Articles
The paper investigates the influence of structural and phase parameters on the mechanical properties of the martensitic-aging steel VNC-17 of the Fe–Cr–Ni–Mo–Ti system. Transmission electron microscopy methods have shown that the structure of the VNC-17 steel, heat treated according to modes including quenching and aging, is characterized by the release of a fine Ni3Ti phase, the existence of which is confirmed by studies of the phase composition by X-ray diffraction analysis. The revealed structural and phase features justify the choice of the heat treatment mode of the martensitic-aging steel VNC-17, which provides hardening without loss of plasticity.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Kondratov V.M. Deformation of maraging steels during heat treatment. Metallovedenie i termicheskaya obrabotka, 1972, no. 10, pp. 15–19.
5. Agbalyan S.G., Simonyan V.A. Review of features, production methods and prospects for the use of maraging steels. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal, 2022, no. 8, pp. 1–12.
6. Kondratov V.M., Potekhin B.A. Strengthening of dispersion-hardening steels during aging. Reports conf. «New metals in the national economy». Kirov: Kirov Polytech. Institute, 1969, pp. 92–101.
7. Sevalnev G.S., Yakusheva N.A., Korobova E.N., Dulnev K.V. Study of the diffusion saturation kinetics of high-chromium carbon steels of the martensitic class after various types of chemical-heat treatment. Aviation materials and technologies, 2022, no. 3 (68), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 30, 2023). DOI: 10.18577/2713-0193-2022-0-3-3-14.
8. Bodyako M.N., Astapchuk S.A., Yaroshevich G.B. Maraging steels. Minsk: Science and Technology, 1976, 246 p.
9. Gracheva A.V., Kostromin S.V., Salova N.V., Shestakova M.A., Tolstykh I.A. Study of the structure and properties of maraging steel after hardening heat treatment. Sovremennyye materialy, tekhnika i tekhnologii, 2015, no. 3 (3), pp. 69–72.
10. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Maraging became ‒ new perspective materials for GTE shaft. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 81–84.
11. Moiseenkov V.V., Sevalnev G.S., Volkov R.B., Dulnev K.V., Levin E.A. Application of the rotational forging method for the production of bars from high-nitrogen steel VNS-78. Aviation materials and technologies, 2022, no. 1 (69), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 30, 2023). DOI: 10.18577/2713-0193-2022-0-4-3-15.
12. Grib V.V., Lazarev G.E. Laboratory testing of materials for friction and wear. Moscow: Nauka, 1968, 139 p.
13. Kondratov V.M., Potekhin B.A. Features of hardening of Fe–Cr–Ni dispersion-hardening steel. Metallovedeniye i termicheskaya obrabotka, 1971, no. 1, pp. 17–20.
14. Tavaresa S.S.M., Abreub H.F.G., Netoc J.M. et al. A thermomagnetic study of the martensite-austenite phase transition in the maraging 350 steel. Journal of Alloys and Compounds, 2003, vol. 358, pp. 152–156.
15. Sadovsky V.D., Malyshev K.A., Sazonov B.G. Phase and structural transformations when heating steel. Moscow: Metallurgizdat, 1957, 118 p.
16. Perkas M.D. Structure, properties and areas of application of high-strength maraging steels. Metallovedenie i termicheskaya obrabotka metallov, 1985, no. 5, pp. 23–33.
The research conducted at the Kurchatov Institute Research Center – VIAM is devoted to the technology of manufacturing foam ceramic filters for cleaning the melt from non-metallic inclusions. In this part of the work, samples of filters based on aluminum oxide (III) and zirconium oxide (IV) were tested during remelting and casting of superalloys ZhS6U-VI and VX4L-VI on a vacuum induction furnace. The contamination was assessed and the chemical composition of the alloys after filtration was studied, and tests for mechanical properties were carried out. The full compliance of the properties with the requirements of the industry standard has been determined.
2. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Features of the technology of smelting and casting modern foundry high-heat-resistant nickel alloys. Vestnik MGTU im. N.E. Baumana. Ser.: Mechanical engineering, 2011, no. SP2, pp. 68–78.
3. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
4. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 19, 2023). DOI: 10.18577/2713-0193-2023-0-3-30-41.
5. Korovin V.A., Leushin I.O., Belyaev S.V., Demchenko A.I., Khatsko M.S., Panov A.G. The influence of filtration refining on the microstructure and mechanical properties of the VZh-159 alloy. Tekhnologiya metallov, 2023, no. 9, pp. 2–7.
6. Demchenko A.I., Ryabtsev A.I., Korovin V.A., Belyaev S.V., Leushin I.O. The influence of filtration on the structure and properties of the heat-resistant nickel alloy EP-648-VI. Tekhnologiya metallov, 2019, no. 9, pp. 2–5.
7. Demchenko A.I., Korovin V.A., Leushin I.O., Belyaev S.V. The influence of melt filtration on the structure of the EP-718 alloy. Metallurgiya mashinostroyeniya, 2019, no. 5, pp. 12–15.
8. Starikov D.G., Vyushkov V.N., Karsanova L.G., Ber L.B. Filtration of melts in the production of heat-resistant nickel alloys using vacuum induction melting. Tekhnologiya legkikh splavov, 2020, no. 1, pp. 70–78.
9. Korovin V.A., Leushin I.O., Demchenko A.I., Kalmykov A.A. Evaluation of the efficiency of filtration of heat-resistant metal through a ceramic foam filter using the example of the Inconel-718 alloy, smelted under the conditions of PJSC RUSPOLYMET. Liteyshchik Rossii, 2021, no. 4, pp. 7–11.
10. Babashov V.G., Varrik N.M., Karaseva T.A. Porous ceramic for filtration of metal melts and hot gases (rеview). Trudy VIAM, 2020, no. 8 (90), paper no. 6. Available at: http://www.viam-works.ru (accessed: December 19, 2023). DOI: 10.18577/2307-6046-2020-0-8-54-63.
11. Sidorov V.V., Iskhodzhanova I.V., Rigin V.E., Folomeikin Yu.I. Evaluation of filtration efficiency when casting complex-alloyed nickel melt. Electrometallurgiya, 2011, no. 11, pp. 17–21.
12. Demchenko A.I., Shevyakov V.F., Korovin V.A., Belyaev S.V., Gushchin V.N. Improving the quality of nickel alloy by filtration through a ceramic foam filter. Liteyshchik Rossii, 2019, no. 6, pp. 29–33.
13. Staroverov Yu.S., Chernov Yu.A. The use of ceramic foam filters in foundries and steelmaking abroad. Ogneupory, 1992, no. 1, рр. 38–40.
14. Ofitserov A.A., Zavolosnov B.S. Foam ceramic filters for filtration of heat-resistant nickel alloys. Liteynoe proizvodstvo, 1993, no. 4, pp. 19–20.
15. Ten E.B., Voevodina M.A. Filtration of high-strength cast iron melt. Liteynoe proizvodstvo, 1993, no. 7, pp. 5–8.
16. Dibrov I.A., Kozlov A.V. Developments in the field of melting, pouring, modifying and refining foundry alloys. Liteynoe proizvodstvo, 2000, no. 6, pp. 24–26.
17. Dubrovin V.K. Improving the quality of castings from heat-resistant alloys by filtration cleaning. Vestnik YUUrGU. Ser. Metallurgy, 2008, no. 24, pp. 55–59.
18. Demchenko A.I., Shevyakov V.F., Korovin V.A., Belyaev S.V., Gushchin V.N., Leushin I.O. Refining of nickel alloys using ceramic foam filters. Zagotovitelnye proizvodstva v mashinostroyenii, 2020, vol. 18, no. 6, pp. 243–246.
19. Echin A.B., Deynega G.I., Narsky A.R. New developments of NRC «Kurchatov Institute» – VIAM in the field of materials for casting processes of superalloys. Trudy VIAM, 2023, no. 8 (126), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 19, 2023). DOI: 10.18577/2307-6046-2023-0-8-13-24.
20. Deynega G.I., Kuzmina I.G., Bityutskaya O.N., Narsky A.R. Foam ceramic filters based on domestic refractory materials. Part 1. Trudy VIAM, 2023, no. 11 (129), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 19, 2023). DOI: 10.18577/2307-6046-2023-0-11-17-25.
