Articles
Metallographic studies of the structure and tribological studies in conditions of dry sliding friction of sparingly alloyed high nitrogen steel samples after quenching in the temperature range from (Ac3 – 50) to (Ac3 + 250) °C were carried out in this work. Metallographic analysis showed that with an quenching temperature increasing, the grain size increases and the martensitic structure fineness decreases. According to the tribological studies results, it was found that after quenching in the temperature range (Ac3 + 100)–(Ac3 + 150) °C, the content of austenite saturated with carbon and nitrogen increases, which leads to a decrease in the friction coefficient and an increase in wear resistance.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. New generation materials are the basis for innovation, technological leadership and Russia's national security. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Terentev V.F., Prosvirnin D.V., Sevalneva T.G. et al. Structural state and mechanical behavior of Fe–Cr–Ni maraging steels. Russian metallurgy (Metally), 2020, vol. 2020, is. 4, pp. 426–433.
6. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Krylov S.A. Study of the tribo-technical characteristics of corrosion-resistant steels with different mechanisms of volumetric hardening. Trudy VIAM, 2021, no. 10 (104), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 16, 2022). DOI: 10.18577/2307-6046-2021-0-10-3-11.
7. Smirnov A.E., Farkhutdinov R.S., Ryzhova M.Yu., Pakhomova S.A. Technological features of vacuum cementation of low-alloy steels. Problemy mashinostroyeniya i nadezhnosti mashin, 2019, no. 2, pp. 84–90.
8. Mokhova A.S., Smirnov A.E., Alekhin A.P. Vacuum combined chemical-thermal treatment of steel VKS-10. Inzhenerny vestnik, 2015, no. 12, pp. 1–8.
9. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
10. Filonnikov A.L., Rinchinova S.V. Boriding as a method of hardening the working surfaces of technological equipment. Simvol nauki, 2019, no. 1, pp. 33–35.
11. Lakhtin Yu.M., Kogan Ya.D. Nitriding of steel. Moscow: Mashinostroenie, 1976, 256 p.
12. Arzamasov B.N., Bratukhin A.G., Eliseev Yu.S., Panayoti T.A. Ionic chemical-thermal treatment of alloys. Moscow: MSTU im. N.E. Bauman, 1999, 400 p.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed structural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
15. Blinov V.M., Lukin E.I., Blinov E.V. et al. Tensile Fracture of Austenitic Corrosion-Resistant Steels with an Overequilibrium Nitrogen Content and Various Vanadium Contents. Russian Metallurgy (Metally), 2021, vol. 2021, is. 10, pp. 1265–1269. DOI: 10.1134/S0036029521100062.
16. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva O.A. Development and research of high-strength corrosion-resistant steel for bearing parts. Metallurg, 2019, no. 11, pp. 39–44.
17. Rashev Ts.V. High nitrogen steels. Metallurgy under pressure. Sofia: Prof. Marin Drinov, 1995, 272 p.
18. Goodremont E. Special steels: trans. From Germ. Ed. 2nd. Moscow: Metallurgiya, 1966, 1274 p.
19. Goncharevskaya D.A. Chemical-thermal treatment of steels with superequilibrium nitrogen concentration. Politekhnicheskiy molodezhnyy zhurnal, 2020, no. 8, paper no. 05. Available at: https://www.ptsj.ru (accessed: May 05, 2022). DOI: 10.18698/2541-8009-2020-08-636.
20. Cronidur 30 Stainless Steel. URL: https://www.progressivealloy.com/cronidur-30-stainless-steel (accessed: May 05, 2022).
21. Trojahn W., Streit E., Chin H., Ehlert D. Progress in bearing performance of advanced nitrogen alloys stainless steel, Cronidur 30. Bearing steels: into the 21st century. American Society for Testing Material, 1998, ASTM STP 1327, pp. 447–459.
Material, obtained by HIP-consolidated powder of Ni-base superalloy VZH172 had been investigated. Influence of HIP temperature on grain microstructure of consolidated material was determined; distribution of eutectic phase in structure was investigated. Mechanical testing of the HIP-processed blank of VZH172 alloy after heat-treatment was carried out. The results were compared with the properties of wrought material produced by the conventional technology.
2. Karasev O.I., Vishnevsky K.O., Veselitskaya N.N., Velikanova N.P., Kablov E.N. Foresight of the development of aviation science and technology until 2030 and beyond. Moscow: TsAGI, 2014, 280 p.
3. Reed R.C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006, 372 p.
4. Logunov A.V., Shmotin Yu.N. Modern heat-resistant nickel alloys for gas turbine disks (materials and technologies). Moscow: Nauka i tekhnologiya, 2013, 264 p.
5. Inozemtsev A.A., Sandarsky V.L. Gas turbine engines. Perm: Aviadvigatel, 2006, 1204 p.
6. Schafrik R.E., Ward D.D., Groh J.R. Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years. Superalloys 718, 625, 706 and Various Derivatives. Ed. by E.A. Loria. TMS (The Minerals, Metals & Materials Society), 2001, рр. 1–10. DOI: 10.7449/2001/SUPERALLOYS_2001_1_11.
7. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
8. Kapitanenko D.V., Moiseev N.V., Bazhenov A.R., Gladkov Yu.A. Development of the isothermal deformation on air technology of production turbocharger disks using computer modeling. Trudy VIAM, 2022, no. 4 (110), paper no. 02. Available at: http://www.viam-works.ru (accessed: June 17, 2022). DOI: 10.18577/2307-6046-2022-0-4-13-21.
9. Shpagin A.S., Kucheryaev V.V., Bubnov M.V. Computer simulation of thermomechanical processing of heat-resistant nickel alloys VZh175 and EP742. Trudy VIAM, 2019, no. 8 (80), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 17, 2022). DOI: 10.18577/2307-6046-2019-0-8-27-35.
10. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. HIP and deformation of the granulated heat resisting nickel alloys. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
11. State Standard 5632–2014. Alloyed stainless steels and alloys are corrosion resistant, heat resistant and heat resistant. Marks. Moscow: Standartinform, 2015, 52 p.
12. Lukin V.I., Kovalchuk V.G., Ioda E.N. Fusion welding is a core of welding manufacturing. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 130–143. DOI: 10.18577/2071-9140-2017-0-S-130-143.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Alekseev A.V., Rastegayeva G.Yu., Pakhomkina T.N. Determination of oxygen and nitrogen in nickel alloy powders. Trudy VIAM, 2018, no. 8 (68), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 20, 2022). DOI: 10.18557/2307-6046-2018-0-8-112-119.
15. Bakradze М.М., Volkov А.М., Shestakova А.А., Letnikov M.N., Bubnov M.V. The features of the grains size changing in the p/m Ni-base superalloy for disks application produced via different technologies. Trudy VIAM, 2018, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: July 20, 2022). DOI: 10.18577/2307-6046-2018-0-2-1-1.
16. Gessinger G.Kh. Powder metallurgy of heat-resistant alloys. Trans. from Engl. Chelyabinsk: Metallurgiya, 1988, 320 p.
17. Ryndenkov D.V., Volkova E.N., Astapov A.N. The temperature of complete dissolution of the γ′-phase in heat-resistant nickel alloys depending on the state of the material // Tekhnologiya metallov, 2017, no. 10, pp. 6–11.
18. Dvoretskov R.M., Mazalov I.S., Morozova G.I., Filonova E.V. Peculiarities of alloying, phase composition and structure of nickel deformable heat-resistant alloy VZh172 // Metallovedeniye i termicheskaya obrabotka metallov, 2014, no. 4 (706), pp. 12–18.
19. Mazalov I.S., Filonova E.V., Lomberg B.S. Formation of microstructure of nickel weldable VGH172 superalloy in process of deformation and heat treatment of semi-finished products. Trudy VIAM, 2013, no. 12, paper no. 01. Available at: http://www.viam-works.ru (accessed: July 10, 2022).
20. Huron E.S., Casey R.L., Henry M.F., Mourer D.P. The influence of alloy chemistry and powder production methods on porosity in a P/M nickel-base superalloy. Superalloys. TMS (The Minerals, Metals & Materials Society), 1996, pp. 667–676. DOI: 10.7449/1996/SUPERALLOYS_1996_667_676.
It is shown in this work the advantages of using Al–Cu–Mg system heat-resistant aluminum alloys in the fuselage elements of supersonic aircraft. Comprehensive studies of welded joints of aluminum alloys V-1213 and 1151 sheets produced by laser welding and friction stir welding have been carried out. Tests for weldability, strength, plasticity were carried out and low-cycle fatigue of welded joints was determined. The results of tests within the studied ranges of laser welding and friction stir welding modes of alloys V-1213 and 1151 are presented.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 31, 2022). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Congqing L., Guohong L. Development of Friction Stir Welding Technology for Aircraft Structures in China. 10th International Symposium on Frication Stir Welding. Beijing, 2014, vol. 2, pp. 892–899.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 31, 2022). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Giummarra С., Yocum L. New Developments in Extruded Integrally Stiffened Panels. Proceedings of 17th AeroMat Conference & Exposition. Seattle, 2006. May.
6. Kablov E.N., Lukin V.I., Ospennikova O.G. Promising aluminum alloys and technologies for their compounds for products of aerospace technology. Reports of 2nd Intern. conf. and exhibitions "Aluminum-21. Welding and soldering". St. Petersburg: Alusil-MVit, 2012, art. 8.
7. Denisov B.S., Meilah A.I. Welding in aircraft construction. Welded structures of MIGs. Moscow: Rusavia, 2007. 358 p.
8. Kuritsyna V.V., Kuritsyn D.N., Kosov D.E. Automated system for processing expert assessments when making technological solutions. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2012, vol. 8, no. 4, pp. 44–55.
9. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Perspective welding technologies of aluminum-lithium alloy V-1469 applied to fuselage panels. Trudy VIAM, 2020, no. 12 (94), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 5, 2022). DOI: 10.18577/2307-6046-2020-0-12-35-46.
10. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
11. Kablov E.N. The role of fundamental research in the creation of materials of the new generation. Reports of XXI Mendeleev Congress for General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
12. Boytsov A.G., Lushinsky A.V., Baranov A.A. Welding with friction mixing of hull parts from high-strength aluminum alloys. Aviakosmicheskoe priborostroyenie, 2015, no. 7, pp. 3–11.
13. Boytsov A.G., Kachko V.V., Kuritsyn D.N. Welding with friction mixing. RITM (Remont. Innovatsii. Tekhnologii. Modernizatsiya), 2013, no. 10 (88), pp. 40–44.
14. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
15. Lukin V.I., Ioda E.N., Bazeskin A.V., Lavrenchuk V.P., Kotelnikova L.V., Oglodkov M.S. Improving the reliability of welded joints from high-strength aluminum-foliage alloy V-1461. Svarochnoe proizvodstvo, 2010, no. 11, pp. 14–17.
16. Prasad N.E., Gokhale A.A., Wanhill R.J.H. Aluminum-Lithium Alloys. Processing, Properties, and Applications. Elsevier Inc., 2014, 571 p.
17. Skupov A.A., Panteleev M.D., Ioda E.N. Microstructure and mechanical properties of V-1579 and V-1481 laser welds. Trudy VIAM, 2017, no. 7 (55), paper no. 7. Available at: http://www.viam-works.ru (accessed: October 21, 2021). DOI: 10.18577/2307-6046-2017-0-7-7-7.
18. Mishra R.S., Ma Z.Y. Friction Stir Welding and Processing. Journal Material Science Engineering, R, 2005, vol. 50, pp. 1–78.
19. Loklyatsky A.G., Knysh V.V., Klochkov I.N., Motorunich S.I. Features and advantages of the process of welding with friction with mixing the butt joints of thin-leaf aluminum-felium alloys. Avtomaticheskaya svarka, 2016, no. 5, pp. 93–98. DOI: 10.15407/AS2016.06.15.
20. Kachko V.V., Kuritsyn D.N., Boytsov A.G. The influence of technological factors of high-speed mixing welding with friction on the quality of the received compounds. Vestnik MATI, 2012, is. 19 (91), pp. 156–162.
21. Lukin V.I., Kulik V.I., Betsofen S.Ya., Lukina E.A., Sharov A.V., Panteleyev M.D., Samo-rukov M.L. Friction stir welding of high-strength aluminum-lithium V-1469 alloy semiproducts. Trudy VIAM, 2017, no. 12 (60), paper no. 2. Available at: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2017-0-12-2-2.
22. Popovich A.A., Panchenko O.V., Naumov A.A., Sviridov A.V., Skupov A.A., Sbitneva S.V. Friction stir welding of aluminum-lithium alloy V-1469-T. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 11–17. DOI: 10.18577/2071-9140-2019-0-4-11-17.
23. Honyb R. Plastic deformation of metals. Moscow: Mir, 1972, 408 p.
24. Haywood R.B. Design taking into account fatigue. Moscow: Mashinostroyenie, 1969, 503 p.
25. Chang B., Allen C., Blackburn J., Hilton P. Thermal and Fluid Flow Characteristics and Their Relationships with Porosity in Laser Welding of AA5083. Physics Proecedia, 2013, vol. 41, pp. 478–487.
26. Method of laser welding with friction with mixing: pat. 2271908 Rus. Federation; filed 19.07.01; publ. 20.03.06.
27. Bliznyuk V., Vasiliev L., Vul V. et al. The truth is about supersonic passenger aircraft. Moscow: Moskovskiy rabochiy, 2000, 335 p.
The results of the work of the NRC «Kurchatov institute» – VIAM for the development of production of semi-finished products from heat-resistant titanium pseudo-α-alloy VT41. The directions of adjustment of the alloy composition, and the prospects of wider application of alloy in the manufacture of welded components of gas turbine engines are presented. Foreign experience of manufacturing of deformable semi-finished products from the analog alloy Ti-834 (IMI 834) is given. The peculiarities of microstructure and its components formed at various conditions of heat treatment are considered.
2. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577 / 2071-9140-2019-0-2-3-11.
3. Ospennikova O.G., Lukin V.I., Afanasev-Khodykin A.N., Galushka I.A. Manufacturing of design of the «blisk» type from ranoimenny combingtion of materials (review). Trudy VIAM, 2018, no. 10 (70), paper no. 02. Available at: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2018-0-10-10-16.
4. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
5. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. The phenomenon of formation and low-temperature diffusion transformation of metastable solid solutions with the release of dispersed particles of intragranular Widmanstatten alpha phase in heat-resistant titanium. Trudy VIAM, 2018, no. 8 (68), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 25, 2022). DOI: 10.18577/2307-6046-2018-0-8-3-22.
6. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Development of a pilot industrial technology for the manufacture of semi-finished products from pseudo-α titanium alloy VT41. Titan, 2016, no. 2 (52), pp. 33–42.
7. Kosing O.E., Scharl R., Schmuhl H.J. Design Improvements of the EJ 200 HP Compressor: From Design Verification Engine to a Future All Blisk Version. Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Vol. 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. New Orleans, Louisiana, USA, June 4–7, 2001. DOI: 10.1115/2001-GT-0283.
8. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. Influence of cooling conditions of large industrial forgings from heat-resistant titanium alloy VT41 on the phase composition and mechanical properties. Tsvetnye metally, 2018, nо. 2, pp. 76–82. DOI: 10.17580/tsm.2018.02.10.
9. Lutering G., Williams J.C. Titanium. 2nd ed. Springer, 2007, 442 p.
10. Donlon W.T., Allison J.E., Lasecki J.V. The influence of thermal exposure on properties and microstructure of elevated temperature titanium alloys. Titanium’92, 1993, vol. 1: TMS, Pennsylvania, pp. 295–302.
11. Monicault J.-M., Guedou J.-Y., Soniak F. Issues and progresses in manufacturing of aero titanium parts. TITANIUM Conference Proceedings. The International Titanium Association (ITA). Washington, 2008, pp. 6–9.
12. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Effect of iron content on mechanical properties of forgings from heat-resistance titanium alloy VТ41. Trudy VIAM, 2015, no. 10, paper no. 01. Available at: http://www.viam-works.ru (accessed: June 25, 2022). DOI: 10.18577/2307-6046-2015-0-10-1-1.
13. Illarionov A.G., Kosmatsky Ya.I., Gornostaeva E.A., Vodolazsky F.V. Deformation and heat treatment of pipes made of titanium alloys: textbook. Ekaterinburg: Ural University, 2019, 144 p.
14. Zhang J., Peng N., Wang Q., Wang X. A new aging treatment way for near α high temperature Titanium Alloys. Journal of Materials Science & Technology, 2009, vol. 25, no. 4, pр. 454–458.
15. Popov A.A., Popova M.A. Isothermal diagrams of precipitation of silicide and aluminide phases in heat-resistant titanium alloys. Metallovedenie i termicheskaya obrabotka metallov, 2016, no. 11, pp. 23–28.
16. Radecka A., Vorontsov V.A., Coakley J. et al. Ordering in α Titanium Alloys. Proceedings of the 13th World Conference on Titanium. The Minerals, Metals & Materials Society, 2016, pp. 971–978.
17. Sai Srinadh K.V., Singh N., Singh V. Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures. Bulletin of Materials Science, 2007, vol. 30, no. 6, pp. 595–600.
18. Singh N., Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834. Materials Science and Engineering A, 2008, vol. 485, is. 1–2, pp. 130–139. DOI: 10.1016/j.msea.2007.07.064.
19. Scotti L. First-principles study of solute diffusion mechanisms in alpha-Ti: thesis for the degree of PhD. School of Metallurgy and Materials, College of Engineering and Physica, Sciences. University of Birmingham, 2016, 211 p.
20. Neal D.F. Development and evolution of high temperature titanium alloy IMI 834. Sixth world conference on titanium, World Conference on Titanium. Les Editions de Physique. Cedex, 1989, pp. 253–259.
21. Borchert B., Daeubler M. Influence of microstructure of IMI 834 on mechanical properties relevant to jet engines. Sixth world conference on titanium, World Conference on Titanium. Les Editions de Physique. Cedex, 1989, pp. 467–472.
22. Davies P., Pederson R., Coleman M., Birosca S. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air. Acta Materialia, 2016, vol. 117, pp. 51–67. DOI: 10.1016/j.actamat.2016.07.015.
23. Kyaramyan K.A., Lomberg B.S., Bakradze M.M., Isaev D.A., Bykov Yu.G., Mazalov I.S. Modeling of the process of heat treatment of welded units of HPC construction. Elektrometallurgiya, 2019, no. 5, pp. 5–10.
24. Barussad A., Desvalles Y., Guedou J.Y. Control of the microstructure in large titanium discs. Application to the high pressure compressor of the GE90 aeroengine. Titanium’95. London: The Institute of Materials, 1996, vol. 2, pp. 1599–1608.
25. Xia C., Zhang Z., Feng Z. et al. Effect of zirconium content on the microstructure and corrosion behavior of Ti–6Al–4V–xZr alloys. Corrosion Science, 2016, vol. 112, pp. 687–695. DOI: 10.2016/j.corsci.2016.09.012.
26. Collings E.V. Physical metallurgy of titanium alloys. Trans. from Engl. Ed. B.I. Verkin, V.A. Moskalenko. Moscow: Metallurgiya, 1988, 244 p.
27. Madsen A., Ghonem H. Separating the effects of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593 °C in a near-alpha titanium alloy. Journal of Materials Engineering and Performance, 1995, vol. 4, pp. 301–307. DOI: 10.1007/BF02649067.
28. Fu B., Wang H., Zou C., Wei Z. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys. Materials Characterization, 2015, vol. 99, pp. 17–24.
29. Singh A.K., Roy T., Ramachandra C. Microstructural stability on aging of an α + β titanium alloy: Ti–6Al–1.6Zr–3.3Mo–0.30Si. Metallurgical and Materials Transactions A, 1996, vol. 27, is. 5, pp. 1167–1173. DOI: 10.1007/BF02649855.
30. Evans D.J., Broderick T.F., Woodhouse J.B., Hoenigman J.R. On the synergism of α2 and silicides in Ti–6Al–Sn–2Cr–2Zr–2Mo–Si. Titanium’95. London: The Institute of Materials, 1996, vol. 2. P. 2413–2420.
31. Zhang X.D., Evans D.J., Baeslack W.A., Fraser H.L. Effect of long term aging on the microstructural stability and mechanical properties of Ti–6Al–2Cr–2Mo–2Sn–2Zr alloy. Materials Science and Engineering, 2003, vol. 344, is. 1–2, pp. 300–311.
32. Singh A.K., Ramachandra C. Characterization of silicides in high-temperature titanium alloys. Journal of Materials Science, 1997, vol. 32, рр. 229–234. DOI: 10.1023/A:1018516324856.
33. Ankem S., Banerjee D., McNeish D.J. et al. Silicide formation in Ti–3Al–8V–6Cr–4Zr–4Mo. Metallurgical Transactions A, 1987, vol. 18, pp. 2015–2025. DOI: 10.1007/BF02647074.
