Articles
The influence of the ceramic crucible on chemical composition stability and purity of the REM–Fe–Co–B alloy during melting in a vacuum induction furnace is studied. It is shown that using MgO and Y2O3 as a working layer of the crucible allows to increase REM content stability in REM–Fe–Co–B system alloys and ensure high purity from aluminum and oxygen impurities. Usage of cobalt «K0» grade instead of «K1Au» grade as charge material leads to a significant reduction of nickel content in the melted alloy. For the first time the technology of melting of REM–Fe–Co–B alloys for temperature-stable magnets is designed. providing stability of chemical composition (REM ±1% by mass. from goal value, Co and B ±0,5% mass. from goal value) and high purity (aluminum and nickel impurities ≤0,1% mass. of each, oxygen impurity ≤0,05% by mass).
2. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost namagnichennosti i fazovyj sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence disprosium and cobalt on temperature dependence of magnetization and phase structure of material of Nd-Dy-Fe-Co-B system] // MiTOM. 2007. №4. S. 3–10.
3. Piskorskij V.P., Valeev R.A., Buzenkov A.V., Davydova E.A., Zolotareva M.V. Vliyanie vysokih koncentracij kobalta na svojstva magnitov Pr–Dy–Fe–Co–B [Influence of high concentration of cobalt on properties of magnets of Pr-Dy-Fe-Co-B] // Perspektivnye materialy. Specialnyj vypusk. 2008. S. 268–271.
4. Piskorskij V.P., Valeev R.A., Tereshina I.S., Bronfin M.B., Chabina E.B., Davydova E.A., Buzenkov A.V. Magnitnye svojstva i fazovyj sostav materialov sistemy Pr–Dy–Fe–Co–B [Magnetic properties and phase structure of materials of Pr-Dy-Fe-Co-B system] // Perspektivnye materialy. 2007. №3. S. 16–19.
5. Kablov E.N., Ospennikova O.G., Min P.G., Piskorskij V.P., Rezchikova I.I., Davydova E.A., Korolev D.V. Effekt vliyaniya splavov-dobavok na svojstva spechennyh magnitov (Pr, Dy)–(Fe, Co)–B s vysokim soderzhaniem kobalta [Effect of influence of alloys additives on properties of the sintered magnets (Pr, Dy)–(Fe, Co)–B with the high content of cobalt] // Metally. 2014. №6. S. 54–58.
6. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie ceriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence of cerium and yttrium on magnetic properties and phase structure of material of Nd-Dy-Fe-Co-B system] // MiTOM. 2005. №10. S. 25–29.
7. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence praseodium on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system] //MiTOM. 2005. №6 (600). S. 12–16.
8. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
9. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
10. Min P.G., Sidorov V.V. Resursosberegayushhaja tehnologiya pererabotki othodov litejnyh zharoprochnyh nikelevyh splavov [Resource-saving refining technology of waste of cast heat resisting nickel alloys] / V sb. tr. XXII Mezhdunar. nauch.-tehnich. konf. «Litejnoe proizvodstvo i metallurgiya». Minsk, 2014. S. 118–123.
11. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
12. Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
13. Min P.G., Sidorov V.V., Rigin V.E., Gorjunov A.V. Resursosberegajushhaja tehnologiya pererabotki nekondicionnyh othodov Re–Ru soderzhashhih zharoprochnyh nikelevyh splavov [Resource-saving refining technology of unconditioned waste of Re-Ru of containing heat resisting nickel alloys] / V sb. tez. dokl. VI Mezhdunar. nauch.-tehnich. konf. «Molodezh v aviacii: novye resheniya i perspektivnye tehnologii». Zaporozhie: Motor Sich, 2012. S. 205–206.
14. Piskorskij V.P. Termostabilnye magnitotverdye materialy na osnove redkozemelnyh intermetallidov s tetragonalnoj strukturoj [Thermostable magnitotverdy materials on the basis of rare-earth intermetallic compound with tetragonal structure]: avtoref. dis. … d-r tehn. nauk. M., 2013. 36 s.
15. Burzo E., Plugaru N. Magnetic properties of R2–Fe14-x–Cux B compounds with R=Nd or Er // J. of Magn. and Magn. Mater. 1990. V. 86. P. 97–101.
16. Hirosawa S., Hanaki A., Tomizawa H., Hamamura A. Current status of Nd–Fe–B permanent magnet materials // Physica B. 1990. V. 164. P. 117–123.
17. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://www.viam-works.ru (accessed: June 06, 2015). DOI: 10.18577/2307-6046-2014-0-10-2-2.
18. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://www.viam-works.ru (accessed: June 06, 2015). DOI: 10.18577/2307-6046-2014-0-11-10-10.
19. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 2) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 2)] // Elektrometallurgiya. 2014. №5. S. 26–30.
20. Sidorov V.V., Min P.G. Refining a Complex Nickel Alloy to Remove a Sulfur Impurity during Vacuum Induction Melting: Part 2 // Russian Metallurgy (Metally). 2014. V. №12. P. 987–991.
21. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://www.viam-works.ru (accessed: June 06, 2015). DOI: 10.18577/2307-6046-2014-0-9-1-1.
22. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedenija. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 3. Available at: http://www.materialsnews.ru (accessed: June 06, 2015).
23. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
24. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel rasplava via the penokeramichesky filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
25. Sidorov V.V., Podkopaeva L.A., Min P.G. Use of rhenium – containing master alloy in melting single-crystal nickel superalloys // Metallurgist. 2013. V. 57. P. 543–547.
26. Sidorov V.V., Podkopaeva L.A., Min P.G. Primenenie renijsoderzhashhej ligatury pri vyplavke monokristallicheskih vysokozharoprochnyh nikelevyh splavov [Application of reniysoderzhashchy ligature when smelting single-crystal high-heat resisting nickel alloys] // Metallurg. 2013. №6. S. 77–81.
27. Spedding F.H., Daane A.H.J. Metals. 1954. V. 6. 504 p.
It is found that in the process of decarburization of complex-alloyed nickel melts nitrogen is released together with the carbon to form the CO compound. As a melt alloying increases the denitride effect decreales. The intensity of denitride process during melt decarboning favours transition of [С]+[О]=СОg reaction in bubble mode («carbon boiling process»), that achieved by preliminary introduction carbon in melt and correspending increase of nickel oxide quantity.
2. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [RZM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
3. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh splavov. Ekaterinburg: Izdatelskij dom «IzdatNaukaServis», 2011. S. 31–38.
4. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology and razlivka of modern cast high-heat resisting nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 68–78.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
8. Meethman G.W. Trance elements in superalloys-an overview // Metals Technol. 1984. V. 11. №10. P. 414–418.
9. Strangman T.E., Hoppin G.S., Phipps C.M. Development of exothermically cast single-crystal MAR-M247 and derivative alloys / In: Superalloys. 1980. P. 215–224.
10. Durber G., Osgerby S. Effect of small amounts of nitrogen and silicon on microstructure and prepertis of MAR-M200 nickel-base superalloys // Metals Technol. 1984. V. 11. №4. P. 129–137.
11. Quested P.N., Gibbon T.B., Durber G.L.R. Nickel-base superalloys: physical metallurgy of recycling // Proc. AGARD Conf. «Materials substitution and recycling». Vimerio. 1983. P. 389–402.
12. Mitchel A., Tripp D.W. Higt temperature materials for power engineering 1990. Part II // Proceedings of a Conference held in Liege. Belgium. 1990. P. 1665–1673.
13. Erickson G.L. The development and application of CMSX-10 / Presented at the of the Second Pacific Rum International Conference on Advanced Materials and Processing (PRJCM-2), occurring. Kyongju. 1995.
14. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] // Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
15. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vliyaniya azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of monocrystals from foundry ZhS30-VI hot strength alloy] // MiTOM. 2013. №8. S. 3–7.
16. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedeniya azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vliyanie na ekspluatacionnye svojstva [Patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] // MiTOM. 2014. №1. S. 8–12.
17. Linchevskij B.V. Vakuumnaya metallurgiya stali i splavov [Vacuum metallurgy of steel and alloys]. M.: Metallurgiya, 1970. 258 s.
18. Grigoryan V.A., Belyanchikov L.N., Stomahin A.Ya. Teoreticheskie osnovy elektrostaleplavilnyh processov [Theoretical bases of electrosteel-smelting processes]. M.: Metallurgiya, 1987. 272 s.
19. Sobolevskij A.L. Raskislenie i degazacija nerzhavejushhej stali pri vakuumnoj plavke [Deoxidation and decontamination of stainless steel at vacuum melting]: avtoref. dis. … kand. tehn. nauk. M.: MVMI, 1968. 16 s.
20. Butskij E.V. Issledovanie povedeniya azota v zharoprochnyh splavah na nikelevoj osnove [Research of behavior of nitrogen in hot strength alloys on nickel basis]: avtoref. dis. … kand. tehn. nauk. M.: MISiS, 1975. 24 s.
21. Fedorchenko V.I. Kinetika i termodinamika vzaimodejstviya azota s rasplavami na osnove zheleza i nikelya [Kinetics and thermodynamics of interaction of nitrogen with alloys on the basis of iron and nickel]: avtoref. dis. … kand. tehn. nauk. M.: IMET, 1969. 22 s.
22. Belyanchikov L.N., Valen P. i dr. Opredelenie limitirujushhego zvena processa deazotacii nikelevyh rasplavov v vakuume [Definition of limiting link of process of de nitrogen nickel alloys in vacuum] // Izvestiya vuzov. Ser. «Chernaya metallurgiya». 1986. №9. S. 31–19.
23. Cidorov V.V., Burcev V.T., Rigin V.E. Issledovanie processov obezuglerozhivanija slozhnolegirovannyh nikelevyh rasplavov v vakuume [Research of processes of decarbonization complex-alloyed nickel alloys in vacuum] / V sb. nauch. tr. «Fundamentalnye issledovaniya fizikohimii metallicheskih rasplavov». M.: IKC «Akademkniga». 2002. S. 364–370.
24. Sidorov V.V., Rigin V.E. Issledovanie tehnologicheskogo processa obezuglerozhivanija mnogokomponentnyh rasplavov na osnove nikelya [Research of technological process of decarbonization multicomponent alloys on the basis of nickel] / V sb.: Aviacionnye materialy i tehnologii. Vyp. «Tehnologiya proizvodstva aviacionnyh metallicheskih materialov». M.: VIAM, 2002. S. 108–115.
25. Averin V.V., Revjakin A.V. i dr. Vzaimodejstvie azota s metallicheskimi rasplavami [Nitrogen interaction with metal rasplavami] / V sb.: «Fiziko-himicheskie osnovy metallurgicheskih processov». M.: Nauka, 1973. S. 201–210.
26. Kablov E.N. i dr. Vakuumnaya indukcionnaya plavilno-razlivochnaya ustanovka VIAM–2002 dlya polucheniya vysokokachestvennyh specsplavov [The vacuum induction VIAM-2002 melting and barreling unit for receiving high-quality special alloys ] // Elektrometallurgiya. 2004. №5. S. 24–26.
Investigations of isothermal heat resistance of single-crystal nickel alloys VZHM4, VZHM5U samples for high-pressure turbine blades with thermal barrier coatings at temperatures 1200 and 1150°C on the basis of 100 and 500 hours are undertaken. The results of metallographic examinations of samples are provided.
2. Zharoprochnyj splav na osnove nikelja [Hot strength alloy on the basis of nickel]: pat. 2402624 Ros. Federaciya; opubl. 16.06.09.
3. Zharoprochnyj litejnyj splav na osnove nikelya i izdelie, vypolnennoe iz nego [Heat resisting cast alloy on the basis of nickel and the product which has been executed of it ]: pat. 2365656 Ros. Federaciya; opubl. 30.01.08.
4. Petrushin N.B., Ospennikova O.G., Visik E.M. i dr. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5–11.
5. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
6. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES // Russian metallurgy (Metally). 2012. №1. P. 1–7.
7. Budinovskij S.A., Matveev P.V., Smirnov A.A. Issledovanie zharostojkosti litejnyh zharoprochnyh nikelevyh splavov v oblasti temperatur 1000–1200°C [Research of heat resistance of cast heat resisting nickel alloys in the field of temperatures 1000–1200°C] // Aviacionnaya promyshlennost. 2014. №2. S. 48–52.
8. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lutsenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
9. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys // Metal Sciens and Heat Treatment. 1995. №2. P. 15–18.
10. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
11. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kosmin A.A. Zharostojkie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] // MiTOM. 2008. №6. C. 31–36.
12. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://www.viam-works.ru (accessed: September 15, 2015). DOI: 10.18577/2307-6046-2014-0-1-1-1.
13. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlja teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://www.viam-works.ru (accessed: September 15, 2015). DOI: 10.18577/2307-6046-2015-0-4-7-7.
14. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
15. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] // Metally. 2012. №1. S. 5–13.
16. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhit-nye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
17. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
18. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M. Sovremennoe sostoyanie i osnovnye tendencii razvitiya vysokotemperaturnyh teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD [Current state and the main tendencies of development of high-temperature heat-protective coverings for working blades of turbines of aviation GTE] // Aviacionnaya promyshlennost. 2008. №4. S. 33–37.
19. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60.
20. Budinovskij S.A., Chubarov D.A., Matveev P.V. Sovremennye sposoby naneseniya teplozashhitnyh pokrytij na lopatki gazoturbinnyh dvigatelej (obzor) [Modern methods for deposition of thermal barrier coatings on GTE turbine blades (review)] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 38–44.
In the paper an engineering technique of estimating the internal stresses arising in the coating after deposition and also during operation at elevated temperatures is proposed. The dependences of magnitude and character of the internal stress on the melting temperature of coating and base materials are revealed as well as upper and lower limits of the melting temperature of the coating material ensuring the maximum allowable strain in the coating. The influence of the coating thickness on the magnitude of the internal stresses is reviewed, a formula for determination of the internal stress in the coating after deposition depending on the melting temperature of the coating and base materials, their thickness and elastic modulus is found.
2. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
3. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlja lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
4. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnjayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
5. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
6. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-basic alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
7. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
8. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym barernym sloem dlya zashhity ot okisleniya splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] // MiTOM. 2011. №1. S. 34–40.
9. Gayamov A.M. Zharostojkoe pokrytie s kompozicionnym barernym sloem dlya zashhity vneshnej poverhnosti rabochih lopatok GTD iz renijsoderzhashhih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTE from reniye of containing heat resisting nickel alloys] / V sb. mater. XI Rossijskoj ezhegodnoj konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tehnologiya neorganicheskih materialov». M.: IMET RAN, 2012. C. 473–475.
10. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
11. Sposob obrabotki poverhnosti metallicheskogo izdeliya [Way of surface treatment of metal product]: pat. 2368701 Ros. Federaciya; opubl. 27.09.09.
12. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] // Metally. 2012. №1. S. 5–13.
13. Sposob naneseniya kombinirovannogo zharostojkogo pokrytiya [Way of drawing the combined heat resisting covering]: pat. 2402633 Ros. Federaciya; opubl. 31.03.09.
14. Budinovskij S.A., Muboyadzhjan S.A., Gayamov A.M., Kosmin A.A. Zharostojkie ionno-plazmennye pokrytija dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] // MiTOM. 2008. №6. S. 31–36.
15. Budinovskij S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoj modeli opredeleniya uprugih napryazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostojkih pokrytij dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 26–37.
16. Budinovskij S.A. Primenenie analiticheskoj modeli opredeleniya uprugih mehanicheskih i termicheskih napryazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniyu zharostojkih alyuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] // Uprochnyayushhie tehnologii i pokrytiya. 2013. №3. S. 3–11.
17. Lindemann F.A. The calculation of molecular vibration frequencies // Phis. Z. 1911. V. 11. P. 609–619.
18. Samsonov G.V. Svojstva elementov Chast 1. Fizicheskie svojstva[Properties of elements. Part 1. Physical properties]: spravochnik. 2-e izd. M.: Metallurgiya, 1976. 600 s.
19. Samsonov G.V., Vinickij I.M. Tugoplavkie soedineniya [High-melting connections]: spravochnik. 2-e izd. M.: Metallurgiya, 1976. 560 s.
20. Feodosev V.I. Soprotivlenie materialov [Resistance of materials]. 10-e izd., pererab. i dop. M.: MGTU im. N.E. Baumana. 1999. 590 s.
21. Elyutin V.P., Pavlov Yu.A. Vysokotemperaturnye materialy [High-temperature materials]. Ch. 1. M.: Metallurgiya, 1972. 264 s.
22. Francevich I.I., Voronov F.F., Bakuta S.A. Uprugie postoyannye i moduli uprugosti metallov i nemetallov [Elastic constants and elastic moduluses of metals and nonmetals]: spravochnik. Kiev: Naukova dumka, 1982. 286 s.
A description how to create fiberglass for tail section skins of helicopter rotor blades instead of the currently used skins of organic textolite is provided. In order to make the skins it was decided to use unidirectional prepreg and two layers of glass textileforming in autoclave a monolith plastic with fixed binder content.. A selection of optimal reinforcement scheme from two options is executed. Bench test results showed that at the chosen reinforcement scheme the fiberglass plastic has high strength characteristics, endurance crack resistance and meets all the requirements for the tail section skins of helicopter blades.
2. Davydova I.F., Kablov E.N., Kavun N.S. Termostojkie negoryuchie poliimidnye steklotekstolity dlya izdelij aviacionnoj i raketnoj tehniki [Heat-resistant nonflammable polyimide glass fiber laminate for products aviation and rocketry] // Vse materialy. Enciklopedicheskij spravochnik. 2009. №7. S. 2–11.
3. Popov Yu.O., Kolokol’tseva T.V., Khrulkov A.V. Novoe pokolenie materialov i tehnologij dlya izgotovleniya lonzheronov lopastej vertoleta [The new generation of materials and technologies for helicopter blade spars] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 5–9.
4. Zhelezina G.F., Vojnov S.I., Pletin I.I., Veshkin E.A., Satdinov R.A. Razrabotka i proizvodstvo konstrukcionnyh organoplastikov dlya aviacionnoj tehniki [Development and production constructional organoplastikov for aviation engineering] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. T. 14. №4–2. S. 411–416.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Zhelezina G.F. Osobennosti razrusheniya organoplastikov pri udarnyh vozdejstviyah [Features of destruction organoplastikov at shock influences] // Aviacionnye materialy i tehnologii. 2012. №S. S. 272–277.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
8. Vavilova M.I., Kavun N.S. Svojstva i osobennosti armiruyushhih steklyannyh napolnitelej, ispolzuemyh dlya izgotovleniya konstrukcionnyh stekloplastikov [The properties of glass filler for constructions of fiberglass] // Aviacionnye materialy i tehnologii. 2014. №3. S. 33–37.