The article presents the results of research on several brands of partially hydrolyzed polyvinyl alcohol. Rheological characteristics (dependence of viscosity on temperature and activation energy of flow) of aqueous polymer solutions are determined. The completeness of the dissolution of polyvinyl alcohol was determined by optical microscopy. The types of foreign particles present in the solution characteristic of each method of dissolution and type of polymer have been identified. It has been established that the use of polyvinyl alcohol with a relatively low molecular weight is required to obtain technologically optimal solutions.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: December 22, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
4. Ivakhnenko Yu.A., Kuzmin V.V., Bespalov A.S. State and prospects for the development of heat and sound insulating fireproof materials. Problemy bezopasnosti poletov, 2014, no. 7, pp. 27–30.
5. Buchilin N.V., Maksimov V.G., Babashov V.G. Ceramic filters for molten aluminum (review). Steklo i keramika, 2015, no. 7, pp. 20–28.
6. Maksimov V.G., Varrik N.M., Babashov V.G. Features of obtaining ceramic materials from sintering-active powders. Novye ogneupory, 2023, no. 10, pp. 14–21.
7. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Solntcev S.S. Al2O3 and ZrO2 ceramic materials obtained by sol-gel method. Trudy VIAM, 2021, no. 4 (98), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2023). DOI: 10.18577/2307-6046-2021-0-4-61-73.
8. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
9. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: December 22, 2023). DOI: 10.18577/2713-0193-2022-0-1-65-77.
10. Dushin M.I., Donetskiу K.I., Timoshkov P.N., Karavaev R.Yu. Research of process of out-of-autoclave formation semipregs on the basis of carbon fillers (rеview). Trudy VIAM, 2018, no. 9 (69), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 12, 2023). DOI: 10.18577/2307-6046-2018-0-9-21-31.
11. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2023). DOI: 10.18577/2307-6046-2020-0-12-47-58.
12. Rosenberg M.E. Polyvinyl acetate based polymers. Leningrad: Khimiya, 1983, 176 p.
13. Ushakov S.N. Polyvinyl alcohol and its derivatives: in 2 vols. Moscow; Leningrad: USSR Academy of Sciences Publishing House, 1960, vol. 1, 552 p.
14. Konkin A.A. Carbon and other heat-resistant fibrous materials. Moscow: Khimiya, 1974, 376 p.
15. Zhilyakova E.T., Popov N.N., Khalikova M.A., Novikova M.Yu., Pridachina D.V. Technological characteristics of a supramicrostructured combined prolongator-thickener Na-CMC and PVA. Mezhdunarodnyy zhurnal eksperimentalnogo obrazovaniya, 2015, no. 4–2, pp. 450–452.
16. State Standatd 10779–78. Polyvinyl alcohol. Technical specifications (with Amendments No. 1, 2). Moscow: Publ. house of standards, 1978, 23 p.
17. Kharchenko I.M. Thermochemical transformations of polyvinyl alcohol fiber in the presence of pyrolytic additives during the production of carbon fiber: abstract thesis, Cand. Sc. (Chem.). Moscow, 2006, 174 p.
18. Buzov B.A., Alymenkova N.D. Materials science in the production of light industry products. Moscow: ACADEMA, 2004, 135 p.
19. Lebedeva A.V., Olekhnovich R.O., Morozkina S.N., Uspenskaya M.V. Study of obtaining nanofibers from aqueous solutions of polyvinyl alcohol by electrospinning. Vestnik VGUIT, 2022, vol. 84, no. 2, pp. 210–220. DOI: 10.20914/2310-1202-2022-2-210-220.
20. Perepelkin K.E. Physico-chemical foundations of the processes of forming chemical fibers. Moscow: Khimiya, 1978, 320 p.
21. Tager A.A. Physico-chemistry of polymers. 4th ed. Moscow: Nauchnyy mir, 2007, 576 p.
22. Schramm G. Fundamentals of practical rheology and rheometry. Trans. from Engl. I.A. Lavygina; ed. V.G. Kulichikhin. Moscow: KolosS, 2003, 312 p.
23. Pakshver E.A., Perepelkin K.E., Fikhman V.D., Varshavsky V.Ya., Zverev M.P. Carbon-chain synthetic fibers. Moscow: Khimiya, 1973, 589 p.
24. Kruppennikova V.E., Radnaeva V.D., Tanganov B.B. Determination of dynamic viscosity using a Brookfield RVDV-II+Pro rotational viscometer. Ulan-Ude: VSTU, 2011, 47 p.
25. Bartenev G.M. Determination of the activation energy of viscous flow of polymers from experimental data. Vysokomolekulyarnye soyedineniya, 1964, vol. 6, no. 2, pp. 335–340. DOI: 10.1016/0032-3950(64)90322-3.
This work is devoted to a review of researches and developments related to the modification of asphalt concrete mixtures with various types of epoxy resins and hardeners. The development of the world economy is impossible without the use of new technologies in the construction of roads and bridges. One of the most effective options for modifying traditional asphalt concrete road pavements is the introduction of epoxy compositions into the bitumen composition. The main result of using epoxy asphalt is a noticeable increase in physical and mechanical characteristics and moisture resistance compared to a conventional asphalt.
2. Fang C., Zhou S., Zhang M. et al. Optimization of the modification technologies of asphalt by using waste EVA from packaging. Journal of Vinyl and Additive Technology, 2009, no. 15, pp. 199–203. DOI: 10.1002/vnl.20189.
3. Upadhyay S., Mallikarjunan V., Subbaraj V., Varughese S. Swelling and diffusion characteristics of polar and nonpolar polymers in asphalt. Journal of Applied Polymer Science, 2008, no. 109, pp. 135–143. DOI: 10.1002/app.27764.
4. Khakimullin Yu.N., Ayupov D.A., Sundukov V.I. et al. Non-separating three-component polymer-bitumen binders. Stroitelnye materialy, 2017, no. 10, pp. 51–55.
5. Belyaev P.S., Polushkin D.L., Makeev P.V., Frolov V.A. Modification of petroleum road bitumen with polymer materials to obtain asphalt concrete pavements with increased performance characteristics. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 22. pp. 264–271.
6. Yang F., Gong H., Cong L. et al. Investigating on polymerization process and interaction mechanism of thermosetting polyurethane modified asphalt. Construction and Building Materials, 2022, no. 335. DOI: 10.2139/ssrn.4008099.
7. Kuznetcova P.A., Tkachuk A.I., Lyubimova A.S., Eldjaeva G.B. Characteristics of the molten epoxy resin system VSE-62, processed by the injection methods, for the manufacture of highly loaded structural polymer composite materials. Trudy VIAM, 2023, no. 5 (123), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2023-0-5-43-53.
8. Mukhametov R.R., Petrova A.P. Properties of epoxy polymer binders and their processing into polymer composite materials. Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 3–4 (30), art. 06. Available at: http://www.materialsnews.ru (accessed: November 08, 2023).
9. Zagora A.G., Tkachuk A.I., Terekhov I.V., Mukhametov R.R. Methods of chemical modification of epoxy oligomers (review). Trudy VIAM, 2021, no. 7 (101), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2021-0-7-73-85.
10. Inorganic cement-epoxy resin composition containing animal glue: рat. 3198758 US; appl. 05.12.1961; publ. 03.08.1965.
11. Luo S., Qian Z., Wang H. Condition survey and analysis of epoxy asphalt concrete pavement on Second Nanjing Yangtze River Bridge: A ten-year review. Journal of Southeast University (English Edition), 2011, no. 27 (4), pp. 417–422. DOI: 10.3969/j.issn.1003 7985.2011.04.014.
12. Han Y., Zhang Z., Tian J., Ni F. Long-Term In Situ Performance Evaluation of Epoxy Asphalt Concrete for Long-Span Steel Bridge Deck Pavement. Coatings, 2023, no. 13 (3), pp. 545. DOI: 10.3390/coatings13030545.
13. Ma B., Zhou X., Wei K. Preparation and properties evaluation of shape memory epoxy asphalt composites with high toughness and damping. Applied Sciences, 2017, no. 7, p. 523.
14. Pokrovsky A.V. Cast asphalt concrete and bridge systems in China. Dorogi. Innovatsii v stroitelstve, 2019, no. 77, pp. 84–89.