34. Wang X., Jahazi M., Yue S. Investigation of α platelet boundaries in a near-α titanium alloy. Materials Science and Engineering, 2008, vol. 492, is. 1–2, pp. 450–454.
35. Rosenberger A.H., Madsen A., Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100. Journal of Materials Engineering and Performance, 1995, vol. 4, pp. 182–187. DOI: 10.1007/BF02664112.
36. Solonin O.P., Glazunov S.G. Heat-resistant titanium alloys. Moscow: Metallurgiya, 1976, 448 p.
37. Lyasotskaya V.S., Knyazeva S.I. Stepped annealing of welded joints of titanium alloys. Zagotovitelnye proizvodstva v mashinostroyenii, 2012, no. 11, рр. 32–34.
38. Harish P. Understanding the effect of isothermal heat treatments on microstructure of LMD-w titanium alloy (Ti-6242): Degree project for master of science with specialization in manufacturing department of engineering science. Trollhättan: University West, 2020, 97 p.
39. Specification book. International titanium association. Fourth edition. Broomfield, 2005, pp. 26–36.
The article shows the main directions for the development of a formulation for frost-resistant ozone-resistant rubber for sealing purposes. Currently, there are problems with the durability of the operation of parts made of rubber grade NO-68-1 due to the instability of the raw material base of rubbers. A comprehensive analysis of rubbers of various composition and structure was carried out. Based on the results of the analysis, ethylene-propylene, ethylene-propylene diene, and propylene oxide rubbers were selected as the polymer base. Mixtures of various compositions are made from these rubbers. According to the test results, the optimal composition of frost-resistant ozone-resistant rubber was selected.
2. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
3. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
4. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Fedyukin D.L., Makhlis F.A. Technical and technological properties of rubbers. Moscow: Khimiya, 1985, 240 p.
7. Seals and sealing technology: reference book. Ed. A.I. Golubev, L.A. Kondakov. Moscow: Mashinostroenie, 1986, 464 p.
8. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review). Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
9. Mikhailin Yu.A. Structural polymeric composite materials. 2nd ed. St. Petersburg: Nauchnye osnovy i tekhnologii, 2016, 820 p.
10. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Features of old-resistant rubbers on the basis on different unvulcanized rubbers. Trudy VIAM, no. 12, paper no. 04. Available at: http://www.viam-works.ru (accessed: April 13, 2022).
11. Nurmukhametova A.N., Zenitova L.A. Methods for obtaining nanodispersed fillers. Proceedings of XII Int. conf. young scientists, students and graduate students "Synthesis, study of properties, modification and processing of macromolecular compounds – IV Kirpichnikov Readings". Kazan: Institute of Catalysis Boreskov SB RAS, 2008, p. 120.
12. Thr big reference book for specialists in rubbers: at 2 parts. Moscow: Tekhinform, 2012, 1385 p.
13. Naumov I.S., Chaikun A.M., Eliseev O.A. Russian and International Standards for Test Methods for Rubbers, Raw Rubber Compounds and High Molecular Weight Rubbers. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 11, pp. 4–13.
14. Rubber technology: compounding and testing. Trans. from Engl. St. Petersburg: Nauchnye osnovy i tekhnologii, 2010, 632 p.
15. Semenova S.N., Chaykun A.M., Suleymanov R.R. Ethylene-propylenediene rubber and its use in rubber materials for special purposes (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 23–30. DOI: 10.18577/2071-9140-2019-0-3-23-30.
16. Kablov E.N., Semenova S.N., Suleymanov R.R., Chaykun A.M. Prospects for the use of ethylene-propylenediene rubber as part of cold resistant rubber. Trudy VIAM, 2019, no. 12 (84), paper no. 4. Available at: http://www.viam-works.ru (accessed: June 15, 2022). DOI: 10.18577/2307-6046-2019-0-12-29-36.
17. Semenova S.N., Chaikun A.M., Suleimanov R.R. Influence of the vulcanizing system on the temperature properties of rubber based on ethylene propylene rubber. Kauchuk i rezina, 2020, vol. 79, no. 4, pp. 210–213.
18. Hoffmann V. Vulcanization and vulcanizing agents. Leningrad: Khimiya, 1968, 464 p.
19. Govorova O.A., Kanauzova A.A., Saveliev A.L. Modification of ethylene-propylene rubbers and rubbers based on them. Moscow: TsNIITENeftekhim, 1990, p. 69.
20. Kamenev Yu.G., Mironyuk V.P., Greshanovsky V.A. Influence of MVR of SKEP rubbers on their plastoelastic and technological properties. Kauchuk i rezina, 1973, no. 6, pp. 13–16.
21. Kisin K.V., Lovchikov V.A., Mironyuk V.P., Romanikhin V.B. Study of the microstructure of ethylene-propylene rubbers by 13C NMR. Kauchuk i rezina, 1981, no. 6, pp. 13–16.
22. Stereoregular rubbers. Ed. W. Saltman; trans. from English. Z.Z. Vysotsky. Moscow, 1981, vol. 1, 492 p.
23. Synthetic rubber. Ed. I.V. Garmonov. 2nd ed. Leningrad: Khimiya, 1983, 559 p.
24. Mironyuk V.P. Dependence of the vulcanization activity of SCEP on the nature of the third monomers. Kauchuk i rezina, 1991, no. 2, pp. 13–16.
25. Mironyuk V.P., Kurlyand S.K., Vasileva M.A., Afanasiev I.D. Influence of the degree of crystallinity of the copolymer of ethylene, propylene and ethylidenenorbornene (EPDM-E) on their mechanical properties. Kauchuk i rezina, 1977, no. 7, pp. 14–17.
26. Mironyuk V.P., Reikh V.N., Livshits I.A., Sukhotina T.M. Properties of ternary copolymers of ethylene, propylene and ethylidenenorbornene. Kauchuk i rezina, 1973, no. 1, pp. 7–10.
27. Mironyuk V.P., Sidorovich V.A. Influence of the molecular structure of ethylene-propylene rubbers on their elastic properties. Kauchuk i rezina, 1981, no. 3, pp. 8–10.
28. Shershnev V.A., Yulovskaya V.D. Problems of vulcanization in connection with the formation of network and phase structures in mixtures of elastomers. Kauchuk i rezina, 2000, no. 6, p. 16.
29. Bukhina M.F., Kurlyand S.K. Frost resistance of elastomers. Moscow: Khimiya, 1989, 176 p.
30. Zuev Yu.S., Degteva T.G. Service life of elastomers conditions. Moscow: Khimiya, 1986, 264 p.
31. Dick J.S. Rubber and resin: compounding, structure and testing. Trans. from Engl. Ed. V.A. Shershnev. St. Petersburg: Nauchnye osnovy i tekhnologii, 2010, 620 p.
32. Rubber and resin. Science and technology. Ed. J. Mark, B. Erman, F. Eyrich; trans from Engl. Ed. A.A. Berlin, Yu.L. Morozov. Dolgoprudny: Intellekt, 2011, 768 p.
33. Kuleznev V.N., Shershnev V.A. Chemistry and physics of polymers. Moscow: KolosS, 2007, 367 p.
34. Shuldeshov E.M. Sound-proof properties of aviation heatsound-proof materials. Trudy VIAM, 2019, no. 12 (84), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2019-0-12-37-45.
35. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Rubbers, sealants, fireproof and heat-shielding materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
36. Komissarzhevsky V.K., Kerber M.L. Polymer composite materials: structure, properties, application. St. Petersburg: Professiya, 2008, 560 p.
37. Kuznetsova V.A., Kozlova A.A., Zheleznyak V.G., Shapovalov G.G. Influence of elastomeric modifiers on properties of metal-polymeric compositions. Trudy VIAM, 2019, no. 8 (80), paper no. 06. URL: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2019-0-8-46-55.
38. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
39. Oreshko E.I., Erasov V.S., Grinevich D.V., Sershak P.V. Review of criteria of durability of materials. Trudy VIAM, 2019, no. 9 (81), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 20, 2022). DOI: 10.18577/2307-6046-2019-0-9-108-126.
A review of photocurable acrylate compositions, which can be used for a wide range of tasks, including 3D printing, has been carried out. The main (meth)acrylate monomers, oligomers and diluents, comonomers and special additives are considered. The influence of the structure of monomers and active diluents on the properties of the polymer is described. The mechanisms of photoinitiation and the mechanisms of chain transfer agents are presented. The influence of the introduction of epoxy resins into the composition of photocurable acrylate compositions is indicated. The conclusion is made about the possibilities of wide modification of such compositions.
2. UV Curable Resins&Formulated Products Market Size | Share | Forecast. Available at: https://www.verifiedmarketresearch.com/product/uv-curable-resins-formulated-products-market (accessed: June 07, 2022).
3. Kablov E.N. Additive technologies – the dominant of the national technological initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
4. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
5. Bednarczyk P., Irska I., Gziut K., Ossowicz-Rupniewska P. Novel Multifunctional Epoxy (Meth)Acrylate Resins and Coatings Preparation via Cationic and Free-Radical Photopolymerization. Polymers, 2021, no. 13, pp. 1718. DOI: 10.3390/polym13111718.
6. Manmeet K., Srivastava A.K. Photopolymerization: A review. Journal of Macromolecular Science. Part C, 2002, no. 42 (4), pp. 481–512. DOI: 10.1081/MC-120015988.
7. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
8. Chatani S., Kloxin C.J., Bowman C.N. The power of light in polymer science: Photochemical processes to manipulate polymer formation, structure, and properties. Polymer Chemistry, 2014, no. 5, pp. 2187–2201. DOI: 10.1039/C3PY01334K.
9. Corrigan N., Yeow J., Judzewitsch P., Xu J., Boyer C. Seeing the light: Advancing materials chemistry through photopolymerization. Angewandte Chemie International Edition, 2019, no. 58, pp. 5170–5189. DOI: 10.1002/anie.201805473.
10. Photopolymer composition for 3D printing: pat. 9902860 US; filed 30.08.16; publ. 01.03.18.
11. Photocurable resin composition for Stereolithography 3D printing: pat. 101980037 KR; filed 14.03.17; publ. 29.08.19.
12. Photocurable material composition and cured product thereof: pat. 20200157258 US; filed 09.08.13; publ. 10.02.14.
13. Sandmeier M., Paunović N., Conti R. et al. Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules, 2021, no. 54 (17), pp. 7830–7839. DOI: 10.1021/acs.macromol.1c00856.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Zarek M., Layani M., Cooperstein I. et al. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Advance Materials, 2016, no. 28, pp. 4449−4454. DOI: 10.1002/adma.201503132.
