Articles
The paper presents the results of studies aimed at creating a new high-temperature and heat-resistant matrix based on intermetallic Ni3Al and NiAl. Solving the problem of creating new high-temperature materials is an urgent task for modern aviation gas turbine production. The analysis of the state diagrams made it possible to choose Ni3Al and NiAl intermetallic compounds as a material for research.
The strength, plasticity, density, heat resistance were evaluated on the samples of the basic compositions obtained under different crystallization conditions selected for the study. It is shown that high-gradient directional crystallization makes it possible to form a directed dendritic structure in the samples. The conducted microstructural and x-ray phase analysis allowed to establish that there are two main phases of Ni3Al and NiAl in the samples.
The studied samples after directional crystallization have higher strength and plasticity. The results show that intermetallic alloys of the Ni3Al-NiAl system can serve as a matrix in the creation of new high-temperature heat-resistant materials.
2. Lityye lopatki gazoturbinnykh dvigateley: splavy, tekhnologii, pokrytiya / pod obshch. red. E.N. Kablov. 2-ye izd. [Cast blades of gas turbine engines: alloys, technologies, coatings / gen. ed. E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
3. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials - there is no future] // Metallurg. 2013. №12. S. 4–8.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye nikelevyye splavy dlya perspektivnykh aviatsionnykh GTD [Casting heat-resistant nickel alloys for promising aircraft GTE] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
5. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
6. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
7. Walston S., Cetel A., MacKay R. et. al. Dreshfield R. Joint development of a fourth generation single crystal superalloys // Superalloys-2004. Minerals, Metals & Materials Society, 2004. P. 15–24.
8. Koizumi Y., Kobayashi T., Yokokawa T. et al. Development of next-generation Ni-base single crystal superalloys // Superalloys-2004. Minerals, Metals & Materials Society, 2004. P. 35–43.
9. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
10. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
11. Kablov E.N., Buntushkin V.A., Bazyleva O.A. Malolegirovannyye legkiye zharoprochnyye liteynyye splavy na osnove intermetallida Ni3Al [Low-alloy lightweight heat-resistant casting alloys based on Ni3Al intermetallic compound] // Metally. RAN. 1999. №1. S. 56–65.
12. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
13. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnyh lopatok perspektivnyh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
14. Hubert-Protopopescu M., Hubert H. Aluminium-cobalt-nickel // Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams. Weinheim – N.Y.: VCH Cop., 1991. P. 234–244.
15. Kornilov I.I. Fiziko-khimicheskiye osnovy zharoprochnosti splavov [Physical and chemical bases of heat resistance of alloys]. M.: Izd-vo AN SSSR, 1961. 516 s.
16. Kornilov I.I., Mints R.S. Issledovaniye sistemy Ni–Cr–NiAl [Investigation of the Ni–Cr–NiAl System] // Neorganicheskaya khimiya 1958. T. III. Vyp. 5. S. 699–707.
17. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizatsiya zharoprochnykh splavov s povyshennym temperaturnym gradiyentom [Directional crystallization of superalloys with a high temperature gradient] // MiTOM. 2002. №7. S. 20–23.
Ni-base superalloy powder obtained either by atomizing or plasma rotate electrode process (PREP) are used for the production of disk billets for jet-engines. Powder particles produced via these methods differ by some parameters. The difference in presence of satellites and volume of fine fractions leads to difference in flowability and tap density which is essential to filling complex-shape cans. These features basically affect on performance of the process, but not on the structure and material properties. But occurrence closed argon porosity in atomizing powder allows to make solution heat treatment only at temperatures below solvus. Also differing size of MeC carbide particles involves to development of the special ageing regimes for material produced from accounted powder types. However, the structure and mechanical properties of the compacted material from these powder types would be different now. The mentioned differences challenge under development optimal technological routes of the production of disk billets from powder. For example billets from atomizing powder are desirable to produce by hot isostatic pressing (HIP) with subsequent hot or isothermal deformation. PREP powder could be used for direct HIP technology.
2. Beresnev A.G., Logunov A.V., Logacheva A.I. Problemy povysheniya kachestva zharoprochnykh splavov, poluchayemykh metodom metallurgii granul [Problems of improving the quality of high-temperature alloys obtained by the method of granule metallurgy] // Vestnik MAI, 2008. T. 15. №3. S.83–89.
3. Koshelev V.Ya., Garibov G.S., Sukhov D.I. Osnovnyye zakonomernosti protsessa polucheniya granul zharoprochnykh nikelevykh splavov metodom plazmennogo raspyleniya vrashchayushcheysya zagotovki [The main regularities of the process of obtaining granules of heat-resistant nickel alloys by the method of plasma spraying of a rotating billet] // Tekhnologiya legkikh splavov. 2015. №3. S. 97–103.
4. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasyev-Khodykin A.N. Issledovaniye melkodispersnykh poroshkov pripoyev dlya diffuzionnoy vakuumnoy payki, poluchennykh metodom atomizatsii rasplava [Study of fine solder powders for diffusion vacuum soldering, obtained by melt atomization method] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye, 2011. №SP2. S.79–87.
5. Sims Ch.T., Stoloff N.S., Khagel U.K. Supersplavy II: Zharoprochnyye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok v 2 kn. Per. s angl. / pod red. R.E. Shalina [Superalloys II: Heat-resistant materials for aerospace and industrial power plants in 2 books / Trans. from English. / ed. R.E. Shalin]. M.: Metallurgiya, 1995. Kn. 1. 384 s.
6. Reed R.C. The Superalloys Fundamentals and Applications [The Superalloys Fundamentals and Applications]. UK, Cambridge: Cambridge University Press, 2006. 372 p.
7. GOST R 52802–2007. Splavy nikelevyye zharoprochnyye granuliruyemyye. Marki [State Standard R 52802–2007. Nickel heat-resistant granular alloys. Stamps]. M.: Standartinform, 2006. 10 s.
8. Zhang G.Q. Research and Development of High Temperature Structural Materials for Aero-Engine Application // Acta Metallurgica sinica. August 2005. Vol. 18. No. 4. P. 443–452.
9. Vostrikov A.V., Suhov D.I. Proizvodstvo granul metodom PREP dlja additivnyh tehnologij – tekushhij status i perspektivy razvitija [The production of powders by PREP method for addictive manufacturing – current situation and development prospects] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 03. Available at: http://www.viam-works.ru (accessed: November 02, 2018). DOI: 10.18577/2307-6046-2016-0-8-3-3.
10. Logacheva A.I. Kompleksnaya tekhnologiya izgotovleniya tonkostennykh elementov metodom poroshkovoy metallurgii dlya proizvodstva detaley iz konstruktsionnykh i funktsionalnykh splavov na osnove titana i nikelya dlya izdeliy raketno-kosmicheskoy tekhniki: thesis, Doct. Sc. (Tech.). Korolev, 2016. 407 s.
11. Koshelev V.Ya., Khodkin V.I., Musiyenko V.T. Issledovaniye svoystv granul zharoprochnykh nikelevykh splavov, poluchennykh razlichnymi metodami raspyleniya [Investigation of the properties of granules of heat-resistant nickel alloys obtained by various sputtering methods] // Metallovedeniye i obrabotka titanovykh i zharoprochnykh splavov, 1991. S. 333–340.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (November 02, 2018). DOI: 10.18577/2307-6046-2015-0-2-2-2.
14. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metalloporoshkovyye kompozitsii zharoprochnogo splava EP648 proizvodstva FGUP «VIAM» GNTS RF v tekhnologiyakh selektivnogo lazernogo splavleniya, lazernoy gazoporoshkovoy naplavki i vysokotochnogo litya polimerov, napolnennykh metallicheskimi poroshkami [Metal powder compositions of heat-resistant alloy EP648 produced by FGUP «VIAM» of the State Research Center of the Russian Federation in technologies of selective laser fusion, laser gas-powder surfacing and high-precision casting of polymers filled with metal powders] // Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2016. №9 (678). S. 62–80.
15. Sposob polucheniya metallicheskogo poroshka: pat. 2492028 Ros Federatsiya [A method of obtaining a metal powder: pat. 2492028 Rus. Federation]; zayavl. 02.07.12; opubl. 10.09.13, Byul. №25.
16. Bakradze M.M., Volkov A.M., Shestakova A.A., Letnikov M.N., Bubnov M.V. Osobennosti izmeneniya razmera zeren v diskovom granuliruyemom zharoprochnom nikelevom splave, proizvedennom po razlichnym tekhnologiyam // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2 (62). St. 01. URL: http://www.viam-works.ru (data obrashcheniya 02.11.2018 g.). DOI: 10.18577/2307-6046-2018-0-2-1-1.
17. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
18. Rice D., Kantzos P., Hann B., Neumann J., Helmink R. P/M alloy 10 – a 700°C capable nickel-based superalloy for turbine disk applications // Superalloys 2008. USA: TMS, 2008. P. 139–147.
19. Materials Needs and R&D stratergy for future military aerospace propulsion systems. Consensus Study Report. USA: Washington, 2011.