15. Yao B., Chen C., Loh K. Performance characteristics of diluted epoxy asphalt binders and their potential application in chip seal. Journal of Materials in Civil Engineering, 2019, no. 31 (12). DOI: 10.1061/(ASCE)MT.1943-5533.0002943.
16. Liu Y., Wang S. Research Progress of Epoxy Asphalt Material for Roads. Journal of World Architecture, 2023, no. 7. DOI: 10.26689/jwa.v7i3.4854.
17. Chen Y., Hossiney N., Yang X. et al. Application of Epoxy-Asphalt Composite in Asphalt Paving Industry: A Review with Emphasis on Physicochemical Properties and Pavement Performances. Advances in Materials Science and Engineering, 2021, no. 1, pp. 1–35. DOI: 10.1155/2021/3454029.
18. Kang Y., Wu Q., Jin R. et al. Rubber-like quasi-thermosetting polyetheramine-cured epoxy asphalt composites capable of being opened to traffic immediately. Scientific Reports, 2016, no. 6. DOI: 10.1038/srep18882.
19. Song M., Liang R., Deng J., Kang Y. Sealed accelerants facilitate epoxy asphalt concretes opening to traffic quickly. Construction and Building Materials, 2017, no. 147, pp. 1–8.
20. Turonchik S.A. Modification of asphalt concrete using epoxy resin. Road construction and its engineering support: III Int. conf. Minsk, 2022, pp. 358–362.
21. Ayupov D.A., Potapova L.I., Murafa A.V., Fakhrutdinova V.Kh., Khakimullin Yu.N., Khozin V.G. Study of the features of the interaction of bitumen with polymers. Izvestia KGASU, 2011, no. 1 (15), pp. 140–146.
22. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2020-0-1-68-77.
23. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
24. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, no. 90, pp. 225–228.
25. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2020-0-67-38-44.
26. Su W., Han X., Gong J. et al. Toughening epoxy asphalt binder using core-shell rubber nanoparticles. Construction and Building Materials, 2020, no. 258 (12). DOI: 10.1016/j.conbuildmat.2020.119716.
27. Tkachuk A.I., Lyubimova A.S., Kuznetcova P.A. Opportunities of the development of plant-based epoxy resins (review). Trudy VIAM, 2022, no. 8 (114), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2022-0-8-49-64.
28. Si J., Li Y., Wang J. et al. Improving the compatibility of cold-mixed epoxy asphalt based on the epoxidized soybean oil. Construction and Building Materials, 2020, no. 243. DOI: 10.1016/j.conbuildmat.2020.118235.
29. Al Fuhaid A.F. Biobased Epoxy Asphalt Binder (BEAB) for Pavement Asphalt Mixtures Mixtures // USF Tampa Graduate Theses and Dissertations. 2018. Available at: https://digitalcommons.usf.edu/etd/7599 (accessed: November 08, 2023).
30. Huang M., Wen X., Wang L. Influence of foaming effect, operation time and health preserving properties of foam epoxy asphalt mixtures. Construction and Building Materials, 2017, no. 151, pp. 931–938. DOI: 10.1016/j.conbuildmat.2017.06.083.
31. Yu X., Dong F., Ding G. et al. Rheological and microstructural properties of foamed epoxy asphalt. Construction and Building Materials, 2016, no. 114, pp. 215–222. DOI: 10.1016/j.conbuildmat.2016.03.179.
32. Cong P., Liu N., Shang H., Zhao H. Rheological and fatigue properties of epoxy asphalt binder. International Journal of Pavement Research and Technology, 2015, no. 8 (5), pp. 370–376. DOI: 10.6135/ijprt.org.tw/2015.8(5).370.
33. Moraes R. Evaluation of Epoxy Asphalt Binders for Open-Graded Friction Course (OGFC) Application. RILEM. Bituminous Materials: Proceedings of the International Symposium, 2022, pp. 787–794. DOI: 10.1007/978-3-030-46455-4_100.
34. Sun Y., Han X., Su W., Gong J. Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats. Polymer Composites, 2020, no. 41 (8). DOI: 10.1002/pc.25595.
35. Bahmani H., Sanij K.H., Peiravian F. Estimating moisture resistance of asphalt mixture containing epoxy resin using surface free energy method and modified Lottman test. International Journal of Pavement Engineering, 2021, no. 23 (2), pp. 1–13. DOI: 10.1080/10298436.2021.1904236.
36. Sun Y., Gong J., Liu Y. et al. Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. Journal of Applied Polymer Science, 2019, no. 136 (5). DOI: 10.1002/app.47027.
37. Jamshidi A., White G., Kurumisawa K. Rheological Characteristics of Epoxy Asphalt Binders and Engineering Properties of Epoxy Asphalt Mixtures-State-of-the-Art. Road Materials and Pavement Design, 2022, no. 23 (9), pp. 1957–1980. DOI: 10.1080/14680629.2021.1963814.
38. Cai X., Huang W., Liang J., Wu K. Study of Pavement Performance of Thin-Coat Waterborne Epoxy Emulsified Asphalt Mixture. Frontiers in materials, 2020, no. 7, p. 88. DOI: 10.3389/fmats.2020.00088.
39. Yu D. Study on Waterborne Epoxy Resin Modified Emulsified Asphalt and the Performance of Mixture: Master’s thesis. Chongqing Jiaotong University, 2018, pp. 215–222.
40. Yang G., Wang C., Fu H. et al. Waterborne epoxy resin–polyurethane–emulsified asphalt: preparation and properties. Journal of Materials in Civil Engineering, 2019, no. 31. DOI: 10.1061/(ASCE)MT.1943-5533.0002904.
41. Chen R., Gong J., Jiang Y. et al. Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization. Construction and Building Materials, 2018, no. 186, pp. 863–870. DOI: 10.1016/j. conbuildmat.2018.08.018.
42. Hu C., Zhao J., Leng Z. et al. Laboratory evaluation of waterborne epoxy bitumen emulsion for pavement preventative maintenance application. Construction and Building Materials, 2019, no. 197, pp. 220–207. DOI: 10.1016/j.conbuildmat.2018.11.223.
43. Liang H., Wang D., Wang G. et al. Numerical simulation and laboratory testing verification on the performance of an asphalt pavement seal coat with superficially permeating and solidifying properties. Journal of Testing and Evaluation, 2019, no. 47, pp. 4427–4451. DOI: 10.1520/JTE20170625.
44. Gu Y., Tang B., He L. et al. Compatibility of cured phase-inversion waterborne epoxy resin emulsified asphalt. Construction and Building Materials, 2019, no. 229. DOI: 10.1016/j.conbuildmat.2019.116942.
45. Thermoset modified additive for asphalt mixture, preparation method thereof and asphalt mixture: pat. 10030146B2 US; аppl. 23.05.14; рubl. 24.07.18.
46. Asphalt composition comprising thermosetting reactive compounds: рat. 11059749B2 US; аppl. 04.06.18; рubl. 13.07.21.
47. Waterborn polymer-modified emulsified asphalt mixture and process for producing the same: рat. 9982136B2 US, аppl. 11.08.15; рubl. 29.05.18.
48. Jiang L., Hu K., Liu Z. et al. Aliphatic diamide as novel asphalt-modified epoxy curing agent for enhanced performance. Advances in Polymer Technology, 2018, no. 37, pp. 830–836. DOI: 10.1002/adv.21726.
49. Wang X., Wu R., Zhang L. Development and performance evaluation of epoxy asphalt concrete modified with glass fibre. Road Materials and Pavement Design, 2019, no. 20, pp. 715–726. DOI: 10.1080/14680629.2017.1413006.
Ceramic tooling is increasingly being used in the metallurgical industry, particularly in casting workshops of non-ferrous metals. Currently, various types of heat-resistant ceramics have been developed for injection molds and crucibles. Abroad, ceramics made from the natural mineral wollastonite, which also contains plasticizers and fluxing additives, are most often used for the manufacture of tooling. To obtain such products NRC «Kurchatov Institute» – VIAM has developed сeramics based on high silica fiber. In this paper, some aspects of the durability and criteria for evaluating their operational properties of ceramic products for the manufacture of tooling for continuous casting of aluminum are considered.
2. Oglodkov M.S., Romanenko V.A., Kozhekin A.E. Directions of development melting and casting technologies of aluminum-lithium alloys (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2713-0193-2023-0-2-51-62.
