Articles
The investigations of directional solidification parameters (rate and temperature gradient of crystallization) on microstructure, structural and phase parameters (lattices parameters of γꞌ- and γ-phases, misfit) and mechanical properties of intermetallic VIN alloys based on nickel were considered.
2. Gerasimov V.V., Visik E.M. Tehnologicheskie aspekty litya detalej goryachego trakta GTD iz intermetallidnyh nikelevyh splavov tipa VKNA s monokristallicheskoj strukturoj [Technological aspects of molding of details of hot path of GTE from intermetallic nickel alloys of VKNA type with single-crystal structure] //Litejshhik Rossii. 2012. №2. S. 19–23.
3. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
4. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie protsessa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
5. Echin A.B., Bondarenko Yu.A. Novaya promyshlennaya vysokogradientnaya ustanovka UVNS-6 dlya polucheniya lopatok i drugih detalej GTD iz litejnyh zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [New industrial high-gradient UVNS-6 for manufacture of GTE blades and other parts from casting heat-resistant and intermetallic alloys with single-crystal structure] //Aviacionnye materialy i tehnologii. 2014. №4. S. 31–36.
6. Petrushin N.V., Ignatova I.A., Logunov A.V., Samojlov A.I., Razumovskij I.M. Issledovanie vliyaniya razmernogo nesootvetstviya periodov reshetok γ- i γʹ-faz na harakteristiki zharoprochnosti dispersionno-tverdejushhih nikelevyh splavov [Research of influence of dimensional discrepancy of the periods of grids γ- and γʹ-phases on characteristics of thermal stability of age-hardening nickel alloys] //Metally. 1981. №6. S. 153–159.
7. Nazarkin R.M. Rentgenovskij analiz splavov na osnove intermetallida Ni3Al [The x-ray analysis of alloys on the basis of Ni3Al intermetallic compound] /V sb. dokladov VI Vserossijskoj ezhegodnoj konf. molodyh nauch. sotrudnikov i aspirantov. M.: IMET RAN. 2009. S. 59–62.
8. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
9. Povarova K.B., Bazyleva O.A., Drozdov A.A., Kazanskaya N.K., Morozov A.E. Samsonova M.A. Konstrukcionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura i svojstva [Constructional hot strength alloys on the basis of Ni3Al: receiving, structure and properties] //Materialovedenie. 2011. №4. S. 39–48.
10. Povarova K.B., Drozdov A.A., Bondarenko Yu.A., Bazyleva O.A., Bulahtina M.A., Morozov A.E., Antonova A.V. Vliyanie napravlennoj kristallizacii na strukturu i svojstva monokristallov splava na osnove Ni3Al, legirovannogo W, Mo, Cr i RZE [Influence of the directed crystallization on structure and property of monocrystals of alloy on the basis of Ni3Al alloyed by W, Mo, Cr and REE] //Metally. 2014. №4. S. 35–41.
11. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaya N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [The low-alloyed easy heat resisting high-temperature materials on the basis of Ni3Al intermetallic compound] //Metally. 1999. №1. S. 58–65.
12. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] //MiTOM. 1999. №1. S. 32–34.
13. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] //Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
14. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
15. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Opredelenie misfita vo fragmentirovannyh monokristallah nikelevyh zharoprochnyh splavov [Definition miss-fit in fragmented mono-crystals of nickel hot strength alloys] //Trudy VIAM. 2013. №5. St. 02 (viam-works.ru).
16. Samojlov A.I., Kablov E.N., Petrushin N.V. i dr. Razmernoe nesootvetstvie kristallicheskih reshetok γ i γʹ-faz v nikelevyh renijsoderzhashhih zharoprochnyh splavah [Dimensional discrepancy of crystal lattices γ- and γʹ-phases in nickel reny containing hot strength alloys] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Vysokorenievye zharoprochnye splavy, tehnologija i oborudovanie dlja proizvodstva splavov i lit'ja monokristallicheskih turbinnyh lopatok GTD». M.: VIAM. 2004. S. 48–57.
17. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya [Cast blades of gas turbine engines: alloys, technologies, coverings] /Pod obshh. red. E.N. Kablova. 2-e izd. M.: Nauka. 2006. 632 s.
18. Grankin S.S., Sverdlov V.Ya. Issledovanie gradienta temperatury na fronte kristallizatsii monokristallicheskih Ni–W-splavov [Temperature gradient research at the front crystallization of single-crystal Ni – W-alloys] //Voprosy atomnoj nauki i tehniki. Ser. Vakuum, chistye materialy, sverhprovodniki. 2008. T. 17. №1. S. 162–165.
The harmful influence of sulfur and phosphorus on heat resistant properties of ZhS36-VI alloy during stress rupture test on long base testing (500 and more hours) as well as on middle quantity of cycles to rupture upon MCF wasdetermined . The possibility to reduce the content of harmful influence of sulfur and phosphorus impurities or their neutralization through microalloing by lanthanum that positively influence on alloy properties recovery was investigated. The mechanism of lanthanum addition for neutralization of these impurities harmful influence was suggested whereby sulfur removes from the melt as refractory lanthanum sulfides by their adhesion on crucible walls during melting and on foam filter during casting. In contrast to sulfur the refractory phosphides with lanthanum don’t remove from the melt. The properties comparison of single crystal alloy cast on units of low- and high gradient direct solidification UVNK-9A and UVNS-5 is presented.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B. i dr. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallic alloys with single-crystal structure] //Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP. S. 20–25.
3. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of single crystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
5. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] //Metally. 2006. №5. S. 47–57.
6. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin (prodolzhenie) [Rhenium in heat resisting nickel alloys for blades of gas turbines (continuation)] //Materialovedenie. 2000. №3. S. 38–43.
7. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Production of cast bar (blend) preparations from modern cast high-heat resisting nickel alloys] /V sb. trudov nauch.-tehnich. konf., posvyashhennoj 310-letiyu uralskoj metallurgii i sozdaniyu tehniko-vnedrencheskogo centra metallurgii i tyazhelogo mashinostroeniya. Ekaterinburg: Nauka Servis. 2011. T. 1. S. 31–38.
8. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
9. Sidorov V.V., Rigin V.E., Kablov D.E. Organizaciya proizvodstva lityh prutkovyh zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [The organization of production of cast bar preparations from modern cast high-heat resisting nickel alloys] //Litejnoe proizvodstvo. 2011. №10. S. 2–5.
10. Sidorov V.V., Rigin V.E., Goryunov A.V., Kablov D.E. Vysokoeffektivnye tehnologii i sovremennoe oborudovanie dlya proizvodstva shihtovyh zagotovok iz litejnyh zharoprochnyh splavov [Highly effective technologies and the modern equipment for production of blend preparations from foundry hot strength alloys] //Metallurg. 2012. №5. S. 26–30.
11. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovlenya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] //Tehnologiya metallov. 2014. №8. S. 12–23.
12. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of single crystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
13. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vliyaniya azota na strukturu i svoistva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of single crystals from foundry ZhS30-VI hot strength alloy] //MiTOM. 2013. №8. S. 3–7.
14. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedeniya azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vliyanie na ekspluatacionnye svoistva [Patterns of behavior of nitrogen when receiving single crystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] //MiTOM. 2014. №1. S. 8–12.
15. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru-soderzhashhego splava s ispolzovaniem nekonditsionnyh othodov [Receiving Re–Ru-containing alloy with use of unconditioned waste] //Metallurgiya mashinostroeniya. 2012. №3. S. 15–17.
16. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] //Metallurg. №1. 2014. S. 86–90.
17. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resursosberegayushchaya tehnologiya pererabotki nekondicionnyh othodov litejnyh zharoprochnyh splavov [Resource-saving refining technology of unconditioned waste of foundry hot strength alloys] //Metallurg. №5. 2014. S. 35–39.
18. Sidorov V.V., Rigin V.E., Gorunov A.V., Min P.G. Innovatsionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance a certificated quantity production of FGUP «VIAM»] //Trudy VIAM. 2014. №6. St. 01 (viam-works.ru).
19. Improved low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium: pat. 2415888 EU; publ. 14.10.2010.
20. Zhuanggi HU, Hongwei SONG, Shouren GUO, Wenru SUN and Dezhong LU. Effects of Phosphorus on Microstructure and Creep Property of IN718 Superalloy //J. Mater. Sci. Technol. 2005. V. 21. Suppl. P. 73–76.
21. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Kompyuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashchih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum of complex-alloyed rhenium of containing nickel alloys from sulfur and silicon impurity] //Vestnik RFFI. 2015. №1 (85). S. 32–36.
22. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] //MiTOM. 2015. №6 (720). S. 55–59.
23. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svoistva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] //Novosti materialovedeniya. Nauka i tehnika. 2014. №2. St. 03 (materialsnews.ru).
24. Sidorov V.V., Rigin V.E., Filonova E.V., Timofeeva O.B. Strukturnye issledovaniya i svojstva monokristallov splavov VZhM4-VI i VZhM5-VI, soderzhashhih povyshennoe kolichestvo fosfora [The structure investigations and properties of VGM4-VI and VGM5-VI single crystal alloys with increased phosphorus quantity] //Trudy VIAM. 2014. №3. St. 02 (viam-works.ru).
25. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 1) [Refinement complex-alloyed nickel alloys from sulfur impurity when melting in the vacuum induction furnace (part 1)] //Elektrometallurgiya. 2014. №3. S. 18–23.
26. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] //Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
27. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] //Trudy VIAM. 2014. №9. St. 01 (viam-works.ru).
28. Min P.G., Vadeev V.E., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] //Tehnologiya metallov. 2015. №4. S. 8–13.
29. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel alloy through foam the ceramic filter on the content of impurity of sulfur in metal] //Elektrometallurgiya. 2015. №5. S. 12–15.
30. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 2) [Refinement of complex-alloyed nickel alloy from sulfur impurity when melting in the vacuum induction furnace (part 2)] //Elektrometallurgiya. 2014. №5. S. 26–30.
31. Kablov E.N., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [REM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] //Perspektivnye materialy. 2001. №1. S. 23–24.
32. Filippov K.S., Burtsev V.G., Sidorov V.V., Rigin V.E. Issledovanie poverhnostnogo natjazheniya i plotnosti rasplavov nikelya, soderzhashhego primesi sery, fosfora i azota [Research of surface tension and density of alloys of the nickel containing impurity of sulfur, phosphorus and nitrogen] //Fizika i himiya obrabotki materialov. 2013. №1. S. 52–56.
33. Litye lopatki gazoturbinnyh dvigatelej [Cast blades of gas turbine engines] /Pod red. E.N. Kablova. M.: Nauka. 2006. 632 s.
34. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
35. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] //Trudy VIAM. 2014. №9. St. 12 (viam-works.ru).
36. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] //Trudy VIAM. 2014. №10. St. 02 (viam-works.ru).
37. Megchiche E.H., Amarouche M., Mijoule C. First-principle calculations of the diffusion of atomic oxygen in nickel: thermal expansion contribution //Journal of Physics: Condenced Mater. 2007. V. 19. №29. P. 296201.
38. Zachery С.L. A computational investigation of the effect of alloying elements on the thermodynamic and diffusion properties of FCC Ni alloys with application to the creep rate of delute Ni-X alloys: dissertation for the degree of DF. Pennsylvania University. 2012.