Currently, in the modern aviation industry and engine building, heat-resistant Nickel alloys are widely used, which experience huge thermal and power loads during operation. However, the manufacture of parts made of these materials, the metal part is removed with the use of different machine tools – milling, drilling, etc. These losses lead to waste of valuable alloy material, high cost of production, the emergence of a large number of waste. To solve this problem is possible with the use of additive technologies that allow to manufacture components and parts of any complex shape, reduce the time of establishing new production, reduce the cost of design and start-up.
An extremely important component in the success of the use of additive technologies is the quality of the initial powders of alloys, especially their chemical composition – the content of harmful impurities such as sulfur and carbon.
Classical methods of analysis are not applicable to the determination of sulfur and carbon because of their high complexity and time-consuming. One of the most successfully used methods for determining sulfur and carbon in metals and alloys is the combustion of a gas analyzer in an induction furnace in an oxygen current, followed by detection in an infrared cell of the spectrometer. When using this method of analysis, it was necessary to choose a catalyst, a substance that accelerates and supports the combustion of metals in the furnace of the device, and also choose the mass of the sample sample.
Analysis was done of the powders of the three alloys ЭП648, ВПр50 and ВЖ159. It was found that the weight of the sample does not affect the results of the determination of oxygen and nitrogen, but to obtain the maximum analytical signal of the sample should be the greatest. The best results
2. Kablov E.N., Titov V.I., Gundobin N.V., Karpov Y.A., Karfidova K.E., Kudryavtseva G.S. Rhenium and Ruthenium Determination in Nanostructured High_Temperature Alloys for Aerospace Engineering // Inorganic materials. 2015. Vol. 51. No. 14. P. 1363–1369.
3. Buyakina A.A., Letnikov M.N., Efimochkin I.Yu. Vlyainiye parametrov mekhanicheskogo legirovaniya na morfologiyu chastits metallokeramicheskoy poroshkovoy kompozitsii VZh175+TiCN [The influence of the mechanical alloying parameters on the particles morphology of the metalceramiс powder composition made from VZh175 alloy with TiCN nanopowder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9. St. 04. Available at: http://www.viam-works.ru (accessed October 21, 2018). DOI: 10.18557/2307-6046-2017-0-9-4-4.
4. Evgenov A.G., Shcherbakov S.I., Rogalev A.M. Oprobovaniye poroshkov zharoprochnykh splavov EP718 i EP648 proizvodstva FGUP «VIAM» dlya remonta detaley GTD metodom lazernoy gazoporoshkovoy naplavki [Testing EP718 and EP648 superalloys powders produced by FSUE «VIAM» for repair of gas turbine engine components using laser-powder braze] // Aviacionnyye materialy i tehnologii. 2016. №S1 (43). S. 16–23. DOI: 10.18577/2071-9140-2016-0-S1-16-23.
5. Shestakova E.A., Shaykhutdinova E.F., Yanbayev R.M. Tekhnologii selektivnogo spekaniya dlya aviastroyeniya [Technologies for selective sintering for aircraft industry] // Polzunovskiy almanakh. 2014. №2. S. 21–24.
6. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for Aviadvigatel] // Permskiye aviatsionnyye dvigateli: inform. byul. 2014. №S. S. 43–47.
7. Volosova M.A., Okunkova A.A. Puti optimizatsii protsessa selektivnogo lazernogo plavleniya pri pomoshchi strategii obrabotki lazernym luchom [Ways to optimize the process of selective laser melting using a laser beam processing strategy] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (2). S. 587–591.
8. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
9. Tsao G., Van I. Nanostruktury i nanomaterialy: sintez, svoystva i primeneniye [Nanostructures and nanomaterials: synthesis, properties and applications]. M.: Nauchnyy mir, 2012. 515 s.
10. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 05, 2018). DOI: 10.18577/2307-6046-2014-0-5-4-4.
11. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Otsenka sootvetstviya novykh materialov s ispolzovaniyem SO i MI vysokogo urovnya [Conformity assessment of new materials using high-grade CO and MI] // Kompetentnost. 2017. №2. C. 40–46.
12. GOST 6689.18–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya sery [State Standard 6689.18–92. Nickel, nickel and copper-nickel alloys. Methods for the determination of sulfur]. M.: Gosstandart, 1992. S. 4.
13. GOST 6689.10–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya ugleroda [State Standard 6689.10–92. Nickel, nickel and copper-nickel alloys. Methods for determining carbon]. M.: Gosstandart, 1992. S. 4.
14. GOST 24018.7–91. Splavy zharoprochnyye na nikelevoy osnove. Metody opredeleniya ugleroda [State Standard 24018.7–91. Alloys heat-resistant on a nickel basis. Methods for determining carbon]. M.: Izd-vo standartov, 1991. S. 3.
15. GOST 24018.8–91. Splavy zharoprochnyye na nikelevoy osnove. Metody opredeleniya sery [State Standard 24018.8–91. Alloys heat-resistant on a nickel basis. Methods for the determination of sulfur]. M.: Izd-vo standartov, 1991. S. 3.
16. ASTME E1019-11. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. ASTM International, 2011. P. 24.
17. Alekseev A.V., Rastegaeva G.Yu., Pakhomkina T.N. Opyt opredeleniya ugleroda, sery, kisloroda i azota v splavakh na osnove niobiya na gazoanalizatorakh firmy Leco [Experience of the determination of carbon, sulfur, oxygen and nitrogen in alloys based on niobium on the gas-analyzers of the Leco firm] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1. St. 03. URL: http://www.viam-works.ru (accessed: July 05, 2018). DOI: 10.18557/2307-6046-2018-0-1-3-3.
The development and creation of new models of aircraft constantly puts forward requirements for the improvement of structural materials used in aircraft construction. Promising brands of organic glass, planned to be used as aviation glazing, having the required characteristics at the time of installation on the product, often change the latter during operation, which necessitates a comprehensive study of the behavior of these materials under climatic influences, as one of the main components of operational factors.
The influence of atmospheric factors on the properties of polymethylmethacrylate and copolymer organic glasses after aging in the conditions of GCKI, Arizona (USA), Florida (USA) is investigated. The assessment of physical and mechanical, optical characteristics, "silver resistance", softening temperature of organic glasses after aging in different climatic zones. It is shown that polymethylmethacrylate Plexiglas of linear structure of CO-120A and AO-120 and partially crosslinked structure of CO-120C have high weather resistance, in comparison with copolymer Plexiglas of VOS-1 and VOS-2. Polymethylmethacrylate Plexiglas CO-120, AO-120 and CO-120C in an oriented and undirected state have high weather resistance in aging in conditions of GCKI, Arizona (USA), Florida (USA), and serial Plexiglas CO-120 and AO-120 also in the previous aging in Batumi, Cuba. The nature of reduction of physical-mechanical and optical properties of heat-resistant copolymer organic glasses VOS-1 and VOS-2 is similar to the behavior previously developed a serial of heat-resistant organic glasses (2-55, T2-55, E-2). When applying the heat-resistant copolymer organic glasses VOS-1 VOS-2 it is necessary to consider their tendency to yellowing, and photodegradation of the surface layer and to set the resource in accordance with the terms of the use of certain products, providing for the Shrouding of glazi
2. Gudimov M.M., Sentyurin Ye.G., Trigub T.S. Serebrostoykost ostekleniya samoletov iz organicheskogo stekla v protsesse yego proizvodstva i ekspluatatsii [Silver resistance of glazing of airplanes made of organic glass in the process of its production and operation] // Aviatsionnaya promyshlennost. 1995. №9–10. S. 55–60.
3. Gudimov M.M. Treshchiny serebra na organicheskom stekle [Cracks of silver on organic glass]. M.: TSIPKK AP, 1997. 260 s.
4. Gudimov M.M., Perov B.V. Organicheskoye steklo [Organic glass]. M.: Khimiya, 1981. 215 s.
5. Sentyurin E.G., Mekalina I.V., Ajzatulina M.K., Isaenkova Yu.A. Istoriya sozdaniya materialov samoletnogo ostekleniya i polimernyh materialov so spetsialnymi svojstvami (k 75-letiyu laboratorii polimernyh materialov so spetsial'nymi svojstvami) [The history of aircraft materials of glass and polymer materials with special properties (To the 75th anniversary Laboratory of polymer materials with special properties)] // Aviatsionnye materialy i tekhnologii. 2017. №3 (48). S. 81–86. DOI: 10.18577/2071-9140-2017-0-3-81-86.
6. Pavlyuk B.F. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
7. Sentyurin E.G., Mekalina I.V., Ayzatulina M.K., Bogatov V.A. Akrilatnyye vysokotemperaturnyye organicheskiye stekla. Opyt primeneniya. Perspektivy [Acrylate high-temperature organic glass. Experience of application. Perspectives] // Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya. 2015. T. 58. №8. S. 22–24.
8. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
9. Lutsenko A.N., Odintsev I.N., Grinevich A.V. i dr. Issledovanie protsessa deformatsii materiala optiko-korrelyatsionnymi metodami [Study of material deformation by optical-correlation methods] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 70–86. DOI: 10.18577/2071-9140-2014-0-s4-70-86.
10. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-s4-50-54.
11. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
12. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of a new generation of materials for complex technical systems] // Tez. dokl. KHKH Mendeleyevskogo s"yezda po obshchey i prikladnoy khimii. Yekaterinburg: UrO RAN, 2016. S. 25–26.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Akolzin S.V., Frolkov A.I. Vosstanovleniye rabotosposobnosti teplostoykogo aviatsionnogo ostekleniya pri remonte i v ekspluatatsii [Restoration of heat-resistant aviation glazing during repair and operation] // Aviatsionnaya promyshlennost. 2014. №1. S. 41–44.
Currently, the development of new generation products uses a huge number of methods due to the expansion of the technical capabilities of research equipment. The study of rheological properties makes it possible to determine not only technological properties during polymer processing, structural and mechanical changes inside the material when exposed to the external environment, but also makes it possible to evaluate the future behavior of the material and its area of application at the design and component alignment stage. During the processing of polymeric materials, they are deformed, which is accompanied by structural transformations and a change in their rheological properties. Polymer materials (including compounds, blends and composite materials) are essentially thermoplastics, and the most important part of the process takes place in the molten state, they are characterized by rather complex behavior that needs a good description in order to understand and further optimize the processes.
This paper presents the results of rheological tests at the initial stages of the development of polymeric materials of various nature on a rotary rheometer AR2000ex. This device, due to its design features, allows to solve a wide range of tasks, makes it possible to work with liquids with low viscosity, polymer melts, materials with high hardness. Based on the results of studies of silicone binder, low molecular weight polytetrafluoroethylene (PTFE) with hydrophobic properties, as well as model compositions for the manufacture of melted models of gas turbine engine blades (GTE), the author shows the effect of various physical and technological factors (structure, temperature, phase transitions, nature matrix, filler) on the rheological behavior of the polymer material
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsional'noy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Zelenskiy E.S., Kuperman A.M., Gorbatkina Yu.A. i dr. Armirovannyye plastiki – sovremennyye konstruktsionnyye materialy [Reinforced plastics - modern construction materials] // Rossiyskiy khimicheskiy zhurnal. 2001. T. XLV. №2. S. 56–74.
4. Mamunya Ye., Lurzhenko M. Advances in progressive thermoplastic polymers, perspectives and application // Technopress. 2012. 425 р.
5. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Issledovaniye epoksidno-polisul'fonovykh polimernykh sistem kak osnovy vysokoprochnykh kleyev aviatsionnogo naznacheniya [The study of epoxy-polysulfone polymer systems as the basis of high-strength adhesives for aviation purposes] // Klei. Germetiki. Tekhnologii. 2017. №3. S.7–12.
6. Zarubina A.Yu., Kozhevnikov V.S., Trofimov A.N. i dr. Reologicheskiye svoystva teplostoykikh svyazuyushchikh na osnove polifunktsionalnogo epoksidnogo oligomera [Rheological properties of heat-resistant binders based on polyfunctional epoxy oligomer] // Vestnik MITKHT. 2013. T. 8. №3. S. 63–66.
7. Muranov A.N., Malysheva G.V., Nelyub V.A. i dr. Issledovaniye svoystv polimernykh kompozitsionnykh materialov na osnove geterogennoy matritsy [Investigation of the Properties of Polymer Composite Materials Based on a Heterogeneous Matrix] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №4. S. 2–6.
8. Volkov A.S., Kryuchkov I.A., Kerber M.L. i dr. Reokineticheskiye svoystva svyazuyushchego na osnove bifunktsionalnogo epoksidnogo oligomera v smesi s tetra- i poliglitsidilovymi modifikatorami [Reokinetic properties of a binder based on a bifunctional epoxy oligomer mixed with tetra- and polyglycidyl modifiers] // Uspekhi v khimii i khimicheskoy tekhnologii. 2007. T. XXI. №5 (73). S. 51–55.
9. Guseva M.A. Cianovye efiry – perspektivnye termoreaktivnye svyazujushhie (obzor) [Cyanic esters are prospective thermosetting binders (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 45–50.
10. Merkulova Yu.I., Muhametov R.R., Dolgova E.V., Ahmadieva K.R. Policianuratnoe svyazuyushhee dlya polucheniya kompozitov propitkoj pod davleniem [Polycyanurates binding for composites production by impregnation under pressure] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11 (47). St. 05. Available at: http://www.viam-works.ru (accessed: November 5, 2018). DOI: 10.18577/2307-6046-2016-0-11-5-5.
11. Kopitsyna M.N., Bessonov I.V., Kotomin S.V. Treshchinostoykost epoksidnykh svyazuyushchikh, modifitsirovannykh termoplastichnym polisulfonom i furfurolatsetonovoy smoloy [Crack resistance of epoxy binders modified with thermoplastic polysulfone and furfurol-acetone resin] // Inzhenernyy zhurnal: nauka i innovatsii. 2016. №12. S. 1–9.
12. Guseva M.A. Besednov K.L., Khaskov M.A., Tkachuk A.I. Issledovaniye vliyaniya prirody epoksidnykh oligomerov na protsess sovmeshcheniya s termoplastichnymi modifikatorami [Study of the effect of the nature of epoxy oligomers on the process of combining with thermoplastic modifiers] // Mekhanika kompozitsionnykh materialov i konstruktsiy. 2017. T. 23. №4. S. 567–578.
13. Surikov P.V., Trofimov A.N., Kokhan E.I. i dr. Vliyaniye molekulyarnykh kharakteristik epoksidnykh oligomerov i ikh smesey na reologicheskiye svoystva [The influence of the molecular characteristics of epoxy oligomers and their mixtures on the rheological properties] // Plasticheskiye massy. 2009. №9. S. 3–7.
14. Babin A.N., Guseva M.A., Grebeneva T.A., Tkachuk A.I. Issledovanie reologicheskikh i strukturnykh kharakteristik epoksidnykh sviazuiushchikh, modifitsirovannykh poliizotsianatom [Study of the rheological and structural characteristics of the epoxy resins, modified by polyisocyanate] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 11. Available at: http://www.viam-works.ru (accessed: November 5, 2018). DOI: 10.18577/2307-6046-2016-0-1-90-98.
15. Melnikov D.A., Khaskov M.A., Guseva M.A., Antyufeeva N.V. K voprosu o razrabotke rezhimov pressovaniya sloistykh PKM na osnove prepregov [To the question of the development of pressing mode for laminated PCMs based on prepregs] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2. St. 09. URL: http://www.viam-works.ru (data obrashcheniya: 05.11.2018). DOI: 10.18577/2307-6046-2018-0-2-9-9.
16. Babin A.N., Guseva M.A. Reologicheskiy metod issledovaniya rastvorimosti komponentov v polimernykh kompozitsiyakh [Rheological method for studying the solubility of components in polymer compositions] // Vse materialy. Kommentarii k standartam, TU, sertifikatam. 2016. №4. S. 17–20.
17. Alentyev A.Yu., Yablokova M.Yu. Svyazuyushchiye dlya polimernykh kompozitsionnykh materialov: ucheb. posobiye [Binders for polymer composite materials: students guide]. M.: Izd-vo MGU, 2010. 69 s.
18. Mikhaylin A.Yu. Teplo-, termo- i ognestoykost' polimernykh materialov [Heat, heat and fire resistance of polymeric materials]. SPb.: Nauchnyye osnovy i tekhnologii, 2011. 416 s.
19. Kraev I.D., Popkov O.V., Shuldeshov E.M. i dr. Perspektivy ispolzovaniya kremniyorganicheskikh polimerov pri sozdanii sovremennykh materialov i pokrytiy razlichnykh naznacheniy [Prospects for the use of organosilicon elastomers in the development of modern polymer materials and coatings for various purposes] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12. St. 05. Available at: http://www.viam-works.ru (accessed: November 07, 2018). DOI: 10.18577/2307-6046-2017-0-12-5-5.
20. Davydova I.F., Kavun N.S. Plenochnye kremnijorganicheskie svyazuyushhie dlya stekloplastikov [Film silicon organosilicon resins for glassfibers] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 15–18. DOI: 10.18577/2071-9140-2014-0-s2-15-18.
21. Severs E.T. Reologiya polimerov [Polymer rheology]. M.: Khimiya, 1966. 198 c.
22. Tager A.A. Fiziko-khimiya polimerov [Physical chemistry of polymers]. M.: Khimiya, 1968. 545 c.
23. Kiryukhin D.P., Kichigina G.A., Buznik V.M. Telomery tetraftoretilena: radiatsionno-khimicheskiy sintez, svoystva i perspektiva ispolzovaniya [Telomeres of tetrafluoroethylene: radiation-chemical synthesis, properties and prospects of use] // Vysokomolekulyarnyye soyedineniya. Ser.: A. 2013. T. 55. №11. C. 1321–1332.
24. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
25. Ospennikova O.G. Issledovanie vliyaniya napolnitelej na svojstva i stabilnost modelnyh kompozicij, vybor optimalnyh sostavov [Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. №3. S. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
In recent years there have been a strong demand for ultra-high temperature ceramics (UHTCs) that can withstand extreme environments of high temperature, oxidation, stress, etc.