9. Timoshkov P.N., Platonov A.A., Khrulkov A.V. Propitka plenochnym svyazujushhim (RFI) kak perspektivnaya bezavtoklavnaya tehnologiya polucheniya izdelij iz PKM [Film resin infusion as an advanced method for out-of-autoclave processing of polymer composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 09. Available at: http://www.viam-works.ru (accessed: June 10, 2015). DOI: 10.18577/2307-6046-2015-0-5-9-9.
10. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
11. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ya.M., Platonov A.A. Plenochnye svyazuyushhie dlya RFI-tehnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. №1. S. 63–66.
12. Khrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
13. Dushin M.I., Kogan D.I., Khrulkov A.A., Gusev Yu.A. Prichiny obrazovaniya poristosti v izdeliyah iz polimernyh kompozicionnyh materialov [The reasons of formation of porosity in products from polymeric composite materials] // Kompozity i nanostruktury. 2013. №3 (19). S. 60–71.
14. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
15. Borshchev A.V., Khrulkov A.V., Halturina D.S. Izgotovlenie nizkoporistogo polimernogo kompozicionnogo materiala dlya primeneniya v slabo- i srednenagruzhennyh konstrukciyah [Manufacturing polymer composite material with low porosity for use in low- and mediumloaded structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 03. Available at: http://www.viam-works.ru (accessed: June 10, 2015). DOI: 10.18577/2307-6046-2014-0-7-3-3.
Research results of effect of biaxial deformation on electrical and optical properties of polyethylene terephthalate (PET) films with a transparent conductive coating of indium oxide alloyed by е tin (ITO) obtained by magnetron sputtering as a part of the organic triplex produced by a method of autoclave formation are presented. Suggestions on main causes of changes in resistance of the samples in the cyclic biaxial strain and subsequent relaxation are proposed.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] / V sb.: Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISiS–VIAM, 2002. S. 23–47.
6. Krynin A.G., Hohlov Yu.A., Bogatov V.A., Kislyakov P.P. Prozrachnye interferencionnye pokrytiya dlya funkcionalnyh materialov ostekleniya [Transparent interferential coatings for functional materials of glazing] // Trudy VIAM: elektron. nauch.-tenhich. zhurn. 2013. №11. St. 05. Available at: http://www.viam-works.ru (accessed: Month, data 2015).
7. Bogatov V.A., Kondrashov S.V., Hohlov Yu.A. Mnogofunkcionalnye opticheskie pokrytiya i materialy [Multifunction optical coatings and materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 343–348.
8. Bogatov V.A., Hohlov Ju.A. Mnogofunkcionalnye opticheskie pokrytija, poluchaemye metodami plazmennoj tehnologii, i sposoby kontrolja ih optiko-fizicheskih harakteristik / V sb. Aviacionnye materialy i tehnologii. Vyp. «Metody ispytanij i kontrolja kachestva metallicheskih i nemetallicheskih materialov». M. : VIAM, 2001. S. 93–99.
9. Kislyakov P.P., Hohlov Yu.A., Krynin A.G., Kondrashov S.V. Poluchenie i primenenie polimernoj plenki s prozrachnym elektroprovodyashhim pokrytiem na osnove oksida indiya, legirovannogo olovom [Receiving and application of polymer film with transparent electroconducting coating on the basis of the indium oxide alloyed by tin] // Trudy VIAM: elektron. nauch.-tenhich. zhurn. 2013. №11. St. 06. Available at: http://www.viam-works.ru (accessed: Month, data 2015).
10. Suzdalev I.P. Nanotehnologiya. Fiziko-himiya nanoklasterov, nanostruktur i nanomaterialov [Fiziko-himiya nanoclusters, nanostructures and nanomaterials]. M.: KomKniga, 2006. 589 s.
11. Ivanchev S.S., Ozerin A.N. Nanostruktury v polimernyh sistemah [Nanostructures in polymeric systems] // Vysokomolekulyarnye soedineniya. Ser. B. 2006. T. 48. №8. S. 1531–1535.
12. Volynskij A.L., Panchuk D.A., Sadakbaeva Zh.K., Bolshakova A.V., Yarysheva L.M., Bakeev N.F. Ob ocenke deformacionno-prochnostnyh svojstv poverhnostnyh sloev polimerov, podvergnutyh obrabotke v plazme [About assessment of deformation and strength properties of surface layers of the polymers subjected to processing in plasma] // Himiya vysokih energij. 2010. T. 44. №4. S. 369–372.
13. Volynskij A.L., Panchuk D.A., Moiseeva S.V., Kechekyan A.S., Yarysheva L.M., Bakeev N.F. Vliyanie harakteristicheskoj defektnosti na prochnost nanosloev metallov, nanesennyh na poverhnost polimerov [Influence of characteristic deficiency on durability of nanolayers of the metals brought on surface of polymers] // Doklady Rossijskoj akademii nauk. 2008. T. 418. №5. S. 638–642.
14. Panchuk D.A., Sadakbaeva Zh.K., Puklina E.A. i dr. O strukture mezhfaznogo sloya na granice metallicheskoe pokrytie–polimernaya podlozhka [About structure of interphase layer on border metal covering – polymeric substrate] // Rossijskie nanotehnologii. 2009. T. 4. №5–6. S. 114–120.
15. Kuzmichev A.I. Magnetronnye raspylitelnye sistemy. Kn. 1. Vvedenie v fiziku i tehniku magnetronnogo raspyleniya [Magnetronnye spraying systems. Book 1. Introduction in physics and equipment of magnetron sputtering]. Kiev: Avers. 2008. 244 s.
16. Hohlov Yu.A., Bogatov V.A., Berezin N.M. Stabilizaciya reaktivnogo magnetronnogo osazhdeniya magnitnym polem [Stabilization of reactive magnetronny sedimentation by magnetic field] // Fizika i himija obrabotki materialov. 2012. №5. S. 46–50.
17. Gorjanca T.C., Leonga D., Py C., Rotha D. Room temperature deposition of ITO using r.f. magnetron sputtering // Thin Solid Films. 2002. V. 413. P. 181–185.
