutions. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 412–423.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. II. Relaxation of the initial structural nonequilibrium and the gradient of properties over thickness. Deformatsiya i razrusheniye materialov, 2010, no. 12, pp. 40–46.
14. Kablov E.N., Grashchenkov D.V., Erasov V.S., Anchevsky I.E., Ilyin V.V., Walter R.S. Stand for testing at the climatic station GTSKI large-sized structures made of PCM. Reports of IX Intern. scientific. conf. on hydroaviation "Gidroaviasalon-2012". Gelendzhik, 2012, pp. 122–123.
15. Shirokov V.V., Romanov A.M. Waveguide method research of honeycomb glass fibre plastics dielectric characteristics. Aviacionnye materialy i tehnologii, 2013, no. 4, pp. 62–68.
A review of modern scientific publications in the field of methods for preparing the surface of aluminum alloys for electroplating is presented. It is shown that the most widely used methods of preparation are: zinc treatment, high-porosity anodic oxidation and immersion nickel plating. A number of combined methods for preparing the surface of aluminum alloys for electroplating are given. Methods of direct application of electroplating coatings on aluminum and its alloys without the use of a sublayer, both by electrolytic and chemical methods, are considered.
2. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
3. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016. no. 5. pp. 8–18.
4. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Oglodkov M.S. Experience and prospects of using aluminum-lithium alloys in aircraft and space technology. Metallurg, 2021. no. 1. pp. 62–70.
5. Ogorodov D.V., Trapeznikov A.V., Popov D.A., Pentuykhin S.I. The development of casting heat-resistant aluminum alloys (To the 120th anniversary since the birth of I.F. Kolobnev). Trudy VIAM, 2017, no. 2 (50), paper no. 12. Available at: http://viam-works.ru (accessed: May 30, 2021). DOI: 10.18577/2307-6046-2017-0-2-12-12.
6. Kablov E.N., Dynin N.V., Benarieb I., Shchetinina N.D., Samokhvalov S.V., Nerush S.V. Promising aluminum alloys for brazed structures of aviation technology. Zagotovitelnye proizvodstva v mashinostroyenii, 2021, vol. 19. no. 4, pp. 179–192.
7. Vishenkov S.A. Chemical and electrochemical methods of metal coating deposition. Moscow: Mashinostroenie, 1975, 312 p.
8. Khmeleva K.M., Kozlov I.A., Nikitin Ya.Yu., Nikiforov A.A. Modern trends of protective galvanic coatings working at high temperatures (review). Trudy VIAM, 2020, no. 12 (94), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 30, 2021). DOI: 10.18577/2307-6046-2020-0-12-75-86.
9. Mamaev V.I., Kudryavtsev V.N. Nickel plating: textbook. Moscow: RKhTU im. D.I. Mendeleeva, 2014, 192 p.
10. Court S.W., Barker B.D., Walsh F.C. Electrochemical Measurements of Electroless Nickel Coatings on Zincated Aluminium Substrates. Transactions of the Institute of Metal Finishing, 2000, vol. 78. no. 4. pp. 157–162. DOI: 10.1080/00202967.2000.11871330.
11. Mamaev V.I. Functional electroplating: textbook. Kirov: VyatSU, 2013, 208 p.
12. Vijayanand M., Elansezhian R. Effect of Different Pretreatments and Heat Treatment on Wear Properties of Electroless Ni–B Coatings on 7075-T6 Aluminum Alloy. Procedia Engineering, 2014, vol. 97. pp. 1707–1717.
13. Monteiro F.J., Barbosa M.A. Surface pretreatments of aluminum for electroplating. Surface and coatings technology, 1988, vol. 35. pp. 321–331.
14. Sinyavsky V.S., Valkov V.D., Kalinin V.D. Corrosion and protection of aluminum alloys. Moscow: Metallugia, 1979, 224 p.
15. Court S., Kerr C., Ponce de León C. et al. Monitoring of zincate pre-treatment of aluminium prior to electroless nickel plating. Transactions of the Institute of Metal Finishing, 2017, vol. 95. no. 2. pp. 97–105. DOI: 10.1080/00202967.2016.1236573.