Reactive melt infiltration (RMI) of porous preforms is an effective approach to manufacture near-net shape components with complex geometries.
Tailoring of a preform pore structure, its reactivity with a melt can minimize the Si content.
The raw materials for manufacturing of initial porous samples were SiC and B4C powders, phenolic resin.
Processing route of high-temperature functionally graded ceramics development consists of raw materials inspection, powder grinding, pressing and polymerization, heat treatment, mechanical machining, reactive alloy infiltration, final mechanical machining.
To estimate the directions of possible reactions taking place during the RMI process, thermodynamic calculations were conducted by means of the software HSC Chemistry 5.
According to the thermodynamic calculations, forming of the HfB2 and SiC are supposed to be the most thermodynamically favorable reactions in SiC-B4C-C-HfSi2-Si system.
The thermodynamics calculations revealed and experimental data proved that Si-Hf(8,5at.%) melt can react with B4C and coke with the predominant formation of HfB2 и SiC at the peripheral region, SiC and B4C in the central region. Fully infiltrated SiC-HfB2-B4C-Si ceramic with homogeneous microstructure can be obtained at lower pressing.
It was shown that the SiC-HfB2-B4C-Si ceramics can be defined as a functionally graded material with low density and
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
3. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu. et al. Investigation of the oxidative resistance of high-temperature coating based on a SiC material under exposure to high-enthalpy flow // High Temperature. 2017. Vol. 55. No. 6. Р. 857–863.
4. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
5. Simonenko E.P., Sevastyanov D.V., Simonenko N.P., Sevastyanov V.G., Kuznetsov N.T. Promising ultra-high-temperature ceramic materials for aerospace applications // Russian Journal of Inorganic Chemistry. 2013. Vol. 58. No. 14. Р. 1669–1693.
6. Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering // Russian Journal of Applied Chemistry. 2015. Vol. 88. No. 3. Р. 386–393.
7. Sakharov K.A., Simonenko E.P., Simonenko N.P., Kablov E.N. et аl. Glycol-citrate synthesis of fine-grained oxides La2-xGdxZrO2O7 and preparation of corresponding ceramics using FAST/SPS process // Ceramics International. 2018. http://doi.org/10.1016/j.ceramint.2018.01.188.
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: April 05, 2018).
9. Okubo Y., Yano T., Yoshida K. et al. Fabrication of SiC fiber-reinforced SiC matrix composites by low temperature melt infiltration method using Si–Hf and Si–Y alloy // Mechanical Properties and Performance of Engineering Ceramics and Composites IX. 2015. P. 101–111.
10. Voigt R., Krenkel W., Motz G. Development of ultra-high temperature stable ceramics by reactive infiltration processes // Processing and properties of advanced ceramics and composites III. 2011. P. 123–130.
11. Aoki T., Ogasawara T., Okubo Y. et. al. Fabrication and properties of Si–Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC-based matrix composites // Composites: Part A. No. 66. 2014. 155–162.
12. Aoki T., Ogasawara T. ZMI fiber/TiSi2–Si matrix composites for high temperature structural applications // Composites: Part A. 2015. No. 76. P. 102–109.
13. Kim S., Han I.S., Seong Y.-H., Kim D.K. Mechanical properties of C/SiC composite materials fabricated by the Si–Cr alloy melt-infiltration method // Journal of Composite Materials. 2015. Vol. 49 (24). P. 3057–3066.
14. Ruggles-Wrenn M., Pope M. Creep behaviour in interlaminar shear of a Hi–NicalonTM/SiC–B4C composite at 1200°C in air and steam // MATEC Web of Conferences. 2015. No. 29. P. 1–13.
15. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: October 27, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Niihara K.A. Fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics // Journal of Materials Science Letters. 1983. Vol. 2. Р. 221–223.
18. CERAMTEC. Available at: http://www.ceramtec.com (accessed: June 01, 2018).
19. 3M Technical Ceramics. Available at: http://www.esk.com. (data obrashcheniya: accessed: June 01, 2018).
The possibility of the synthesis of niobium silicide Nb5Si3 by the spark plasma sintering (SPS) technique from a binary mixture of elemental powders of niobium and silicon obtained by mechanical alloying (MA) by two technological schemes is considered. The stability of the niobium silicide samples was investigated by heat treatment in vacuum at 1500 °C for 2, 4, 6, 8 and 10 hours.
The X-ray phase analysis of the synthesized niobium silicide samples was carried out; the microstructure of the samples was studied by scanning electron microscopy, and X-ray microanalysis were used to evaluate the elemental composition. The performed X-ray phase analysis of the synthesized samples, obtained by MA with subsequent hybrid SPS, demonstrated the possibility of obtaining the stable tetragonal α- Nb5Si3 threesilicide pentaniobium (according to synthesis scheme I) and hexagonal γ-Nb5Si3 threesilicide pentaniobium stabilized by interstitial carbon atoms (according to synthesis scheme II). The different solubility of carbon interstitial impurities in α- and γ-Nb5Si3 depends on structures features of the modifications. It should be noted that the synthesis process by the scheme II proceeds more thoroughly and non-reacted components of silicon and niobium powders remain in sample in changeless (unoxidized) state.
The stability study of synthesized niobium silicides samples showed that with an increase in heat treatment time at 1500 °C the microstructure of the samples does not undergo visible transformations. The stability of the phase composition during the heat treatment process is confirmed by X-ray phase analysis data.
Now therefore, the change the technological conditions of obtaining of Nb5Si3, which determines the mechanical properties of the Nb-Si composite, allows the cont
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [In-novative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Kuzmina N.A., Bondarenko Yu.A. Issledovanie fazovogo sostava i struktury niobij-kremnievogo kompozita, poluchennogo metodom napravlennoj kristallizacii v zhidkome-tallicheskom ohladitele [The phase composition and structure of the niobium-silicon composite manufactured by directional solidification in the liquid metal cooler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 03. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2016-0-5-3-3.
5. Svetlov I.L. Vysokotemperaturnyye Nb–Si kompozity [High-Temperature Nb–Si Composites] // Materialovedeniye. 2010. №9–10. S. 18–38.
6. Kablov E.N., Svetlov I.L., Yefimochkin I.Yu. Vysokotemperaturnyye Nb–Si-kompozity [High-Temperature Nb–Si Composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashi-nostroyeniye. 2011. №SP2. S. 164–173.
7. Shchetanov B.V., Efimochkin I.Yu., Paegle S.V., Karachevtsev F.N. Issledovanie vysokotemperaturnoj prochnosti in-situ-kompozitov na osnove Nb, armirovannyh monokristallicheskimi voloknami α-Al2O3 [Study of high-temperature strength of Nb–Si–Ti in-situ-composites reinforced by single-crystal α-Al2O3] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 53–59. DOI: 10.18577/2071-9140-2016-0-3-53-59.
8. Chang K.M., Bewley B.P., Sattley J.A., Jackson M.R. Cold-Crusible Directional Solidification of Refractory Metal-Silicide Eutectics // Journal of Metals. 1992. Vol. 44. No. 6. P. 59.
9. Subramanian P.R., Mendiratta M.G., Dimiduk D.M. Development of Nb-based Advanced Intermetallic Alloys for Structural Application (Overview) // Journal of Metals. 1996. Vol. 48. No. 1. P. 33–38.
10. Jackson M.R., Bewley B.P., Rowe R.G., Skelly D.W. Lipsitt High Temperature Refractory Metall-Intermetallic Composites // Journal of Metals. 1996. Vol. 48. No. 1. P. 39–44.
11. Bewley B.P., Levandovsky J.J., Jackson M.R. Refractory Metall-Intermetallic in Situ Composites for Aircraft Engine (Overview) // Journal of Metals. 1997. Vol. 49. No. 8. P. 44–67.
12. Bewley V.P., Jackson M.R., Subramanian P.R. Processing High Temperature Refractory Metall-Silicide in Situ Composites (Overview) // Journal of Metals. 1999. Vol. 51. No. 4. P. 32–36.
13. Bewley B.P., Jackson M.R., Zhao J.C., Subramanian P.R. A Review of Very-High-Temperature Nb-Silicide-based Composites // Metallurgical and Materials Transactions. 2003. Vol. 34A. No. 10. P. 2043–2052.
14. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Razvitiye poroshkovoy metallurgii zharoprochnykh splavov [Development of powder metallurgy of superalloys] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №5. S. 13–26.
15. Svetlov I.L., Kuzmina N.A., Zavodov A.V., Zaytsev D.V. Termicheskaya stabil'nost' poverkhnostey razdela mezhdu niobiyevoy matritsey i γ -Nb5Si3 silitsidom v kompozite na osnove sistemy Nb–Si [Thermal stability of interfaces between the niobium matrix and γ-Nb5Si3 silicide in eutectic Nb–Si composites] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №8 (68). S. 28–37. URL: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2018-0-8-28-37.