3. Echin A.B., Deynega G.I., Narsky A.R. New developments of NRC «Kurchatov Institute» – VIAM in the field of materials for casting processes of superalloys. Trudy VIAM, 2023, no. 8 (126), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 02, 2023). DOI: 10.18577/2307-6046-2023-0-8-13-24.
4. Voronov V.A., Chaynikova A.S., Tkalenko D.M. Aspects of usage of organic or aqueous binders based on III or IV group elements oxides in the production of ceramic molds for chemically active alloys casting (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 08. Available at: http://www.journal.viam.ru (accessed: February 20, 2023). DOI: 10.18577/2713-0193-2021-0-2-73-84.
5. Loshchinin Yu.V., Shorstov S.Yu., Kuzmina I.G. Research of influence of technology factors on thermal conductivity of ceramic casting molds. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 89–94. DOI: 10.18577/2071-9140-2019-0-2-89-94.
6. Antipina S.A., Vereshchagin V.I. Heat-resistant material for aluminum casting. Izvestiya Tomskogo politekhnicheskogo universiteta, 2009, no. 3, pp. 8–11.
7. Method of manufacturing ceramic melting crucibles: pat. 2713049 Rus. Federationn; appl. 17.12.18; publ. 03.02.20.
8. Rusanova L.N., Rusin M.Yu., Gorchakova L.I. et al. Ceramics from natural wollastonite for foundry installations of the aluminum industry. Ogneupory i tekhnicheskaya keramika, 2008, no. 5, pp. 39–44.
9. Kalugin V.G., Kostyrev Yu.P., Kuksin I.G. Structural and thermal insulation materials and pro-ducts based on wollastonite for the aluminum industry. Novye ogneupory, 2004, no. 9, pp. 8–9.
10. Garashchenko A.N., Vinogradov A.V., Kobylkov N.V., Nikolchenkin A.A., Antipov E.A. Experimental and computational modeling of fire and thermal protection composite materials under high-temperature exposure. Aviation materials and technologies, 2022, no. 3 (68), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2713-0193-2022-0-3-84-97.
11. Matrenin S.V., Slosman A.I. Technical ceramics: textbook. Tomsk: Publishing House of TPU, 2004, 75 p.
12. Apakashev R.A., Davydov S.Ya. Study of the interaction of molten aluminum with the contact surface of a quartz refractory. Novye ogneupory, 2015, no. 4, pp. 46–48. DOI: 10.17073/1683-4518-2015-4-46-48.
13. Maksimov V.G., Varrick N.M. On the issue of obtaining chemically resistant quartz ceramics with open porosity. Novosti materialovedeniya. Nauka i tekhnika, 2017, no. 1, art. 01. Available at: http://www.materialsnews.ru (accessed: October 10, 2023).
14. Method for producing fibrous ceramic material: pat. 2358954 Rus. Federation; appl. 08.11.07; publ. 20.06.09.
15. Babashov V.G., Ivahnenko Yu.A., Yudin A.V., Zimichev A.M. Ceramic material for parts of continuous casting units intended for production of non-ferrous alloys. Trudy VIAM, 2014, no. 12, paper no. 06. Available at: http://www.viam-works.ru (accessed: October 02, 2023). DOI: 10.18577/2307-6046-2014-0-12-5-5.
The production of SiC–ZrB2–BN system ceramic materials by spark plasma sintering (SPS) at temperatures of 1850–1950 °C is presented. The SPS method made it possible to obtain a ceramic material with a homogeneous structure and a grain size of 0.5–3 μm. The influence of the amount of boron nitride on the machinability and oxidative resistance of ceramics was studied. It has been established that with a boron nitride content of 20 % (vol.), the ceramic material retains a high level of mechanical properties and a good degree of workability, however, it has low oxidative resistance.
2. Sorokin O.Yu., Kuznetsov B.Yu., Lunegova Yu.V., Erasov V.S. High-temperature composites with a multi-layered structure (review). Trudy VIAM, 2020, no. 4–5 (88), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2020-0-45-42-53.
3. Serebryakova T.I., Neronov V.A., Peshev P.D. High temperature borides. Moscow: Metallurgiya, 1991, 368 p.
4. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective High-Temperature Ceramic Composite Materials. Russian Journal of General Chemistry, 2011, vol. 81, no. 5, pp. 986–991.
5. Kulagin N.D. High-temperature multicomponent ceramic materials based on carbides: preparation, structure, oxidative behavior: bachelor's thesis. Tomsk, 2022, 92 p. Available at: http://earchive.tpu.ru/handle/11683/71841 (accessed: December 01, 2023).
6. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
7. Zhitnyuk S.V. Effect of sintering additives on the properties of silicon carbide-based ceramics (review). Trudy VIAM, 2019, no. 3 (75), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2019-0-3-79-86.
8. Zhitnyuk S.V., Sorokin O.Yu., Zhuravleva P.L. Silicon carbide ceramics obtained by sintering granular powder. Trudy VIAM, 2020, no. 2 (86), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2020-0-2-50-59.
9. Evdokimov S.A., Shchegoleva N.E., Kachaev A.A. Methods for joining ceramic composite materials based on SiC with ceramic and metallic materials (review). Aviation materials and technologies, 2022, no. 3 (68), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2022-0-3-75-83.
10. Burlachenko A.G., Buyakova S.P., Mirova Yu.A., Dedova E.S. Kinetics of self-healing in high-temperature ZrB2–SiC ceramics. Powder metallurgy: surface engineering, new powder composite materials. Welding: Sat. report XXI Int. symposium: at 2 parts. Minsk: Publishing house «Belarusian Science», 2019, part 1, pp. 431–435.
11. Ordanyan S.S., Nesmelov D.D., Novoselov E.S. Statistical assessment of the mechanical characteristics of hot-pressed ceramics in the ZrB2–SiC system. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2023, no. 82, pp. 150–160.
12. Pushkarev O.I., Umansky A.P. Preparation of wear-resistant composite ceramics based on silicon carbide by hot pressing. Processes of abrasive processing, abrasive tools and materials. Sanding abrasive – 99. Volgograd, 1999, pp. 45–47.
13. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
14. Vaganova M.L., Sorokin O.Yu., Osin I.V. Joining of ceramic materials by the method of spark plasma sintering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 306–317. DOI: 10.18577/2071-9140-2017-0-S-306-317.
15. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Hybrid spark plasma sintering method: principle, possibilities, future prospects. Aviacionnye materialy i tehnologii, 2014, no. S6, pp. 11–16. DOI: 10.18577/2071-9140-2014-0-s6-11-16.
16. Barinov V.Yu., Rogachev A.S., Vadchenko S.G., Moskovskikh D.O., Kolobov Yu.R. Spark plasma sintering of complex-shaped products using quasi-isostatic pressing. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2016, no. 1–3, pp. 312–315.
17. Avramenko V.A., Papynov E.K., Shichalin O.O. et al. Spark plasma sintering as an innovative approach to the creation of new generation nanostructured ceramics. Nanomaterials and technologies: VI Int. conf. «Nanomaterials and technologies», V Int. conf. in materials science and II Int. conf. on functional materials. Ulan-Ude, 2016. pp. 82–90.
18. Perevislov S.N. Structure, properties and areas of application of graphite-like hexagonal boron nitride. Novye ogneupory, 2019, no. 6, pp. 35–40.
19. Way of receiving the fire-resistant mix containing boron nitride: pat. 2021124557 Rus. Federation; appl. 19.08.21; publ. 08.11.21.
20. Dudchenok N.V., Chervoniy I.F. Research on hexagonal boron nitride technology. ScienceRise, 2016, vol. 12, no. 2 (29), pp. 31–34.
The results obtained via the nondestructive evaluation of reaction-bonded silicon carbide components after the machining of carbonized and siliconized bodies are presented. It was shown that visual-optical and capillary tests are capable to detect the surface defects such as pores and cracks. More often the defects appear on type 1 and 2 components after milling. Extended linear indications, which are common for cracks, were not detected on type 3 components after having been sandblasted and grinded.
2. Zhitnyuk S.V. Effect of sintering additives on the properties of silicon carbide-based ceramics (review). Trudy VIAM, 2019, no. 3 (75), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2019-0-3-79-86.