16. Palaganas J., de Leon A.C., Mangadlao J. et al. Facile Preparation of Photocurable Siloxane Composite for 3D Printing. Macromolecular Materials and Engineering, 2017, no. 302 (5), pp. 1–9. DOI: 10.1002/mame.201600477.
17. Patel D.K., Sakhaei A.H., Layani M. et al. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advance Materials, 2017, no. 29, pp. 1–7. DOI: 10.1002/adma.201606000.
18. Stassi S., Fantino E., Calmo R. et al. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS Applied Materials & Interfaces, 2017, no. 9 (22), pp. 19193−19201. DOI: 10.1021/acsami.7b04030.
19. Gou M., Qu X., Zhu W. et al. Bio-Inspired Detoxification Using 3D-Printed Hydrogel Nanocomposites. Nature Communications, 2014, no. 5, pp. 3774. DOI: 10.1038/ncomms4774.
20. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Features of the relaxation behavior of polymer glasses based on polymethyl methacrylate and their consideration in the strength calculation of aviation glazing. Vse materialy. Entsiklopedicheskiy spravochnik, 2016, no. 9, pp. 2–9.
21. Chiappone A., Fantino E., Roppolo I. et al. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique. ACS Applied Materials & Interfaces, 2016, no. 8, pp. 5627–5633. DOI: 10.1021/acsami.5b12578.
22. Warner J., Soman P., Zhu W. et al. Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries. ACS Biomaterials Science & Engineering, 2016, no. 2, pp. 1763–1770. DOI: 10.1021/acsbiomaterials.6b00140.
23. Liska R., Schuster M., Inführ R. et al. Photopolymers for Rapid Prototyping. Journal of Coatings Technology and Research, 2007, no. 4, pp. 505–510. DOI: 10.1007/s11998-007-9059-3.
24. Yue J., Zhao P., Gerasimov J.Y. et al. 3D-Printable Antimicrobial Composite Resins. Advanced Functional Materials, 2015, no. 25, pp. 6756–6767. DOI: 10.1002/adfm.201502384.
25. Al Mousawi A., Dumur F., Garra P. et al. Carbazole Scaffold Based Photoinitiator/Photoredox Catalysts: Toward New High-Performance Photoinitiating Systems and Application in LED Projector 3D Printing Resins. Macromolecules, 2017, no. 50, pp. 2747–2758. DOI: 10.1021/acs.macromol.7b00210.
26. Al Mousawi A., Garra P., Schmitt M. et al. 3-Hydroxyflavone and N-Phenylglycine in High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis. Macromolecules, 2018, no. 51, pp. 4633–4641. DOI: 10.1021/acs.macromol.8b00979.
27. Credi C., Fiorese A., Tironi M. et al. 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers. ACS Applied Materials & Interfaces, 2016, no. 8, pp. 26332–26342. DOI: 10.1021/acsami.6b08880.
28. (Meth)Acrylates Containing Urethane Groups: pat. 5658712 US; filed 09.08.93; publ. 19.08.97.
29. Boddapati A., Rahane S.B., Slopek R.P. et al. Gel Time Prediction of Multifunctional Acrylates Using a Kinetics Model. Polymer, 2011, no. 52, pp. 866–873. DOI: 10.1016/j.polymer.2010.12.024.
30. Ligon-Auer S.C., Schwentenwein M., Gorsche C. et al. Toughening of Photo-Curable Polymer Networks: A Review. Polymer Chemistry, 2016, no. 7, pp. 257–286. DOI: 10.1039/C5PY01631B.
31. Kim L.U., Kim J.W., Kim C.K. Effects of Molecular Structure of the Resins on the Volumetric Shrinkage and the Mechanical Strength of Dental Restorative Composites. Biomacromolecules, 2006, no. 7, pp. 2680–2687. DOI: 10.1021/bm060453h.
32. Moraes R.R., Garcia J.W., Barros M.D. et al. Control of Polymerization Shrinkage and Stress in Nanogel-Modified Monomer and Composite Materials. Dental Materials, 2011, no. 27, pp. 509–519. DOI: 10.1016/j.dental.2011.01.006.
33. Liquid, Radiation-Curable Composition, Especially for Stereolithography: pat. 5972563 US; filed 29.07.96; publ. 26.10.99.
34. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 6, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
35. Stereolithography Resin Compositions and Three-Dimensional Objects Made Therefrom: pat. 8980971 US; filed 21.05.13; publ. 28.11.13.
36. Photosensitive Compositions: pat. 5476748 US; filed 14.12.93; publ. 19.12.95.
37. Method of Forming a Three-Dimensional Object by Stereolithography and Composition Therefore: pat. 4942001 US; filed 31.10.89; publ. 17.07.90.
38. Zhang Y., Li Y., Thakur V.K. et al. Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin. RSC Advances, 2018, no. 8, pp. 13780. DOI: 10.1039/c8ra00339d.
39. Decker C., Viet T.T., Decker D., Weber-Koehl E. UV-radiation curing of acrylate/epoxide systems. Polymer, 2001, no. 42, pp. 5531–5541. DOI: 10.1016/S0032-3861(01)00065-9.
40. Cai Y., Jessop J.L.P. Decreased Oxygen Inhibition in Photopolymerized Acrylate/Epoxide Hybrid Polymer Coatings as Demonstrated by Raman Spectroscopy. Polymer, 2006, no. 47, pp. 6560–6566. DOI: 10.1016/j.polymer.2006.07.031.
41. Lalevée J., Tehfe M.A., Dumur F. et al. Light-Harvesting Organic Photoinitiators of Polymerization. Macromolecular Rapid Communications, 2013, no. 34, pp. 239–245. DOI: 10.1002/marc.201200578.
42. Wiersma D. The Smallest Random Laser. Nature, 2000, no. 406, pp. 133–135. DOI: 10.1038/35018184.
43. Green W.A. Industrial Photoinitiators: A Technical Guide. CRC Press: Boca Raton, 2010, 302 р.
44. Rapid Prototyping Resin Compositions: pat. 8293810 US; filed 29.08.05; publ. 23.10.12.
45. Photopolymerizable Compositions Containing an Alkylbisacylphosphine Oxide: pat. 5472992 US; filed 28.04.94; publ. 05.12.95.
46. Fodran E., Koch M., Menon U. Mechanical and Dimensional Characteristics of Fused Deposition Modeling Build Styles. SFF Symposium Proceedings, 1996, pp. 419–442.
47. Wayner D.D.M., Clark K.B., Rauk A., Yu D., Armstrong D.A. C‒H Bond Dissociation Energies of Alkyl Amines: Radical Structures and Stabilization Energies. Journal of the American Chemical Society, 1997, no. 119, pp. 8925–8932. DOI: 10.1021/ja971365v.
48. Crivello J.V. The Discovery and Development of Onium Salt Cationic Photoinitiators. Journal of Polymer Science. Part A: Polymer Chemistry, 1999, no. 37, pp. 4241–4254. DOI: 10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R.
49. Fouassier J.-P., Lalevée J. Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012, 490 p.
50. Crivello J.V., Lam J.H.W. Photoinitiated Cationic Polymerization with Triarylsulfonium Salts. Journal of Polymer Science: Polymer Chemistry Edition, 1996, no. 34, pp. 32331–3253. DOI: 10.1002/pola.1996.873.
51. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialyi tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
52. Curable Composition: pat. 8362148 US; filed 12.03.08; publ. 29.01.13.
53. Peer G., Eibel A., Gorsche C. et al. Ester-Activated Vinyl Ethers as Chain Transfer Agents in Radical Photopolymerization of Methacrylates. Macromolecules, 2019, no. 52 (7), pp. 2691–2700.
54. Gorsche C., Koch T., Moszner N., Liska R. Exploring the Benefits of β-Allyl Sulfones for More Homogeneous Dimethacrylate Photopolymer Networks. Polymer Chemistry, 2015, no. 6, pp. 2038−2047. DOI: 10.1039/C4PY01582G.
55. Gauss P., Ligon-Auer S.C., Griesser M. et al. The Influence of Vinyl Activating Groups on β-Allyl Sulfone-Based Chain Transfer Agents for Tough Methacrylate Networks. Journal of Polymer Science. Part A: Polymer Chemistry, 2016, no. 54, pp. 1417–1427. DOI: 10.1002/pola.27993.
56. Gorsche C., Seidler K., Knaack P. et al. Rapid Formation of Regulated Methacrylate Networks Yielding Tough Materials for Lithography-Based 3D Printing. Polymer Chemistry, 2016, no. 7, pp. 2009–2014. DOI: 10.1039/C5PY02009C.
57. Yagci Y., Jockusch S., Turro N.J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules, 2010, no. 43, pp. 6245–6260. DOI: 10.1021/ma1007545.
58. Photosensitive Compositions Useful in Three-Dimensional Part-Building and Having Improved Photospeed: pat. 5418112 US; filed 10.11.93; publ. 23.05.95.
The article is devoted to the testing of fiberglass grade VPS-53K treated with atmospheric pressure plasma in the production environment of the manufacturer of the main and tail rotor blades of a helicopter. It has been established that atmospheric pressure plasma increases the wettability of the fiberglass surface and the strength of the adhesive joint of «the spar‒sheathing» (fiberglass grade VPS-53K). The guaranteed time interval between the processing of fiberglass with atmospheric pressure plasma and the gluing process is no more than 6 mon.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
5. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
6. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–33.
7. Doroshenko N.I., Chursova L.V. Evolution of materials for blades of helicopters. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 16–18.
8. Doroshenko N.I. Application of PCM in the design of helicopter propeller blades. Polymer composite materials for the aerospace industry: materials of All-Rus. sci.-tech. conf. (Moscow, December 6, 2019). Moscow: VIAM, 2019, 208 p.
9. Davydova I.F., Kablov E.N., Kavun N.S. Heat-resistant non-combustible polyimide fiberglass for products of aviation and rocket technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 7, pp. 2–11.
10. Popov Y.O., Kolokolceva T.V., Gusev Y.A., Gromova A.A. Development of the constructive and technological solution for a sheet fibreglass for tail section skins of helicopter rotor blades. Trudy VIAM, 2016, no. 1 (37), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2021). DOI: 10.18577/2307-6046-2016-0-1-42-49.
11. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
12. Barannikov A.A., Рostnov V.I., Veshkin E.A., Starostina I.V. Link between the energy characteristics of the surface of fiberglass of the VPS-53К brand and the strength of the adhesive joint based on it. Trudy VIAM, 2020, no. 10 (92), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2021). DOI: 10.18577/2307-6046-2020-0-10-40-50.
13. Barannikov A.A., Postnova M.V., Krasheninni-kova E.V., Vasyukov A.N. Application of new technologies in the production of helicopter main rotor blades. Trudy VIAM, 2021, no. 11 (105), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 9, 2021). DOI: 10.18577/2307-6046-2021-0-11-91-102.
14. Barannikov A.A., Sudyin Yu.I., Veshkin E.A., Satdinov R.A. Determination of the permissible storage time of polymeric composite materials after surface treatment with atmospheric pressure plasma before bonding. Trudy VIAM, 2022, no. 5 (111), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 1, 2022). DOI: 10.18577/2307-6046-2022-0-5-26-40.
15. Barannikov A.A., Postnov V.I., Veshkin E.A., Strelnikov S.V. The role of fiberglass surface preparation for gluing. Klei. Germetiki. Tekhnologii, 2019, no. 6, pp. 19–27. DOI: 10.31044/1813-7008-2019-0-6-19-27.
16. Barannikov A.A., Postnov V.I., Veshkin E.A., Satdinov R.A. The use of atmospheric pressure plasma as a method of preparing the surface of polymer composite materials for gluing. Polymer composite materials and production technologies of a new generation: materials of V All-Rus. sci.-tech. conf. (Moscow, November 19, 2021). Moscow: NRC "Kurchatov Institute" – VIAM, 2021, 259 p.
17. Operating manual OCA 15EC: Version 1.0; English; Valid as of firmware version 10.27, and SCA software version 4.4.1 Build 1046. Data Physics Instruments GmbH. Available at: https://vdocuments.site/manual-sca20-u.html (accessed: April 15, 2022).
18. Thomsen F. Practical Contact Angle Measurement (5). Custom – made models: from contact angle to surface free energy. KRUSS Technical Note TN315e, pp. 1–6. Available at: https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/booking/dropshapeanalyser/practical_contact_angle_measurement_5.pdf (accessed: April 15, 2022).
19. Langer M., Otto D. Methods for studying the surface characteristics of polymers after plasma treatment. Comparative analysis. Analiz i kontrol: tekhnologii, pribory, resheniya, 2018, no. 2 (39), pp. 2–7.
20. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook for students according to special "Composite nanomaterials". Moscow: Lomonosov Moscow State University, 2010, 68 p.
21. Vilnave Zh.Zh. Adhesive connections. Moscow: Technosfera, 2007, 384 p.
22. Cagle Ch. Adhesive connections. Ed. D.A. Kardashov. Moscow: Mir, 1971, 295 p.
23. MIL-HDBK-17-3F: Composite materials handbook. Volume 3 of 5. Polymer matrix composites materials usage, design, and analysis. CMH-17 Secretariat, Materials Sciences Corporation. Horsham, 2002, 734 с.
24. Peters S.T. Handbook of Composites. Second Edition. New York: Chapman & Hall, 1998, 1120 с.
25. Tracey A.C. Effect of Atmospheric Pressure Plasma Treatment on Surface Characteristics and Adhesive Bond Quality of Peel Ply Prepared Composites. Available at: https://digital.lib.washington.edu/researchworks/handle/1773/27522 (accessed: November 12, 2020).
26. Takeda T., Yasuoka T., Hoshi H. et al. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 119, pp. 30–37.
27. Zaldivar R.J., Nokes J., Steckel G.L. et al. The Effect of Atmospheric Plasma Treatment on the Chemistry, Morphology and Resultant Bonding Behavior of a Pan-Based Carbon Fiber-Reinforced Epoxy Composite. Journal of Composite Materials, 2009, vol. 44, is. 2, pp. 137–156. DOI: 10.1177/0021998309345343.
28. Dighton C., Rezai A., Ogin S.L., Watts J.F. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques. International Journal of Adhesion and Adhesives, 2019, vol. 91, p. 142–149. DOI: 10.1016/j.ijadhadh.2019.03.010.
29. Zaldivar R.J., Steckel G.L, Morgan B.A. et al. Bonding Optimization on Composite Surfaces using Atmospheric Plasma Treatment. Journal of Adhesion Science and Technology, 2012, vol. 26, is. 1–3, pp. 381–401.
30. Hansen W. Plasma for Aviation and Aerospace Industries. Available at: https://www.plasmatreat.com/downloads/english/15-04_IST_aerospace.pdf (accessed: July 12, 2021).
31. Williams T., Yu H., Hicks R. Atmospheric pressure plasma activation of polymers and composites for adhesive bonding: A Critical Review. Reviews of Adhesion and Adhesives, 2013, vol. 1, no. 1, pp. 46–87. DOI: 10.7569/RAA.2013.097302.
32. Serrano J.S. Surface modifications of composite materials by atmospheric pressure plasma treatment: PhD-Thesis. Madrid: Universidad Rey Juan Carlos, 2011, 302 p. Available at: https://eciencia.urjc.es/bitstream/10115/11379/1/Thesis_June%202011%20JSS-SLU-AUF_v5.pdf (accessed: December 12, 2021).
33. Gleich H. Zusammenhang zwischen Oberflächenenergie und Adhäsionsvermögen von Polymer werkstoffen am Beispiel von PP und PBT und deren Beeinflussung durch die Niederdruck-Plasmatechnologie: dis. Universtät Duisburg-Essen, 2004, 103 p. Available at: https://duepublico2.unidue.de/servlets/MCRFileNodeServlet/duepublico_derivate_00005593/gleichdiss.pdf (accessed: December 12, 2021).
34. Rodríguez B.N. Pre-Treatment for adhesive bonding of aerospace composite components: PhM-Thesis. London: Brunel University, 2016, 133 p. Available at: https://bura.brunel.ac.uk/bitstream/2438/14669/1/FulltextThesis.pdf (accessed: December 12, 2021).
35. Al-Maliki H.L.R. Adhesive and tribological behaviour of cold atmospheric plasma-treated polymer surfaces: PhD Dissertation. Gödöllő: Szent István University, 2018, 115 p. Available at: https://szie.hu/sites/default/files/hayder_lateef_dissertation.pdf (accessed: December 12, 2021).
36. Lisco F., Shaw A., Wright A. et al. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Solar Energy, 2017, vol. 146, pp. 287–297.
37. Kostova K.G., Nishimea T.M.C., Castroa A.H.R. et al. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 2014, vol. 314, pp. 367–375.
38. Akiyama H., Hasegawa K., Sekigawa T., Yamazaki N. Atmospheric pressure plasma treatment for composites bonding. Mitsubishi Heavy Industries Technical Review, 2018, vol. 55, no. 2, pp. 1–5.
39. Lucchetta G. Experimental analysis of atmospheric plasma treatment and resin optimization for adhesive bonding of carbon fiber/epoxy composites. Available at:http://tesi.cab.unipd.it/48832/1/Tesi_ANTONELLO_Julien.pdf (accessed: December 12, 2021).
A scientific and technical literature review is presented in the field of research on copper-based fibrous composite materials (CM) reinforced with continuous silicon carbide fibers. The main methods of manufacturing fibrous CMs based on copper are briefly mentioned. The influence of volume fractions on the reinforcement of CM, on the mechanical and thermophysical properties of fibrous CM based on copper is considered. A study of the influence of the structure of a fibrous CM based on copper with the use of binders as adhesive components with the formation of a strong bond between the copper matrix and fiber on the properties of CM is described.
2. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Babashov V.G., Varrik N.M., Maksimov V.G., Samorodova O.N. Oxide fiber coated with silicon carbide for producing composite materials. Aviation materials and technologies, 2021, no. 3 (64), paper no. 09. Available at: http://www.journal.viam.ru (accessed: March 23, 2022). DOI: 10.18577/2713-0193-2021-0-3-94-104.
6. Karashaev M.M., Bazyleva O.A., Shestakov A.V., Ovsepyan S.V. Technological principles for the development of metal composite materials reinforced with oxide and intermetallic particles. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 29–36. DOI:10.18577/2071-9140-2020-0-3-29-36.
7. Izotova A.Yu., Grishina O.I., Shavnev A.A. Fiber-reinforced titanium based composites (review). Trudy VIAM, 2017, no. 5 (53), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 23, 2022). DOI: 10.18577/2307-6046-2017-0-5-5-5.
8. Serpova V.M., Sidorov D.V., Kurbatkina E.I., Shavnev A.A. The destruction of the fibrous metal matrix composites system Ti–SiC under cyclic loads (review). Trudy VIAM, 2020, no. 4-5 (88), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 24, 2022). DOI: 10.18577/2307-6046-2020-0-45-108-118.
9. Luo X., Yang Y., Li J. et al. The effect of fabrication processes on the mechanical and interfacial properties of SiCf/Cu-matrix composites. Composites. Part A: Applied Science and Manufacturing, 2007, vol. 38, pp. 2102–2108. DOI: 10.1016/j.compositesa.2007.07.016.
10. Luo X., Yang Y., Li J. et al. Titanium interlayers as adhesion promoters for SiCf/Cu composites. Scripta Materialia, 2007, vol. 56, pp. 569–572. DOI: 10.1016/j.scriptamat.2006.12.041.
11. Brendel A., Woltersdorf J., Pippelb E., Bolta H. Titanium as coupling agent in SiC fibre reinforced copper matrix composites. Materials Chemistry and Physics, 2005, vol. 91, pp. 116–123. DOI: 10.1016/j.matchemphys.2004.10.057.
12. Luo X., Yang Y., Li J. et al. Effect of nickel on the interface and mechanical properties of SiCf/Cu composites. Journal of Alloys and Compounds, 2009, vol. 469, pp. 237–243. DOI: 10.1016/j.jallcom.2008.01.089.
13. Kimmig S., Allen I., You J.H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, vol. 440, pp. 272–277. DOI: 10.1016/j.jnucmat.2013.05.017.
14. Brendel A., Paffenholz V., Köck Th., Bolt H. Mechanical Properties of SiC long fibre reinforced copper. Journal of Nuclear Materials, 2009, vol. 386–388, pp. 837–840. DOI: 10.1016/j.jnucmat.2008.12.251.
15. Zhabin A.N., Nyafkin A.N. Manufacturing of metal-matrix composite materials using additive technologies (review). Trudy VIAM, 2022, no. 2 (108), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 13, 2022). DOI: 10.18577/2307-6046-2022-0-2-64-74.