16. Svetlov I.L., Abuzin Yu.A., Vlasenko S.Ya., Efimochkin I.Yu. i dr. Vysokotemperaturnyye niobiyevyye kompozity, uprochnennyye silitsidami niobiya [High-Temperature Niobium Composites Strengthened with Niobium Silicides] // Zhurnal funktsional'nykh materialov. 2007. T. 1. №2. S. 48–53.
17. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu., Sevostyanov N.V. Kompozitsionnyye materialy na osnove tugoplavkikh metallov [Composite materials based on refractory metals] // Konstruktsii iz kompozitsionnykh materialov 2016. №4. S. 16–23.
18. Kuz'mina N.A., Marchenko Ye.I., Yeremin N.N., Yakushev D.A. Issledovaniye defektov vnedreniya v polimorfnykh modifikatsiyakh silitsidov niobiya Nb5Si3 metodami atomi-sticheskogo komp'yuternogo modelirovaniya [The study of defects intro-duction in polymorphic modifications of niobium silicide Nb5Si3 by the methods of atomistic computer simulation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1 (61). Ct. 02. URL: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2018-0-1-2-2.
19. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
20. Savitskiy E.M., Efimov Yu.V., Bodak O.I., Kharchenko O.I., Myasnikova E.A. Sistema niobiy–kremniy–uglerod [System niobium–silicon–carbon] // Neorganicheskiye materialy. 1981. T. 17. №12. S. 2207–2210.
21. Kuzmina N.A., Eremin N.N., Marchenko E.I., Svetlov I.L. i dr. Puti diffuzii primesey vnedreniya v silitside niobiya Nb5Si3 razlichnykh polimorfnykh modifikatsiy [Ways of dif-fusion of impurities of intrusion in Nb5Si3 niobium silicide of various polymorphic modifications] // Kristallografiya. 2017. №4. S. 21–35.
22. Kablov E.N., Kuzmina N.A., Eremin N.N., Svetlov I.L., Neyman A.V. Atomnyye modeli struktury silitsidov niobiya v in situ kompozitakh Nb–Si [Atomic models of the structure of niobium silicides in in situ Nb–Si composites] // Zhurnal strukturnoy khimii. 2017. №3. S. 27–37.
The material of the heat-resistant alloy with a heat-shielding coating (Zr – Gd – Y – O) + (Al – Ni – Y) + (Ni – Cr – Al – Ta – Re – Y – Hf) in the state after vacuum annealing at 1050 ° C / 3 h and after testing for isothermal heat resistance of 1200 ° C / 100 h was investigated. After annealing, the coating material revealed zones of interaction between its components and the substrate, formed due to their mutual diffusion. Using the data on the elemental composition of the coating, as well as the phase diagrams of the Al – Ni, Ni – Cr, Al – Ni – Cr systems, the structural components of the coating were identified. The ceramic layer consists of zirconium oxide stabilized with yttrium and gadolinium oxides. The upper layer is mainly represented by the β-phase. The bottom layer consists of the γʹ-phase. Structural components based on the γʹ, β and α phases were found in the zone of their interaction. The zone of interaction between the bottom layer and the substrate consists of the γʹ-phase and particles based on the α-phase. According to the results of the accumulation of the elemental composition profile over the thickness of the coating, it was concluded that changes in the content of nickel, aluminum, and chromium have a gradient character, which indicates incomplete diffusion processes. As a result of high-temperature exposure in the process of testing for heat resistance, the ceramic layer is locally destroyed. An oxide layer forms on the surface of the heat-resistant layer. The material of the heat-resistant layer loses its layer structure. Several factors indicate an increase in diffusion processes. It was found that the elemental composition of the layer is aligned in depth, and the size of the structural components increases. This, first of all, concerns the grains of a solid solution
2. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennyye polifunktsionalnyye vysokotemperaturnyye pokrytiya dlya nikelevykh splavov, uplotnitelnykh metallicheskikh voloknistykh materialov i berilliyevykh splavov [Modern polyfunctional high-temperature coatings for nickel alloys, sealing metallic fiber materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 05. Available at: http://www. materialsnews.ru (accessed: October 29, 2018).
3. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
4. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
5. Budinovskij S.A., Chubarov D.A., Matveev P.V. . Sovremennye sposoby naneseniya teplozashhitnyh pokrytij na lopatki gazoturbinnyh dvigatelej (obzor) [Modern methods for deposition of thermal barrier coatings on GTE turbine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 38–44.
6. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlya teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://viam-works.ru (accessed: September 15, 2018). DOI: 10.18577/2307-6046-2015-0-4-7-7.
7. Chubarov D.A., Budinovskij S.A., Smirnov A.A. Magnetronnyj sposob naneseniya keramicheskih sloev teplozashhitnyh pokrytij [Magnetron sputtering method for applying ceramic layers for thermal barrier coatings] // Aviacionnye materialy i tehnologii. 2016. №4. S. 23–30. DOI: 10.18577/2107-9140-2016-0-4-23-30.
8. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
9. Kablov E.N., Muboyadzhyan S.A. Erozionnostoykiye pokrytiya dlya lopatok kompressora gazoturbinnykh dvigateley [Erosion-resistant coatings for compressor blades for gas turbine engines] // Elektrometallurgiya. 2016. №10. S. 23–38.
10. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
11. Smirnov A.A., Budinovskij S.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlya lopatok TVD iz nikelevyh monokristallicheskih splavov VZhM4, VZhM5U [The development of thermal barrier coatings for turbine blades of single-crystal nickel alloys VZHM4, VZHM5U] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 03. Available at: http://www.viam-works.ru (accessed: September 15, 2018). DOI: 10.18577/2307-6046-2016-0-1-17-24.
12. Walston W.S., Schaefer J.C., Murphy W.H. A new type of microstructural instability in superalloys – SRZ // Superalloys. The Minerals, Metals & Materials Society, 1996. P. 9–18.
13. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostoykiye ionno-plazmennyye pokrytiya dlya lopatok turbin iz nikelevykh splavov, legirovannykh reniyem [Heat-resistant ion-plasma coatings for turbine blades of nickel alloys alloyed with rheniu] // MiTOM. 2008. №6. C. 31–36.
14. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://viam-works.ru (accessed: September 18, 2018).
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Cutler R.W. The 1200°C Isothermal Sections of the Ni–Al–Cr and the Ni–Al–Mo Ternary Phase Diagrams: thesis for the Master Science Degree in Graduate Program in Materials Science and Engineering. Ohio. 2011. 58 p.
17. Grushko B., Kowalski W., Pavlyuchkov D. etc. A contribution to the Al–Ni–Cr phase diagram // Journal of Alloys and Compounds. 2008. №460. P. 299–304.
It is known that the responsible details of flight vehicles subject to action of hostile environment need additional protection. As such protection different types of coatings, including paint and varnish are exploited. One of types of influence to constructional surfaces is collision with different heterogeneous environments which are present at operational zone, it can be the solid and liquid particles distributed in air in definitely way. Such influence leads to erosion of constructional materials and finally to their destruction. The coverings resistant to similar destructions, are urged to provide long service of the flight vehicles responsible elements.
In this work the analysis of development and the main trends of development of erosion resistant coatings around the world throughout long time of the solution of problem of ensuring necessary erosion resistance is carried out. During the analysis the main trends in which are revealed the hard work is conducted: the first is increasing of erosion resistance and the second is high adhesive strength of coatings to protected surface. The increase of erosion resistance is reached at the expense of optimization of composition and structure of coatings, in particular at combination of properties of reinforcing fillers to certain characteristics of polymeric matrix. Possible variations of used polymeric and inorganic compositions are considered and given in this work and also the way of achievement of required properties are also discussed.
During the analysis of the last achievements the main groups of technologies and structures of erosion resistent coatings are revealed: coatings on the basis of elastomer; coatings on the basis of the thermosetting organic and inorganic binders; the multilayer (complex) coatings consisting from inorganic (aluminophosphate, silica-alumina binder) on which p
2. Kablov Ee.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Simonenko E.P., Simonenko N.P., Derbenev A.V., Nikolaev V.A., Sevastyanov V.G., Kuznetsov N.T., Grashchenkov D.V., Kablov E.N. Synthesis of nanocrystalline silicon carbide using the sol-gel technique // Russian Journal of Inorganic Chemistry. 2013. Vol. 58. No. 10. P. 1143–1151.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Lavrov A.V., Erasov V.S., Landik D.N. Ob odnom podhode k traktovke obedinennoj teorii prochnosti Ya.B. Fridmana [One of the approaches to interpretation of the united strength theory of Ya.B. Fridman] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 87–94. DOI: 10.18577/2071-9140-2017-0-2-87-94.
6. Platonov A.A. Polimernye kompozicionnye materialy na osnove proshitogo napolnitelya s povyshennoj udarostojkostyu [Polymer composite materials on a base of stitched preforms with high impact resistance] // Aviacionnye materialy i tehnologii. 2014. №4. S. 43–47. DOI: 10.18577/2071-9140-2014-0-4-43-47.
