Articles
Different types of protective coatings for high-temperature niobium-based alloys are considered. A complex approach to creation of protective coatings is needed to provide the required protective properties. Further development of protective coatings and niobium-based alloys is also required.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in the thermally stable nickel alloys for single-crystal blades of gasturbine engines /In: 7th international symposium on technetium and rhenium science and utilization. 2011.
4. Tanaka R., Kasama A., Fujikura M., Iwanaga I., Tanaka Y., Matsumura Y. Research and Development of Niobium-Based Superalloys for Hot Components of Gas turbines /Proceedings of the International Gas Turbine Congress. Tokyo. 2003.
5. Zaharova G.V., Popov I.A., Zhorova L.P., Fedin B.V. Niobij i ego splavy [Niobium and its alloys]. M.: Gos. nauch.-tehnich. izd-vo lit. po chernoj i cvetnoj metallurgii. 1961. 196 s.
6. Stupik D., Donovn M.M., Barronj A.R., Jervis T.R., Nastasi M. The interfacial mixing of silicon coatings on niobium metal: a comparative study //Thin Solid Films. 1992. №207. P. 138–143.
7. Streiff R. Protection of materials by advanced high temperature Coatings //Journal de physique IV. 1993. V. 3. №111. P. 17–41.
8. Il'in V.A., Panarin A.V. Aljuminievye pokrytija i sposoby ih poluchenija [Aluminum coverings and ways of their receiving] //Aviacionnye materialy i tehnologii. 2014. №4. S. 37–42.
9. Fukumoto M., Matsumura Y., Hayashi S., Narita T., Sakamoto K., Kasama A., Tanaka R. Coatings of Nb-based Alloy by Cr and/or Al Pack Cementations and Its Oxidation Bahavior in Air at 1273–1473 K //Materials Transactions. 2003. V. 44. №4. P. 731–735.
10. Hayashi S., Takagi S., Yamagata R., Narita T., Ukai S. Formation of Exclusive Al2O3 Scale on Nb and Nb-Rich Alloys by Two-Step Oxygen-Aluminum Diffusion Process //Oxidation of Metals. 2012. №78. P. 167–178.
11. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
12. Oxidation resistant coating for Niobium – based silicide Composites: pat. №6521356 US; pabl. 18.02.2003.
13. Turbine blade for extreme temperature conditions: pat. №7189459 US; pabl. 13.03.2007.
14. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. i dr. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
15. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Metally. 2007. №5. S. 23–34.
16. Burykina A.L., Dzydjakevich Ju.V., Jepik A.P., Sosnovskij L.A. Primenenie boridnyh pokrytij v kachestve diffuzionnyh bar'erov dlja tugoplavkih metallov [Application of boridny coverings as diffusion barriers for refractory metals] /V kn.: Neorganicheskie i organosilikatnye pokrytija. L.: Nauka. 1975. S. 195–203.
17. Tsirlin M.S., Kasatkin A.V., Byalobzheskii A.V. An oxidation-resistant silicide coating for niobium alloys //Poroshkovaya metallurgiya. 1978. №12. P. 31–34.
18. Lazarev Je.M., Kozlov A.T., Monahova L.A., Shestova V.F., Romanovich I.V. Vzai-modejstvie Cr–Ti–Si pokrytija na niobevom splave VN-3 s vozdushnoj sredoj [Interaction of Cr–Ti–Si of covering on niobevy alloy VN-3 with air environment] //Fizika i himija obrabotki materialov. 1984. №6. S. 94–97.
19. Novak M., Levi C. Oxidation and Volatilization of Silicide Coatings for Refractory Nio-bium Alloys /Proceedings of IMECE. Seattle. 2007.
Materials for high-temperature sealants are reviewed in the article. High-temperature movable sealants with acceptable wear resistance, chemical resistance in aggressive envi-ronment and high elastic properties are uses for sealing of flap doors and hatches and control means of flying vehicles. Generally, butt end sealants and/or stuffing box sealants are used as movable sealants. A wide range of organic, metal, ceramic and combined ma-terials can be used as sealing materials; their choice depends on service conditions.
2. Krenkel W., Lamon J. High-Temperature Ceramic Materials and Composites /In: 7-th International Conference on High-Temperature Ceramic Matrix Composites (HT-CMC 7). Bayreuth. 2010. P. 938.
3. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Aluminum Oxide Ceramic Fibers and Materials Based on them //Glass and Ceramics. 2012. V. 69. №3–4. P. 130–133.
4. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic compo-site materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
5. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
6. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-protective materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12–19.
7. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
8. Babashov V.G., Ivahnenko Ju.A., Judin A.V., Zimichev A.M. Keramicheskij material dlja detalej ustanovok nepreryvnoj razlivki cvetnyh splavov [Ceramic material for details of installations of continuous razlivka of color alloys] //Trudy VIAM. 2014. №12. St. 05 (viam-works.ru).
9. Zimichev A.M., Varrik N.M. K voprosu primenenija diskretnyh volokon iz tugoplavkih oksidov dlja formirovanija serdechnika termostojkih uplotnitel'nyh shnurov [To question of application of discrete fibers from high-melting oxides for forming of the core of heat-resistant sealing cords] //Trudy VIAM. 2015. №2. St. 07 (viam-works.ru).
10. Maksimov V.G., Basargin O.V., Shheglova T.M., Nikitina V.Ju. O projavlenii sverhplastichnosti v polidispersnoj keramike mullit–oksid cirkonija s razmerom kristallov bolee 10 mkm [About superplasticity manifestation in unequigranular ceramics mullit-zirconium oxide with size of crystals more than 10 microns] //Trudy VIAM. 2013. №6. St. 04 (viam-works.ru).
11. Tonkoslojnoe keramicheskoe pokrytie, sposob ego poluchenija, poverhnost' trenija na osnove tonkoslojnogo keramicheskogo pokrytija i sposob ee poluchenija [Tonkosloynoye ce-ramic coating, way of its receiving, friction surface on the basis of tonkosloyny ceramic coating and way of its receiving]: pat. №2165484 Ros. Federacija; opubl. 20.04.2001.
12. Tonkoslojnoe keramicheskoe pokrytie, sposob ego poluchenija, poverhnost' trenija na osnove tonkoslojnogo keramicheskogo pokrytija i sposob ee poluchenija [Tonkosloynoye ceramic coating, way of its receiving, friction surface on the basis of tonkosloyny ceramic coating and way of its receiving]: pat. №2453640 Ros. Federacija; opubl. 20.10.2011.
13. Torcevoe uplotnenie vrashhajushhegosja vala [Face seal of rotating shaft]: pat. №2168086 Ros. Federacija; opubl. 27.05.2001.
14. Varrik N.M., Ivahnenko Ju.A., Maksimov V.G. Oksid-oksidnye kompozicionnye materialy dlja gazoturbinnyh dvigatelej (obzor) [Oksid-oksidnye composite materials for gas turbine engines (review)] //Trudy VIAM. 2014. №8. St. 03 (viam-works.ru).
15. Zimichev A.M., Varrik N.M., Shheglova T.M., Nikitina V.Ju. Issledovanie prochnostnyh svojstv rovinga iz volokon sostava 85%Al2O3–15%SiO2 pri temperature 1000°С [Research of strength properties of roving from structure fibers 85%Al2O3–15%SiO2 at temperature 1000°С] //Vse materialy. Jenciklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №1. S. 30–35.
16. Butakov V.V., Basargin O.V., Babashov V.G., Ivahnenko Ju.A. Model' povedenija voloknistogo materiala pri izgibe [Model of behavior of fibrous material at bend] //Trudy VIAM. 2014. №12. St. 06 (viam-works.ru).
17. http://sealing.su/
18. http://uplotnenia.ru
19. http://garlock.kz/services/catalog/
20. www.pgn.su
21. http://technomixcenter.by/
22. http://www.seals.highexpert.ru/materials.html
23. http://chemindtec.ru/catalogue/2/29/
24. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
25. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
Results of the research of 0.15–0.01 mm thick foil made from the technical sintered be-ryllium of high purity (Be≥99%; BeO≤0,7%; Fe≤0,1%) and its properties are presented in the article. Warm rolling of beryllium billets with protective coating was made in welded containers (covers) from stainless steel on the laboratory rolling mill without heating the rollers. Heating of billets for rolling was carried within the temperature range of high ductility of beryllium. Foils microstructures, optical and vacuum tightness, content of oxygen and iron, mechanical properties of 0,15 mm thick foil were studied. Samples of plates and disks made of beryllium foil were demonstrated.
2. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. 128 s.
3. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. C. 3–9.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 go-da» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Fokanov A.N., Kas'kov V.S., Podurazhnaja V.F. Pajka berillija so splavom monel' pri izgotovlenii rentgenovskih okon [The beryllium soldering with alloy monel when manu-facturing x-ray windows] //Trudy VIAM. 2014. №8. St. 02 (viam-works.ru).
6. Kas'kov V.S. Berillij – konstrukcionnyj material dlja mnogorazovoj kosmicheskoj sistemy [Beryllium – constructional material for reusable space system] //Trudy VIAM. 2013. №3. Ct. 03 (viam-works.ru).
7. Kas'kov V.S. Berillij i materialy na ego osnove [Beryllium and materials on its basis] //Aviacionnye materialy i tehnologii. 2012. №S. S. 222–226.
8. Kas'kov V.S., Zhirnov A.D. Izgotovlenie konstrukcionnyh izdelij iz berillija v VJeTC VIAM i ih primenenie v razlichnyh otrasljah nauki i tehniki [Manufacturing of constructional products from beryllium in VETTs VIAM and their application in different branches of science and technicians] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Berillij – konstrukcionnyj material XXI veka». M.: VIAM. 2000. S. 19–22.
9. Kas'kov V.S., Gorbunov P.Z., Fokanov A.N. Jeffektivnost' primenenija berillievoj fol'gi v uzlah rentgenovskih priborov [Efficiency of application of beryllium foil in nodes of x-ray devices] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Berillij – konstrukcionnyj material XXI veka». M.: VIAM. 2000. S. 51–52.
10. Fokanov A.N., Kas'kov V.S. Vysokokachestvennye izdelija iz berillija dlja rentgenovskoj tehniki i nauchnogo priborostroenija [High-quality products from beryllium for x-ray equipment and scientific instrument making] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Berillij – konstrukcionnyj material XXI veka». M.: VIAM. 2000. S. 110–111.
11. Wittenauer J., Nien T.G. Characterization of beryllium foil produced by hot rolling //Journal of materials science. 1992. V. 27. P. 2653–2639.
12. Papirov I.I., Nikolaenko A.A. Berillievye fol'gi dlja okon schetchikov jadernogo izluchenija [Beryllium foil for windows of counters of nuclear radiation] //VANT. 2013. №6 (88). C. 235–239.
13. www.naukaspb.ru.
14. www.espimetals.com.
15. www.lebowcompany.com
16. www.alfa.com.
17. www.goodfellow.com.
18. Tuzov Ju.V., Markushkin Ju.E., Krasnoshhekov E.S. Berillij – sostojanie, vozmozhnosti i perspektivy primenenija v termojadernoj jenergetike [Beryllium – condition, opportunities and application perspectives in thermonuclear power] //Voprosy atomnoj nauki i tehniki. Ser. «Termojadernyj sintez». 2011. Vyp. 2. S. 21–27.
19. Fokanov A.N., Subbotko V.A. Issledovanie vlijanija jelektrojerozionnoj obrabotki na naprjazhennoe sostojanie i mehanicheskie svojstva berillija [Research of influence of electric erosion machining on tension and mechanical properties of beryllium] /V sb.: Avi-acionnye materialy i tehnologii. Vyp. «Berillij – konstrukcionnyj material XXI veka». M.: VIAM. 2000. S. 59–63.
20. Sposob poluchenija zashhitnogo pokrytija na izdelii iz berillija [Way of receiving protecting cover on product from beryllium]: pat. 2299266 Ros. Federacija; zajavl. 27.12.2005; opubl. 20.05.2007. Bjul. №14. 5 s.
21. Sposob poluchenija fol'gi iz berillija [Way of receiving foil from beryllium]: pat. 2299102 Ros. Federacija; zajavl. 27.12.2005; opubl. 20.05.2007. Bjul. №14. 7 s.
22. Solncev S.S., Rozenenkova V.A., Mironova N.A., Kas'kov V.S. Kompleksnaja sistema zashhity berillija ot okislenija [Complex system of protection of beryllium from oxidation] //Aviacionnye materialy i tehnologii. 2010. №1. S. 12–16.
23. Kolbasnikov N.G., Mishin V.V., Shishov I.A., Kistankin I.S., Zabrodin A.V. Razrabotka nerazrushajushhih rezhimov teploj prokatki nanokristallicheskogo berillija s pomoshh'ju matematicheskogo modelirovanija [Development of nondestructive modes of warm rolling of nanocrystal beryllium by means of mathematical modeling] //Deformacija i razrushenie materialov. 2013. №9. S. 14–21.
Different methods of suppression of spectrum interferences and their efficiency in case of 4% (mass.) content of interference-causing elements were described. Content of Cu, Zn, Se, Ag and Cd in Nb-based alloy was determined by the inductively coupled plasma mass spectrometry method (IСP-MS). An effect of the interference-causing alloying elements (Ti, Cr, Zr and Mo) on the results of determination was investigated. The correctness of this measurement technique was controlled by the «added–found» method. Correction of spec-tral interferences at the addition of interference-causing elements in the test solution allowed to improve the accuracy of measurements and to assess the degree of the effect of mass-spectral interferences for each element to be determined. The use of a collision-reaction cell allowed to reduce the mass-spectral interferences of elements at determination of Cu, Zn, Ag and Cd and, respectively, their detection limits by one or two orders of magnitude as compared to t
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. C. 52–57.
4. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
5. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremnija v uslovijah vakuumnoj indukcionnoj plavki [Refinement of waste of heat resisting ZhS32-VI nickel alloy from silicon impurity in the conditions of vacuum induction melting] //Trudy VIAM. 2014. №9. St. 01 (viam-works.ru).
6. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchnoproizvodstvennom komplekse VIAM po izgotovleniju lityh prutkovyh (shihtovyh) zagotovok [Experience of processing of foundry waste of alloy ZhS32-VI on VIAM scientific-industrial complex on manufacturing of cast bar (blend) preparations] //Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
7. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
8. Kablov E.N., Svetlov I.L., Efimochkin I.Ju. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashi-nostroenie». 2011. №SP2. S. 164–173.
9. Bewlay B.P., Jackon M.R., Zhao H.C. etal. Ultrahigh-Temperature Nb-Silicide-Based Composites //Mrs. Bulletin. Spt. 2003.P. 646–653.
10. Svetlov I.L., Abuzin Ju.A., Babich B.N. i dr. Vysokotemperaturnye Nb–Si-kompozity, uprochnennye silicidami niobija [The high-temperature Nb-Si-composites strengthened by silicides of niobium] //Zhurnal funkcional'nyh materialov. 2007. T. 1. №2. S. 48–52.
11. High Temperature Niobium alloy: pat. №7632455 US; pabl. 15.12.2009.
12. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS //Mikrochim. Acta. 2001. V. 137. P. 149–155.
13. Pupyshev A.A., Jepova E.N. Spektral'nye pomehi poliatomnyh ionov v metode mass-spektrometrii s induktivno svjazannoj plazmoj [Spectral hindrances of polynuclear ions in mass-spectrometry method with inductively connected plasma] //Analitika i kontrol'. 2001. T.5. №4. S. 335–369.
14. Lejkin A.Ju., Jakimovich P.V. Sistemy podavlenija spektral'nyh interferencij v mass-spektrometrii s induktivno svjazannoj plazmoj [Systems of suppression of spectral interferences in mass-spectrometry with inductively connected plasma] //Zhurnal analiticheskoj himii. 2012. T. 67. №8. S. 752–762.
15. MI 1.2.052–2013 «Metodika izmerenij massovoj doli primesej R, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi v nikelevyh splavah metodom mass-spektrometrii s induktivno svjazannoj plazmoj» [«Measurement technique of mass fraction of impurity P, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, CDs, Sn, Sb, Te, Tl, Pb, Bi in nickel alloys mass-spectrometry method with inductively connected plasma»]. M.: VIAM. 2013.