The results of researches of single-crystal rotor blades from cast Ni-based superalloy ZhS32-VI in process of long-time life cycle testing of gas turbine engine (high-pressure turbine) are represented for microstructure and substructure. It is shown that precipitation of TCP-phases particles in the alloy during high-temperature testing is accompanied by the decreasing of crystal lattice constant of γ-solid solution. It is verified by data of x-ray diffraction analysis, x-Ray microanalysis and scanning electron microscopy. The point is proposed that decreasing of alloying element content in the γ-solid solution as result of TCP-phases precipitation (rich with the refractory elements) leads to the fall of the high-temperature resistance of the material. Also, a TCP-phases make negative influence on mechanical properties of the alloy due to the local destruction of coherency for interphase boundaries in zone of development of TCP-phases particles.
2. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] //Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Orlov M.R. Strategicheskie napravleniya razvitiya Ispytatelnogo centra FGUP «VIAM» [Strategic directions of development of the Test center FSUE «VIAM»] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
5. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharo-prochnye splavy novogo pokoleniya [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
6. Petrushin N.B., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] //Litejnoe proizvodstvo. 2012. №6. S. 5–11.
7. Kablov E.N. Fiziko-mehanicheskie i tehnologicheskie osobennosti sozdaniya zharoprochnyh splavov, soderzhashhih renij [Physicomechanical and technological features of creation of the hot strength alloys, containing reniye] //Vestnik Moskovskogo universiteta. Ser. 2: Himiya. 2005. T. 46. №3. S. 155–167.
8. 4. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlja lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] //Metally. 2006. №5. S. 47–57.
10. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizaciya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] //MiTOM. 2002. №7. S. 20–23.
11. Bondarenko Yu.A., Kablov E.N., Morozova G.I. Vliyanie vysokogradientnoj napravlennoj kristallizacii na strukturu i fazovyj sostav zharoprochnogo splava tipa Rene-N5 [Influence of the high-gradient directed crystallization on structure and phase composition of hot strength alloy of the Rene-N5 type] //MiTOM. 1999. №2. S. 15–18.
12. Morozova G.I. Zakonomernost formirovaniya himicheskogo sostava γ′/γ-matricy mnogokomponentnyh nikelevyh splavov [Pattern of forming of chemical composition γ′/γ-matrix multicomponent nickel alloys] //Doklady Akademii nauk. 1991. T. 320. №6. S. 1413–1416.
13. Kablov E.N., Petrushin N.V. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] /V kn. Litejnye zharoprochnye splavy. Effekt S.T. Kishkina /Pod red. E.N. Kablova. M.: Nauka. 2006. S. 56–78.
14. Ospennikova O.G., Orlov M.R., Kolodochkina V.G., Nazarkin R.M. Strukturnye izmeneniya i povrezhdenie monokristallicheskih rabochih lopatok turbiny v processe resursnyh ispytanij aviacionnogo gazoturbinnogo dvigatelya [Structural changes and injury of single-crystal working turbine blades in the course of resource tests of the aviation gas turbine engine] //Deformaciya i razrushenie materialov. 2014. №8. S. 22–29.
15. Orlov M.R., Yakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davleniya v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
16. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Opredelenie misfita vo fragmentirovannyh monokristallah nikelevyh zharoprochnyh splavov [Definition miss-fit in fragmental single crystals of nickel hot strength alloys] //Trudy VIAM. 2013. №5. St. 02 (viam-works.ru).
17. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Misfit kak istochnik i kriterij rabotosposobnosti zharoprochnyh nikelevyh splavov [Misfit as source and criterion of operability of heat resisting nickel alloys] //Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №6. S. 33–36.
18. Kablov E.N., Orlov M.R., Ospennikova O.G. Mehanizmy obrazovanija poristosti v monokristallicheskih lopatkah turbiny i kinetika ee ustranenija pri gorjachem izostaticheskom pressovanii [Mechanisms of formation of porosity in single-crystal turbine blades and kinetics of its elimination at hot isostatic pressing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 117–129.
The LCF behavior for Ni-base superalloy VZh175 was investigated for a given total strain, ratio R=0 and stain amplitude εa=0,4–0,6% at test temperatures 20 and 650°С. Parameters of elastic-plastic strain were observed in this article.
2. Birger I.A., Balashov B.F., Dulnev R.A. i dr. Konstrukcionnaja prochnost materialov i detalej gazoturbinnyh dvigatelej [Constructional durability of materials and details of gas turbine engines]. M.: Mashinostroenie. 1981. 222 s.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Inozemtsev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost i ciklicheskaya treshhinostojkost nikelevogo splava pri nagruzhenii, harakternom dlya diskov turbin [Low-cyclic fatigue and cyclic crack firmness of nickel alloy when loading, characteristic for disks of turbines] //Tuazheloe mashinostroenie. 2011. №4. S. 30–33.
5. Schijve J. Fatigue of structures and materials. Berlin Heidelberg: Springer-Verlag. 2009. 185 p.
6. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Krylya Rodiny. 2012. №3–4. S. 34–38.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
8. Sposob polucheniya izdeliya iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federaciya; opubl. 31.03.2009.
9. Golubovskij E.R., Svetlov I.L., Petrushin N.V., Cherkasova S.A., Volkov M.E. Malociklovaya ustalost monokristallov zharoprochnyh nikelevyh splavov pri povyshennyh temperaturah [Low-cyclic fatigue of single crystals of heat resisting nickel alloys at elevated temperatures] //Deformaciya i razrushenie materialov. 2009. № 8. S. 41–48.
10. Tobias J., Chlupova A., Petrenec M. et al. Low Cycle Fatigue and Analysis of the Cyclic Stress-Strain Response in Superalloy Inconel 738LC /In: 18-th International Conference «Engineering Mechanics 2012». Svratka. 2012. P. 1407–1411.
11. Nagesha A., Goyal Sunil, Nandagopal M. at al. Dynamic strain ageing in Inconel Alloy 783 under tension and low cycle fatigue //Mater. Sci. and Eng. A. 2012. V. 546. P. 34–39.