7. Vinogradov S.S., Demin S.A., Balahonov S.V., Kirillova O.G. Neorganicheskie kompozicionnye pokrytiya – perspektivnoe napravlenie v oblasti zashhity ot korrozii uglerodistyh stalej [Inorganic composite coatings – a perspective direction in the field of anticorrosive protection of carbon steels] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 76–87. DOI: 10.18577/2071-9140-2016-0-2-76-87.
8. Ogneerozionnostoykiy broniruyushchiy sostav dlya zaryada iz ballistitnogo tverdogo raketnogo topliva: pat. 2316528 Ros. Federatsiya [Flame retardant reservation composition for the charge of ballistic solid rocket fuel: pat. 2316528 Rus. Federation]; zayavl. 16.08.06; opubl. 10.02.08.
9. Antikorrozionnaya lakokrasochnaya kompozitsiya: pat. 2169165 Ros. Federatsiya [Anticorrosive paint and varnish composition: pat. 2169165 Rus. Federation]; zayavl. 29.12.99; opubl. 20.06.01.
10. Urethane coating composition and process: pat. 4110317 US; field 10.01.1974; publ. 29.08.78.
11. Coating composition process for the preparation of coatings and coated substrate: pat. 4576868 US; field 14. 09. 84; publ. 18.03.86.
12. Antennyy obtekatel: pat. 2277738 Ros. Federatsiya [Antenna fairing: pat. 2277738 Rus. Federation]; zayavl. 23.11.04; opubl. 10.06.06.
13. Clear paint and production thereof: pat. 6079069 JP; field 07.10. 83; publ. 04.05.85.
14. Erosion resistant anti-icing coatings: pat. 2006281861 US; field 13. 06.05; publ. 14.12.06.
15. Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same: pat. 7268179 US; field 30.09.03; publ. 11.09.07.
16. A method for producing a protective layer, protective layer, and using the same component with a protective layer: app. 10329049 DE; field 09.12.03; publ. 13.01.05.
17. Process for producing resin composition containing inorganic filler: pat. 60079423 EP; field 25. 09.96; publ. 10.09.97.
18. White radiotransparent antistatic paints for satellites: pat. 0487366 FR; field 25.10.91; publ. 27.05.92.
19. Kompozitsiya dlya antikorrozionnogo pokrytiya: pat. 2009153 Ros. Federatsiya [Composition for anti-corrosion coating: pat. 2009153 Rus. Federation]; zayavl. 23.11.92; opubl. 15.03.94.
20. Compositions for coatings: pat. 1502591 SU; field 31.03.87; publ. 23.08.89.
21. Elastomeric formulation used in the construction of lightweight aircraft engine fan blades: pat. 6287080 US; field 15.11.99; publ. 11.09.01.
22. Elastomer coated layer for erosion and/or fire protection: pat. 5908528 US; field 16.04.98; publ. 06.01.99.
23. Elastomer coated layer for erosion and/or fire protection: pat. 5912195 US; field 16.04.98; publ. 15.06.99.
24. Sostav dlya zashchitnogo pokrytiya: pat. 2290421 Ros. Federatsiya [Composition for a protective coating: pat. 2290421 Rus. Federation]; zayavl. 01.08.05; opubl. 27.12.06.
25. Polimernaya kompozitsiya dlya pokrytiy: pat. 2333925 Ros. Federatsiya [Polymer composition for coatings: pat. 2333925 Rus. Federation]; zayavl. 11.05.07; opubl. 20.09.08.
26. Sostav dlya zashchity polimernykh kompozitsionnykh materialov: pat. 2215012 Ros. Federatsiya [Composition for the protection of polymer composite materials: pat. 2215012 Rus. Federation]; zayavl. 27.11.01; opubl. 27.10.03.
27. Composite coating for imparting particle erosion resistance: pat. 6706405 US; field 11. 02.02; publ. 16.03.04.
28. Erosion resistant surface protection: pat. 5486096 US; field 30.06.94; publ. 23.01.96.
29. Composite airfoil leading edge protection: pat. 5449273 US; field 21.03.94; publ. 12.09.95.
30. Coating composition forming wear-resistant coat and article covered with the coat: pat. 630650; field 19.03.98; pub. 23.10.01.
31. Method and apparatus for laying roadway materials: pat. 9711129 EU; field 20.09.96; publ. 27.03.97.
32. Coating composition forming wear-resistant coat and article covered with the coat: pat. 0869154 JP; field 20.09.96; publ. 07.10.98.
33. Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability: pat. 6342097 US; field 20.04.00; publ. 29.01.02.
34. Fast curable epoxy compositions containing imidazole-and 1-(aminoalkyl) imidazole-isocyanate adducts: pat. 8357764 US; field 30. 10.09; publ. 22.01.13.
35. Erosion resistant films for use on heated aerodynamic surfaces: pat. 8096508 US; field 10.08.07; publ. 17.01.12.
36. Method for the preparation of protective coatings having enhanced characteristics: pat. 972272 US; field 04.12.96; publ.13.11.97.
37. Cycloaliphatic epoxy compounds: pat. 0946569 EU; field 16.12.97; publ. 20.08.03.
38. Cycloaliphatic epoxy compounds: pat. 982709 Italy; field 16.12.97; publ. 13.08.98.
39. Preparation method of temperature-resistant and erosion-resistant coating for walling of flue: pat. 101096460 CN; field 30.06.06; publ. 02.01.08.
40. Organic-inorganic hybrid resin containing sesquialter siloxane and preparation method and use thereof: pat. 101139442 CN; field 22.08.07; publ. 07.12.11.
41. Sostav dlya zashchity polimernykh kompozitsionnykh materialov: pat. 2215012 Ros. Federatsiya [Composition for the protection of polymer composite materials: pat. 2215012 Rus. Federation]; zayavl. 27.11.01; opubl. 27.10.03.
42. Karabanov S.M., Suvorov D.V., Slivkin E.V. I dr. Uvelicheniye erozionnoy stoykosti pokrytiy elektrodov vakuumnykh i gazorazryadnykh kommutatsionnykh priborov [Increase of erosion resistance of coatings of electrodes of vacuum and gas-discharge switching devices] // Vestnik RGRTU. 2015. № 54. Ch. 2. S. 127–131.
43. Kompozitnyye listy na osnove termoplasta, vklyuchayushchiye natural'nyye volokna: pat. 2386724 Ros. Federatsiya [Composite sheets based on thermoplastic, including natural fibers: pat. 2386724 Rus. Federation]; zayavl. 08.11.05; opubl. 20.04.10.
44. Sistema zashchity ot erozionno-korrozionnogo razrusheniya korpusov morskikh sudov i sooruzheniy: pat. 2496916 Ros. Federatsiya [The system of protection against erosion-corrosion damage to the hulls of marine vessels and structures: pat. 2496916 Rus. Federation]; zayavl. 17.05.12; opubl. 27.10.13.
45. Zhestkov B.E., Terent’eva V.S. Cite as Multifunctional coating MAI D5 intended for the protection of refractory materials// Russian Metallurgy (Metally) 2010. Vol. 2010. Issue 1. P. 33–40.
46. Sposob polucheniya materiala dlya vysokotemperaturnogo erozionnostoykogo zashchitnogo pokrytiya: pat. 2522552 Ros. Federatsiya [The method of obtaining material for high-temperature erosion-resistant protective coating: pat. 2522552 Rus. Federation]; zayavl. 01.11.12; opubl. 20.07.14.
47. Coating for aerospace aluminum parts: pat. 6171704 US; field 29.12.95; publ. 09.01.01.
48. Anti-fouling coating for turbomachinery: pat. 615954 US; field 28.07.99; publ. 12.12.00.
49. Heat and rain erosion resistant coating: pat. 200802086 US; field 28.11.06; publ. 21.02.08.
50. Erosions systems and components comprising the same: pat. 7875354 US; field 28.03.08; publ. 25.01.11.
51. Abrasion resistant coatings: pat. 7736745 US; field 24.05.05; publ. 15.06.10.
52. Thiophene-containing poly(arylene ether) sulfones: pat. 5410013 US; field 01.06.94; publ. 25.04.95.
53. Removable magnetic liner and processes of production, installation, and use thereof: pat. 8287791 US; field 23.12.09; publ. 16.10.12.
54. Processes for repairing erosion resistant coatings: pat. 2008248300 US; field 05.04.07; publ. 09.10.08.
55. Erosion resistant surface and method of making erosion resistant surfaces: pat. 7968184 US; field 03.12.07; publ. 28.06.11.
56. Two-component coating compositions and coatings produced therefrom for improving erosion resistance: pat. 2951466 EU; field 28.04.15; publ. 07.01.16.
57. Method for producing a protective coating for a component of a turbomachine, the component itself and the respective machine: pat. 2010239873 EU; field 10.03.10; publ. 23.09.10.
58. Preparation method for oxidized graphene erosion-resistant coating attached to iron surface: pat. 105215346 CN; field 30.08.15; publ. 06.01.16.