3. Vasharin S.A., Fedorov A.E., Kocherga L.N. State and prospects for the use of sliding bearings made of ceramic materials and hard alloys in pumping equipment. Materials of the VII Int. Sc. and Tech. Conf. «SINT-13». Voronezh, 2013, pp. 184–191.
4. Evdokimov S.A., Shchegoleva N.E., Kachaev A.A. Methods for joining ceramic composite materials based on SiC with ceramic and metallic materials (review). Aviation materials and technologies, 2022, no. 3 (68), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 01, 2023). DOI: 10.18577/2307-6046-2022-0-3-75-83.
5. Kulik V.N., Nilov A.S., Bogachev E.A. High-temperature permanent connections of ceramic-matrix composite materials reinforced with carbon fibers with similar and other carbon-containing materials. Novye ogneupory, 2022, no. 2, pp. 32–44.
6. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 24, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
7. Babayants G.I. Silicon carbide canisters for isolating high-level waste (HLW) and spent nuclear fuel (SNF) in geological formations. Materials of the Int. forum «Atomexpo 2014». Moscow, 2014, pp. 1‒29.
8. Ilyushchenko A.F., Dyachkova L.N., Osipov V.A. Complex-profile elements of aerospace technology made of reaction-sintered silicon carbide ceramics. Doklady Natsionalnoy akademii nauk Belarusi, 2020, vol. 64, no. 6, pp. 730‒738.
9. Corman G.S., Luthra K.L. Development history of GE’s prepreg melt infiltrated ceramic matrix composite material and applications. Comprehensive composite materials II, 2017, vol. 5, pp. 325‒338.
10. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 24, 2023). DOI: 10.18577/2307-6046-2022-0-2-32-51.
11. Babushkin S.V., Afrikantov G.G., Novikov S.V., Skulkin N.G., Bugreev A.V., Salnikov V.G., Lukanov A.V., Porfiryev M.S. Testing of a full-scale mock-up of an axial bearing for the sealed MCP-2 reactor BN-1200M on water. Voprosy atomnoy nauki i tekhniki. Ser.: Yaderno-reaktornyye konstanty, 2022, no. 3, pp. 252‒257.
12. Agafonov S.V., Mikhailov S.V., Kovelenov N.Yu. Prediction and quality control of the surface layer of unsintered ceramic workpieces during cutting. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, vol. 19, no. 1 (2), pp. 207‒210.
13. Kuzin V.V., Fedorov S.Yu., Grigoriev S.N. Relationship between diamond grinding modes and the state of the surface of SiSiC ceramics. Novye ogneupory, 2017, no. 3, pp. 179‒185.
14. Chainikova A.S., Sorokin O.Yu., Kuznetsov B.Yu., Zhitnyuk S.V., Suvorov P.V. Study of samples from reaction-sintered silicon carbide by visual-optical and radiographic methods of non-destructive testing. Zavodskaya laboratoriya. Diagnostika materialov, 2022, vol. 88, no. 6, pp. 46‒51.
15. Sorokin O.Yu., Bubnenkov I.A., Koshelev Yu.I., Orekhov T.V. Development of fine-grained siliconized graphite with improved properties. Khimiya i khimicheskaya tekhnologiya, 2012, vol. 55, no. 6, pp. 12‒16.
16. Sorokin O.Yu., Belyachenkov I.O., Chainikova A.S., Zhitnyuk S.V., Medvedev P.N. Structure and phase composition of reaction-sintered silicon carbide containing artificial graphite. Voprosy materialovedeniya, 2022, no. 3 (111), pp. 49‒58.
17. Shabalin I.L. Prospects for nanotechnology and design of materials based on refractory compounds. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2018, no. 4, pp. 73‒81.
18. Sevostyanova I.N., Liang H., Buyakova S.P. Formation of the structure and properties of heteromodular multicomponent ceramic composite materials based on zirconium diboride. Physical mesomechanics. Materials with a multi-level hierarchically organized structure and intelligent technologies: reports Int. conf. Tomsk, 2023, pp. 580–581.
19. Stankus S.V., Khairulin R.A., Tyagelsky P.V. Thermal properties of germanium and silicon in a condensed state. Teplofizika vysokikh temperatur, 1999, vol. 37, no. 4, pp. 559–564.
The work focused on determining the dependence of the anti-icing properties of coatings on hydrophobic properties. The coatings were applied by pneumatic spraying and did not have a clearly structured roughness structure. For the study, polymer coatings of various chemical natures were selected based on: organosilicon copolymer, copolymer of vinylidene fluoride and chlorotrifluoroethylene, fluoropolyurethane, epoxy varnish, acrylic copolymer, poly-dieneurethane with epoxy end groups and fluorosiloxane rubber. The dependences of ice adhesion on the contact angle of wetting, roughness and freezing time of water were determined.
2. Parent O., Ilinca A. Anti-icing and de-icing techniques for wind turbines: critical review. Cold Regions Science and Technology, 2011, vol. 65, pp. 88–96.
3. Kablov E.N. Aviation materials science: results and prospects. Vestnik Rossiyskoy akademii nauk, 2002, vol. 72, no. 1, pp. 3–12.
4. Kablov E.N. Structural and functional materials are the basis of economic, scientific and technical development of Russia. Voprosy materialovedeniya, 2006, no. 1, pp. 64–67.
5. Gent R., Dart N., Cansdale J. Aircraft icing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2000, vol. 358 (1776), pp. 2873–2911.
6. Buznik V.M., Kablov E.N., Koshurina A.A. Materials for complex technical devices for Arctic applications. Scientific and technical problems of Arctic development. Moscow: Nauka, 2015, pp. 275–285.
7. Kablov E.N. New generation materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
8. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
9. Wang H., He G., Tian Q. Effects of nano-uorocarbon coating on icing. Applied Surface Science, 2012, vol. 258:18, pp. 7219–7224.
10. Shen Y., Tao J., Tao H. et al. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Langmuir, 2015, vol. 31, pp. 10799–10806.
11. Liu J., Janjua Z.A., Roe M. et al. Super-hydrophobic/icephobic coatings based on silica nanoparticles modified with self-assembled monolayers. Nanomaterials, 2016, vol. 6, p. 232.
12. Tourkine P., Le Merrer M., Quere D. Delayed freezing of water-repellent material. Langmuir, 2009, vol. 25, pp. 7214–7216.
13. Varanasi K., Deng T., Smith J.D. et al. Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010, vol. 97, art. 234102.
14. Kablov E.N., Solovyanchik L.V., Kondrashov S.V. et al. Electrically conductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers. Rossiyskie nanotekhnologii, 2016, vol. 11, no. 11–12, pp. 91–97.
15. Antonini C., Innocenti C., Horn T. et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Regions Science and Technology, 2011, vol. 67, pp. 58–67.
16. Li J., Zhou Y., Wang W. et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon. Langmuir, 2020, vol. 36 (5), pp. 1075–1082.
17. Golovin K., Kobaku S., Lee D. et al. Designing durable icephobic surfaces. Science advances, 2016, vol. 2, pp. 1–12.
18. Diao Y., Harada T., Myerson A. et al. The role of nanopore shape in surface-induced crystallization. Nature Materials, 2011, vol. 10, pp. 867–871.
19. Guo P., Zheng Y., Wen M. et al. Icephobic/Anti-Icing properties of Micro/Nanostructured surfaces. Advanced Materials, 2012, vol. 24, pp. 2642–2648.
20. Tian X., Verho T., Ras R. Surface wear. Moving superhydrophobic surfaces toward real-world applications. Science, 2016, vol. 352, p. 142.
21. Yang S., Xia Q., Zhu L. et al. Research on the icephobic properties of fluoropolymer-based materials. Applied Surface Science, 2011, vol. 257, pp. 4956–4962.
22. Peng C., Xing S., Yuan Z., Jiayu X. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Applied Surface Science, 2012, vol. 259, pp. 764–768.
23. Tarasova P.N., Sleptsova S.A., Laukkanen S., Dyakonov A.A. Sealing materials based on polytetrafluo-roethylene for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 05. Available at: http://www.journal.viam.ru (ассеssed: October 30, 2023). DOI: 10.18577/2713-0193-2022-0-1-51-64.