12. Levkovitch V., Sievert R., Svendsen B. Simulation of deformation and lifetime behavior of a FCC single cristal superalloy at high temperature under low-cycle fatigue loading //Int. J. Fatigue. 2006. V. 28 (12). P. 1791–1802.
13. Wright J.K., Carroll L.J., J.A. Simpson J.A. et al. Low Cycle Fatigue of Alloy 617 at 850°C and 950°C //J. of Eng. Mat. and Tech. 2013. V. 135. №7. P. 031005-1–031005-8.
14. Subramanya Sarma V., Sundararaman M., Padmanabhan K.A. Effect of γ size on room temperature low cycle fatigue behavior of a nickel base superalloy //Material Science and Technology. 1998. V. 14. №7. P. 669–675.
15. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
16. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] //Trudy VIAM. 2013. №9. St. 01 (viam-works.ru).
17. Lomberg B.S., Ovsepyan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlya diskov gazoturbinnyh dvigatelej novogo pokoleniya [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
18. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
19. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] //Tehnologiya legkih splavov. 2007. №2. S. 6–16.
Comparative research of sulfide-oxide corrosion resistance of ZhS36 nickel superalloy with different advanced protective ion-plasma coatings is conducted. Results of accelerated comparative research method («salt shell method») tests of ZhS36 nickel superalloy with advanced protective ion-plasma coatings in comparison with standard SDP-6 coating in temperature range 850–900°С are presented.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja litYa lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. ΙΙ [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. P. ΙΙ] //Materialovedenie. 1997. №5. S. 14–16.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya litya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. Ι [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. P. Ι] //Materialovedenie. 1997. №4. S. 32–39.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizatsii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallic alloys with single-crystal structure] //Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP4. S. 20–25.
7. Zharoprochnyj splav na nikelevoj osnove dlya monokristallicheskogo litya [Heat resisting alloy on nickel basis for single-crystal molding]: pat. 2439184 Ros. Federatsiya; opubl. 05.10.2010.
8. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (overview)] //Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
9. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP4. S. 13–19.
10. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Konversiya v mashinostroenii. 1999. №2. S. 42–47.
12. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlya intermetallidnyh nikelevyh splavov tipa VKNA dlya rabochih temperatur do 1300°C [Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300°C] //Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26.
13. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] //Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
14. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
15. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
The article presents a research on development of methods to assess the geometric characteristics and volume fraction of porosity, the geometric characteristics and volume fraction of eutectic (γ-γ)ʹ-phase, and the geometric characteristics of particles of the hardening γʹ-phase in monocrystalline Ni superalloys ZhS32U-VI. The results of investigations on proposed methods of quantitative metallographic analysis of blanks from the ZhS32U-VI superalloy, derived by directional solidification from the melt in different temperature gradient are presented.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Petrushin N.V., Svetlov I.L. Kompyuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] /V kn. Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka. 2006. S. 98–116.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Bondarenko Yu.A., Kablov E.N., Morozova G.I. Vliyanie vysokogradientnoj napravlennoj kristallizacii na strukturu i fazovyj sostav zharoprochnogo splava tipa Rene N5 [Influence of the high-gradient directed crystallization on structure and phase composition of hot strength alloy of the Rene N5 type] //MiTOM. 1999. №2. S. 15–18.
6. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizaciya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of heat resisting alloys with the raised temperature gradient] //MiTOM. 2002. №7. S. 20–23.
7. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie temperaturnogo gradienta na fronte rosta na strukturu zharoprochnogo splava pri napravlennoj kristallizacii [Influence of temperature gradient at the front growth on hot strength alloy structure at the directed crystallization] //Litejshhik Rossii. 2014. №5. S. 24–27.
8. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of single crystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
9. Kablov E.N., Orlov M.R., Ospennikova O.G. Mehanizmy obrazovaniya poristosti v monokristallicheskih lopatkah turbiny i kinetika ee ustraneniya pri goryachem izostaticheskom pressovanii [Mechanisms of formation of porosity in single crystals turbine blades and kinetics of its elimination at hot isostatic pressing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 117–129.
10. Zharoprochnyj splav na osnove nikelja [Heat resisting alloy on the basis of nickel]: pat. 2148099 Ros. Federaciya; opubl. 18.01.99. Byul. №12.
11. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
12. Svetlov I.L., Ishodzhanova I.V., Evgenov A.G., Naprienko S.A. Issledovanie vysokotemperaturnoj polzuchesti i defektnosti struktury monokristallov nikelevogo zharoprochnogo splava posle gorjachego izostaticheskogo pressovaniya [Research of high-temperature creep and deficiency of structure of single crystals of nickel hot strength alloy after hot isostatic pressing] //Deformaciya i razrushenie materialov. 2011. №3. S. 28–32.
13. Nejman A.V., Filonova E. V., Ishodzhanova I. V. O lokalnoj rekristallizacii v monokristallah nikelevyh zharoprochnyh splavov [About local re crystallization in monocrystals of nickel hot strength alloys] //Metallurgiya i mashinostroenie. 2013. №1. S. 19–22.
14. Sidorov V.V., Ishodzhanova I.V., Rigin V.E., Folomejkin Yu.I. Ocenka effektivnosti filtracii pri razlivke slozhnolegirovannogo nikelevogo rasplava [Assessment of efficiency of filtering at razlivka complex-alloyed nickel rasplava] //Elektrometallurgiya. 2011. №11. S. 17–21.
15. Klark E.R., Eberhardt K.N. Mikroskopicheskie metody issledovaniya materialov [Microscopic methods of research of materials]. M.: Tehnosfera. 2007. 376 s.
16. Gulyaev A.I., Ishodzhanova I.V., Zhuravleva P.L. Primenenie metoda opticheskoj mikroskopii dlya kolichestvennogo analiza struktury PKM [Application of optical microscopy method for the quantitative analysis of polymer composite material structure] //Trudy VIAM. 2014. №7. St. 07 (viam-works.ru).