16. Smirnova E.V., Lozhkin V.I. O vybore analiticheskih izotopov redkozemel'nyh jelementov v metode mass-spektrometrii s induktivno svjazannoj plazmoj [About choice of analytical isotopes of rare earth elements in mass-spectrometry method with inductively connected plasma] //Analitika i kontrol'. 2004. T. 8. №4. S. 329–338.
17. Pupyshev A.A., Surikov V.T. Mass-spektrometrija s induktivno svjazannoj plazmoj. Obrazovanie ionov [Mass-spectrometry with inductively connected plasma. Formation of ions]. Ekaterinburg: UrO RAN. 2006. 276 s.
18. Pupyshev A.A., Danilova D.A. Ispol'zovanie atomno-jemissionnoj spektrometrii s induktivno svjazannoj plazmoj dlja analiza materialov i produktov chernoj metallurgii [Use of nuclear and emission spectrometry with inductively connected plasma for the analysis of materials and products of ferrous metallurgy] //Analitika i kontrol'. 2007. T. 11. №2–3. S. 131–181.
19. Aries S., Valladon M. et al. A routine method for oxide and hydroxide interference correction in ICP-MS chemical analysis of environmental and geological samples //Geostandards Newsletter. 2000. V. 24. P. 19–31.
An influence of sizing agents and auxiliary threads on ability to weaving of threads from alumina continuous fibers on the braiding equipment is studied. Tests were carried out to define breaking loading and flexibility of threads. The experiments allowed to establish that the usage of auxiliary threads and sizing agent facilitates application of heat-resistant ceramic threads for production of flexible sealing thermal insulation.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A. Poluchenie, struktura i prochnost' volokon Al2O3 [Receiving, structure and durability of Al2O3 fibers] /V sb. trudov Mezhdunarodnoj konf. «Teorija i praktika tehnologij proizvodstva izdelij iz kompozicionnyh materialov i novyh metallicheskih splavov». M. 2003. S. 194–196.
4. Oxide Fibers for High-Temperature Reinforcement and Insulation, Bunsell Ecole Nationale Superieure des Mines de Paris //J. Miner., Metalls and Mater. Sci. 2005. V. 57. №2. С. 48–51.
5. Varrik N.M. Termostojkie volokna i teplozvukoizoljacionnye ognezashhitnye materialy [Heat-resistant fibers and heatsound-proof fireproof materials] //Trudy VIAM. 2014. №6. St. 07 (viam-works.ru).
6. Composite sewing thread of ceramic fibers: pat. №4375779 US; pabl. 08.03.1983.
7. Aluminum borate and aluminum borosilicate articles: pat. №3795524 US; pabl. 05.03.1974.
8. Twisted ceramic fiber sewing thread: pat. №4430851 US; pabl. 14.02.1984.
9. Razdel kataloga produkcii kompanii 3M (SShA) www.3m.com Ceramic Textiles and Composites Nextel 440 Braided Sleeving.
10. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. №2212388 Ros. Federacija; opubl. 20.09.2003.
11. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of elastic modulus of fibers from high-melting oxides] //Trudy VIAM. 2014. №6. St. 05 (viam-works.ru).
12. Shheglova T.M., Zimichev A.M., Varrik N.M. Issledovanie obrazcov shnura iz volokon Fiber-frax [Research of samples of cord from Fiberfrax fibers] //Trudy VIAM. 2014. №9. St. 05 (viam-works.ru).
13. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida aljuminija [Thermogravimetric researches of threads on the basis of aluminum oxide] //Trudy VIAM. 2014. №6. St. 06 (viam-works.ru).
14. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-protective materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12–20.
15. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
16. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo tep-loizoljacionnogo materiala [Temperaturoprovodnost of gradient heatinsulating material] //Trudy VIAM. 2014. №2. St. 02 (viam-works.ru).
Results of studies of the diluted self-regulating electrolyte with aluminum oxide nanopowder and chromium coatings deposited in this electrolyte are presented in comparison with properties of chromium coatings produced in a standard electrolyte. The studies have shown that the properties of chromium coatings obtained in the diluted self-regulating electrolyte with aluminum oxide nanopowder do not inferior to those of the coatings produced in a standard electrolyte and in some individual indicators are even superior to them
2. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
3. Semenychev V.V., Salahova R.K., Tjurikov E.V., Il'in V.A. Zashhitnye i funkcional'nye gal'vanicheskie pokrytija, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
4. Zhirnov A.D., Karimova S.A. Korrozija i zashhita metallicheskih materialov [The protective and functional galvanic coverings received using nanodimensional particles] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 202–208.
5. Bogorad L.Ja. Intensificirovannyj process hromirovanija v hrom-kadmievom jelektrolite [The intensified process of chromizing in chrome-cadmium electrolit]. L.: LDNTP. 1976. 28 s.
6. Jelektrolit hromirovanija DHTI-hrom-II [Electrolit of chromizing DHTI-hrom-II]: pat. №804723 SSSR; opubl. 15.02.1981 Bjul. №6.
7. Sposob jelektroliticheskogo hromirovanija [Way of electrolytic chromizing]: pat. №199619 SSSR; opubl. 13.07.1967 Bjul. №15.
8. Falicheva A.I., Burdykina R.I., Gorshunova V.P. Sherohovatost' hromovyh pokrytij, poluchennyh iz malokoncentrirovannyh jelektrolitov [Roughness of the chrome platings received from low-concentrated electrolits] //Zashhita metallov. 1994. T. 30. №3. S. 332–334.
9. Kurkin G.V., Rjaboj A.Ja. i dr. Tverdye iznosostojkie gal'vanicheskie i himicheskie pokrytija [Hard anti wear galvanic and chemical coatings]. M.: MNDTP. 1984. 68 s.
10. Kolombini K. Primenenie impul'snyh istochnikov toka pri tverdom hromirovanii [Application of pulsed sources of current at firm chromizing] //Gal'vanotehnika i obrabotka poverhnosti. 1993. T. 2. №3. S. 58–61.
11. Ul'janovskij nauchnotehnicheskij centr [Ulyanovsk scientific and technical center] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 468–474.
12. Tjurikov E.V. Issledovanie sluzhebnyh svojstv pokrytij, poluchennyh v samoregulirujushhemsja jelektrolite hromirovanija, soderzhashhem nanoporoshok oksida aljuminija s razmerom chastic 5–50 nm [Research of office properties of the coverings received in self-regulating electrolit of chromizing, containing aluminum oxide nanopowder with particle size of 5–50 nanometers] //Aviacionnye materialy i tehnologii. 2009. №1. S. 13–17.
13. Salahova R.K. Korrozionnaja stojkost' stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] //Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
14. Salahova R.K. Hromirovanie v jelektrolite, soderzhashhem soli trehvalentnogo hroma i nanoporoshok oksida aljuminija [Chromizing in the electrolit containing salts of trivalent chrome and nanopowder of aluminum oxide] //Aviacionnye materialy i tehnologii. 2009. №2. S. 19–24.
15. Salahova R.K. Korrozionnaja stojkost' stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] //Korrozija: materialy, zashhita. 2012. №1. S. 44–48.
16. Il'in V.A. Nanotehnologii nanesenija klasternyh gal'vanicheskih pokrytij [Nanotechnologies of drawing klasterny galvanic coverings] //Aviacionnye materialy i tehnologii. 2009. №2. S. 3–7.
17. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
The aim of this study was to conduct research on the development of methods for determination of tantalum mass fraction (within the range of 2–15% mass.) in Fe–Ni–Co–Ta alloys. In addition to the main alloying elements, the alloy may contain the following impurities: 2–3% mass. of titanium and microimpurities of chromium, aluminum and silicon. Studies on the selection of the conditions for translation of analytical sample of Fe–Ni–Co–Ta alloy into solution. For the subsequent deposition and separation of tantalum from the other alloy components, reagent tannin was selected. An effect of acidity on the completeness of the deposition of tantalum with tannin was studied. It was determined that for elimination of errors in the determination of tantalum due to co-precipitation of titanium a double re-precipitation of tantalum is required. The studies allowed to develop a method of gravimetric determination of the mass fraction of tantalum (within the range of 2–15% mass.) in Fe–Ni–Co–Ta a
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
3. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
4. Mubojadzhjan S.A., Lucenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povyshenija sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovanija poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTD by method of ionic modifying of surface] //Trudy VIAM. 2013. №1. St. 02 (viam-works.ru).
5. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
6. Markova E.S., Pokrovskaja N.G., Shal'kevich A.B., Gromov V.I. Martensitostarejushhie stali – novye perspektivnye materialy dlja valov GTD [Maraging became – new perspective materials for GTD shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
7. Markova E.S., Revjakina O.K., Petrakov A.F. Novaja vysokoprochnaja martensitostarejushhaja stal' VKS-170 [New high-strength VKS-170 maraging steel] /V cb. Voprosy aviacionnoj nauki i tehniki. Ser. «Aviacionnye materialy». Vyp. Vysokoprochnye stali. M.: VIAM. 1986. S. 36–40.
8. Gibalo I.M. Analiticheskaja himija niobija i tantala [Analytical chemistry of niobium and tantalum]. M.: Nauka. 1967. 352 s.
9. Elinson S.V. Spektrofotometrija niobija i tantala [Niobium and tantalum spectrophotometry]. M.: Atomizdat. 1973. 288 s.
10. Marchenko Z. Fotometricheskoe opredelenie jelementov [Photometric definition of elements]: Per. s pol'sk. M.: Mir. 1971. S. 276–287.
11. OST1 90430–96. Otraslevoj standart. Splavy nikelevye zharoprochnye. Metod opredelenija tantala [Industry standard. Alloys the nickel heat resisting. Method of definition of tantalum].
The development trends of paint-and-lacquer materials, whose production and application are connected with the lowered content of volatile, toxic and flammable or-ganic sub-stances are considered. Various paint-and-lacquer materials are used for painting of a-chitectural objects, metal structures, products from polymeric composite materials. For this purpose, they have to possess good adhesion to surface, good protective and anticorrosive properties, stability to atmospheric and mechanical impacts.
2. Kondrashov Je.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvi-tie aviacionnyh lakokrasochnyh materialov [Development of aviation paint and varnish materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 49–54.
3. Kuznecova V.A., Kuznecov G.V. Tendencii razvitija v oblasti toplivostojkih lakokraso-chnyh pokrytij dlja zashhity toplivnyh kesson-bakov letatel'nyh apparatov (obzor) [Devel-opment tendencies in the field of toplivostoyky paint coatings for protection fuel caisson tanks of flight vehicles (review)] //Trudy VIAM. 2014. №11. St. 08 (viam-works.ru).
4. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials sci-ence] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
5. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Istorija aviacionnogo materialovedenija: VIAM – 75 let poiska, tvorchestva, otkrytij [His-tory of aviation materials science: VIAM – 75 years of search, creativity, opening] /Pod obshh. red. E.N. Kablova. M.: Nauka. 2007. S. 152–158.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 go-da» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
8. Semenova L.V., Malova N.E., Kuznecova V.A., Pozhoga A.A. Lakokrasochnye materialy i po-krytija [Paint and varnish materials and coverings] //Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
9. Kondrashov Je.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A. Osnovnye napravleni-ja po-vyshenija jekspluatacionnyh, tehnologicheskih i jekologicheskih harakteristik lakokrasochnyh pokrytij dlja aviacionnoj tehniki [The main directions of increase of utili-zation, technical and ecological properties of paint coatings for aviation engineering] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
10. Kuznecova V.A., Semenova L.V., Kondrashov Je.K., Lebedeva T.A. Lakokrasochnye ma-terialy s ponizhennym soderzhaniem vrednyh i toksichnyh komponentov dlja okraski agre-gatov i konstrukcij iz PKM [Paint and varnish materials with the lowered content of harm-ful and toxic components for coloring of units and designs from PKM] //Trudy VIAM. 2013. №8. St. 05 (viam-works.ru).
11. Hennesi T. Novye dostizhenija v reologii sudovyh i zashhitnyh lakokrasochnyh materialov s vysokim suhim ostatkom [New achievements in rheology of ship and protection paint and varnish materials with the high dry rest] //Lakokrasochnye materialy i ih primenenie. 2014. №9. S. 28–31.
12. Konga X., Liua G., Qib H., Curtisa J.M. Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols //Progress in Organic Coatings. 2013. №76. Р. 1151–1160.
13. Mannari V.M., Massingill J.L. Two-component high-solid polyurethane coating systems based on soy polyols //JCT Research. 2006. №3. P. 151–157.
14. Naik R.B., Ratna D., Singh S.K. Synthesis and characterization of novel hyperbranched alkyd and isocyanate trimer based high solid polyurethane coatings //Progress in Organic Coatings. 2014. №77. P. 369–379.
15. Diaz I., Chico B., Fuente D., Simancas J., Vega J.M., Morcillo M. Corrosion resistance of new epoxy-siloxane hybrid coatings. A laboratory study //Progress in Organic Coatings. 2010. №69. P. 278–286.
16. Brusciotti F., Snihirova D.V., Xue H., Montemor M.F., Lamaka S.V., Ferreira M.G.S. Hybrid epoxy-silane coatings for improved corrosion protection of Mg alloy //Corrosion Science. 2013. №67. P. 82–90.
17. Ahmad S., Gupta A.P., Sharmin E., Alam M., Pandey S.K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints //Progress in Organic Coatings. 2005. №54. P. 248–255.
18. Qian M., Soutar A.M., Tan X.H., Zeng X.T., Wijesinghe S.L. Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel //Thin Solid Films. 2009. №517. P. 5237–5242.
19. Pathak S.S., Khanna A.S. Investigation of anti-corrosion behavior of waterborne orga-nosilane–polyester coatings for AA6011 aluminum alloy //Progress in Organic Coatings. 2009. №65. P. 288–294.
20. Xue D., Ooij W.J.V. Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings //Progress in Organic Coatings. 2013. №76. P. 1095–1102.
21. Kunst S.R., Cardoso H.R.P., Oliveira C.T., Santana J.A., Sarmento V.H.V., Muller I.L., Malfatti C.F. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition //Applied Surface Science. 2014. №298. P. 1–11.
22. Seo J.Y., Han M. Multi-functional hybrid coatings containing silica nanoparticles and anti-corrosive acrylate monomer for scratch and corrosion resistance //Nanotechnology. 2011. №22. P. 1–9.
23. Ozcam А.Е., Spontak R.J., Genzer J. Towards the Development of a Versatile Functional-ized Silicone Coating //ACS Applied Materials Interfaces. 2014. P. 22544–22552.
24. Babkin O.Je., Myskina E.D. Plenki na osnove butadienstirol'nogo i stirolakrilovogo late-ksov, modificirovannyh metilfenil-polisiloksanovoj smoloj [Films on the basis of the buta-diene-styrene and stirolakrilovy latex modified by metilfenil-polysiloxane pitch] //Lakokrasochnye materialy i ih primenenie. 2013. №9. S. 39–41.
25. Pathak S.S., Sharma A., Khanna A.S. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy //Progress in Organic Coatings. 2009. №65. P. 206–216.
26. Zhoua H., Wanga H., Tiana X., Zhenga K., Cheng Q. Effect of 3-Aminopropyltriethoxysilane on polycarbonate based waterborne polyurethane transparent coatings //Progress in Organic Coatings. 2014. №77. P. 1073–1078.
27. Lambourne R., Strivens T.A. Paint and surface soatings – theory and practice //Second edition Woodhead Publishing Limited. 1999. Reprinted 2004.
28. Weiss K.D. Paint and coatings: A mature industry in transition //Progress in Polymer Sci-ence. 1997. №22. P. 203–245.
29. Bestetti M., Cavallotti P.L., Da Forno A., Pozzi S. Anodic oxidation and powder coating for corrosion protection of AM60B magnesium alloys //Transactions of the Institute of Metal Finishing. 2007. №85. P. 316–319.
30. Barletta M., Tagliaferri V. Electrostatic fluidized bed deposition of a high performance-polymeric powder on metallic substrates //Surface and Coatings Technology. 2006. №200. P. 4282–4290.
31. Pathak S.S., Khanna A.S., Sinha T.J.M. Sol-gel derived organic–inorganic hybrid coating: A new era in corrosion protection of material //Corrosion Reviews. 2006. №24. P. 281–306.