59. Kuznetsova V.A. Erozionnostoykaya kompozitsiya na osnove trekhfaznoy sistemy: epoksidnyy oligomer–kauchuk–armiruyushchiy napolnitel: dis. … kand. tekhn. nauk [Erosion-resistant composition based on a three-phase system: epoxy oligomer–rubber–reinforcing filler: thesis, Cand. Sci. (Tech.)]. M.: VIAM, 1999. 129 s.
60. Chernoyarov S.A., Ivanov A.V., Borkova A.N., Pomakhayeva L.I., Pomakhayev V.P., Anikhovskaya L.I., Kuznetsova V.A. Issledovaniya stoykosti k kapleudarnoy erozii steklotekstolita s polimernymi zashchitnymi pokrytiyami [Studies of resistance to droplet-impact erosion of fiberglass with polymeric protective coatings] // Aviacionnyye materialy i tehnologii. 2003. №3. S. 73–75.
61. Borkova A.N. Erozionnaya stoykost aviatsionnykh materialov pri soudarenii s tverdymi (pylevymi) chastitsami: dis. … kand. tekhn. nauk [Erosion resistance of aviation materials in collisions with solid (dust) particles: thesis, Cand. Sci. (Tech.)]. M.: VIAM, 2006. 125 s.
62. Astruc A., Joliff E., Chailan J.-F. et al. Incorporation of kaolin fillers into an epoxy polyamidoamine matrix for coatings // Progress in Organic Coatings. 2009. Vol. 65. Issue 1. P. 158–168.
63. Omid G. Impact of erosion testing aspects on current and future flight conditions // Progress in Aerospace Science. 2011. Vol. 47. Issue 4. P. 280–303.
64. Grundwürmer M., Nuyken O., Meyer M. Sol-gel derived erosion protection coatings against damage caused by liquid impact // 16th International Conference on Wear of Materials. 2007. Vol. 263. Issue 1–6. P. 318–329.
65. Farhadinejad Z., Ehsani M., Moemen-Bellah S. Dynamic mechanical and thermal behavior evaluation of an epoxy/anhydride/nano-aluminum oxide composite system // High Performance Polymers. 2013. Vol. 25. Issue 5. P. 518–525.
66. Li Ying Guo, Li Yan Wang, Xin Su. Research Progress of New Methods for Toughening Epoxy Resin // Advanced Materials Research. 2012. Vol. 490–495. P. 3598–3602.
67. Stroganov V.F., Stroganova I.V. Filled epoxy polymer couplings with «shape memory» effect // Polymer Science (Series D). 2011. Vol. 4. Issue 3. P. 183–187.
The current system of state standards for X-ray nondestructive testing has a strict hierarchical structure that determines application area of state standard, industry standard, enterprise standard. The ongoing integration had affected the system standards including standards governing X-ray non-destructive testing. Some standards from the ISO system translated into Russian received the status of GOST R ISO. For some other standards, particularly ISO 17636 it is the nearest future. The process is quite intense. In the proposed publication, the authors raise the question of the feasibility of automatic implementation of ISO standards in the Russian system of standardization. A comparative analysis of the regulations of GOST and ISO systems in X-ray NDT, the description of which is given in this article, shows that there are no obvious contradictions of the main provisions in this documents. However, we believe that it is necessary to adopt ISO system completely and exclude GOST, or Supplement GOST system with more stringent ISO requirements that do not contradict GOST, and in no case to prevent a combination of conflicting provisions of GOST and ISO. Thus it is necessary to keep the strict hierarchical structure defining spaces of state standard, industry standard, enterprise standard.
2. Kablov E.N. Materialy novogo pokoleniya osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 1621.
3. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing are the basis of innovations] // Vestnik RFFI. 2017. №3. S. 97105.
4. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [The formation of domestic space science] // Krylya Rodiny. 2016. №5. S. 818.
5. Ospennikova O.G., Lukin V.I., Afanasyev-Khodykin A.N., Galushka I.A., Shevchenko O.V. Perspektivnyye razrabotki v oblasti vysokotemperaturnoy payki zharoprochnykh splavov [Advanced developments in the field of the high-temperature soldering of heat resisting alloys] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 144–158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
6. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
7. GOST R 1.5–2012. Standartizatsiya v Rossiyskoy Federatsii. Standarty natsionalnyye. Pravila postroyeniya, izlozheniya, oformleniya i oboznacheniya [State Standard 1.5–2012. Standardization in the Russian Federation. Standards national. Rules of construction, presentation, design and notation]. M.: Standartinform, 2016. 25 s.
8. GOST R 1.7–2014. Standartizatsiya v Rossiyskoy Federatsii. Standarty natsionalnyye. Pravila oformleniya i oboznacheniya pri razrabotke na osnove primeneniya mezhdunarodnykh standartov [State Standard 1.7–2014. Standardization in the Russian Federation. Standards national. Rules of design and designations in the development based on the application of international standards]. M.: Standartinform, 2016. 32 s.
9. Stepanov A.V., Kosarina E.I. Trebovaniya rentgenograficheskogo nerazrushayushchego kontrolya v rossiyskikh i zarubezhnykh standartakh [Requirements of radiographic non-destructive testing in Russian and foreign standards] // Kommentarii k standartam, TU, sertifikatam. 2013. №9. S. 27.
10. Kosarina E.I., Stepanov A.V., Krupnina O.A., Demidov A.A. Obyektivnost otsenki chuvstvitelnosti radiatsionnogo kontrolya po etalonam chuvstvitelnosti, reglamentirovannym GOST 7512 [Objectivity in assessing the sensitivity of radiation monitoring by sensitivity standards, regulated by State Standard 7512] // Kommentarii k standartam, TU, sertifikatam: yezhemesyachnoye prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2016. №5. S. 2–10.
11. Demidov A.A., Stepanov A.V., Turbin Ye.M., Krupnina O.A. O rezhimakh rentgenovskogo kontrolya, obespechivayushchikh formirovaniye radiatsionnykh izobrazheniy s zadannym kontrastom [The х-ray testing modes providing with radiation imaging with predetermined contrast] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 80–85. DOI: 10.18577/2071-9140-2016-0-4-80-85.
12. GOST 23055–78. Kontrol nerazrushayushchiy. Klassifikatsiya svarnykh soyedineniy po rezultatam radiograficheskogo kontrolya [State Standard 23055–78. Nondestructive control. Classification of welded joints according to the results of radiographic testing]. M.: Izd-vo standartov, 2005. 6 s.
13. GOST 7512–82. Kontrol nerazrushayushchiy. Soyedineniya svarnyye. Radiograficheskiy metod [State Standard 7512–82. Nondestructive control. Welded joints]. M.: Standartinform, 2008. 18 s.
14. GOST 20426–82. Kontrol nerazrushayushchiy. Metody defektoskopii radiatsionnyye. Oblast primeneniya [State Standard 20426–82. Nondestructive control. The methods of radiation flaw detection. Application area]. M.: Izd-vo standartov, 1991. 24 s.
15. Sosnin F.R. Nerazrushayushchiy kontrol: spravochnik: v 7 t. / pod obshch. red. V.V. Klyuyeva [Sosnin F.R. Non-Destructive Testing: A Handbook: at 7 vol. / gen ed. By V.V. Klyuev]. M.: Mashinostroyeniye, 2006. T. 1: Radiatsionnyy kontrol. 560 s.
16. Dobromyslov V.A. Radiatsionnyye metody nerazrushayushchego kontrolya [Radiation methods of non-destructive testing]. M.: Mashinostroyeniye, 1999. 104 s.
17. Kosarina E.I. Teoreticheskiye aspekty i tekhnologiya radiatsionnogo nerazrushayushchego kontrolya materialov i izdeliy aviatsionnoy tekhniki: dis. … dokt. tekhn. nauk [Theoretical aspects and technology of radiation non-destructive testing of materials and products of aviation equipment: thesis, Doc. Sc. ITech.)]. M., 2000. 279 s.
18. Stepanov A.V., Kosarina E.I., Savvina N.A. Sravneniye trebovaniy rentgenovskogo kontrolya i kachestva rentgenograficheskikh snimkov v yevropeyskikh normakh i rossiyskikh standartakh [Comparison of X-ray inspection requirements and the quality of radiographic images in European standards and Russian standards] // Vestnik MEI. 2011. №4. S. 85–89.
19. Klyuyev V.V., Sosnin F.R. Teoriya i praktika radiatsionnogo kontrolya: ucheb. posobiye dlya studentov vuzov [Theory and practice of radiation monitoring: studies manual for university students]. M.: Mashinostroyeniye, 1998. 170 s
20. ISO 11699-1–2008. Kontrol nerazrushayushchiy. Rentgenograficheskiye plenki dlya promyshlennoy radiografii [ISO 11699-1–2008. Nondestructive control. Radiographic films for industrial radiography]. M.: Standartinform, 2014. Ch. 1: Klassifikatsiya plenochnykh sistem dlya radiografii. 14 s.
21. Velichko V.Ya. Parametry kachestva radiograficheskikh izobrazheniy svarnykh soyedineniy po novym standartam GOST ISO 17636-1,2-2017 [Quality parameters of radiographic images of welded joints according to new standards State Standard ISO 17636-1,2-2017] // V mire nerazrushayushchego kontrolya. 2018. T. 21. №3. S. 2124.