18. Khokhlov Yu.A., Berezin N.M., Bogatov V.A., Krynin A.G. Reaktivnoe magnetronnoe osazhdenie oksida indiya, legirovannogo olovom, s kontrolem rabochego davleniya [Reactive magnetron deposition of indium oxide alloyed with tin with the use of operating pressure control] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 53–56. DOI: 10.18577/2071-9140-2015-0-3-60-63.
19. Mientus R., Ellmer K. Reactive magnetron sputtering of tin-doped indium oxide (ITO): influence of argon pressure and plasma excitation mode // Surface and Coatings Technology. 2001. V. 142–144. P. 748–754.
20. Khokhlov Yu.A., Berezin N.M., Bogatov V.A., Krynin A.G., Popkov O.V. Kontrol reaktivnogo osazhdeniya ITO pokrytiya po emissionnomu spektru plazmy magnetronnogo razryada [Control of reactive deposition of ITO coating on the emission spectrum of the plasma magnetron discharge] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 67–71. DOI: 10.18577/2071-9140-2015-0-4-67-71.
21. Khokhlov Yu.A., Bogatov V.A, Krynin A.G. Vliyanie raspredeleniya magnitnogo polya na svojstva ITO pokrytiya, poluchaemogo na polimernoj plenke metodom reaktivnogo magnetronnogo osazhdeniya [An influence of the magnetic field distribution on properties of ITO coating deposited on a polymer film by reactive magnetron sputtering method] // Trudy VIAM: elektron. nauch.-tenhich. zhurn. 2014. №12. St. 11. Available at: http://www.viam-works.ru (accessed: Month, data 2015). DOI: 10.18577/2307-6046-2014-0-12-11-11.
22. Krylova T.N. Interferencionnye pokrytiya [Interferential coverings]. L.: Mashinostroenie, 1973. 224 s.
23. Krynin A.G., Khokhlov Yu.A. Opticheskie harakteristiki termostabilizirovannoj polietilentereftalatnoj plenki, ispolzuemoj dlya funkcionalnyh materialov ostekleniya [Optical performances thermostabilised polyethyleneterephtalaten film used for the functional materials of a glass cover] // Aviacionnye materialy i tehnologii. 2013. №4. S. 31–34.
24. Khokhlov Yu.A., Krynin A.G., Bogatov V.A., Kislyakov P.P. Opticheskie konstanty tonkih plenok oksida indiya, legirovannogo olovom, osazhdennyh na polietilentereftalatnuyu plenku metodom reaktivnogo magnetronnogo raspyleniya (blizhnyaya infrakrasnaja oblast spektra) [Optical constants of thin indium oxide films, alloyed by tin and deposited onto polyethylene terephthalate film by the reactive magnetron sputtering method (spectrum infrared short-range region)] // Aviacionnye materialy i tehnologii. 2013. №1. S. 24–28.
In this paper the historical aspect of foundation and development of physicochemical phase analysis technique for investigation of aviation alloys with different basic metals was considered. This work is dedicated to the memory of Natalia I. Blok in connection with the 125th anniversary of her birth. In fairness, it must be said that N.I. Blok and her research team discovered the γ'-phase in Nickel superalloy EI437B and founded the role of aluminum in γ'-phase formation, which was done for the first time in the world. This discovery contributed to the accelerated development of new superalloys for hot sections of gas turbine engines. The discovery of the fine dispersed γ'-phase formed the basis of the theory of heterophase superalloys strengthening, this theory was advocated by the academician S.T.Kishkin. The main achievements in the field of research of nickel alloys chemistry by the physicochemical phase analysis applicable in selection of new alloy compositions, in study of phase t
2. Popova N.M. Karbidnyj analiz stali [Carbide steel analysis]. M.: Oborongiz, 1956. 100 s.
3. Lashko N.F., Zaslavskaya L.V., Kozlova M.N., Morozova G.I., Sorokina K.P., Yakovleva E.F. Fiziko-himicheskij fazovyj analiz stalej i splavov [Physical and chemical phase analysis staly and alloys]. M.: Metallurgiya, 1978. 336 s.
4. Kishkin S.T., Kablov E.N. Litejnye zharoprochnye splavy dlya turbinnyh lopatok [Foundry hot strength alloys for turbine blades] / V sb.: Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002 : yubilejnyj nauch.-tehnich. sb. / pod red. E.N. Kablova. M.: VIAM, 2002. S. 48–58.
5. Kablov E.N., Kishkin S.T. Perspektivy primenenija litejnyh zharoprochnyh splavov dlja proizvodstva turbinnyh lopatok GTD [Perspectives of application of foundry hot strength alloys for production of turbine blades of GTE] // Gazoturbinnye tehnologii. 2002. №1. S. 34–37
6. Kishkin S.T., Logunov A.V., Petrushin N.V., Glezer G.M., Kuleshova E.A., Morozova S.G. Nauchnye osnovy legirovaniya zharoprochnyh nikelevyh splavov [Scientific bases of alloying of heat resisting nickel alloys] / V sb.: Voprosy aviacionnoj nauki i tehniki : nauch.-tehnich. sb. Ser. «Aviacionnye materialy». M.: VIAM, 1987. S. 6–18.
7. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlya diskov gazoturbinnyh dvigatelej no-vogo pokoleniya [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] // Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
8. Kishkin S.T., Morozova G.I., Belyaev M.S., Gnevsheva A.I., Sorokina L.P. Fazovye prevrashheniya v zharoprochnom nikelevom splave ZhS6U, ispytannom na ustalost [Phase transformations in the heat resisting ZhS6U nickel alloy tested for fatigue] // Fizika metallov i metallovedenie. 1984. T. 58. Vyp. 6. S. 1171–1178.
9. Morozova G.I. Fenomen γ-fazy [Phenomenon γ'-phases] // Doklady AN SSSR. 1992. T. 325. № 6. S. 1193–1198.
10. Kablov E.N., Buntushkin V.P., Morozova G.I., Bazyleva O.A. Osnovnye principy legirovaniya intermetallida Ni3Al pri sozdanii vysokotemperaturnyh splavov [The basic principles of alloying of Ni3Al intermetallic compound at creation of high-temperature alloys] // Materialovedenie. 1998. №7. S. 13–17.
11. Kishkin S.T., Morozova G.I. Osobennosti metoda fiziko-himicheskogo fazovogo analiza sovremennyh zharoprochnyh nikelevyh splavov [Features of method of the physical and chemical phase analysis of modern heat resisting nickel alloys] // Voprosy aviacionnoj nauki i tehniki : nauch.-tehnich. sb. Ser. «Aviacionnye materialy». M.: VIAM, 1987. S. 86–93.