32. Boccaccini A.R., Zhitomirsky I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing //Current Opinion in Solid State & Materials Science. 2002. №6. P. 251–260.
33. Besra L., Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD) //Progress in Materials Science. 2007. №52. P. 1–61.
34. Zhang J., Wu C.Y. Corrosion protection behavior of AZ31 magnesium alloy with cathodic electrophoretic coating pretreated by silane //Progress in Organic Coatings. 2009. №66. P. 387–392.
35. Bakkar A., Neubert V. Electrodeposition onto magnesium in air and water stable ionic liquids: from corrosion to successful plating //Electrochemistry Communications. 2007. №9. P. 2428–2435.
36. Zhang J., Yang S., Wu C.Y., Zeng R.C. Galvanic corrosion of AM50 magnesium alloy with cathodic electrophoretic coating and Q235 steel //Rare Metal Materials and Engineer-ing. 2009. №38. P. 1158–1163.
37. Zucchi F., Grassi V., Frignani A., Monticelli C., Trabanelli G. Influence of a silane treat-ment on the corrosion resistance of a WE43 magnesium alloy //Surface and Coatings Technology. 2006. №200. P. 4136–4143.
38. Montemor M., Ferreira M. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy //Electrochimica Acta. 2007. №52. P. 7486–7495.
39. Li G.Y., Lian J.S., Niu L.Y., Jiang Z.H., Dong H. Effect of zinc–phosphate–molybdate conversion precoating on performance of cathode epoxy electrocoat on AZ91D alloy //Surface Engineering. 2007. №23. P. 56–61.
40. Song G.-L. Electroless deposition of a pre-film of electrophoresis coating and its corrosion resistance on a Mg alloy. // Electrochimica Acta. 2010. №55. P. 2258–2268.
41. Wang D., Bierwagen G.P. Sol-gel coatings on metals for corrosion protection //Progress in Organic Coatings. 2009. №64. P. 327–338.
42. Khramov A., Balbyshev V., Kasten L., Mantz R. Sol-gel coatings with phosphonate func-tionalities for surface modification of magnesium alloys //Thin Solid Films. 2006. №514. P. 174–181.
43. Lamaka S., Montemor M., Galio A., Zheludkevich M., Trindade C., Dick L., Ferreira M. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy //Electrochimica Acta. 2008. №53. P. 4773–4783.
44. Oichi M., Takamiy K., Kiyohara O., Nakanishi T. Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone //Polymer. 1998. №39. P. 725–731.
45. Rouw A.C. Model epoxy powder coatings and their adhesion to steel //Progress in Organ-ic Coatings. 1998. №34. P. 181–192.
46. Wegmann А. Novel waterborne epoxy resin emulsion //Journal of coating technology. 1993. №65. P. 27–34.
47. Miskovic-Stankovic V.B., Drazic D.M., Teodorovic M.J. Electrolyte penetration through epoxy coatings electrodeposited on steel //Corrosion Science. 1995. №37. P. 241–151.
48. Miskovic-Stankovic V.B., Zotovic J.B., Kacarevic-Popovic Z., Maksimovic M.D. Corro-sion behaviour of epoxy coatings electrodeposited on steel electrochemically modified by Zn–Ni alloy //Electrochimica Acta. 1999. №44. P. 4269–4277.
49. Patel C.J., Dighe А. Novel isocyanate-free self-curable cathodically depositable epoxy coatings: Influence of epoxy groups on coating properties //Progress in Organic Coatings. 2007. №60. P. 219–223.
50. Liu B., Wang Y. A novel design for water-based modified epoxy coating with anti-corrosive application properties //Progress in Organic Coatings. 2014. №77. P. 219–224.
51. Shah M.Y., Ahmad S. Waterborne vegetable oil epoxy coatings: Preparation and charac-terization. //Progress in Organic Coatings. 2012. №75. P. 248–252.
52. Konwar U., Karak N., Jana T. Vegetable oil-based highly branched polyester modified epoxy based low VOC high solid industrial paint //Journal of Applied Polymer Science. 2012. №125 (S2). P. E2–E9.
53. Almeida E., Santos D., Fragata F., Fuente D., Morcillo M. Anticorrosive painting for a wide spectrum of marine atmospheres: environmental-friendly versus traditional paint sys-tems //Progress in Organic Coatings. 2006. №57. P. 11–22.
54. Gaschke M., Dreher B. Review of solvent-free liquid epoxy coating technology //Journal Coating Technology. 1976. №48. P. 46–51.
55. Samuelsson J., Sundell P.E., Johansson M. Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids //Progress in Organic Coatings. 2004. №50. P. 193–198.
56. Ou J., Yang Y., Gan J., Ha C., Zhang M. Preparation, properties, and applications of acrylic–polyurethane hybrid emulsions in extinction electrophoresis //Journal of Applied Polymer Science. 2014. №131 (7). P. 1–9.
57. Kjellqvist K. Reactive acid curing waterborne microparticles //Progress in Organic Coat-ings. 1994. №24. P. 209–223.
58. Ben H.-J., Ji C.-Q., Cheng F., Cui W.-Z., Chen Y. Water-borne core–shell latexes of acry-late-vinylidene chloride copolymers: preparation, characterization, and their anticorrosive properties. //Industrial & engineering chemistry research. 2014. №53. P. 17362−17369.
59. Barbosa J.V., Veludo E., Moniz J., Mendes A., Magalhaes F.D., Margarida М.S.M. Bastos. Low VOC self-crosslinking waterborne acrylic coatings incorporatingfatty acid de-rivatives //Progress in Organic Coatings. 2013. №76. P. 1691–1696.
60. Dhoke S.K., Sinha T.J.M., Dutta P., Khanna A.S. Formulation and performance study of low molecular weight, alkyd-based waterborne anticorrosive coating on mild steel //Progress in Organic Coatings. 2008. №62. P. 183–192.
61. Pathan S., Ahmad S. s‑Triazine ring-modified waterborne alkyd: synthesis, characteriza-tion, antibacterial, and electrochemical corrosion studies //ACS Sustainable Chemistry En-gineering. 2014. P. 1246–1257.
62. Rao M., Samarnayake G., Marlow J., Tomko R. Novel waterborne soy hybrid dispersions and soy latex emulsion for coatings applications /In Soy-Based Chemicals and Materials; Brentin; ACS Symposium Series; American Chemical Society: Washington. DC. 2014. Сh. 9. P. 193–196.
63. Coogan R.G. Post-Crosslinking of Water-Borne Urethanes //Progress in Organic Coatings. 1997. №32. P. 51–63.
64. Geurink P., Veer T., Buter R., Rood I., Schlief J., Ven L., Leijzer R. Binder systems for waterborne two-pack products for car refinishes application //Progress in Organic Coatings. 2003. №48. P. 153–160.
65. Brinkman E., Vandevoorde P. Waterborne two-pack isocyanate-free systems for industrial coatings //Progress in Organic Coatings. 1998. №34. P. 21–25.
66. Clamena G., Ferrari T., Fu Z., Hejl A., Larson G., Procopio L., Rosano W., Sheppard A., Swartz A. Protection of metal with a novel waterborne acrylic/urethane hybrid technology //Progress in Organic Coatings. 2011. №72. P. 144–151.
67. Wua G., Konga Z., Chena J., Huoa S., Liua G. Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion //Progress in Organic Coatings. 2014. №77. P. 315–321.
68. Berg K.J., Ven L.G.J., Haak H.J.W. Development of waterborne UV-A curable clear coat for car refinishes //Progress in Organic Coatings. 2008. №61. P. 110–118.
69. Li K., Shen Y., Fei G., Wang H., Li J. Preparation and properties of castor oil/pentaerythritoltriacrylate-based UV curable waterborne polyurethane acrylate //Progress in Organic Coatings. 2015. №78. P. 146–154.
70. Babkin O.Je., Babkina L.A., Letunovich O.A., Jacenko I.A. Vinilirovannye alkidy v pokrytijah UF-otverzhdenija [Vinilirovannye alkidy in coverings UF-otverzhdeniya] //Lakokrasochnye materialy i ih primenenie. 2014. №5. S. 61–63.