16. Pearson T., Wake S.J. Improvements in the Pretreatment of Aluminium as a Substrate for Electrodeposition. Transactions of the Institute of Metal Finishing, 1997, vol. 75. no. 3. pp. 93–97. DOI: 10.1080/00202967.1997.11871150.
17. Pearson T. Pretreatment of aluminium for electrodeposition. Transactions of the Institute of Metal Finishing, 2006, vol. 84. no. 3. pp. 121–123.
18. Electroplated aluminum parts and process for production: pat. US 6692630B2; filed 09.08.01; publ. 17.02.04.
19. Vernik S., Pinner R. Chemical and electrolytic treatment of aluminum and its alloys. Leningrad: State union publishing house of shipbuilding industry, 1960, 389 p.
20. Electroplated aluminium parts and process of production thereof: pat. CN 1498288A; filed 17.08.01; publ. 19.05.04.
21. Robertson S.G., Ritchie I.M. The role of iron (III) and tartrate in the zincate immersion process for plating aluminium. Journal of Applied Electrochemistry, 1997, vol. 27 (7). pp. 799–804.
22. Takács D., Sziráki L., Török T.I. et al. Effects of pre-treatments on the corrosion properties of electroless Ni–P layers deposited on AlMg2 alloy. Surface and Coatings Technology, 2007, vol. 201. pp. 4526–4535.
23. Delaunois F., Petitjean J.P., Lienard P., Jacob-Duliere M. Autocatalytic electroless nickel-boron plating on light alloys. Surface and Coatings Technology, 2000, vol. 124. pp. 201–209.
24. Thurlow K.P. Electroless nickel plating on aluminium connectors. Transactions of the Institute of Metal Finishing, 1989, vol. 67. no. 1. pp. 82–86. DOI: 10.1080/00202967.1989.11870847.
25. Sharma A.K. Gold plating on aluminium alloys for space applications. Transactions of the Institute of Metal Finishing, 1989, vol. 67. no. pp. 87–88. DOI: 10.1080/00202967.1989.11870848.
26. Electroplating on aluminium and its alloys: pat. GB 1007252A; filed 12.09.61; publ. 13.10.65.
27. Wyszynski A.E. An Immersion Alloy Pretreatment for Electroplating on Aluminium. Transactions of the Institute of Metal Finishing, 1967, vol. 45. no. 1. pp. 147–154. DOI: 10.1080/00202967.1967.11870032.
28. Burgess J. Electroplating onto aluminium and its alloys. Transactions of the Institute of Metal Finishing, 2019, vol. 97. no. 6. pp. 285–288. DOI: 10.1080/00202967.2019.1675280.
29. Yin Z., Chen F. Effect of nickel immersion pretreatment on the corrosion performance of electroless deposited Ni–P alloys on aluminum. Surface and Coatings Technology, 2013, vol. 228. pp. 34–40.
30. Laughton R.W. Recent Developments for Electroless Nickel Plating onto Aluminium, their Basis and Implications. Transactions of the Institute of Metal Finishing, 1992, vol. 70. no. 3, pp. 120–122. DOI: 10.1080/00202967.1992.11870957.
31. State Standart 9.305–84. Unified system of protection against corrosion and aging. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings (with Amendments No. 1, 2, with Amendment). Moscow: Publishing house of standards, 2003. 105 p.
32. Arrowsmith D.J., Clifford A.W., Moth D.A. Phosphoric acid anodizing of aluminium. Transactions of the Institute of Metal Finishing, 1985, vol. 63. no. 1. pp. 41–46. DOI: 10.1080/00202967.1985.11870704.
33. Devyatkina T.I., Luchneva S.I., Vasin E.N. et al. Surface preparation of aluminum alloys for electroplating. Journal of Applied Chemistry, 2020, vol. 93, is. 9, pp. 1323–1331.
34. Digby R.P., Paekham D.E. Pretreatment of aluminium: topography, surface chemistry and adhesive bond durability. International Journal Adhesion and Adhesives, 1995, vol. 15. pp. 61–71.
35. Spooner R.C., Seraphim D.P. Phosphoric Acid Anodizing of Aluminium and its Application to Electroplating. Transactions of the Institute of Metal Finishing, 1954, vol. 31. no. 1. pp. 29–51. DOI: 10.1080/00202967.1954.11869627.