24. Bragg M., Broeren A., Blumenthal L. Iced-airfoil aerodynamics. Progress in Aerospace sciences, 2005, vol. 41 (5), pp. 323–362.
25. Kondrashov S.V., Pykhtin A.A., Solovyanchik L.V., Bolshakov V.A., Pavlyuk B.Ph., Badamshina E.R., Dzhalmukhanova A.S., Karpov S.V. Research of dependence of adhesion of ice to polyurethane coatings from their physicomechanical properties. Trudy VIAM, 2019, no. 3 (75), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 17, 2023). DOI: 10.18577/2307-6046-2019-0-3-87-95.
26. Marchenko S.A., Zheleznyak V.G., Kuznetsova V.A. Ice adhesion. Methods of determination (review). Trudy VIAM, 2022, no. 9 (115), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 17, 2023). DOI: 10.18577/2307-6046-2022-0-9-143-160.
In this paper, the physicochemical properties of resins of the Fenotam N210, Fenotam N210M, KMF-S, SFZh-3024 brands were studied. The samples of cured resins were tested for humidity and sorption moisture (moisture absorption) in accordance with the methods from GOST 17177–94. Optical microscopy in polarized light and X-ray diffraction have been used to determine the features of the structure of these resins. The dependences of the contact angle of the glass surface on duration of the study for liquid resins of the Fenotam N210M and KMF-S grades were obtained by the sessile drop method.
2. Kablov E.N. Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 3–9.
3. Kablov E.N. Russia needs new generation materials. Redkie zemli, 2014, no. 3, pp. 8–13.
4. Istomin A.V., Bespalov A.S., Babashov V.G. Adding increased resistance to heat and sound insulation of material based on mixture of inorganic and plant fibers. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 74–78. DOI: 10.18577/2071-9140-2018-0-4-74-78.
5. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
6. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
7. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), paper no. 05. Available at: http://www.journal.viam.ru (accessed: February 17, 2023). DOI: 10.18577/2713-0193-2022-0-4-51-60.
8. Zastrogina O.B., Shvets N.I., Serkova E.A., Veshkin E.A. Fireproof materials based on phenol-formaldehyde binders. Klei. Germetiki. Tekhnologii, 2017, no. 7, pp. 22–27.
9. Knopf A., Sheib W. Chemistry and applications of phenolic resins. New York: Springer-Verlag, 1979, 32 р.
10. Pizzi A., Ibeh C.C. Handbook of Thermoset Plastics. Elsevier, 2014, 13 р. DOI: 10.1016/B978-1-4557-3107-7.00002-6.
11. Liu H., Zhai D.D., Wang M. et al. Design of urea-modified phenol-formaldehyde as well as the derived N-carbon nanosheets for supercapacitors with elevated rate capability and cycling stability. ChemElectroChem, 2019, p. 12. DOI: 10.1002/celc.201801855.
12. Solomon M.M., Umoren S.A., Udosoro I.I., Udoh A.P. Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corrosion Science, 2010, vol. 52, pp. 1317–1325.
13. Shukla S.K., Quraishi M.A. Effect of some substituted anilines-formaldehyde polymers on mild steel corrosion in hydrochloric acid medium. Journal Applied Polymer Science, 2012, vol. 12, pp. 45130–45137.
14. Chugh B., Thakur S., Pani B. et al. Investigation of phenol-formaldehyde resins as corrosion impeding agent in acid solution. Journal of Molecular Liquids, 2021, vol. 330, art. 115649.
15. Si Y., Li J., Cui B. et al. Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Advanced Composites and Hybrid Materials, 2022, vol. 5, pp. 1180–1195.
16. Wibowo E.S., Park B.-D., Causin V. Hydrogen-Bond-Induced Crystallization in Low-Molar-Ratio Urea–Formaldehyde Resins during Synthesis. Industrial & Engineering Chemistry Research, 2020, vol. 59, pp. 13095–13104.
In this work, we determined the impurities of 43 elements in molybdenum using high-resolution glow discharge mass spectrometry. Sample preparation for analysis is described. To achieve maximum analytical signals from all the required elements, the appropriate equipment settings have been selected. Spectral interferences are eliminated due to the use of high resolution. The relative sensitivity coefficients were calculated for all determined elements using the X-ray fluorescence spectroscopy method.
2. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2071-9140-2021-0-3-11-18.
3. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 04, 2023). DOI: 10.18577/2307-6046-2020-0-3-3-12.
4. Svetlov I.L., Petrushin N.V., Epishin A.I., Kara-shaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
5. Gromov V.I., Yakusheva N.A., Vostrikov A.V., Cherkashneva N.N. High strength structural steels for gas-turbine engine shafts (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2021-0-1-3-12.
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Assessing the conformity of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
7. State Standart 13151.11–77. Ferromolybdenum. Method for determining arsenic content. Moscow: Standards Publishing House, 1977, pp. 1–4.
8. State Standart 13151.6–94. Ferromolybdenum. Phosphorus determination method. Moscow: Publishing house of standards, 1994, pp. 1–6.
9. State Standart 13151.7–82. Ferromolybdenum. Methods for determining copper. Moscow: Publishing house of standards, 1982, pp. 3–4.
10. Tsygankova A.R., Makashova G.V., Shelpakova I.R., Saprykin A.I. Analysis of molybdenum trioxide by ICP-AES. Analitika i kontrol, 2011, vol. 15, no. 2, pp. 182–186.
11. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS. Mikrochimica Acta, 2001, vol. 137, pp. 149–155.
12. Pupyshev A.A., Epova E.N. Spectral interference of polyatomic ions in the inductively coupled plasma mass spectrometry method. Analitika i kontrol, 2001, vol. 5, no. 4, pp. 335–369.
13. Karandashev V.K., Turanov A.N., Nosenko S.V. Analysis of molybdenum oxide by atomic emission and inductively coupled plasma mass spectrometry. Zhurnal analiticheskoy khimii, 2011, vol. 66, no. 1, pp. 40–46.
14. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry. Part I. Tutorial: Fundamentals and instrumentation. Journal of Analytical Atomic Spectrometry, 2011, vol. 26, pp. 693–726.
15. Ganeev A.A., Gubal A.R., Uskov K.N., Potapov S.V. Analytical mass spectrometry with glow discharge. Izvestiya Akademii nauk. Seriya khimicheskaya, 2012, no. 4, pp. 1–15.
The article provides a review one of the promising methods of non-destructive testing of parts made of ferromagnetic materials – the method of magnetic memory of metal. The physical foundations application possibilities, advantages and disadvantages of the metal magnetic memory method are considered. Examples of mathematical modeling of signals of the metal magnetic memory method, evaluation of residual stresses and comparison of the results obtained by modeling signals from possible defects with the results obtained in practice are given.
2. Kablov E.N., Startsev V.O. The influence of internal stresses on the aging of polymer composite materials: a review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576. DOI: 10/1007/s11029-021-09979-6.
3. Kablov E.N. Materials for all times. Nauka i zhizn, 2010, no. 10, pp. 12–19.
4. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its depen-dence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
5. Boychuk A.S., Dikov I.A., Generalov A.S. The increase of sensitivity and resolution of FRP solid samples nondestructive ultrasonic testing using the ultrasonic phased array. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 83–88. DOI: 10.18577/2071-9140-2019-0-3-83-88.
6. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. Automated non-destructive inspection of three-layer honeycomb structures’ samples by ultrasonic through-transmission technique.
Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 74–80. DOI: 10.18577/2071-9140-2020-0-2-74-80.
7. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Revisiting the ecotoxicity and efficiency of different classes of industrial nonionic surfaces used for cleaning metal surfaces in the process of capillary control of details of the aviation technology (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: November 29, 2023). DOI: 10.18577/2713-0193-2021-0-4-98-106.
8. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Evaluation of efficiency of using water washing solutions based on different classes of surfactants for cleaning metal surfaces before carrying out capillary fluorescent penetrant testing. Aviation materials and technologies, 2023, no. 1 (70), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 29, 2023). DOI: 10.18577/2713-0193-2023-0-1-137-147.
9. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://www.journal.viam.ru (accessed: November 29, 2023). DOI: 10.18577/2713-0193-2021-0-2-115-122.