12. Morozova G.I. Zakonomernost formirovaniya himicheskogo sostava /-matricy mnogokomponentnyh nikelevyh splavov [Pattern of forming of chemical composition of /-matrix of multicomponent nickel alloys] // Doklady AN SSSR. 1991. T. 320. №6. S. 1413–1416.
13. Morozova G.I. Kompensaciya disbalansa legirovaniya zharoprochnyh nikelevyh splavov [Compensation of imbalance of alloying of heat resisting nickel alloys] // MiTOM. 2012. №12. S. 52–56.
14. Kablov E.N., Petrushin N.I. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] / V sb.: Litejnye zharoprochnye splavy. Effekt Kishkina. M.: Nauka, 2006. S. 56–78.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
16. Belov N.A. Ekonomnolegirovannye zharoprochnye alyuminievye splavy: principy optimizacii fazovogo sostava [Economically alloyed heat resisting aluminum alloys: principles of optimization of phase structure] // Aviacionnye materialy i tehnologii. 2011. №2. S. 6–11.
17. Karachevtsev F.N., Zagvozdkina T.N., Orlov G.V. Razrabotka i issledovanie metrologicheskih harakteristik ekspress-metodiki analiza zharoprochnyh nikelevyh splavov [Development and research of metrological characteristics of express-analysis of heat-resistant nickel alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 09. Available at: http://www.viam-works.ru (accessed: October14, 2015). DOI: 10.18577/2307-6046-2015-0-11-9-9.
This article describes a technique of the determination of boron (0,002–0,1 % wt.) in alloys of the Ni–Ti system (nitinol) using extraction-photometric method. To perform photometric measurements of solutions of Ni-Ti alloy nitrochrompyrazol reagent was selected, which forms a complex compound of magenta color with an anion of BF4- in the acidic solution of boron-bearing alloy. The intensity of color is proportional to boron concentration in the sample solution. In order to enhance reproducibility of analysis, reduce errors and eliminate the influence of impurities Nb, Ti, Zr, Fe, W and others, which are often presented in alloys of this type, a method of separating nitrochrompyrazol-boron complex compound from interfering components of alloy by means of its extraction by dichloroethane is proposed. On basis of the study a measurement technique of extraction-photometric determination of boron in the concentration range of 0,002–0,1% wt. in alloys of the Ni–Ti system has been developed
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP4. C. 13–19.
5. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh splavov [Production of cast bar (blend) preparations from modern foundry high-hot strength alloys] / V sb. tr. nauchn.-tehn. konf. «Problemy i perspektivy razvitija metallurgii i mashinostroenija s ispolzovaniem zavershennyh fundamentalnyh issledovanij i NIOKR». Ekaterinburg: Nauka Servis, 2011. T. 1. S. 31–38.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
8. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
9. Sidorov V.V., Timofeeva O.B., Kalitsev V.A., Goryunov A.V. Vliyanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashheniya v intermetallidnom splave VKNA-25-VI [Influence of microalloying of RZM on properties and structural phase changes in intermetallidny alloy VKNA-25-VI] // Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
10. Kauffman G.B. The story of National: The Serendipitous Discovery of the Memory Metal and Its Applications // The Chemical Educator. 1997. №2. 1021 р.
11. Miyazaki S., Kim H.Y., Hosoda H. Development and characterization of Ni-free Ti – base shape memory and superelastic alloys // Mater. Sci. Eng. 2006. V. 18. P. 438–440.
12. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [REM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
13. Liu C.T., White C.L., Horton G.U. Effect of boron on grain boundaries in Ni3Al // Acta Metallurgica. 1985. V. 33. №2. P. 213–229.
14. Bazyleva O.A. Osobennosti legirovanija intermetallida Ni3Al pri sozdanii vysokotemperaturnyh zharoprochnyh splavov: avtoref. dis. … kand. tehn. nauk. M.: VIAM, 1995. 28 s.
15. Elvell V.G., Bud D.F. Analiz novyh metallov [Analysis of new metals]. M.: Mir. 1970. 220 s.
16. Porter G., Shubert R.K. Bor. Kolorimetricheskie metody opredeleniya nemetallov [Colorimetric methods of definition of nonmetals]. M.: Izd-vo inostr. lit, 1963. 217 s.
17. Zolotov Yu.A., Kuzmin N.M. Ekstrakcionnoe koncentrirovanie [Extraction concentration]. M.: Himiya, 1971. 286 s.
18. Yakovlev P.Ya., Kozina G.V. Novye metody ispytaniya metallov [New methods of metals test]. M.: Metallurgiya, 1977. №1. S. 42–47.
19. Klitina V.I. Atomno-absorbcionnyj analiz promyshlennyh materialov i syrya [Nuclear and absorbing analysis of industrial materials and raw materials]. M.: MDNTP im. F.E. Dzerzhinskogo, 1976. 22 s.
20. Marchenko Z. Fotometricheskoe opredelenie elementov [Photometric definition of elements]. M.: Mir, 1971. S. 116–125.
Different types of operational damages of bearings of the complex technical systems, being both a cause of failure and consequence of violation of operation conditions are considered. On example of bearings damaged under operation or at tests the reasons of loss of their working capacity are established. Methods of Scanning Electron Microscopy have been used for investigation of mechanisms of fatigue and static failure of parts from bearing steels. Defects of metallurgical origin in the central zones of damages of bearings have been investigated by method of X-ray Microanalysis. Microstructure of the damaged parts of bearings has been studied by method of optical microscopy and a nature of its change in case of thermal influence has been determined
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Teplostojkaya podshipnikovaya stal [Heat-resistant bearing steel]: pat. 2447183 Ros. Federaciya; opubl. 05.04.11.
4. Chermenskij O.N., Fedotov N.N. Podshipniki kacheniya [Swing bearings]: spravochnik-katalog. M.: Mashinostroenie, 2003. 576 s.
5. Spektor A.G., Zelbert B.M., Kiseleva S.A. Struktura i svojstva podshipnikovyh stalej [Structure and properties bearing steel]. M.: Metallurgiya, 1980. 264 s.