36. Yazdi S.S., Ashrafizadeh F., Hakimizad A. Improving the grain structure and adhesion of Ni–P coating to 3004 aluminum substrate by nanostructured anodic film interlayer. Surface and Coatings Technology, 2013, vol. 232. pp. 561–566.
37. Ali H.O., Christie I.R.A. Electroplating on Aluminium Wire. Transactions of the Institute of Metal Finishing, 1983, vol. 61. no. 1. pp. 67–71. DOI: 10.1080/00202967.1983.11870641.
38. Latha N., Raj V., Selvam M. Effect of plating time on growth of nanocrystalline Ni–P from sulphate/glycine bath by electroless deposition method. Bulletin Materials Science, 2013, vol. 36. no. 4. pp. 719–727.
39. Kocabaşa M., Örnekd C., Curionie M., Canseverc N. Nickel fluoride as a surface activation agent for electroless nickel coating of anodized AA1050 aluminum alloy. Surface and Coatings Technology, 2019, vol. 364. pp. 231–238.
40. Skopintsev V.D., Vinokurov E.G. Theoretical and applied aspects of autocatalytic formation of coatings based on nickel-phosphorus alloy. Moscow: VINITI RAN: RKhTU im. D.I. Mendeleeva, 2018, 228 p.
41. Sallee N., Cromer M., Vittori O. Electroplating of Copper on Aluminium with Direct and Pulsed Currents. Canadian Metallurgical Quarterly, 1994, vol. 33. no. 2. pp. 155–162. DOI: 10.1179/cmq.1994.33.2.155.
42. ASTM B253-11. Preparation of Aluminum Alloys for Electroplating. ASTM, 2007. Available at: http://www.ru.scribd.com (accessed: May 17, 2021).
The article provides an overview of the scientific and technical literature in the field of the formation of silicon carbide coatings by chemical vapor deposition (CVD). CVD is a complex process, approaches to which vary depending on the tasks being solved. Depending on the technological parameters, the initial reagents, the substrate for deposition, the type and design of the CVD reactors, it is possible to achieve both the deposition of pure silicon carbide and the co-deposition of silicon and/or carbon.
In the first part of the article, attention is paid to the study of CVD from the point of view of the mechanisms of chemical reactions, the design of the deposition apparatus, the substrates for deposition.
2. Kablov E.N., Semenova S.N., Suleymanov R.R., Chaykun A.M. Prospects for the use of ethylene-propylenediene rubber as part of cold resistant rubber. Trudy VIAM, 2019, no. 12 (84), paper no. 4. Available at: http://www.viam-works.ru (accessed: December 29, 2020).
3. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: December 29, 2020). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Matovic B., Yano T. Handbook of Advanced Ceramics. Oxford, 2013, pp. 225–244.
5. Sidorov D.V., Storozhenko P.A., Shutova O.G., Kozhevnikov B.E. Obtaining alkylsilanes of high purity. Khimicheskaya tekhnologiya, 2006. No. 7, pp. 22-24.
6. Sidorov D.V., Schavnev А.А., Solodkin P.V., Kirilin A.D. Quantum chemical calculation of intermolecular interaction methylsilane molecules during the pyrolysis process. Trudy VIAM, 2019, no. 11 (83), paper no. 5. Available at: http://www.viam-works.ru (accessed: January 4, 2021). DOI: 10.18577/2307-6046-2019-0-11-44-52.
7. Choy K. Chemical vapour deposition of coatings. Progress in material science, 2003, vol. 48, pp. 57–170. DOI: 10.1016/S0079-6425(01)00009-3.
8. Hishimone P., Nagai H., Sato M. Methods of Fabricating Thin Films for Energy Materials and Devices. Lithium-Ion Batteries – Thin Film for Energy Materials and Devices. Intechopen Limited. London, 2020, pp. 6. DOI: 10.5772/intechopen.85912.
9. Wang L., Zhang W. Effect of free carbon on micro-mechanical properties of a chemically vapor T deposited SiC coating. Ceramics International. 2018, vol. 44, pp. 17118–17123.