71. Babkin O.Je., Babkina L.A., Kazachenko N.N., Arabej A.V. Zashhitnye pokrytija dvojnogo UF-otverzhdenija [Protecting covers of the double UF-otverzhdeniya] //Lakokrasochnye materialy i ih primenenie. 2014. №6. S. 47–50.
72. Fataliev R.Ju., Homko E.V., Mashljakovskij L.N. Issledovanie svojstv plenok i pokrytij iz UF-otverzhdaemoj poliuretanakrilatnoj dispersii, modificirovannoj vodnoj jemul'siej silana [Research of properties of films and coverings from UF-otverzhdayema of the poliuretana-krilatny dispersion modified by water emulsion of silane] //Lakokrasochnye materialy i ih primenenie. 2013. №12. S. 51–54.
73. Kowalczyk K., Spychaj T. Epoxy coatings with modified montmorillonites //Progress in Organic Coatings. 2008. №62. P. 425–429.
74. Gordeeva N.V., Tolmachev I.A., Mashljakovskij L.N., Vasil'ev V.K. Modifikacija akrilo-vyh dispersij nanorazmernymi chasticami sloistyh silikatov dlja poluchenija pokrytij s povyshennymi jekspluatacionnymi svojstvami [Updating of acrylic dispersions by nanodimensional particles of layered silicates for receiving coverings with the increased operational properties] //Lakokrasochnye materialy i ih primenenie. 2013. №8. S. 23–26.
75. H'juer M., Ajhenberger F., Herrvert S. Nanochasticy dioksida kremnija v organo-rastvorimyh vysokogljancevyh 2K poliuretanovyh lakah dlja plastikov [Silicon dioxide na-noparticles in organorastvorimy high-glossy 2К polyurethane varnishes for plastics] //Lakokrasochnye materialy i ih primenenie. 2013. №9. S. 16–20.
76. Zhang S., Yu A., Song X., Liu X. Synthesis and characterization of waterborne UV-curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica //Progress in Organic Coatings. 2013. №76. P. 1032–1039.
77. Lewis O.D., Critchlow G.W., Wilcox G.D., Zeeuw A., Sander J. A study of the corrosion resistance of a waterborne acrylic coating modified with nano-sized titanium dioxide //Progress in Organic Coatings. 2012. №73. P. 88–94.
78. Rahman O., Kashif M., Ahmad S. Nanoferrite dispersed waterborne epoxy-acrylate: Anti-corrosive nanocomposite coatings //Progress in Organic Coatings. 2015. №80. P. 77–86.
79. Ruiz M.M., Cavaille J.Y., Dufresne A., Graillat C., Gereard J.-F. New waterborne epoxy coatings based on cellulose nanofillers //Macromolecular Symposia. 2001. №169. P. 211–222.
Modifying of synthetic resins with thermoplastics efficiently increases fracture toughness of polymer composite. Structurization in thermoset-thermoplastic blends is accompanied by reaction-induced micro-phase separation with forming of characteristic phase morphology. The current state of electron microscopy researches of phase morphology of thermoset-thermoplastic blends and composite materials on their basis is considered in this work. The following methodological problems of electron microscopy research of phase morphology are considered: information provided by research method, contrasting efficiency of characteristic elements of microstructure, justification of key morphological parameters choice and methods of their measurement
2. Zheleznjak V.G., Chursova L.V. Modifikacija svjazujushhih i matric na ih osnove s cel'ju povyshenija vjazkosti razrushenija [Updating binding and matrixes on their basis for the purpose of fracture toughness increase] //Aviacionnye materialy i tehnologii. 2014. №1. S. 47–50.
3. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost' aviacionnyh materialov v processe ispytanija na ustalost' [Treshchinostoykost of aviation materials in the course of fatigue test] //Trudy VIAM. 2013. №10. St. 06 (viam-works.ru)
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technolo-gies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials sci-ence] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Budylin N.Ju., Shapagin A.V., Chalyh A.E., Hasbiullin R.R. Modelirovanie formirovanija gradientnyh dispersnyh struktur v smesjah termo- i reaktoplastov [Modeling of forming of gradient disperse structures in mixes thermo- and thermosets] //Plasticheskie massy. 2011. №3. S. 51–56.
8. Zhang Y. et al. Dynamically asymmetric phase separation and morphological structure for-mation in the epoxy/polysulfone blends //Macromolecules. 2011. V. 44. №18. P. 7465–7472.
9. Liu Y. Polymerization-induced phase separation and resulting thermomechanical properties of thermosetting/reactive nonlinear polymer blends: a review //Journal of applied polymer science. 2013. V. 127. №5. P. 3279–3292.
10. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerod-soderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
11. Guljaev A.I. Issledovanie polimernyh materialov metodom rentgenovskoj fotojelektronnoj spektroskopii [Research of polymeric materials by method of x ray photoelectronic spec-troscopy] //Trudy VIAM. 2013. №7. St. 04 (viam-works.ru).
12. Zhuravleva P.L., Zajcev D.V. Issledovanie struktury uglerodnyh volokon s primeneniem difrakcionnyh metodov [Research of structure of carbon fibers using diffraction methods] //Aviacionnye materialy i tehnologii. 2012. №S. S. 448–455.
13. Guljaev A.I., Ishodzhanova I.V., Zhuravleva P.L. Primenenie metoda opticheskoj mikros-ko-pii dlja kolichestvennogo analiza struktury PKM [Application of method of optical microscopy for the quantitative analysis of structure of PKM] //Trudy VIAM. 2014. №7. St. 07 (viam-works.ru).
14. Deev I.S., Kablov E.N., Kobec L.P., Chursova L.V. Issledovanie metodom skanirujushhej jelektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri me-hanicheskom nagruzhenii [Research by method of scanning electron microscopy of defor-mation of microphase structure of polymeric matrixes at mechanical loading] //Trudy VIAM. 2014. №7. St. 06 (viam-works.ru).
15. Huang K. et al. Preparation of a light color cardanol-based curing agent and epoxy resin composite: Cure-induced phase separation and its effect on properties //Progress in organic coatings. 2012. V. 74. №1. P. 240–247.
16. Zhang Y. et al. Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxythermoplastic blends //Polymer. 2012. V. 53. №2. P. 588–594.
17. Mimura K. et al. Improvement of thermal and mechanical properties by control of mor-phologies in PES-modified epoxy resins //Polymer. 2000. V. 41. №12. P. 4451–4459.
18. Mezhikovskij S.M., Irzhak V.I. Himicheskaja fizika otverzhdenija oligomerov [Chemical physics of curing of oligomers]. M.: Nauka. 2008. 269 s.
19. Polimernye smesi. T. 1. Sistematika [Polymeric mixes. V. 1. Systematics]: Per. s angl. /Pod red. D.R. Pola, K.B. Baknella. SPb.: Nauchnye osnovy i tehnologii. 2009. 618 s.
20. Williams R.J.J., Rozenberg B.A., Pascault J.P. Reaction-induced phase separation in modified thermosetting polymers //Advances in polymer science. 1997. V. 128. P. 95–156.
21. Rozenberg B.A. Mikrofazovoe razdelenie v otverzhdajushhihsja mnogokomponentnyh polimer-oligomernyh sistemah [Microphase division in otverzhdayushchikhsya multicom-ponent polymer - oligomerous systems] //Rossijskij himicheskij zhurnal. 2001. T. XLV. №5–6. S. 23–31.
22. Wilkinson S.P. et al. Effect of thermoplastic modifier variables on toughening a bis-maleimide matrix resin for high-performance composite materials //Polymer. 1993. V. 34. №4. P. 870–884.
23. Zhang J. et al. Study on thermoplastic-modified multifunctional epoxies: Influence of heating rate on cure behaviour and phase separation //Composites Science and Technology. 2009. V. 69. №7–8. P. 1172–1179.
24. Rico M. et al. Phase separation and morphology development in a thermoplastic-modified toughened epoxy //European Polymer Journal. 2012. V. 48. №10. P. 1660–1673.
25. Cano L. et al. Morphological and mechanical study of nanostructured epoxy systems mod-ified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)triblock copolymer //Polymer. 2014. V. 55. №3. P. 738–745.
26. Cong H. et al. Formation of nanostructures in thermosets containing block copolymers: From self-assembly to reaction-induced microphase separation mechanism //Polymer. 2014. V. 55. №5. P. 1190–1201.