16. Kimmig S., You J.H. Cyclic plastic behavior of unidirectional SiC fibre-reinforced copper composites under uniaxial loads: An experimental and computational study. Composite Structures, 2018, vol. 200, pp. 555–564. DOI: 10.1016/j.compstruct.2018.06.012.
17. Kimmig S., Elgeti S., You J.H. Impact of long-term thermal exposure on a SiC fiber-reinforced copper matrix composite. Journal of Nuclear Materials, 2013, vol. 443, pp. 386–392. DOI: 10.1016/j.jnucmat.2013.07.055.
The article is described to a theoretical study by quantum chemistry of the reaction of silaethylene formation from methylsilane by hydrogen elimination with the search for a transition state. Geometry and thermodynamic characteristics of molecular structures were calculated. The search for the transition state was carried out by scanning the potential energy surface of the molecule of the proposed structure. The calculation of the rate constant and activation energy of the direct reaction of the formation of an intermediate state for the chemical reaction 1,2-hydrogen elimination has been carried out.
2. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
3. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: February 18, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Sidorov D.V., Schavnev А.А., Solodkin P.V., Kirilin A.D. Quantum chemical calculation of intermolecular interaction methylsilane molecules during the pyrolysis process. Trudy VIAM, 2019, no. 11 (83), paper no. 5. Available at: http://www.viam-works.ru (accessed: January 14, 2022). DOI: 10.18577/2307-6046-2019-0-11-44-52.
5. Sidorov D.V., Kirilin A.D., Shavnev A.A., Petrogradsky A.V. The study of the mechanism of pyrolytic decomposition of methylilan in the gas phase. Khimicheskaya tekhnologiya, 2006, no. 7, pp. 22–24.
6. Truong T., Gordon M., Pople J. Thermal Decomposition Pathways of Ethane. Chemical Physics Letters, 1986, vol. 130, pp. 245–249.
7. Jensen J., Morokuma K., Gordon M. Pathways for H2 Elimination from Ethylene: a Theoretical Study. The Journal of Chemical Physics, 1994, vol. 100, pp. 1981–1987.
8. Allendorf M., Melius C. Theoretical Study of the Thermochemistry of Molecules in the Si–C–Cl–H System. The Journal of Chemical Physics, 1993, vol. 97, pp. 720–728.
9. Osterheld T., Allendorf M. Unimolectolar Decomposition of Methyltrichlorosilane: RRKM Calculation. The Journal of Chemical Physics, 1994, vol. 98, pp. 6995–7003.
10. Diau E., Lin M., Melius C. a Theoretical Study of the CH3 + C2H2 Reaction. The Journal of Chemical Physics, 1994, vol. 101, pp. 3923–3927.
11. Hase W., Schlegel H., Balbyshev V., Page M. an Ab Initio Study of the Transition State Forward and Reverse Rate Constant For C2H5 = H + C2H4. The Journal of Chemical Physics, 1996, vol. 100, pp. 5354–5361.
12. Ohta K., Davidson E., Morokuma K. Dimerization Paths of CH2 and SiH2 Fragments to Ethylene, Disilene, and Silaethylene: MCSCF and MRCI Study of Least- and Non-Least-Motion Paths. Journal of the American Chemical Society, 1985, vol. 107, pp. 3466–3471.
13. Zechmann G., Marbatti M., Lishka H. Multiple Pathways in the Photodynamics of a Polar π: a case Study of Silaethylene. Chemical Physics Letters, 2006, vol. 418, pp. 377–382.
14. Gaussian-09: Revision a.02. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Wallingford: Gaussian Inc., 2009.
15. Pittonak M., Lishka H. Molecular Physics: An International Journal At the Interface Between Chemistry and Physics. Molecular Physics, 2005, vol. 103, pp. 855–862.
16. Tsyshevsky R.V., Garifzyanova G.G., Khrapkovsky G.M. Quantum-chemical calculations of the mechanisms of chemical reactions: textbook. Kazan: KNITU, 2012, 87 p.
The analysis of the influence of technological parameters on the structure of a polycrystalline material based on lanthanum hexaboride produced by spark plasma sintering is carried out. It is established that an increase in the sintering temperature from 1700 to 1850 °C contributes to the formation of a favorable structure of ceramic material with equiaxed grains up to 30 microns in size and closed small-sized pores with a volume fraction of up to 3 %. Alloying ceramic material with nickel to its content of no more than 0.5 % by weight allows to obtain such a structure at a lower sintering temperature: 1700 °C.
2. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
3. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
4. Bao L.-H., Zhang J.-X., Zhou S.-L., Wei Y.-F. Preparation and characterization of grain size controlled LaB6 polycrystalline cathode material. Chinese Physics Letters, 2010, vol. 27, no. 10, pp. 1–4.
5. Kablov E.N., Movenko D.A., Lukina E.A., Medvedev P.N., Schegoleva N.E. The study of the structural-phase state of the ceramic material based on hexaboride Lantan. Steklo i keramika, 2019, no. 11, pp. 13–18.
6. Zhou S., Zhang J., Liu D. et al. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering. Acta Materialia, 2010, no. 15, vol. 58, pp. 4978–4985.
7. Zheng S.-Q., Min G.-H., Zou Z.-D. et al. Features of the real structure of lanthanum hexaboride polycrystalline. Chinese Physics Letters, 2001, vol. 18, no. 7, pp. 942–943.
8. Sonber J.K., Sairam K., Murthy T.S.R.Ch. et al. Synthesis, densification and oxidation study of lanthanum hexaboride. Journal of the European Ceramic Society, 2014, vol. 34, is. 5, pp. 1155–1160.
9. Ağaoğulları D., Balcı Ö., Akçamlı N. et al. Effects of different milling conditions on the properties of lanthanum hexaboride nanoparticles and their sintered bodies. Ceramics International, 2019, vol. 45, is. 15, pp. 18236–18246.
10. Annenkov Yu.M., Akarachkin S.A., Ivashutenko A.S. The physical mechanism of spark plasma sintering of ceramics. Butlerov readings, 2012, vol. 31, no. 9, pp. 130–137.
11. Vaganova M.L., Sorokin O.Yu., Osin I.V. Joining of ceramic materials by the method of spark plasma sintering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 306–317. DOI: 10.18577/2071-9140-2017-0-S-306-317.
12. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
13. Belyachenkov I.O., Schegoleva N.E., Chainikova A.S., Vaganova M.L., Shavnev A.A. The influ-ence of sintering and modifying additives on the sintering process and the properties of silicon nitride ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 70–78. DOI: 10.18577/2071-9140-2020-0-1-70-78.
14. Cahill J.T., Graeve O. Hexaborides: a review of structure, synthesis and processing. Journal of Materials Research and Technology, 2019, vol. 8, is. 6, pp. 6321–6335.
15. Geguzin Ya.E. Physics of sintering. Moscow: Nauka, 1967, 360 p.
Fire tests were carried out to determine the effectiveness of the fire-retardant intumescent coating. It has been established that the standard methodology for conducting fire tests does not provide adequate reproducible results. A modification of the methodology was proposed and a large number of samples (˃30) were tested. It has been established that when using a modified test procedure, high reproducibility of the results obtained is ensured.
2. Technical regulations on fire safety requirements: Feder. Law (July 22, 2008, No. 123-FZ). Available at: https://docs.cntd.ru/document/902111644 (accessed: February 01, 2022).
3. The list of national standards containing the rules and methods of research (testing) and measurements, including the rules for sampling, necessary for the application and execution of the Federal Law "Technical Regulations on Fire Safety Requirements" and the implementation of conformity assessment: Order of the Government of the Russian Federation of (March 10, 2009, No. 304-r). Available at: https://docs.cntd.ru/document/902146883 (accessed: February 01, 2022).
4. Airworthiness standards for transport category aircraft: AP-25: approved. Decree of the 28th session of the Council on Aviation and the Use of Airspace on 11.12.2008. 3rd ed. with amendments 1-6. Moscow: Aviaizdat, 2009, 267 p.
5. Airworthiness Standards: Transport Category Airplanes: Part 25. Code of Federal Regulation. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=9091f0ebbfbf1539cdb87015908ad369&mc=true&node=pt14.1.25&rgn=div5 (accessed: February 01, 2022).
6. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Evaluation of the fire safety of polymeric materials for aviation purposes: state analysis, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
7. Aircraft Materials Fire Test Handbook: Report DOT/FAA/AR-00/12. Federal Aviation Administration. Atlantic City, 2000, 234 p. Available at: https://www.abbottaerospace.com/downloads/
dot-faa-ar-00-12-aircraft-materials-fire-test-handbook/ (accessed: February 01, 2022).
8. Fire Protection: Systems: AC 25.869-1A. Aircraft Certification Service, Transport Airplane Directorate. 2007, 11 p. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/74393 (accessed: February 10, 2022).
9. Certification of Electrical Wiring Interconnection Systems on Transport Category Airplanes: AC 25.1701-1. Aircraft Certification Service, Transport Airplane Directorate, 2007, 92 p. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/73476 (accessed: February 10, 2022).
10. Engine fire Protection: AC 33.17-1A. Aircraft Certification Service Engine & Propeller Directorate – Rulemaking & Policy, 2009, 12 p. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/99608 (accessed: February 10, 2022).
11. Powerplant Installation and Propulsion System Component Fire Protection Test Methods, Standards, and Criteria: AC 20-135. Policy and Innovation Division, 1990, 18 p. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22194 (accessed: February 10, 2022).
12. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes: CS-25. 2020. URL: https://www.easa.europa.eu/sites/default/files/dfu/CS-25%20Amendment%2024.pdf (accessed: February 01, 2022).
13. Revised Power Plant Engineering Report No. 3A. Standard Fire Test Apparatus and Procedure (For Flexible Hose Assemblies): AC 20-104. Aviation Safety – Aircraft Certification Service, Aircraft Engineering Division, 1978, 35 p. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22049/ Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22049 (accessed: February 01, 2022).
14. Barbotko S.L., Kirienko O.A., Volny O.S., Lutsenko A.N. Fire hazard analysis of aircraft engine nacelles and other fire hazardous areas; used methods of fire testing of materials and structural elements for compliance with the requirements of aviation standards. Problemy bezopasnosti poletov, 2017, no. 5, p. 3–24.
15. ISO 2685:1998(E). Aircraft – Environmental test procedure for airborne equipment – Resistance to fire in designated fire zones. International Standard Organization, 1998, 34 p.