10. Yang L., Chen Z., Wang B. Chemical vapor deposition of SiC at different molar ratios of hydrogen to methyltrichlorosilane. Journal of Central South University of Technology. 2009, vol. 16, pp. 0730–0737. DOI: 10.1007/s11771-009-0121-4.
11. Yang L., Zhang W. Kinetic and Microstructure of SiC Deposited from SiCl4–CH4–H2. Chinese Journal of Chemical Engineering. 2009, vol. 17, pp. 419–426. DOI: 10.1016/S1004-9541(08)60226-8.
12. Zhang W., Huttinger G. CVD of SiC from Methyltrichlorosilane. Part I: Deposition Rates. Chemical Vapor Deposition. 2001, vol. 7, pp. 167–172.
13. Zhang W., Huttinger G. CVD of SiC from Methyltrichlorosilane. Part II: Composition of the Gas Phase and the Deposit. Chemical Vapor Deposition. 2001, vol. 7, pp. 173–181.
14. Reznik B., Gerthsen D., Zhang W., Huttinger G. Microstructure of SiC deposited from methyltrichlorosilane. Journal of the European Ceramic Society. 2003, vol. 23, pp. 1499–1508.
15. Allendorf M., Mellus C. Theoretical Study of the Thermochemistry of Molecules in the Si–C–Cl–H System. Journal of Physical Chemistry. 1993, vol. 97, pp. 720–728.
16. Deng J., Su K., Wang X. Thermodynamic properties of the most stable gaseous small silicon-carbon clusters in their ground states. The European Physical Journal D. 2008. Vol. 49, pp. 21–35.
17. Mosebach H., Hopfe V., Erhard M., Meyer M. Monitoring of SiC Deposition in an Industrial CVI/CVD Reactor by In-Situ FTIR Spectroscopy. Journal de Physique IV Colloque. 1995, vol. 05, pp. 97–104.
18. Jonas S., Ptak V., Sodowski W. FTIR In situ studies of the gas phase reactions in chemical vapor deposition of SiC. Journal of the Electrochemical Society. 1995, vol. 142, pp. 2357–2362.
19. Papasouliotis G., Sotirchos S. Experimental study of atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane. Journal of Material Research. 1999, vol. 14, pp. 3397–3409.
20. Nigam S., Chung H., Polyakov F. Growth kinetics study in halide chemical vapor deposition of SiC. Journal of Crystal Growth. 2005, vol. 284, pp. 112–122.
21. Lu C., Cheng L., Zhao C. Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Applied Surface Science. 2009, vol. 255, pp. 7495–7499.
22. Chollon G., Langlais F., Placide M., Weisbecker P. Transient stages during the chemical vapour deposition of silicon carbide from CH3SiCl3/H2: impact on the physicochemical and interfacial properties of the coatings. Thin Solid Films. 2012, vol. 520, pp. 6075–6087.
23. Lee Y., Choi D. The effect of diluent gases on the growth behavior of CVD SiC films with temperature. Journal of Materials Science. 2000, vol. 35, pp. 4519–4526.
In this work, we consider the issues of determining the chemical composition of heat-resistant nickel alloys at various stages of the production of semi-finished products and finished products from them using additive technologies. An overview of the existing analytical control system of the laboratory of the VIAM Testing Center, in which the elemental composition of metallurgical materials is determined, is given. Analytical control was carried out at different stages of additive manufacturing in the manufacture of synthesized parts from VKNA-1VR-VI and VZhL12U-VI alloys.
2. Kablov E.N. Aviation materials science in the XXI century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS-VIAM, 2002, pp. 23–47.
3. Kablov E.N. Trends and guidelines for the innovative development of Russia: Coll. scientific-inform. materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
4. Gibson I., Rosen D.W., Stucker B. Additive manufacturing technologies. Rapid prototyping to direct digital manufacturing. New York: Springer, 2009, 459 p.
5. Laser technologies of material processing: modern problems of fundamental research and applied development. Ed. V.Ya. Panchenko. Moscow: Fizmatlit, 2009, 664 p.
6. Tarasova T.V., Nazarov A.P. Investigation of the processes of modification of the surface layer and the manufacture of three-dimensional machine-building parts by means of selective laser fusion. Vestnik MGTU "Stankin", 2013, no. 2 (25), pp. 17–25.