6. Orlov M.R., Terehin A.M., Morozova L.V., Zhuravleva P.L., Naprienko S.A. Issledovanie vliyaniya plasticheskoj deformacii stali 20H3MVF so strukturoj ferrita na mehanicheskie svojstva i harakter razrusheniya [Study of influence of plastic deformation of 20H3MVF steel of ferrite structure on mechanical properties and nature of fracture] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 118–124.
7. Grigorenko V.B., Morozova L.V., Orlov M.R. Issledovanie prichin poyavleniya uchastkov s razlichnoj morfologiej izloma v kovanyh zagotovkah iz stali 38HN3MFA [Research of the reason of emergence of sites with different morphology of a break in shod preparation from steel 38HN3MFA] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 11. Available at: http://www.viam-works.ru (accessed: May 06, 2015). DOI: 10.18577/2307-6046-2014-0-8-11-11.
8. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack firmness of aviation materials in the course of fatigue test] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: May 06, 2015).
9. Sprishevskij A.M. Podshipniki kacheniya [Swing bearings]. M.: Mashinostroenie, 1968. 632 s.
10. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostojaniya materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: May 06, 2015).
11. Shtremel M.A. Razrushenie. Kn. 1: Razrushenie materiala [Destruction. Book 1: Material destruction]. M.: Izd. Dom MISIS, 2014. 670 s.
12. Fraktografiya: sredstvo diagnostiki razrushennyh detalej [Fractography: means of diagnostics of the destroyed details] / pod red. M.A. Balter. M.: Mashinostroenie, 1987. 160 s.
13. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
14. Kuzmin V.R., Prokhorov V.A., Borisov A.Z. Ustalostnaya prochnost metallov I dolgovechnost konstruktsij pri neregulyarnim nagruzhenii vyusokogo urovnya [Fatigue resistance of metals and durability of designs at irregular loading of high level]. M.: Mashinostroenie, 1998. 256 s.
15. Matvienko Yu.G. Modeli I kriterii mehaniki razrusheniya [Models and criteria of fracture mechanics]. M.: Fizmatlit, 2006. 328 s.
The effect of higher temperature and moisture content on basic mechanical and thermal characteristics of carbon fiber and glass fiber plastic based on epoxy binder has been studied. The most sensitive response has been chosen to calculate the activation energies of the aging process and make predictions of retentive properties of polymeric composite materials.
2. Sugita Y., Winkelmann C., La Saponara V. Environmental and chemical degradation of carbon/epoxy lap joints for aerospace applications, and effects on their mechanical performance // Compos. Sci. and Technol. 2010. V. 70. №5. P. 829–839.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Kablov E.N., Gunyaev G.M. Tumanov A.T. – initsiator sozdaniya kompozitov [Tumanov A.T. – initiator of creation of composites] / V sb. tez. dokl. mezhotrasl. nauch.-tehnich. konf. «Kompozi- cionnye materialy v aviakosmicheskom materialovedenii». М.: VIAM, 2009. S. 6–9.
5. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
6. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimemye svyazuyushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
7. Kirillov V.N., Vapirov Yu.М., Drozd E.A. Issledovanie atmosfemoj stojkosti polimernyh kompozi- cionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Re¬search of atmospheric firmness of polymeric composite materials in the conditions of the atmos¬phere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
8. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. Environmental stability of GFRP laminated composites: an emphasis on mechanical behavior // Aircraft Eng. and Aerosp. technol. 2010. V. 82. №4. P. 258–266.
9. Nikolaev E.V., Korenkova T.G., Shvedkova A.K., Valevin E.O. Issledovanie vliyaniya tempera- tumyh faktorov na process stareniya novyh polimernyh kompozicionnyh materialov dlya moto- gondoly aviacionnogo dvigatelya [Research of an influence of temperature factors on aging of new polymer composite materials for aviation engine nacelle] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 12. Available at: http://www.viam-works.ru (accessed: January 01, 2015). DOI: 10.18577/2307-6046-2015-0-3-12-12.
10. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite ma¬terials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
11. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
12. Kirillov V.N., Efimov V.A. Problemy issledovanija klimaticheskoj stojkosti aviacionnyh nemetal- licheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] / V sb.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. М.: VIAM, 2007. S. 379–388.
13. Kuleznev V.N., Ushakova O.B. Struktura i mehanicheskie svojstva polimerov (Konspekt kursa lekcij. Chast 1) [Structure and mechanical properties of polymers (Abstract of course of lectures. Part 1)]. М.: MITHT, 2006. S. 36–38.
14. Gul V.E., Kuleznev V.N. Struktura i mehanicheskie svojstva polimerov [Structure and mechanical properties of polymers]. М.: Labirint, 1994. 367 s.
15. Madorsky S.L. Thermal degradation of organic polymers. New York: Interscience Publishers, 1964. P. 26.
16. Van Krevelen D.V. Svojstva i himicheskoe stroenie polimerov [Properties and chemical structure of polymers]. М.: Himiya, 1976. 416 s.
17. Entsiklopediya polimerov [Encyclopedia of polymers]. М.: Sovetskaya enciklopediya. 1977. T. 3. 575 s.
18. Arhireev V.P. Starenie i stabilizatsiya polimerov: ucheb. posobie [Aging and stabilization of polymers: education guidance], Kazan: KGTU, 2002. 88 s.
19. Mikols W.J., Seferis J.C., Apicella A., Nicolais L. Evaluation of structural changes in epoxy systems by moisture sorption-desorption and dynamic mechanical studies // Polym. Compos. 1982. V. 3. №3. P. 118–124.
20. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Issledovanie zakonomernostej vlagoperenosa i razrabotka standarta po opredeleniyu koefficienta diffuzii i predelnogo vlagosoderzhaniya dlya ocenki mehanicheskih svojstv ugleplastikov [Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture con¬tent limit to evaluate mechanical properties of carbon fiber reinforced plastics] // Aviacionnye materialy i tehnologii. 2013. №3. S. 44-48.
21. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh kon- strukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i natumyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhum. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: January 01, 2015).
22. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. II. Relaksatsiya ishodnoj strukturnoj neravnovesnosti i gra¬dient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relax¬ation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2012. №6. S. 17–19.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 813.
4. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukciyah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: June 17, 2015).
5. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svjazujushhie. Nastojashhee i budushhee [Thermoplastic binders. The present and the future] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 07. Available at: http://www.viam-works.ru (accessed: June 17, 2015).