27. Min H.S. et al. Fracture toughness of polysulfone/epoxy semi-IPN with morphology spec-trum //Polymer Bulletin. 1999. V. 42. №2. P. 221–227.
28. Poncet S. et al. Monitoring phase separation and reaction advancement in situ in thermo-plastic/epoxy blends //Polymer. 1999. V. 40. №24. P. 6811–6820.
29. Chalyh A.E., Aliev A.D., Rubcov A.E. Jelektronno-zondovyj mikroanaliz v issledovanii polimerov [The electronic and probe microanalysis in research of polymers]. M.: Nauka. 1990. 192 s.
30. Chalyh A.E. i dr. Analiticheskaja jelektronnaja mikroskopija v issledovanii struktury priv-ityh polimerov [Analytical electron microscopy in research of structure of vaccinated polymers] //Vysokomolekuljarnye soedinenija. Ser. A. 2010. T. 52. №4. S. 653–658.
31. Heitzmann M.T. et al. Microanalysis techniques for the investigation of interphases formed between thermoset and thermoplastic polymers: Scanning electron microscopy and energy dispersive x-ray analysis //Key Engineering Materials. 2011. №471–472. P. 309–314.
32. Liao Y. et al. Reaction-induced phase decomposition of thermoset/thermoplastic blends investigated by energy filtering transmission electron microscopy //Polymer. 2007. V. 48. №13. P. 3749–3758.
33. Mezzenga R. et al. Morphology build-up in dendritic hyperbranched polymer modified epoxy resin: modeling and characterization //Polymer. 2001. V. 42. №1. P. 305–317.
34. Tribut L. et al. Rheological behavior of thermoset/thermoplastic blends during isothermal curing: Experiments and modeling //Polymer. 2007. V. 48. №22. P. 6639–6647.
35. Fernandez-Francos X. et al. Novel thermosets based on DGEBA and hyperbranched pol-ymers modified with vinyl and epoxy end groups //Reactive & Functional Polymers. 2010. V. 70. №10. P. 798–806.
36. Saltykov S.A. Stereometricheskaja metallografija [Stereometric metallography]. M.: Met-allurgija. 1976. 270 s.
37. Kulkami A.S., Beaucage G. Reaction induced phase-separation controlled by molecular topology //Polymer. 2005. V. 46. №12. P. 4454–4464.
38. Polimernye smesi. T. 2: Funkcional'nye svojstva [Polymeric mixes. V. 2: Functional properties]: Per. s angl. /Pod red. D.R. Pola, K.B. Baknella. SPb.: Nauchnye osnovy i tehnologii. 2009. 606 s.
39. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) //Polymer. 1993. V. 34. №17. P. 3658–3670.
40. Turmel D.J.-P., Partridge I.K. Heterogeneous phase separation around fibres in epoxy/PEI blends and its effect on composite delamination resistance //Composites Science and Technology. 1997. V. 57. №8. P. 1001–1007.
41. Varley R.J., Hodkin J.H. Effect of reinforcing fibres on the morphology of a toughened epoxy/amine system //Polymer. 1997. V. 38. №5. P. 1005–1009.
42. Olmos D., Gonzalez-Benito J. Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites //European Polymer Journal. 2007. V. 43. №4. P. 1487–1500.
43. Zhang J. et al. Interphase study of thermoplastic modified epoxy matrix composites: Phase behavior around a single fibre influenced by heating rate and surface treatment //Composites: Part A. 2010. V. 41. №6. P. 787–794.
This article considers the need and possibility of creation of radio-absorbing materials based on finishing construction materials. These materials have to be effective within the ranges of the most widespread working frequencies of the cellular communication base stations. The works were conducted in the field of theoretical investigations and experimental studies of samples of the radio-absorbing structures based on finishing construction materials and in the direction of choosing of radio-absorbing fillers
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Beljaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhajushhie materialy [Radio absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
5. Radiacionnaja medicina. T. 4. Gigienicheskie problemy neionizirujushhih izluchenij [Radiation medicine. V. 4. Hygienic problems of non-ionizing radiations] /Pod red. Ju.G. Grigor'eva, V.S. Stepanova. M.: Izd. AT. 1999. 304 s.
6. Grigor'ev Ju.G., Stepanov V.S., Grigor'ev O.A., Merkulov A.V. Jelektromagnitnaja bezopasnost' cheloveka [Electromagnetic safety of the person]. M. 1999. 145 s.
7. Sanitarno-jepidemiologicheskie pravila i normativy SanPiN 2.1.8/2.2.4.1190–03 «Gigienicheskie trebovanija k razmeshheniju i jekspluatacii sredstv suhoputnoj podvizhnoj radiosvjazi» [Sanitary and epidemiologic rules and Sanpin's standards 2.1.8/2.2.4.1190–03 «Hygienic requirements to placement and operation of means of overland mobile radio communication».].
8. Grigor'ev Ju.G. Sotovaja svjaz': radiobiologicheskie problemy i ocenka opasnosti [Cellular communication: radio biological problems and danger assessment] //Radiacionnaja biologija. Radiojekologija. 2001. T. 41. №5. S. 500–513.
9. Gavrilov A.A., Nesterov E.K., Olen'ev V.V., Somov A.Ju. Dobrovol'nyj i vynuzhdennyj jekologicheskij risk pri vozdejstvii jelektromagnitnogo izluchenija, sozdavaemogo sistemami sotovoj svjazi [Voluntary and forced ecological risk at influence of the electromagnetic radiation created by cellular systems] //Izvestija Akademii promyshlennoj jekologii. 2002. №2. S. 43–46.
10. Hata M. Empirical formula for Propagation Loss in Land Mobile Radio Services //IEEE Trans. On Vehicular Technology. 1980. V. 29. P. 317–325.
11. Grigor'ev O.A., Merkulov A.V., Temnikov A.G. Ocenka jelektromagnitnoj obstanovki v rajonah razmeshhenija bazovyh stancij sistemy sotovoj svjazi [Assessment of electromagnetic situation in areas of placement of base stations of cellular system] /V sb. materialov II Mezhdunarodnoj konf. «Jelektromagnitnye polja i zdorov'e cheloveka». M. 1999. S. 114–115.
12. Grigor'ev O.A. Jelektromagnitnaja bezopasnost' gorodskogo naselenija: harakteristika sovremennyh istochnikov JeMP i ocenka ih opasnosti [Electromagnetic safety of urban population: characteristic of modern sources of EMP and assessment of their danger] /V sb. statej Jelektromagnitnye polja i naselenie. M.: Izd-vo RUDN. 2003. S. 76–93.
13. Babina Ju.V. Jelektromagnitnye izluchenija: budem li my platit' za ih vrednye vozdejstvija [Electromagnetic radiations: whether we will pay for their harmful effects] //Jekos-inform. 1999. №12. S. 26–35.
14. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
15. Romanov A.M., Beljaev A.A., Shirokov V.V. Osobennosti optimizacii rezonansnyh radiopogloshhajushhih materialov nemagnitnogo tipa [Features of optimization of resonance radio absorbing materials of non-magnetic type] //Trudy VIAM. 2014. №11. St. 05 (viam-works.ru).
16. Agafonova A.S., Beljaev A.A., Kondrashov Je.K., Romanov A.M. Osobennosti formirovanija monolitnyh konstrukcionnyh radiopogloshhajushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of forming of monolithic constructional radio absorbing materials on the basis of the composites filled with resistive fiber] //Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
17. Kraev I.D., Obrazcova E.P., Jurkov G.Ju. Vlijanie morfologii magnitnogo napolnitelja na radiopogloshhajushhie harakteristiki kompozicionnyh materialov [Influence of morphology of magnetic filler on radio absorbing characteristics of composite materials] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 10–14.
18. Brehovskih A.M. Volny v sloistyh sredah [Waves in layered environments]. M.: Izd-vo AN SSSR. 1957. S. 53–56.
19. Odelevskij V.I. Raschet obobshhennoj provodimosti geterogennyh system [Calculation of the generalized conductivity of heterogeneous systems]. M. 1947. 144 s.