In various types of nickel alloys silicon is present in a wide concentration range from a few hundredths of a percent in the heat resisting nickel alloys to whole percent in the nickel-based solders. The paper describes a method of measuring the mass fraction of silicon in the nickel-based alloys by atomic emission spectrometry with inductively coupled plasma (ICP-AES) in combination with microwave sample preparation. Compositions of dissolution mixtures and parameters of microwave digestion were selected. Limits of relative measurement error for Si content from 0,01 to 8% don't exceed 2% (±δ, at P=0,95).
2. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25.
3. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
5. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40.
6. Kablov E.N. Fiziko-himicheskie i tehnologicheskie osobennosti sozdaniya zharoprochnyh splavov, soderzhashhih renij [Physical and chemical and technological features of creation of the heat resisting alloys containing rhenium] //Vestnik Moskovskogo universiteta. Ser. 2: Himiya. 2005. T. 46. №3. S. 155–167.
7. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] //Metally. 2006. №5. S. 47–57.
8. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Foundry heat resisting nickel alloys for perspective aviation GTE] //Tehnologiya legkih splavov. 2007. №2. S. 6–16.
9. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
10. Sidorov B.B., Ishodzhanova I.B., Rigin B.E., Folomejkin Yu.I. Ocenka effektivnosti filtratsii pri razlivke slozhnolegirovannogo nikelevogo rasplava [Assessment of efficiency of a filtration when pouring of difficult alloyed nickel fusion] //Elektrometallurgiya. 2011. №11. S. 17–21.
11. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru-soderzhashhego splava s ispolzovaniem nekondicionnyh othodov [Receiving Re–Ru the containing alloy with use of sub-standard waste] //Metallurgiya mashinostroeniya. 2012. №3. S. 15–17.
12. Pripoj na osnove nikelya [Solder on the basis of nickel]: pat. 2452600 Ros. Federacya; opubl. 22.06.2011.
13. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoj spektrometrii s induktivno-svyazannoj plazmoj dlya analiza materialov i produktov chernoj metallurgii [Use of nuclear and issue spectrometry with the inductive and connected plasma for the analysis of materials and products of ferrous metallurgy] //Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
14. Dvoretskov R.M., Karachevcev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie himicheskogo sostava vysokolegirovannyh nikelevyh splavov aviacionnogo naznacheniya metodom AES-ISP v sochetanii s mikrovolnovoj probopodgotovkoj [Definition of a chemical composition of the high-alloyed nickel alloys of aviation appointment as the AES-ISP method in combination with microwave preparation of tests] //Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
15. Karachevtsev F.N., Dvoretskov R.M., Zagvozdkina T.N. Mikrovolnovaya probopodgotovka nikelevyh splavov dya opredeleniya legiruyushhih elementov metodom AES-ISP [Microwave probe preparation of nickel alloying elements using ICP-AES method] //Trudy VIAM. 2014. №11. St. 11 (viam-works.ru).
The article presents research results on technological parameters of deformation, structure and phase composition of a pilot intermetallic ortho alloy Ti–13Al–40Nb–5(Zr+V+Mo+W)–0,5(Si+C) determination. It has been resolved that no strain strengthening effect throughout hot working process is observed at a temperature of 1000°С. Temperature intervals of the following phase areas have been determined for the pilot alloy: (О+βA2)→(О+β(A2+В2)+α2)→(β(A2+В2)+α2)→β(A2+В2). Also it has been shown that technological plasticity (degree of strain) decrease at deformation temperatures lower than 1000°С and prolonged duration is caused by phase transformations: in these conditions decomposition of β-phase takes place together with the ordered intermetallic O- and α2-phases precipitation.
2. Nochovnaya N.A., Shiryaev A.A., Alekseev E.B., Antashev V.G. Optimizaciya rezhimov termicheskoj obrabotki dlya lopatochnyh zagotovok iz opytnogo zharoprochnogo titanovogo splava [Optimization of modes of thermal processing for scapular preparations from experimental heat resisting titanium alloy] //MiTOM. 2014. №12 (714). S. 22–26.
3. Nochovnaya N.A., Alekseev E.B., Izotova A.Yu., Novak A.V. Pozharobezopasnye titanovye splavy i osobennosti ih primeneniya [Fireproof titanium alloys and features of their application] //Titan. 2012. №4 (38). S. 42–46.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn. 2010. №4. S. 2–7.
7. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
8. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
9. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
10. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Sovremennye zharoprochnye splavy na osnove gamma-alyuminida titana: perspektivy razrabotki i primeneniya [Modern hot strength alloys on the basis of titanium gamma aluminide: development and application perspectives] //MiTOM. 2014. №7. S. 23–27.
11. Nochovnaya N.A., Skvortsova S.V., Anishchuk D.S., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Working off of technology of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] //Titan. 2013. №4 (42). S. 33–38.
12. Nochovnaya N.A., Alekseev E.B., Yasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby polucheniya slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobiya [Specifics of melting and ways of receiving ingots of intermetallic titanium alloys with the raised content of niobium] //Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. C. 53–59.
13. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
14. Alekseev E.B., Nochovnaja N.A., Skvorcova S.V., Grushin I.A., Agarkova E.O. Vliyanie termicheskoj obrabotki na strukturno-fazovyj sostav i mehanicheskie svojstva titanovogo splava na osnove orto-fazy [Influence of thermal processing on structural and phase structure and mechanical properties of titanium alloy on the basis of orto-phase] //Titan. 2014. №4 (46). S. 45–49.
15. Nochovnaya N., Ivanov V., Alexeev E., Izotova A. Opportunities of increase of mechanical properties of the deformed semi-finished products from Ti–Al–Nb system alloys /Proc. 12-th World Conf. on Titanium (Ti–2011). Beijing. 2011. V. 2. P. 1383–1386.