16. Le Neve S. Fire behavior of structural composite materials. 5th International Aircraft Fire and Cabin Safety Research Conference. Atlantic City, 2007, 27 p.
17. Le Neve S. Fire behavior of structural composite materials (progress in the work). 6th International Aircraft Fire and Cabin Safety Research Conference. 2010, 39 p.
18. Le Neve S. AC 20-135 / ISO 2685 Fire tests on components used in fire zones. Comparison of gas burner to oil burner. Proceedings of the FAA Materials Meeting. Atlantic City, 2008, 26 p.
19. Development of Next Generation Burner Characteristics for Fire Testing of Power Plant Materials and Components: Report DOT/FAA/TC-13/38 / Department of Aerospace Engineering and Engineering Mechanics University of Cincinnati. Cincinnati, 2015, 52 p.
20. Laborie D. Fire Test Burner Evaluation. International Aircraft Systems Fire Protection Working Group Meeting. Atlantic City, 2015, 8 p.
21. Kablov E.N. New generation materials and technologies for their digital processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, vo. 2, pp. 225–228.
22. Kablov E.N. Marketing of materials science, aircraft building and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
23. Kablov E.N. Materials are the basis of any business. Delovaya Slava Rossii, 2013, no. 2, pp. 4–9.
24. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
25. Venediktova M.A., Petrova A.P., Barbotko S.L., Bryk Yа.A. Application of new environmentally friendly organophosphorus flame retardants in the composition of heat-protective putty. Trudy VIAM, 2020, no. 9 (91), paper no. 04. Available at: http://www.viam-works.ru (accessed: February 24, 2022). DOI: 10.18577/2307-6046-2020-0-9-35-43.
26. Venediktova M.A., Evdokimov A.A., Kras- nov L.L., Petrova A.P. Research of possibility of application of fireproof paste for increase of fire safety of designs from polymeric composite materials. Trudy VIAM, 2021, no. 9 (103), paper no. 07. Available at: http://www.viam-works.ru (accessed: February 24, 2022). DOI: 10.18577/2307-6046-2021-0-9-67-75.
27. Antipov V.V. Scientific and technological foundations for the development of a new generation of layered alumina-glass-reinforced plastics with variable physical and mechanical properties based on low-density aluminum-lithium alloy sheets: thesis abstract, Dr. Sc. (Tech.). Samara: Samara State Tech. Univarsity, 2021, 44 p.
28. Barbotko S.L., Volny O.S., Bochenkov M.M. Methods for assessing the fire hazard of heat-fireproof materials. Materialy All-Rus. Sci.-tech. conf. "Fundamental and applied research in the field of sealing, sealing and fire-protective materials". Moscow: VIAM, 2019, pp. 105–118.
29. Fire safety: RTs-AP 33.17 / Interstate Aviation Committee. Aviation Register. Moscow: IAC, 2005, 15 p.
30. Barbotko S.L., Volny O.S., Veshkin E.A., Goncharov V.A. Evaluation of the fire resistance of materials and structural elements for aviation equipment. Aviatsionnaya promyshlennost, 2018, no. 2, pp. 63–67.
31. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Creation of the mathematical model and calculation of sample temperatures at tests on fire resistance. Trudy VIAM, 2017, no. 7 (55), paper no. 12. Available at: http://www.viam-works.ru (accessed: February 01, 2022). DOI: 10.18577/2307-6046-2017-0-7-12-12.
32. Garashchenko A.N., Kulkov A.A., Strakhov V.L. The effect of the service life on the flame-retardant efficiency of the bulging coatings and the fire resistance of structures. Aviation materials and technologies, 2022, no. 2 (67), paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 29, 2022). DOI: 10.18577/2713-0193-2022-0-2-97-110.
Currently, to determine the degree of de-icing protection when using anti-icing coatings, experimental benches and laboratory installations are used, in which in most cases two types of tests are performed: direct mechanical and centrifugal force. The variety of methods, facilities, and other various factors makes it difficult to compare the established data and the required characteristics of anti-icing properties of coatings. An analysis of the methods and installations used to determine ice adhesion, as well as the factors that can affect the test results, has been conducted.
2. Kablov E.N. Aviation materials science in the XXI century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS; VIAM, 2002, pp. 23–47.
3. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
4. Ignatyev D.I., Khrabrov A.N., Kortukova A.I. et al. Interplay of unsteady aerodynamics and flight dynamics of transport aircraft in icing conditions. Aerospace Science and Technology, 2020, vol. 104, pp. 105914.
5. Huang X., Tepylo N., Pommier-Budinger V. et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Progress in Aerospace Sciences, 2019, vol. 105, pp. 74–97.
6. Cebeci T., Kafyeke F. Aircrafticing. Annual Review of Fluid Mechanics, 2003, vol. 35 (1), pp. 11–21.
7. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
8. Lynch F.T., Khodadoust A. Effects of Ice Accretions on aircraft Aerodynamics. Progress in Aerospace Sciences, 2001, vol. 37, pp. 669–767.
9. Airworthiness directives. Boeing aircraft. Federal Register, 2016, vol. 81, no. 78, pp. 23581–23586.
10. Mason J., Strapp J., Chow P. The Ice Particle Threat to Engines in Flight. 45th Aerospace sciences meeting and exhibit. Reno, Nevada, 2006, p. 206.
11. Kamel M. Al-Khalil, Theo G. Keith, Kenneth J. De Witt. Icing calculations on a typical commercial jet engine inlet nacelle. Journal of Aircraft, 1997, vol. 34, no. 1, pp. 87.
12. Zheng M., Guo Z., Dong W., Guo X. Experimental investigation on ice accretion on a rotating aero-engine spinner with hydrophobic coating. International Journal of Heat and Mass Transfer, 2019, vol. 136, pp. 404–414.
13. Palacios A.M., Palacios J.L., Sánchez L. Eliciting a human understandable model of ice adhesion strength for rotor blade leading edge materials from uncertain experimental data. Expert Systems with Applications, 2012, vol. 39, pp. 10212–10225.
14. Flight in icing conditions: AC 91-74B – Pilot Guide. 2015. Available at: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentid/1028388 (accessed: March 19, 2022).
15. Zhang Z., Liu X. Control of ice nucleation: freezing and antifreeze strategies. Chemical Society Reviews, 2018, vol. 47, pp. 7116–39.
16. Li Q., Guo Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. Journal of Materials Chemistry, 2018, vol. 6, pp. 13549–13581.
17. Zheng H.K., Chang S.N., Zhao Y.Y. Anti-icing and icephobic mechanism and applications of superhydrophobic/ultra slippery surface. Progress in Chemistry, 2017, vol. 29 (1), pp. 102–118.
18. Tarasova P.N., Sleptsova S.A., Laukkanen S., Dyakonov A.A. Sealing materials based on polytetrafluo-roethylene for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 05. Available at: http://www.journal.viam.ru (ассеssed: March 24, 2022). DOI: 10.18577/2713-0193-2022-0-1-51-64.
19. Solovyanchik L.V., Pykhtin A.A., Vednikova V.S., Kondrashov S.V., Pavlyuk B.F. Investigation of the effect of silicon dioxide nanoparticles on the surface properties of organosilicon coatings. Rossiyskiye nanotekhnologii, 2019, vol. 14, pp. 31–36.
20. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
21. Buznik V.M., Kablov E.N. Materials for the development of the Arctic and cold territories. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 21.
22. Yang S., Xia Q., Zhu L. et al. Research on the icephobic properties of fluoropolymer-based materials. Applied Surface Science, 2011, vol. 257, pp. 4956–4962.
23. Golovin K., Kobaku S.P.R., Lee D.H. et al. Designing durable icephobic surfaces. Science Advances, 2016, vol. 2, pp. 1–12.
24. Hakimian A., Nazifi S., Ghasemi H. Ice Adhesion: Mechanism, Measurement and Mitigation. Metrology of Ice Adhesion. Scrivener Publishing LLC, 2020, pp. 217–236. DOI: 10.1002/9781119640523.ch8.
25. Rönneberg S., He J., Zhang Z. The need for standards in low ice adhesion surface research: a critical review. Journal of Adhesion Science and Technology, 2019, vol. 34 (3), pp. 319–347.
26. Bleszynski M., Clark E. Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review October. Standards, 2021, vol. 1 (2), pp. 117–133.
27. Parent O., Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Regions Science and Technology, 2011, vol. 65, pp. 88–96.
28. Sojoudi H., Wang M., Boscher N.D. et al. Durable and scalable icephobic surfaces: similarity and distinctions from superhydrophobic surfaces. Soft Matter, 2016, vol. 12, pp. 1938–1963.
29. Fortin G., Laforte J., Ilinca A. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. International Journal of Thermal Sciences, 2006, vol. 45, pp. 595–606.
30. Amendola A., Mingione G. On the problem of icing for modern civil aircraft. Air & Space Europe, 2001, vol. 3 (3/4), pp. 214–217.
31. Zhang C., Liu H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing. Physics of Fluids, 2016, vol. 28, pp. 062107.
32. Lian Y., Guo Y. Investigation of the splashing phenomenon of large droplets for aviation safety. SAE Technical Paper, 2015, pp. 2015-01-2100.
33. Cao Y., Tan W., Wu Z. Aircraft icing: An ongoing threat to aviation safety. Aerospace Science and Technology, 2018, vol. 75, pp. 353–385.
34. Isaac G.A., Cober S.G., Strapp J.W. et al. Recent Canadian research on aircraft in-flight icing. National Research Council Canada, 2001, vol. 47, pp. 213–221.
35. Zhu D., Zhao C., Liu H. New ice accretion model for aircraft icing based on phase-field method. Applied Sciences, 2021, vol. 11, p. 5693.
36. Wang Y., Dandekar R., Bustos N. et al. Universal Rim Thickness in Unsteady Sheet Fragmentation. Physical review letters, 2018, vol. 120, p. 204503.
37. Tropea C., Schremb M., Roisman I.V. Physics of SLD Impact and Solidification. 7th European Conference for Aeronautics and Aerospace Sciences. Milan, 2017, p. 512.
38. Wang Y., Cheng Y. New perspectives on the droplet freezing nucleation and early crystal growth mechanisms. International Journal of Heat and Mass Transfer, 2019, vol. 40, pp. 1023–1028.
39. Sun M., Kong W., Wang F., Liu H. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution. International Journal of Heat and Mass Transfer, 2019, vol. 142, p. 118431.