20. King R., Smit G. Antenny v sloistyh sredah [Aerials in layered environments]. T. 1. M.: Mir. 1984. S. 408–413.
21. Shul'deshov E.M., Lepeshkin V.V., Romanov A.M. Metod nerazrushajushhego kontrolja kompleksnoj dijelektricheskoj pronicaemosti vhodnyh slabo napolnennyh sloev gradientnyh radiopogloshhajushhih polimernyh kompozicionnyh materialov [Method of non-destructive testing of complex dielectric permittivity of the entrance poorly filled layers of gradient radio absorbing polymeric composite materials] //Trudy VIAM. 2014. №10. St. 11 (viam-works.ru).
22. Shirokov V.V., Romanov A.M. Issledovanie dijelektricheskih harakteristik steklosotoplasta volnovodnym metodom [Research of dielectric characteristics of glass-fiber-reinforced honeycomb by the waveguide method] //Aviacionnye materialy i tehnologii. 2013. №4. S. 62–68.
23. Beljaev A.A., Romanov A.M., Shirokov V.V., Shul'deshov E.M. Izmerenie dijelektricheskoj pronicaemosti steklosotoplasta v svobodnom prostranstve [Measurement of dielectric permittivity of glass-fiber-reinforced honeycomb in free space] //Trudy VIAM. 2014. №5. St. 6 (viam-works.ru).
24. Beljaev A.A., Shirokov V.V., Romanov A.M. Issledovanie dijelektricheskih harakteristik monolitnyh stekloplastikov radiotehnicheskogo naznachenija [Research of dielectric characteristics of monolithic fibreglasses of radio engineering assignment] //Kompozitnyj mir. 2014 (v pechati).
25. Shirokov V.V. Osobennosti primenenija jazykov programmirovanija vysokogo urovnja dlja rascheta radiotehnicheskih parametrov materialov special'nogo naznachenija [Features of application of programming languages of high level for calculation of radio engineering parameters of materials of special purpose] //Trudy VIAM (v pechati).
Definition of fire safety characteristics of polymer composition materials (PCM) for manufacturing of components of external components of aviation equipment (fuselage, wing, stabilizers, etc.) was carried out under conditions of variable intensity of the heat flow. Samples of glass- and carbon-reinforced polymers were chosen as test subjects. The tests were carried out in CSI-195FAA camera (Custom Scientific Instruments, USA) with the heat radiation panel. The following characteristics of fire safety were defined during the tests: duration of the residual burning, burn-out length, critical heat flow of flame damping, etc. Assessment of fire safety of glass- and carbon-reinforced polymers by the oxygen index method was additionally carried out.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki [Strategic directions of development of materials and technologies of their processing] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 505–509.
5. Garashhenko A.N., Rudzinskij V.P., Kaledin V.O. Obespechenie trebuemyh pokazatelej pozharobezopasnosti konstrukcij iz polimernyh kompozicionnyh materialov s pomoshh'ju ognezashhity [Providing required indicators of fire safety of designs from polymeric composite materials with the help ognezashchity] //Izvestija JuFU. Tehnicheskie nauki. 2013. №8 (145). S. 143–149.
6. Garashhenko A.N., Garashhenko N.A., Rudzinskij V.P., Suhanov A.V., Marahovskij S.S., Teminovskij I.V. Pozharobezopasnost' stroitel'nyh konstrukcij iz polimernyh kompozicionnyh materialov [Fire safety of construction designs from polymeric composite materials] //Konstrukcii iz kompozicionnyh materialov. 2010. №2. S. 45–59.
7. Shurkova E.N., Vol'nyj O.S., Izotova T.F., Barbot'ko S.L. Issledovanie vozmozhnosti snizhenija teplovydelenija pri gorenii kompozicionnogo materiala putem izmenenija ego struktury [Research of possibility of decrease in heat release when burning composite material by change of its structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
8. Barbot'ko S.L., Aseeva R.M., Serkov B.B., Sivenkov A.B., Kruglov E.Ju. Ob opredelenii teplot sgoranija i teplovydelenija pri gorenii polimernyh materialov [About determination of combustion heats and heat release when burning polymeric materials] //Pozharovzryvobezopasnost'. 2012. T. 21. №5. S. 25–32.
9. Zubkova N.S. Polimernye materialy ponizhennoj pozharnoj opasnosti [Polymeric materials of the lowered fire danger]. M.: MGTU im. A.N. Kosygina. 2004. S. 3–9.
10. Barbot'ko S.L., Shurkova E.N. O pozharnoj bezopasnosti materialov, ispol'zuemyh dlja izgotovlenija vneshnego kontura samoletov [About fire safety of the materials used for manufacturing of external circuit of airplanes] //Pozharovzryvobezopasnost'. 2011. T. 20. №10. S. 19–24.
11. Barbot'ko S.L., Barbot'ko M.S., Vol'nyj O.S., Postnov V.I. Vlijanie dlitel'nogo teplovogo vozdejstvija na pozharobezopasnost' polimernyh materialov [Influence of long thermal influence on fire safety of polymeric materials] //Pozharovzryvobezopasnost'. 2014. T. 23. №1. S. 12–20.
12. Barbot'ko S.L., Shvec N.I., Zastrogina O.B., Izotova T.F. Issledovanie vlijanija tolshhiny stekloplastikov na harakteristiki teplovydelenija pri gorenii [Research of influence of thickness of fibreglasses on heat release characteristics when burning] //Pozharovzryvobezopasnost'. 2013. T. 22. №7. S. 30–36.
13. Barbot'ko S.L., Shurkova E.N., Vol'nyj O.S., Skryljov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlja vneshnego kontura aviacionnoj tehniki [Assessment of fire safety of polymeric composite materials for external circuit of aviation engineering] //Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
14. Kirienko O.A., Shurkova E.N., Vol'nyj O.S., Barbot'ko S.L. Issledovanie vlijanija razlichnyh zashhitnyh pokrytij na harakteristiki pozharnoj bezopasnosti teplovoj akusticheskoj izoljacii fjuzeljazha [Research of influence of different protecting covers on characteristics of fire safety of thermal acoustic insulation of fuselage] //Trudy VIAM. 2014. №10. St. 07 (viam-works.ru).
15. Skryljov N.S., Vol'nyj O.S., Postnov V.I., Barbot'ko S.L. Issledovanie vlijanija teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Research of influence of thermal factors of climate on change of characteristics of fire safety of polymeric composite materials] //Trudy VIAM. 2013. №9. St. 05 (viam-works.ru).
16. Barbot'ko S.L., Vol'nyj O.S., Kirienko O.A., Lucenko A.N., Shurkova E.N. Sopostavlenie metodov ocenki pozharnoj opasnosti polimernyh materialov v razlichnyh otrasljah transporta i promyshlennosti [Comparison of methods of assessment of fire danger of polymeric materials in the different industries of transport and the industry] //Vse materialy. Jenciklopedicheskij spravochnik. 2015. №1. S. 2–9.
Measurements of parameters of an acoustic signal excited by own mechanical oscil-lations of a ring made from fiber-reinforced plastics under mechanical impact were carried out; then the annular stiffness of ring was calculated. The method is based on excitation of acoustic signal oscillations, which depend on strength characteristics of the PCM ring.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are necessary to Russia] //Redkie zemli. 2014. №3. S. 8–13.
3. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] //Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
4. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technologies of polymeric composite materials of new generation] //Trudy VIAM. 2013. №4. St. 07 (viam-works.ru).
5. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] //Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
6. Rabinovich A.L. Vvedenie v mehaniku armirovannyh polimerov [Introduction in mechanics of the reinforced polymers]. M.: Nauka. 1970. 482 s.
7. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials sci-ence] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Murashov V.V., Rumjancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] //Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
9. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Definition of physicomechanical characteristics and composition of polymeric composite materials acoustic methods] //Aviacionnye materialy i tehno-logii. 2012. №S. S. 465–475.
10. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlja mnogorazovogo kosmicheskogo korablja «Buran» [Non-destructive testing of preparations and details from carbon-carbon composite material for the reusable «Buran» spacecraft] //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
11. Savel'ev I.V. Kurs obshhij fiziki [Course the general physics]. T. 1. M.: Fizika. 1970. S. 263–265.
12. GOST R 54560–2011 Truby i detali truboprovodov iz reaktoplastov, armirovannyh steklovoloknom [Pipes and details of pipelines from the thermosets reinforced by fiber glass].