7. Kablov E.N. Additive technologies – the dominant of the national technological initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
8. Kablov E.N. Quality control of materials is a guarantee of the safety of aircraft operation. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
9. Kablov E.N., Lomberg B.S., Buntushkin V.P., Golubovsky E.R., Muboyadzhyan S.A. An alloy based on the Ni3Al intermetallic compound is a promising material for turbine blades. Metallovedeniye i termicheskaya obrabotka metallov, 2002, no. 7, pp. 16–19.
10. Mazalov I.S., Evgenov A.G., Prager S.M. Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
11. Evgenov A.G., Shcherbakov S.I., Rogalev A.M. Testing EP718 and EP648 superalloys powders produced by FSUE «VIAM» for repair of gas turbine engine components using laser-powder braze. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 16–23. DOI: 10.18577/2071-9140-2016-0-S1-16-23.
12. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
13. Karpov Yu.A., Filippov M.N., Baranovskaya V.B. Solved and unsolved problems of metrology of chemical analysis. Zhurnal analiticheskoy khimii, 2019, vol. 74, no. 9, pp. 643–651.
14. Karpov Yu.A., Baranovskaya VB Problems of standardization of methods of chemical analysis in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5–14.
15. Alekseev A.V., Yakimovich P.V., Kvachenok I.K. Determination of impurities in nickel by ICP-MS. Trudy VIAM, 2020, no. 2 (86), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 13, 2021). DOI: 10.18577/2307-6046-2020-0-2-101-108.
16. Evgenov A.G., Nerush S.V., Vasilenko S.A. The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition. Trudy VIAM, 2014, no. 05, paper no. 04. Available at: http://www.viam-works.ru (accessed: January 13, 2021). DOI: 10.18577/2307-6046-2014-0-5-4-4.
17. Nerush S.V., Evgenov A.G. Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP. Trudy VIAM, 2014, no. 3, paper no. 01. Available at: http://www.viam-works.ru (accessed: January 13, 2021). DOI: 10.18577/2307-6046-2014-0-3-1-1.
18. Shestakova E.A., Shaikhutdinova E.F., Yanbaev R.M. Selective sintering technologies for aircraft construction. Polzunovskiy almanakh, 2014, no. 2, pp. 21–24.
19. Volosova M.A., Okunkova A.A. Ways of optimizing the selective laser melting process using a laser beam treatment strategy. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (2), pp. 587–591.
20. Lukina E.A., Filonova E.V., Treninkov I.A. The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
The article considers the results of the study of the uneven distribution of the strength properties of a rigid high-temperature fibrous heat-protective material over the volume of the block. The article presents a comparative study of the uneven strength of two materials that differ in the method of introducing the binder. A conclusion is proposed about the mechanism of the occurrence of unevenness of the strength properties of a rigid fibrous thermal insulation material when a soluble binder is introduced into the material by the strait method. The absence of such a mechanism is shown for materials obtained using a solid-phase binder introduced into the molding hydraulic mass.
1. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. At the crossroads of science, education and industry. Ekspert, 2015, no. 15 (941), pp. 49–53.
4. Kablov E.N., Chainikova A.S., Shchegoleva N.E., Grashchenkov D.V., Kovaleva V.S., Belyanchikov I.O. Synthesis, structure and properties of aluminosilicate glass ceramics modified with zirconium oxide. Neorganicheskiye materialy, 2020, vol. 56, no. 10, pp. 1123–1129.
5. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
6. Shavnev A.A., Babashov V.G., Varrik N.M. Continuous fibers based on alumina (review). Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 27–34. DOI: 10.18577/2071-9140-2020-0-4-27-34.
7. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal – Zhurnal Rossiyskogo khimicheskogo obshchestva im. D.I. Mendeleyeva, 2010, vol. LIV, no. 1, pp. 20–24.
8. Shchetanov B.V. Tiles for external heat-protective coating for «Buran» reusable spaceship. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 41–50.
9. Armor for "Buran". Materials and technologies of VIAM for ISS "Energia–Buran". Ed. E.N. Kablov. Moscow: Science and Life Foundation, 2013, 128 p.