6. Morev F.V., Prokopchuk N.R., Krutko E.T. Modificirovanie epoksidianovyh smol poliizocianatami [Modifying of epoksidianovy pitches by polyisocyanates] // Trudy BGTU. 2012. №4. S. 88–91.
7. Lapickij V.A., Kricuk A.A. Fiziko-himicheskie svojstva jepoksidnyh polimerov i stekloplastikov [Physical and chemical properties of epoxy polymers and fibreglasses]. Kiev: Naukova dumka, 1986. 96 s.
8. Sycheva M.V., Garipov R.M., Deberdeev R.Ja. Modifikacija jepoksidnyh materialov izocianatami [Updating of epoxy materials by isocyanates] // Vestnik Kazanskogo tehnologicheskogo universiteta. 2009. №6. S. 193–198.
9. Nikolaeva N.P., Kuzmin M.V., Koltsov N.I. Sintez i issledovanie svojstv jepoksiuretanov, poluchennyh psevdoforpolimernym metodom [Synthesis and research of properties epoksiuretanov, received pseudoprepolymer method] // Vestnik Kazanskogo tehnologicheskogo universiteta. 2013. T. 16. №1. S. 136–138.
10. Barcia F.L., Abrahão M.A., Soares B.G. Modification of epoxy resin by isocyanate-terminated polybutadiene // Journal of Applied Polymer Science. 2002. V. 83. №4. P. 838–849.
11. Kadurina T.I., Laevskaya L.I. Sintez epoksiizocianuratnyh blokoligomerov i polimerov na ih osnove [Synthesis of epoxideisocyanurate blockoligomers and polymers on their base] // Voprosy himii i himicheskoj tehnologii. 2004. №1. S. 103–107.
12. Guseva M.A. Cianovye efiry – perspektivnye termoreaktivnye svyazujushhie (obzor) [Cyanic esters are prospective thermosetting binders (review)] // Aviacionnye materialy i tehnologii. 2015. №2. S. 45–50.
13. Nistratov A.V. Fiziko-himicheskie principy razrabotki receptur i tehnologii kompozicij na osnove oligotiolov, oligodienov i oligoefirov, ispolzuemyh dlya polucheniya polimernyh materialov s uluchshennymi tehniko-ekspluatacionnymi harakteristikami [Physical and chemical principles of development of compoundings and technology of compositions on basis oligothiol, oligodienes and oligoethers used for receiving polymeric materials with improved technical utilization properties]: avtoref. dis. … dokt. tehn. nauk. Volgograd, 2014. 48 s.
14. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozicionnyh materialov, poluchaemyh metodom propitki rasplavnym svjazujushhim [Modern technologies of hotmelt polymer composite materials processing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 04. Available at: http://www.viam-works.ru (accessed: June 17, 2015). DOI: 10.18577/2307-6046-2014-0-8-4-4.
15. Zheleznyak V.G., Chursova L.V. Modifikaciya svyazujushhih i matric na ih osnove s celyu povysheniya vyazkosti razrusheniya [Modification of binders and matrixes based on them to increase fracture toughness] // Aviacionnye materialy i tehnologii. 2014. №1. S. 47–50.
16. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41.
17. Nakanisi K. Infrakrasnye spektry i stroenie organicheskih soedinenij: per. s angl. [Infrared spectrums and structure of organic connections: trans. from English]. M.: Mir, 1965. 216 s.
18. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58.
19. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics] // Trudy VIAM. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: June 17, 2015). DOI: 10.18577/2307-6046-2015-0-6-9-9.
The experiments have been performed to assess the influence of nano-additives (astralens and thermo-expanded graphite) on the shelf life of prepregs made on basis of carbon full-strength fabric and polycyanurate mortar binder at a room and lower temperatures in an industrial refrigerator. Differential Scanning Calorimetry (DSC) was chosen as a basis of the analysis. The experimental DSC curves with detailed description of a reokinetic behavior of the analyzed prepregs were obtained. The conclusions of the shelf life for the investigated nanomodified prepregs were presented according to the results of the analysis.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniyya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Gunyaev G.M. Nanomaterialy – proryv v materialovedenie mikromira [Nanomaterials – break in microcosm materials science] / V sb.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 225–232.
4. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. №3–4. S. 24–42.
5. Aleksashin V.M., Gunyaev G.M., Kablov E.N., Ilchenko S.I., Ponomarev A.N. Perspektivy primenenija uglerodnyh nanomaterialov v aviacionnom mashinostroenii [Perspectives of application of carbon nanomaterials in aviation mechanical engineering] / V sb. dokl. 2-j Mezhdunar. konf. «Uglerod: fundamentalnye problemy nauki, materialovedenie, tehnologiya». 2003.
6. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
7. Bobovich B.B. Polimernye konstrukcionnye materialy (struktura, svojstva, primenenie) [Polymeric constructional materials (structure, properties, application)]. M.: FORUM INFRA-M, 2014. 400 s.
8. Gunyaeva A.G. Nanomodificirovannye prepregi epoksidnyh ugleplastikov / V sb. tez. dokl. «Nauchnye trudy ХХХVIII Gagarinskih chtenij». M.: MATI, 2012. T.1. S. 28–30.
9. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional ugleplastikov carbon nanoparticles ] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
10. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional coal the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
11. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: July 07, 2015).
12. Kovalenko A.V. Issledovanie svojstv svyazujushhego dlya formovaniya izdelij metodom propitki pod davleniem [Study of resin properties for forming of articles by resin transfer molding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 06. Available at: http://www.viam-works.ru (accessed: July 07, 2015). DOI: 10.18577/2307-6046-2015-0-1-6-6.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
14. Antyufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Opyt primeneniya kalorimetricheskogo kontrolya reakcionnoj sposobnosti preprega KMU-11tr [Practice of the calorimetric control reactionary ability prepreg KMU-11tr] // Trudy VIAM VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 06. Available at: http://www.viam-works.ru (accessed: July 07, 2015). DOI: 10.18577/2307-6046-2014-0-2-6-6.
15. Aleksashin V.M., Aleksandrova L.B., Matveeva N.V., Mashinskaja G.P. Primenenie termicheskogo analiza dlya kontrolya tehnologicheskih svojstv termoreaktivnyh prepregov konstrukcionnyh kompozicionnyh materialov [Application of the thermal analysis for control of technological properties of thermosetting prepregs of constructional composite materials] // Aviacionnaya promyshlennost. 1997. №5–6. S. 38–43.