40. Xu Q., Li Z., Wang J., Wang R. Characteristics of single droplet impact on cold plate surfaces. Drying Technology, 2012, vol. 30 (15), pp. 1756–1762.
41. Huang L., Liu Z., Liu Y. Effect of contact angle on water droplet freezing process on a cold flat surface. Experimental Thermal and Fluid Science, 2012, vol. 40, pp. 74–80.
42. Posner R., Santa M., Grundmeier G. Wet- and corrosive de-adhesion processes of water-borne epoxy film coated steel. Journal of The Electrochemical Society, 2011, vol. 158, pp. C29–C35.
43. Sun J., Gong J., Li G. A lattice Boltzmann model for solidification of water droplet on cold flat plate. International Journal of Refrigeration, 2015, vol. 59, pp. 53–64.
44. Chaudhary G., Li R. Freezing of water droplets on solid surfaces: An experimental and numerical study. Experimental Thermal and Fluid Science, 2014, vol. 57, pp. 86–93.
45. Zhang X., Wu X., Min J. Freezing and melting of a sessile water droplet on a horizontal cold plate. Experimental Thermal and Fluid Science, 2017, vol. 88, pp. 1–7.
46. Lei G.-L., Dong W., Zheng M. et al. Numerical investigation on heat transfer and melting process of ice with different porosities. International Journal of Heat and Mass Transfer, 2017, vol. 107, pp. 934–944.
47. Ryzhkin I.A., Petrenko V.F. Physical mechanisms responsible for ice adhesion. Journal of Physical Chemistry, 1997, vol. 101, pp. 6267–6270.
48. Wilen L.A., Wettlaufer J.S., Elbaum M., Schick M. Dispersion-force effects in interfacial premelting of ice. Physical review, 1995, vol. 52, pp. 12426–12433.
49. Hao P., Lv C., Zhang X. Freezing of sessile water droplets on surfaces with various roughness and wettability. Applied Physics Letters, 2014, vol. 104 (16), p. 161609.
50. Pervier M.L.A., Lerma L.G., Moncholi P.M., Hammond D.W. A new test apparatus to measure the adhesive shear strength of impact ice on titanium 6Al–4V alloy. Engineering Fracture Mechanics, 2019, vol. 214, pp. 212–222.
51. Attarzadeh R., Dolatabadi A. Icephobic performance of superhydrophobic coatings: A numerical analysis. International Journal of Heat and Mass Transfer, 2019, vol. 136, pp. 1327–1337.
52. Wang C., Chang S., Leng M. et al. A two-dimensional splashing model for investigating impingement characteristics of supercooled large droplets. International Journal of Multiphase Flow, 2015, vol. 12, pp. 2–51.
53. Zhang X., Min J., Wu X. Model for aircraft icing with consideration of property-variable rime ice. International Journal of Heat and Mass Transfer, 2016, vol. 97, pp. 185–190.
54. Zhang X., Wu X., Min J. Aircraft icing model considering both rime ice property variability and runback water effect. International Journal of Heat and Mass Transfer, 2017, vol. 104, pp. 510–516.
55. Zhang X., Liu X., Wu X., Min J. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. International Journal of Heat and Mass Transfer, 2020, vol. 158, p. 119997.
56. Jin Z., Sui D., Yang Z. The impact, freezing, and melting processes of a water droplet on an inclined cold surface. International Journal of Heat and Mass Transfer, 2015, vol. 90, pp. 439–453.
57. Meuler A.J., Smith J.D., Varanasi K.K. et al. Relationships between Water Wettability and Ice Adhesion. ACS Applied Materials & Interfaces, 2010, vol. 2 (11), pp. 3100–3110.
58. Tong W., Xiong D., Wang N. et al. Mechanically robust superhydrophobic coating for aeronautical composite against ice accretion and ice adhesion. Composites. Part B: Engineering, 2019, p. 107267.
59. Sivakumar G., Jackson J., Ceylan H., Sundararajan S. Effect of plasticizer on the wear behavior and ice adhesion of elastomeric coatings. Wear, 2019, vol. 426–427, рart A, pp. 212–218.
60. Wang C., Zhang W., Siva A. et al. Laboratory test for ice adhesion strength using commercial instrumentation. Langmuir, 2014, vol. 30, pp. 540–547.
61. Susoff M., Siegmann K., Pfaffenroth C., Hirayama M. Evaluation of icephobic coatings – Screening of different coatings and influence of roughness. Applied Surface Science, 2013, vol. 282, pp. 870–879.
62. Bharathidasan T., Kumar S.V., Bobji M. et al. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Applied Surface Science, 2014, vol. 314, pp. 241–250.
63. Douglass R.G., Palacios J.L. Effects of strain rate variation on the shear adhesion strength of impact ice. Cold Regions Science and Technology, 2021, vol. 181, p. 103168.
64. Höhne S., Hoch C., Böhm C. et al. A new measuring system for the determination of the ice adhesion strength on smooth surfaces. Langmuir, 2020, vol. 36 (16), pp. 4465–4476.
65. Douglas R.G., Palacios J., Schneeberger G. Design, fabrication, calibration, and testing of a centrifugal ice adhesion test rig with strain rate control capability. Proceedings of the 2018 Atmospheric and Space Environments Conference. Atlanta, 2018, p. 3342.
66. Zhang Z., Hu H., Bai X., Hu H. An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation. Aerospace Science and Technology, 2021, vol. 119, p. 107090.
67. Shah H., Moncholi E.P., Hong-hu J., Hammond D.W. Determination of ice adhesion and ice properties in order to determine ice shedding procedure of coating systems. 14th International Workshop on Atmospheric Icing of Structures. Chongqing, 2011, pp. 1–6.
68. Palacios A.M., Palacios J.L., Sánchez L. Eliciting a human understandable model of ice adhesion strength for rotor blade leading edge materials from uncertain experimental data. Expert Systems with Applications, 2012, vol. 39 (11), pp. 10212–10225.
69. Palacio J.L., Han Y., Brouwers E.W., Smith E.C. Icing environment rotor test stand liquidwater content measurement procedures and ice shape correlation. Journal of the American Helicopter Society, 2002, vol. 57 (2), p. 22006.
70. Zheng Q., Lv J., Zhang J., Feng J. Fabrication and application of icephobic silicone coatings on epoxy substrate. Progress in Organic Coatings, 2021, vol. 161, p. 106483.
71. Carreño F., Gude M.R., Calvo S. et al. Design and development of icephobic coatings based on sol-gel/modified polyurethane paints. Materials Today Communications, 2020, vol. 25, pp. 101616.
72. Kondrashov S.V., Pykhtin A.A., Solovyanchik L.V., Bolshakov V.A., Pavlyuk B.Ph., Badamshina E.R., Dzhalmukhanova A.S., Karpov S.V. Research of dependence of adhesion of ice to polyurethane coatings from their physicomechanical properties. Trudy VIAM, 2019, no. 3 (75), paper no. 10. Available at: http://www.viam-works.ru (accessed: March 19, 2022). DOI: 10.18577/2307-6046-2019-0-3-87-95.
73. Drinberg A.S., Tarasova I.N., Nedvedsky G.R. Paintwork materials with reduced adhesion to ice. LKM i ikh primenenie, 2021, no. 3, pp. 16–19.
74. Mirshahidi K., Alasvand Zarasvand K., Luo W., Golovin K. A high throughput tensile ice adhesion measurement system. HardwareX, 2020, vol. 8, p. e00146.
75. Boinovich L.B., Emelyanenko K.A., Emelyanenko A.M. Superhydrophobic versus SLIPS: Temperature dependence and the stability of ice adhesion strength. Journal of Colloid and Interface Science, 2021, vol. 606, pp. 556–566.
76. Schneeberger G.M., Kozlowski R., Wolfe D., Palacios J.L. Development of a durable ice protective coating for use on rotorcraft. Cold Regions Science and Technology, 2020, vol. 193, p. 103427.
77. Yang S., Xia Q., Zhu L. Research on the icephobic properties of fluoropolymer-based materials. Applied Surface Science, 2011, vol. 257 (11), pp. 4956–4962.
78. Rönneberg S., Zhuo Y., Laforte C. et al. Interlaboratory Study of Ice Adhesion Using Different Techniques. Coatings, 2019, vol. 9 (10), p. 678.
79. Woll T.R. Ice Adhesion analysis of severely aged PDMS rubbers: M.S. Thesis. University of Denver, 2018, 79 p. Available at: https://digitalcommons.du.edu/etd/1504/ (accessed: March 19, 2022).
Heat-resistant alloys and steels
Vostrikov A.V., Sevalnev G.S., Bannykh I.O., Vlasov I.I., Romanenko D.N., Dulnev K.V. Microstructure, hardness and tribotechnical properties evolution of economically alloyed high nitrogen martensitic steel
Mazalov I.S., Volkov A.M., Lomberg B.S., Chabina E.B. Microstructure and mechanical properties of Ni-base superalloy VZh172, produced from granules by method of hot isostatic pressing
Light-metal alloys
Panteleev M.D., Sviridov A.V., Skupov A.A. Welding features of heat- resistant aluminum alloys, alloy V-1213 and 1151
Pavlova T.V., Kashapov O.S., Kalashnikov V.S., Kondrateva A.R. Industrial development of manufacturing large-size forgings from heat-resistant titanium alloy VT41 for welded assemblies of aircraft products
Polymer materials
Chaykun A.M., Yumashev O.B., Sergeev A.V. Features of the development of the formula of frost-resistant ozone-resistant rubber based on EPDM rubber
Sarychev I.A., Butuzov A.V., Serkova E.A., Dolgova E.V. Photocurable acrylate compositions (review)
Composite materials
Barannikov A.A., Sudyin Yu.I., Veshkin E.A., Satdinov R.A. Application of fiberglass brand VPS-53K, processed atmospheric pressure plasma, in the manufacture of aircraft products
Zhabin A.N., Nyafkin A.N. Fibrous metal composite materials based on copper (review)
Material tests
Sidorov D.V., Kirilin A.D., Schavnev А.А., Melentev А.А., Flotskiy А.А., Grunin А.А. Transition state chemical reaction producing silaethylene from methylsilane
Movenko D.A., Zajcev D.V., Medvedev P.N. Experimental study of polycrystalline ceramic material based on lanthanum hexaboride
Volniy O.S., Barbotko S.L., Venediktova M.A., Lutsenko A.N. The methodological features of testing on fire resistance the samples with intumescent coatings
MarchenkoS.A., ZheleznyakV.G., Kuzne-tsovaV.A.Iceadhesion. Methods of determination (review)