10. Kablov E.N., Shetanov B.V. Fibrous heat-insulating and heat-shielding materials: properties, fields of application. Abstracts of the Intern. scientific and technical conf. "Fundamental problems of high-speed currents". Zhukovsky, 2004, pp. 95–96.
11. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers. Aviacionnye materialy i tehnologii, 2011, no. 4, pp. 8‒14.
12. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, No. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
13. Varrik N.M. Heat-resistant fibers and heat and sound insulating fireproof materials
Trudy VIAM, 2014, no. 6, paper no. 7. Available at: http://viam-works.ru (accessed: March 27, 2021). DOI: 10.18577/2307-6046-2014-0-6-7-7.
14. Babashov V.G., Varrik N.M., Karaseva T.A. Porous ceramic for filtration of metal melts and hot gases (rеview). Trudy VIAM, 2020, no. 8 (90), paper no. 6. Available at: http://www.viam-works.ru (accessed: March 27, 2021). DOI: 10.18577/2307-6046-2020-0-8-54-63.
15. Ivakhnenko Yu.A., Kuzmin V.V., Bespalov A.S. State and prospects for the development of heat and sound insulation fireproof materials. Problemy bezopasnosti poletov, 2014, no. 7, pp. 27–30.
16. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspective reinforcing high-temperature fibers for metal and ceramic composite materials. Trudy VIAM, 2013, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: March 27, 2021).
17. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and pro-perties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
18. Babashov V.G., Basargin O.V., Lugovoy A.A., Butakov V.V. Features of the macrostructure of heat-insulating materials based on mullite-corundum composition. Steklo i keramika, 2017, no. 7, pp. 22–28.
19. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Arman A. Alikhanyan |
Technician |
Vladimir G. Babashov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Dmitry V. Baruzdin |
First Category Engineer |
Vyacheslav V. Butakov |
First Category Engineer |
Karina A. Vlasova |
Engineer |
Alexander V. Gololobov |
Second Category Engineer |
Vitaly A. Goncharov |
Head of Laboratory |
Roman M. Dvoretskov |
Head of Sector |
Alexander N. Zhabin |
Leading Engineer |
Fedor N. Karachevtsev |
Head of Laboratory, Candidate of Sciences (Chem.) |
Ilya A. Kozlov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Egor D. Kolpachkov |
Engineer |
Sergey G. Kolyshev |
First Category Engineer |
Dmitry V. Kravchenko |
Leading Engineer, Candidate of Sciences (Tech.) |
Evgeny I. Krasnov |
Leading Engineer |
Ivan S. Kuko |
Engineer |
Artem O. Kurnosov |
Head of Laboratory |
Alexander A. Leonov |
Head of Laboratory |
Vyacheslav G. Maksimov |
Leading Engineer |
Petr S. Marakhovsky |
Head of Laboratory, Candidate of Sciences (Tech.) |
Artem A. Melentev |
Technician |
Konstantin S. Mishurov |
First Category Engineer |
Andrey A. Nikiforov |
Head of Sector |
Andrey N. Nyafkin |
Head of Sector |
Sergey M. Payarel |
Head of Sector |
Aleftina P. Petrova |
Chief Researcher, Doctor of Sciences (Tech.) |
Ekaterina A. Prokhorchuk |
Technician |
Yuri V. Reshetnikov |
Engineer |
Viktoriya M. Serpova |
Leading Engineer |
Denis V. Sidorov |
Leading Researcher, Candidate of Sciences (Tech.) |
Igor I. Sokolov |
Deputy Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Elena V. Stepanova |
Senior Researcher, Candidate of Sciences (Tech.) |
Pavel N. Timoshkov |
Head of Scientific-Research Bureau |
Mikhail M. Tikhonov |
Head of Sector |
Maxim S. Tokarev |
Technician |
Andrey V. Trapeznikov |
Head of Sector |
Nikolay V. Trofimov |
Engineer |
Maria N. Usacheva |
Second Category Technician |
Leonid G. Khodykin |
First Category Engineer |
Alexander V. Khrulkov |
Leading engineer-technologist |
Andrey A. Schavnev |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
JSC«Electromash»;e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Alexander V. Egorov |
Chief Designer |