16. Panin P., Nochovnaya N., Alexeev E., Kablov D. On the problem of low-temperature ductility improvement of Ti–Al and Ti–Al–Nb based alloys /Proc. Int. Symposium on Gamma TiAl Alloys (ISGTA’14). San Diego. 2014 (CD).
17. Alekseev E.B., Nochovnaya N.A., Panin P.V. Issledovanie struktury i fazovogo sostava opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb v deformirovannom sostoyanii [Research of structure and phase composition of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound in the deformed condition] //Titan. 2014. №4 (46). S. 12–17.
18. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i svojstva deformirovannyh polufabrikatov iz intermetallidnogo titanovogo splava VTI-4 [Research of influence of aluminum on phase structure and properties of the deformed semi-finished products from intermetallic VTI-4 titanium alloy] //Tehnologiya legkih splavov. 2015. №1. S. 57–61.
19. Alekseev E.B., Nochovnaja N.A., Skvortsova S.V., Panin P.V., Umarova O.Z. Opredelenie tehnologicheskih parametrov deformacii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Determination of technological parameters of deformation of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] //Titan. 2014. №2 (44). S. 36–41.
20. Splav na osnove titana i izdelie, vypolnennoe iz nego [Titanium-based alloy and the product which has been executed of it]: pat. 2210612 Ros. Federatsiya; opubl. 20.08.2003.
21. Kazantseva N.V., Lepihin S.V. Issledovanie diagrammy sostoyaniya Ti–Al–Nb [Research of the chart of condition of Ti–Al–Nb] //Fizika metallov i metallovedenie. 2006. T. 102. №2. S. 184–195.
22. Demakov S.L., Stepanov L.S., Popov A.A. Fazovye prevrashheniya v super-α2-titanovom splave. I. Vliyanie temperatury i vremeni vyderzhki pod zakalku na fazovyj sostav i strukturu splava [Phase transformations in super-α2-titanium alloy. I. Temperature and hold time influence under tempering on phase structure and alloy structure] //Fizika metallov i metallovedenie. 1998. T. 86. №5. S. 115–122.
The article contains the review and analysis of methods of increasing in fire safety of fibrous thermal insulation. Permanent growing requirements to service properties of heat-insulating materials are caused by the progress in such areas of the industry, as transport, aviation, energy, chemical, oil-extracting and others, and also need of providing operation safety of machines and mechanisms. A number of new heat-insulating systems is developed for implementation of fire safety requirements of new aviation rules. New types of protective coatings meeting the modern requirements of aviation rules are developed.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Strelnikov S.V., Zastrogina O.B., Veshkin E.A., Shvets N.I. K voprosu o sozdanii vysokoeffektivnyh tehnologij izgotovleniya panelej interera v krupnoserijnom proizvodstve [To a question of creation of highly effective manufacturing techniques of panels of an interior in a large-lot production] //Aviacionnye materialy i tehnologii. 2011. №4. S. 18–24.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heat insulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
6. Aviacionnye pravila AP-25. Normy letnoj godnosti samoletov transportnoj kategorii [Aviation rules AP-25. Standards of the flight validity of airplanes of transport category]. M.: Letno-issled. in-t im. M.M. Gromova. 1994. 321 s.
7. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] //Trudy VIAM. 2014. №6. St. 07 (viam-works.ru).
8. Burn through resistant systems for transportation, especially aircraft: pat. 6565040 US; publ. 20.05.2003.
9. Composite laminate for a thermal and acoustic insulation blanket: pat. 8292027 US; publ. 23.10.2012.
10. Fire barrier film laminate: pat. 7767597 US; publ. 03.08.2010.
11. Modularized insulation systems, apparatus and methods: pat. 7083147 US; publ. 01.08.2006.
12. Laminate sheet material for fare barrier applications: pat. 6670291 US; publ. 30.12.2003.
13. Flexible composite multiple layer fire resistant insulation structure: pat. 8062985 US; publ. 22.11.2011.
14. Balinova Yu.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlya teplozashhitnyh, teploizolyacionnyh i kompozicionnyh materialov [Continuous high-temperature oxide fibers for heat-protective, heatinsulating and composite materials] //Vse materialy. Enciklopedicheskij spravochnik. 2012. №4. S. 24–29.
15. Sposob polucheniya vysokotemperaturnogo volokna na osnove oksida alyuminiya [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federatsiya; opubl. 20.09.2003. Byul. №34. 6 s.
16. Aviacionnye materialy: Spravochnik v 12-ti tomah. T. 9. Teplozashhitnye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiya [Aviation materials: The directory in 12 vol. Vol. 9. Heat-protective, heat insulating and composite materials, high-temperature nonmetallic coatings]. M.: VIAM. 2011. S. 31.
17. Babashov V.G., Warrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] //Trudy VIAM. 2015. №1. St. 03 (viam-works.ru).
18. Ivahnenko Yu.A., Kuzmin V.V., Bespalov A.S. Sostoyanie i perspektivy razvitiya teplozvukoizolyacionnyh pozharobezopasnyh materialov [Condition and perspectives of development of heat sound-proof fireproof materials] //Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
19. Zimichev A.M., Warrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM. 2015. №2. St. 07 (viam-works.ru).
The epoxy polymer based on Ethal-247 resin and cycloaliphatic Ethal-45M curing agent was exposed to Gelendzhik and Saransk atmosphere. The color characteristics of the specimens were measured and it was shown that colorimetric property such as a color difference of the polymer surface is sensitive to initial stages of weathering. It was shown that the natural UV-radiation is a dominant factor for polymer degradation. The application of solar radiation doze provides more reliable results.
2. Berlin A.A., Volfson S.A., Oshmyan V.G., Enikolopov N.S. Principy sozdaniya kompozicionnyh polimernyh materialov [Principles of creation of composite polymeric materials]. M.: Himiya. 1990. 238 s.
3. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy starenya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformaciya i razrushenie materialov. 2010. №11. S. 19–26.