10. Suzuki M., Komura I., Takahashi H. Nondestructive estimation of residual stress in welded pressure vessel steel by means of remanent magnetization measurement. The International Journal of Pressure Vessels and Piping, 1978, vol. 6, no. 2, pp. 87–112.
11. Atherton D., Coathup L., Jiles D. et al. Stress induced magnetization changes of steel pipes: laboratory tests. IEEE Transactions on Magnetics, 1983, vol. 19, no. 4, pp. 1564–1568. DOI: 10.1109/TMAG.1983.1062576.
12. Atherton D., Welbourn C., Jiles D. et al. Stress induced magnetization changes of steel pipes: laboratory tests. Part II. IEEE Transactions on Magnetics, 1984, vol. 20, no. 6, pp. 2129–2136. DOI: 10.1109/TMAG.1984.1063572.
13. Atherton D., Jiles D. Effects of stress on magnetization. NDT International, 1986, vol. 19, no. 1, pp. 15–19. DOI: 10.1016/0308-9126(86)90135-5.
14. Dubov A. A study of metal properties using the method of magnetic memory. Metal Science and Heat Treatment, 1997, vol. 39, no. 9, pp. 401–405. DOI: 10.1007/bf02469065.
15. Shi P., Zheng X. Magnetic charge model for 3D MMM signals. Nondestructive Testing and Evaluation, 2016, vol. 1, no. 1, pp. 45–60. DOI: 10.1080/10589759.2015.1064121.
16. Jiles D.C. Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 1995, vol. 8, no. 8, pp. 1537–1546. DOI: 10.1088/0022-3727/28/8/001.
17. Dubov A. Development of a metal magnetic memory method. Safety, Diagnosis, and Repair, 2012, vol. 47, pp. 837–839. DOI: 10.1007/s10556-012-9559-6.
18. Tanasienko A.G., Suntsov S.I., Dubov A.A. Monitoring chemical plant by a metal magnetic memory method. Chemical and Petroleum Engineering, 2002, vol. 38, pp. 624–629. DOI: 10.1023/A:1022089310320.
19. Kuleev V.G., Dubov A.A., Lopatin V.V. Zero-level lines of scattered field on surfaces of ferromagnetic steel pipes with flaws. Russian Journal of Nondestructive Testing, 2002, vol. 38, no. 5, pp. 343–356. DOI: 10.1023/A:1020965019074.
20. Dubov A.A. Detection of metallurgical and production defects in engineering components using metal magnetic memory. Metallurgist, 2015, vol. 59, pp. 164–167. DOI: 10.1007/s11015-015-0078-5.
21. Kuznetsov I.S., Ivashov E.N., Vasin V.A., Baranov A.M. Information technology design in micro- and nanoengineering: textbook in 3 vols. Ivanteevka: Publ. house of the Scientific Research Institute of Limit Technologies, 2014, vol. 3, 234 p.
22. Pletnev S.V. Magnetic field, properties, application: scientific and educational reference manual. St. Petersburg: Humanistics, 2004, 624 p.
23. Bokov V.A. Physics of magnets: textbook. Moscow: Nevsky Dialect; BHV-Petersburg, 2002. 272 p.
24. Preobrazhensky A.A., Bishard E.G. Magnetic materials and elements: a textbook for univ. 3rd ed., rev. and add. Moscow: Vysshaya shkola, 1986, 352 p.
25. Zhang P., Liu L., Chen W. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica, 2013, vol. 62, no. 17. DOI: 10.7498/aps.62.177501.
26. Shi P., Jin K., Zhang P., Shejuan X. Quantitative inversion of stress and crack in ferromagnetic materials based on metal magnetic memory method. IEEE Transactions on Magnetics, 2018, vol. 99, pp. 1–11. DOI: 10.1109/TMAG.2018.2856894.
27. Craik D., Wood M. Magnetization changes induced by stress in a constant applied field. Journal of Physics D: Applied Physics, 2002, vol. 3, no. 7, pp. 1009–1016. DOI: 10.1088/0022-3727/3/7/303.
28. Pengpeng S. Analytical solutions of magnetic dipole model for defect leakage magnetic fields. Nondestructive Testing, 2015, vol. 37, pp. 1–7.
29. Huang H., Jiang S., Yang C. et al. Stress concentration impact on the magnetic memory signal of ferromagnetic structural steel. Nondestructive Testing and Evaluation, 2014, vol. 29, no. 4,
рр. 377–390. DOI: 10.1080/10589759.2014.949710.
30. Leng J., Xu M., Li J. et al. Characterization of the elastic-plastic region based on magnetic memory effect. Chinese Journal of Mechanical Engineering, 2010, vol. 23, no. 4, pp. 532–536. DOI: 10.3901/CJME.2010.04.532.
31. Shi P., Bai P., Chen H. et al. The magneto-elastoplastic coupling effect on the magnetic flux leakage signal. Journal of Magnetism and Magnetic Materials, 2020, art. 166669. DOI: 10.1016/j.jmmm.2020.166669.
32. Wang Z., Yao K., Deng B. et al. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT&E International, 2010, vol. 43, no. 4, pp. 354–359. DOI: 10.1016/j.ndteint.2009.12.006.
33. Wang Z., Yao K., Deng B. et al. Quantitative study of metal magnetic memory signal versus local stress concentration. NDT&E International, 2010, vol. 43, no. 6, pp. 513–518. DOI: 10.1016/j.ndteint.2010.05.007.
34. Roskosz M., Rusin A., Bieniek M. Analysis of relationships between residual magnetic field and residual stress. Meccanica, 2013, vol. 48, no. 1, pp. 45–55. DOI: 10.1007/s11012-012-9582-x.
35. Su S., Ma X., Wang W., Yang Y. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Research in Nondestructive Evaluation, 2020, vol. 31, no. 1, pp. 24–47. DOI: 10.1080/09349847.2019.1617914.
36. State Standard R ISO 24497-1–2009. Non-destructive testing. Metal magnetic memory method. Part 1. Terms and definitions. Moscow: Standartinform, 2010, 5 p.
37. State Standard R ISO 24497-2–2009. Non-destructive testing. Metal magnetic memory method. Part 2. General requirements. Moscow: Standartinform, 2010, 6 p.
38. State Standard R ISO 24497-3–2009. Non-destructive testing. Metal magnetic memory method. Part 3. Inspection of welded joints. Moscow: Standartinform, 2010, 9 p.
The article is devoted to the issues in the field of measuring the dielectric properties (permittivity and the tangent of the dielectric loss angle) of solid non-metallic materials using parallel plates (capacitor) at low frequencies. Two main methods (contact and non-contact), devices, equipment and software for measuring the permittivity and the tangent of the dielectric loss angle of solid non-metallic materials are described. The corresponding frequency ranges in which it is possible to measure the dielectric properties of solid non-metallic materials by the capacitor method are given.
2. Tarasov F.I., Orlova N.Yu. Polymer materials. Current state, application and development prospects. Scientific session of NRNU MEPhI-2020 in the direction of «Innovative nuclear technologies»: reports All-Russian Conf. Moscow: NRNU MEPhI, 2020, pp. 75–77.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vol. St. Petersburg, 2019, vol. 4, р. 24.
4. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
5. Kablov E.N. Main results and directions of development of materials for advanced aviation technology. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
6. Landau L.D., Lifshits E.M. Theoretical physics: textbook for univ.: in 10 vols. Moscow: Fizmatlit, 2005, vol. VIII: Electrodynamics of continuous media, 370 p.
7. Nikolsky V.V., Nikolskaya T.I. Electrodynamics and propagation of radio waves: textbook for univ. 3rd. ed. Moscow: Nauka, 1989, 544 p.
8. Dyakonov V. Keysight PNA circuit analyzers – a breakthrough in the field of microwaves and microwaves. Komponenty i tekhnologii, 2015, no. 2 (163), pp. 103–112.
9. Korenev A.V., Goshin G.G. Measurement of the effective dielectric constant of support washers of coaxial connectors. SVCH-tekhnika i telekommunikatsionnyye tekhnologii, 2021, no. 3, pp. 332–333.
10. Korenev A.V., Goshin G.G. Taking into account parasitic effects when measuring the effective dielectric constant using the quarter-wave resonator method. Ural Radio Engineering Journal, 2021, vol. 5, no. 3, pp. 272–283. DOI: 10.15826/urej.2021.5.3.005.