4. Nizina T.A. Zashhitno-dekorativnye pokrytiya na osnove epoksidnyh i akrilovyh svyazuyushhih [Decorative protective coverings on the basis of the epoxy and acrylic binding]. Saransk: Izd-vo Mordovskogo gos. un-ta. 2007. 258 s.
5. Fairchild M.D. Color Appearance Models //Wiley. 2005. 408 p.
6. Schanda J. Colorimetry: Understanding the CIE System //Wiley. 2007. 390 p.
7. Sulejmanov A.M., Pomerancev A.L., Rodionova O.E. Prognozirovanie dolgovechnosti materialov proekcionnymi matematicheskimi metodami [Forecasting of durability of materials by projective mathematical methods] //Izvestiya KazGASU. 2009. №2 (12). S. 274–278.
8. Ranby B., Rabek J.F., Photodegradation, Photo-oxidation and Photostabilization of Polymers. New York: Wiley-Interscience. 1975. 573 p.
9. Olhov A.A., Ivanov V.B., Vlasov S.V., Iordanskij A.L. Klimaticheskoe ispytanie kompozicionnyh plenok na osnove PENP i poligidroksibutirata (PGB) [Climatic testing of composition films on the basis of PENP and poligidroksibutirata (PGB)] //Plasticheskie massy. 1998. №6. S. 19–23.
10. Startsev O.V. Polymer Yearbook 11 /Ed. вy R.A. Pethrick. Glasgow: Harwood Academic Publishers. 1993. P. 91–109.
11. Startsev O.V., Cincadze G.B., Vapirov Yu.M., Kiryushkin S.G. Polimernye opticheskie materialy [Polymeric optical materials]. Chernogolovka: IHF AN SSSR. 1989. S. 152–177.
12. Startsev O.V., Krotov A.S., Golub P.D. Effect of Climatic and Radiation Ageing on Properties of Glass Fibre Reinforced Epoxy Laminates //Polymers and Polymer Composites. 1998. V. 6. №7. P. 481–488.
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PKM] //Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
14. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
15. Startsev O.V., Medvedev I.M., Kurs M.G. Tverdost kak indikator korrozii alyuminievyh splavov v morskih usloviyah [Hardness as the indicator of corrosion of aluminum alloys in sea conditions] //Aviacionnye materialy i tehnologii. 2012. №3. S. 16–19.
16. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coal plastics and fibre glasses of new generation] //Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
17. Titareva A.S., Kirillov V.N., Startsev O.V. Povedenie materialov v elementah konstrukcij aviacionnoj tehniki, izgotovlennyh s primeneniem PKM i sistem LKP v usloviyah umerenno teplogo klimata [Behavior of materials in structural components of aeronautical engineering, manufactured using PCM and PC systems under conditions of temperate thermal climate] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 81–85.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
19. Stolyankov Yu.V., Ishodzhanova I.V., Antyufeeva N.V. K voprosu o defektah obrazcov dlya ispytanij ugleplastikov [On the question of carbon fiber reinforced plastics (CFRP) test specimen flaws] //Trudy VIAM. 2014. №10. St. 10 (viam-works.ru).
Processes of sorption and desorption of moisture by epoxy polymeric matrix and layered carbon fiber on its basis are considered. Moisture diffusion factors are estimated on stages of sorption and desorption. The conclusion is drawn on nature of diffusion in epoxy matrix and in polymeric composite material, on the basis of this matrix. The qualitative analysis of epoxy matrix, in the course of moisture sorption, is carried out by FTIR Spectroscopy. The structure and energy of molecule of epoxy matrix is calculated, at absence and presence of the bonded moisture in its composition. Researches of mechanical properties of polymeric composite materials are conducted at different values of moisture content. Changes of thermophysical properties of layered carbon fiber in the course of moisture sorption and desorption are investigated.
2. Kablov E.N., Gunyaev G.M. Tumanov A.T. – iniciator sozdaniya kompozitov [Tumanov A.T. – initiator of creation of composites] /V sb. tez. dokl. mezhotrasl. nauch.-tehnich. konf. «Kompozicionnye materialy v aviakosmicheskom materialovedenii». M.: VIAM. 2009. S. 6–9.
3. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] //Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
5. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] //Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
6. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour //Aircraft Eng. and Aerosp. technol. 2010. V. 82. №4. P. 258–266.
7. Firefighting and emergency responsestudy of advanced composites aircraft. Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires. Distribution A: Approved for public release; distribution unlimited. 88ABW-2012-0190. 2012.
8. Sugita Yoshino, Winkelmann Charles, La Saponara Valeria. Environmental and chemical degradation of carbon/epoxy lap joints for aerospace applications, and effects on their mechanical performance //Compos. Sci. and Technol. 2010. V. 70. №5. P. 829–839.
9. Kirillov V.N., Efimov V.A. Problemy issledovaniya klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] /V sb.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Yubilejnyj nauch.-tehnich. sbornik. M.: VIAM. 2007. S. 379–388.
10. Mikols W.J., Seferis J.C., Apicella A., Nicolais L. Evaluation of structural changes in epoxy systems by moisture sorption-desorption and dynamic mechanical studies //Polym. Compos. 1982. V. 3 № 3. P. 118–124.
11. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Issledovanie zakonomernostej vlagoperenosa i razrabotka standarta po opredeleniyu koefficienta diffuzii i predelnogo vlagosoderzhaniya dlya ocenki mehanicheskih svojstv ugleplastikov [Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics] //Aviacionnye materialy i tehnologii. 2013. №3. S. 44–48.
12. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
13. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
14. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] //Trudy VIAM. 2013. №1. St. 05 (viam-works.ru).
15. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenita. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] //Deformaciya i razrushenie materialov. 2012. №6. S. 17–19.
16. Roulend S. Voda v polimerah [Water in polymers]. M.: Mir. 1984. 555 s.
17. Zimm В.Н. Simplified Relation Between Thermodynamics and Molecular Distribution Functions for a Mixture //J. Chem. Phys. 1953. V. 21 Р. 934–935.
18. Zimm В.Н., Lundberg J.L. Sorption of Vapors by High Polymers //J. Phys. Chem. 1956. V. 60. P. 425–428.
19. Igonin N.G. Issledovanie osobennostej (nefikovskih anomalij) diffuzii vody v polimernyh kompozicionnyh materialah [Research of features (nefikovsky anomalies) water diffusions in polymeric composite materials]. M.: Kompaniya Sputnik. 2008. 182 s.
20. Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial Stage Environmental Degradation of the Polymer Matrix Composites Evaluated by Water Diffusion Coefficient] //Trudy VIAM. 2014. №7. St. 09 (viam-works.ru).
21. Antipov V.V., Startsev O.V., Senatorova O.G. Zakonomernosti vlagoperenosa v SIALah [Patterns moisture transfer in SIAL]//Korroziya: materialy, zashhita. 2012. №3. S. 13–18.
22. Dao B., Hodgkin J., Krstina J., Mardel J., Tian W. Accelerated aging versus realistic aging in aerospace composite materials. I. The chemistry of thermal aging in a low-temperature-cure epoxy composite //Journal of Applied Polymer Science. 2006. V. 102. №5. Р. 4291–4303.
23. Tian W., Hodgkin J. Long-Term Aging in a Commercial Aerospace Composite Sample: Chemical and Physical Changes //Journal of Applied Polymer Science. 2010. V. 115. Р. 2981–2985.
24. Eizenberg D., Kaucman V. Struktura i svojstva vody [Structure and properties of water]. L.: Gidrometeoizdat. 1975. 230 s.
25. Burikov S.A., Dolenko T.A., Karpov D.M. Vklad rezonansa Fermi v formirovanie valentnoj polosy spektra kombinacionnogo rassejaniya vody [Contribution of resonance of Fermi to forming of valency spectral band of combinational dispersion of water] //Optika i spektroskopiya. 2010. T. 109. №2. S. 306–312.
26. Bessonova A.P., Stas I.E. Vliyanie vysokochastotnogo elektromagnitnogo polya na fiziko-mehanicheskie svojstva vody i ee spektralnye harakteristiki [Influence of high-frequency electromagnetic field on physical and mechanical properties of water and its spectral characteristics] //Polzunovskij vestnik. 2008. №3. S. 305–309.
27. Pacaeva S.V. Obratnye zadachi spektroskopii kombinacionnogo rassejaniya sveta v zhidkoj vode [Return problems of spectroscopy of combinational dispersion of light in liquid water]: avtoref. dis. … kand. fiz.-mat. nauk. MGU. 1989. 18 s.
28. Ispolzovanie infrakrasnogo analizatora IKAR v medicine, ekologii i farmacii [Use of the infrared analyzer IKAR in medicine, ecology and pharmacy] /Pod red. A.V. Kargapolova. Tver: OOO «Izdatelstvo «Triada». 2003. 216 s.
The article describes the experience of several countries (Japan, USA, UK, Germany and others.) to reduce the negative impact on the environment and meet the legal requirements by manufacturing products of national economic destination of the recycled carbon fiber reinforced plastics, fiberglass reinforced plastics and fiber reinforced polypropylene. Some of the main technological processes using abroad in the manufacture of products from recycled polymers composite materials are described. At present, the solution of recycling problem is one of the aspects contributing to widespread adoption and application of polymeric composite materials in priority industries. This is due to the fact that today more and more consumers prefer those materials and products the negative influence of which on the environment in the process of manufacture, use and disposal would be minimal.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] //Trudy VIAM. 2013. №8. St. 03 (viam-works.ru).
5. Doneckij K.I., Khrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
6. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] //Trudy VIAM. 2015. №8. St. 09 (viam-works.ru).
7. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
8. Adesso Advanced Materials. Available at: http://www.adessomaterials.com (Accessed: March 10, 2015).
9. Connora Technologies. Available at: http://www.connoratech.com (Accessed: March 10, 2015).
10. Job S. Recycling composites commercially (part 2) //Reinforced Plastics. 2014. V. 58. №5. P. 36–38.
11. Reprocover. Available at: http://www.reprocover.com (Accessed: April 07, 2015).
12. Job S. Recycling glass fibre reinforced composites – history and progress (part 1) //Reinforced Plastics. 2013. Available at: http://www.materialstoday.com (Accessed: April 09, 2015).
13. AXION International's. Available at: http://www.axionintl.com (Accessed: April 29, 2015).
14. IntegriCo Composites. Available at: http://integrico.com (Accessed: March 03, 2015).
15. ReFiber. Available at: http://www.refiber.com (Accessed: April 23, 2015).
16. Sposob pererabotki kompozicionnyh materialov [Way of processing of composite materials]: pat. WO 2002088277 A1; opubl. 07.11.2002.
17. Hitachi Chemical Technical Report №56. Hitachi Chemical Co., Ltd. March. 2014.
18. CFK Valley Stade Recycling. Available at: http://www.cfk-recycling.com (Accessed: April 07, 2015).
19. Black S. Redesigning for simplicity and economy //High-Performance Composites. 2012. Available at: http://www.compositesworld.com (Accessed: March 18, 2015).
20. Ustanovka dlya piroliza othodov kompozicionnyh materialov [Installation for pyrolysis of waste of composite materials]: pat. 2208203 Ros. Federaciya; opubl. 10.07.2003.
21. Korotaev V.N. Razrabotka tehnologii utilizacii krupnogabaritnyh korpusov raketnyh dvigatelej, izgotovlennyh iz organicheskih kompozicionnyh plastikov [Development of technology of utilization of large outline packages of the rocket engines made of organic composition plastics]: Avtoref. dis. … kand. tehn.nauk. M.: RHTU im. D.I. Mendeleeva. 1996. 18 s.