11. Bezhko M. Changing the parameters of materials in the microwave range using software for analyzing the parameters of materials Keysight N1500A. Tekhnologii v elektronnoy promyshlennosti, 2015, no. 8 (84), pp. 64–68.
12. Bezhko M. Measuring parameters of materials in the microwave range using Keysight N1500A. Problems of microwave electronics: reports II All-Rus. United Scientific. conf. Moscow, 2015, pp. 6–8.
13. Inozemtsev M.A. Review of methods for measuring the dielectric constant of rocks. Electronic means and control systems: reports Intl. scientific-practical conf. Moscow, 2020, no. 1–1, pp. 279–281.
14. Donchenko A.V., Zargano G.F., Zemlyakov V.V., Kleshchenkov A.B. Measurement of the complex dielectric constant of materials based on a ridge waveguide. Radiotekhnika i elektronika, 2020, vol. 65, no. 5, pp. 427–433. DOI: 10.31857/S0033849420050022.
15. Ivanov V.A., Sherimov D., Tokarev I.A., Repin V.A. Methodology for measuring the dielectric properties of materials at a frequency of 2.45 GHz. Elektronika i mikroelektronika SVCH, 2021, vol. 1, pp. 595–599.
16. Klepikova A.S., Charikova T.B., Popov M.R. et al. Anisotropy of magnetic properties and dielectric constant of Nd1.9Ce0.1CuO4+δ single crystal. Fizika metallov i metallovedenie, 2021, vol. 122, no. 5, pp. 520–526. DOI: 10.31857/S0015323021050065.
17. Parkhomenko M.P., Kalenov D.S., Eremin I.S. et al. Improving the accuracy of measurements of complex dielectric and magnetic permeabilities in the microwave range using the waveguide method. Radiotekhnika i elektronika, 2020, vol. 65, no. 8, pp. 764–768. DOI: 10.31857/S0033849420080112.
18. Pevneva N.A., Kondrashov D.A., Gursky A.L., Gusinsky A.V. Determination of S-parameters and dielectric constant of quartz ceramic samples in the millimeter wavelength range. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki, 2021, vol. 19, no. 7, pp. 65–71. DOI: 10.35596/1729-7648-2021-19-7-65-71.
19. Pevneva N.A., Gursky A.L. Uncertainty of the results of measurements of the dielectric constant of materials using the Nicholson–Ross–Weir method. Metrologiya i priborostroyenie, 2021, no. 4 (95), pp. 25–29.
20. Sonnov N.V., Leukhin S.A. Study of dielectric properties of structural radio-absorbing materials. Elektronika i mikroelektronika SVCH, 2021, vol. 1, pp. 347–350.
21. Usanov D.A., Nikitov S.A., Skripal A.V. et al. Using a microwave coaxial Bragg structure to measure the parameters of dielectrics. Radiotekhnika i elektronika, 2020, vol. 65, no. 5, pp. 495–503. DOI: 10.31857/S0033849420040099.
22. Kharalgin S.V., Voitovich M.I. Study of dielectric characteristics of materials manufactured using additive technologies. Rossiyskiy tekhnologicheskiy zhurnal, 2021, vol. 9, no. 2 (40), pp. 57–65. DOI: 10.32362/2500-316X-2021-9-2-57-65.
23. Chukhlanov V.Yu., Smirnova N.N., Smirnov K.V. Dielectric characteristics of epoxy resin modified with tetraethoxysilane in the millimeter range. Butlerovskiye soobshcheniya, 2020, vol. 62, no. 4, pp. 77–80. DOI: 10.37952/ROI-jbc-01/20-62-4-77.
24. Panferov S.Yu. On the issue of measuring the humidity of thin layers of material using the reflective microwave method. APK Russii, 2017, vol. 24, no. 2, pp. 498–502.
25. Atamasov V.V., Malenkov G.I. Measuring the dielectric constant of materials by the capacitor method using the Ni ELVIS II+ and Labview hardware and software complex. Sbornik izbrannykh statey nauchnoy sessii TUSUR. Tomsk: TUSUR, 2019, no. 1–1, pp. 96–98.
26. Zhukov A.A., Zhuravlev V.A., Atamasov V.V., Malenko G.I. Hardware and software complex on the Agilent E4285A-LabVIEW platform for measuring the dielectric constant of materials using the capacitor method. Current problems of radiophysics APR-2021: reports IX Int. scientific-practical conf. Tomsk: NI TSU, 2021, pp. 254–256.
27. Ivanitsa M.G., Testov I.O. Development and creation of measuring cells for studying dielectric constant. Nauka nastoyashchego i budushchego, 2019, vol. 3, pp. 87–90.
28. Korotkova T.N., Korotkov L.N., Pankova M.A. Dielectric properties of fullerites c60–c70 and the possibility of using materials in radio-electronic components. Vestnik Voronezhskogo instituta MVD Rossii, 2021, no. 1, pp. 169–174.
29. Shakirzyanov R.I., Kostishin V.G., Morchenko A.T. et al. Synthesis and study of the properties of radio-absorbing composite films consisting of Mn0.5792Zn0.2597Fe2.1612O4 inclusions and a polymer matrix –[(CH2–CH2)m–(CF2–CF2)n]k–. Zhurnal neorganicheskoy khimii, 2020, vol. 65, no, 6, pp. 758–763. DOI: 10.31857/S0044457X20060197.
30. Semenova S.N., Chaykun A.M., Suleymanov R.R. Ethylene-propylene-diene rubber and its use in rubber materials for special purposes (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 23–30. DOI: 10.18577/2071-9140-2019-0-3-23-30.
31. Mishurov K.S., Kurnosov A.O., Payarel S.M. Сalculation and experimental determination of dielectric characteristics of fiberglass based on a phthalonitrile matrix. Aviation materials and technologies, 2023, no. 2 (71), paper no. 07. Available at: http://www.journal.viam.ru (accessed: June 01, 2023). DOI: 10.18577/2713-0193-2023-0-2-85-93.
32. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
33. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 18, 2023). DOI: 10.18577/2713-0193-2022-0-1-93-104.
Heat-resistant alloys and steels
Alekseeva M.S., Slobodskoy P.A., Lukina Е.А., Yakusheva N.A. Patterns of structure formation for open-hearth steel of the Fe–Cr–Ni–Mo–Ti system during heat treatment
Deynega G.I., Kuzmina I.G., Bityutskaya O.N., Narsky A.R. Foam ceramic filters based on domestic refractory materials. Part 2
Polymer materials
Stepanova E.V., Ivakhnenko Yu.A., Maximov V.G., Istomin A.V. Investigation of technologically significant physical properties of various brands of polyvinyl alcohol
Composite materials
Zagora A.G., Tkachuk A.I., Mukhametov R.R., Eldyaeva G.B. Аpplication of epoxy compositions in the development of asphalt concrete coatings
Varrik N.M., Maksimov V.G., Yudin A.V., Babashov V.G. On the criteria of suitability of ceramic products for the manufacture of equipment for continuous casting of aluminum
Turchenko M.V., Lebedeva Yu.E., Prokofiev V.A., Zhitnyuk S.V. Investigation of the boron nitride effect on the machinability of SiC–ZrB2 system ceramic material
Sorokin O.Yu., Belyachenkov I.О., Osin I.V., Golovkov A.N. Nondestructive control of reaction-bonded silicon carbide components at various machining stages
Protective and functional
coatings
Marchenko S.A., Zheleznyak V.G., Kuznetsova V.A., Timoshina E.A. Dependence of ice adhesion on the hydrophobic properties of polymer coatings, applied of pneumatic spraying method
Salimov I.E., Bespalov A.S., Babashov V.G., Maksimov V.G. Investigation of the influence of the chemical composition of Fenotam N210, Fenotam N210M, KMF-S, SFZh-3024 resins on their physico-chemical properties
Material tests
Alekseev A.V., Yakimovich P.V. Analysis of molybdenum by high resolution glow discharge mass spectrometry
Lednev I.S., Khodakova E.A. Nondestructive testing of parts made of ferromagnetic materials
Akzigitov V.A., Belyaev A.A., Kurnosov A.O., Payarel S.M. Standard measurements of dielectric properties of solid composite materials at low frequencies by contact and non-contact methods