22. Rentgenotekhnika: spravochnik v 2-kh kn. / pod red. V.V. Klyuyeva [Radiotechnology: a reference book in 2 books / ed. by V.V. Klyuev]. M.: Mashinostroyeniye, 1992. 848 s.
23. Rumyantsev S.V. Radiatsionnaya defektoskopiya. izd. 2-e [Radiation flaw detection. ed. 2nd]. M.: Atomizdat, 1974. 512 s.
24. Rumyantsev S.V., Dobromyslov V.A., Borisov O.I. Tipovyye metodiki radiatsionnoy defektoskopii i zashchity [Typical methods of radiation flaw detection and protection]. M.: Atomizdat, 1979. 197 s.
25. Rumyantsev S.V., Shtan A.S., Goltsev V.A. Spravochnik po nerazrushayushchim metodam nerazrushayushchego kontrolya [Handbook of non-destructive non-destructive testing]. M.: Energoatomizdat, 1982. 261 s.
Hot corrosion of high temperature alloys, used in modern gas turbine engine, is still a problem due to harsh service conditions, inability to apply protective coatings to every piece of engine and imperfect hot corrosion resistance of alloys. Therefore the durability of modern gas turbine engines is heavily influenced by corrosion rate during service life and by decrease of mechanical properties due to corrosion damage.
To this day there no industrial unified approach to evaluation of hot temperature corrosion resistance of high temperature alloys. The aim of a current article is to provide a review of the recent experience in field of hot corrosion testing of superalloys.
The most common methods to evaluate hot corrosion of superalloys are burner rig, deposit recoat method or electrochemical testing. Most common testing method is deposit recoat and further heating in ovens. 75% Na2SO4 + 25% NaCl is the most common corrosive solution for this type of testing. Test temperatures range from 650 to 950 ºC. Burner rig testing provides the best reproduction of service life conditions, but these tests are the most expensive. The main criterion for assessment of alloys’ resistance to hot corrosion is gravimetry, which is used to measure weight loss and corrosion depth. Many researchers have also investigated the influence of hot corrosion on mechanical properties of high temperature alloys. High temperature service life estimation methods with respect to corrosion damage due to high temperature corrosion are not yet published in Russian and international papers.
2. Kosmin A.A., Budinovskiy S.A., Matveyev P.V., Smirnov A.A. Issledovaniye zharoprochnogo splava ZhS36 s razlichnymi tipami ionno-plazmennykh zashchitnykh pokrytiy na stoykost k sulfidno-oksidnoy korrozii v oblasti temperatur 850–900°C [Research of sulfide-oxide corrosion resistance of ZhS36 nickel superalloy with different types of ion-plasma coatings in temperature range 850–900°С] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 05. Available at: http://www.viam-works.ru (accessed: August 24, 2018). DOI: 10.18577/2307-6046-2015-0-12-5-5.
3. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A. Metody povysheniya korrozionnoy stoykosti zharoprochnykh nikelevykh splavov (obzor) [Ways of increasing corrosion resistance of superalloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №4. St. 01. URL: http://www.viam-works.ru (data obrashcheniya: 24.08.2018). DOI: 10.18577/2307-6046-2018-0-4-3-8.
4. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Zharo- i korrozionnostoykoye pokrytiye dlya rabochikh lopatok turbiny iz perspektivnogo zharoprochnogo splava VZhL21 [Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21] // Aviacionnyye materialy i tekhnologii. 2017. №1 (46). S. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
5. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Pomelov Ya.A. Ionno-plazmennyye zashchitnyye pokrytiya dlya lopatok gazoturbinnykh dvigateley [Ion-plasma protective coatings for blades of gas turbine engines] // Konversiya v mashinostroyenii. 1999. №2. S. 42–47.
6. Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok [Basics of designing aircraft engines and power plants]. M.: Mashinostroyeniye, 2008. T. 2: Kompressory. Kamery sgoraniya. Forsazhnyye kamery. Turbiny. Vykhodnyye ustroystva. 367 s.
7. Bratukhin A.G., Reshetnikov Yu.E., Inozemtsev A.A. i dr. Osnovy tekhnologii sozdaniya gazoturbinnykh dvigateley dlya magistral'nykh samoletov [Fundamentals of technology for creating gas turbine engines for long-haul aircraft]. M.: Aviatekhinform, 1999. 553 s.
8. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskiye napravleniya razvitiya konstruktsionnykh materialov i tekhnologiy ikh pererabotki dlya aviatsionnykh dvigateley nastoyashchego i budushchego [Strategic directions of development of structural materials and technologies for their processing for aviation engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Nicholls J.R., Saunders S.R.J. Comparison of hot-salt corrosion behaviour of superalloys in high and low velocity burner rigs // High Temperature Technology. 1989. Vol. 7. Is. 4. P. 193–201. DOI: 10.1080/02619180.1989.11753437.
12. Mahobia G.S., Paulose N., Mannan S.L. et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718 // International Journal of Fatigue. 2014. Vol. 59. P. 272–281. DOI: 10.1016/j.ijfatigue.2013.08.009.
13. Mannava V., Rao A.S., Paulose N. et al. Hot corrosion studies on Ni-base superalloy at 650°C under marine-like environment conditions using three salt mixture (Na2SO4+NaCl+NaVO3) // Corrosion Science. 2016. Vol. 105. P. 109–119. DOI: 10.1016/j.corsci.2016.01.008.
14. Zhao S., Xie X., Smith G.D., Patel S.J. Research and Improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740 // Materials and Design. 2006. Vol. 27. P. 1120–1127. DOI: 10.1016/j.matdes.2005.03.015.
15. Lortrakul P., Trice R.W., Trumble K.P., Dayananda M.A. Investigation of the mechanisms of Type-II hot corrosion of superalloy CMSX-4 // Corrosion Science. 2014. Vol. 80. P. 408–415. DOI: 10.1016/j.corsci.2013.11.048.
16. Sumner J., Encinas-Oropesa A., Simms N.J., Nicholls J.R. Type II hot corrosion: Kinetics studies of CMSX-4 // Oxidation of Metals. 2013. Vol. 80. Is. 5–6. P. 553–563. DOI: 10.1007/s11085-013-9395-x.
17. Sumner J., Encinas-Oropesa A., Simms N.J., Nicholls J.R. Type II hot corrosion: Behavior of CMSX-4 and IN738LC as a function of corrosion environment // Materials and Corrosion. 2014. Vol. 65. P. 188–196. DOI: 10.1002/maco.201307425.
18. Nicholls J.R., Simms N.J., Encinas-Oropesa A. Modelling hot corrosion in industrial gas turbines // Materials at High Temperatures. 2007. Vol. 24. Is. 3. P. 149–162. DOI: 10.3184/096034007X263587.
19. Aung N.N., Liu X. Effect of temperature on coal ash hot corrosion resistance of Inconel 740 superalloy // Corrosion Science. 2014. Vol. 82. P. 227–238. DOI: 10.1016/j.corsci.2014.01.020.
20. Sahu J.K., Ravi Kumar B., Das S.K. et al. Isothermal high temperature low cycle fatigue behavior of Nimonic-263: Influence of type I and type II hot corrosion // Materials Science and Engineering A. 2015. Vol. 622. P. 131–138. DOI: 10.1016/j.msea.2014.11.016.
21. Sahu J.K., Gupta R.K., Swaminathan J. et al. Influence of hot corrosion on low cycle fatigue behavior of nickel base superalloy SU 263 // International Journal of Fatigue. 2013. Vol. 51. P. 68–73. DOI: 10.1016/j.ijfatigue.2013.02.006.
22. El-Awadi G.A., Abdel-Samad S., Elshazly E.S. Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys // Applied surface science. 2016. Vol. 378. P. 224–230. DOI: 10.1016/j.apsusc.2016.03.181.
23. Sumner J., Potter A., Simms N.J., Oakey J.E. Hot corrosion resistance of gas turbine materials in combusted syngas environments // Materials at High Temperatures. 2015. Vol. 32. Is. 1–2. P. 177–187. DOI: 10.1179/0960340914Z.00000000098.
24. Bagui S., Ray A.K., Sahu J.K. et al. Influence of saline environment on creep rupture life of Nimonic-263 for marine turbine application // Materials Science and Engineering A. 2013. Vol. 566. P. 54–60. DOI: 10.1016/j.msea.2012.12.081.
25. Yang X., Li S., Qi H. Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy // International journal of fatigue. 2015. Vol. 70. P. 106–113. DOI: 10.1016/j.ijfatigue.2014.08.011.
26. Homaeian A., Alizadeh M. Interaction of hot corrosion and creep in Alloy 617 // Engineering Failure Analysis. 2016. Vol. 66. P. 373–384. DOI: 10.1016/j.engfailanal.2016.03.012.
27. Simms N.J., Encinas-Oropesa A., Nicholls J.R. Modelling the Development of Type I Hot Corrosion on Coated and Uncoated Single Crystal Superalloys // Materials Science Forum. 2008. Vol. 595–598. P. 689–698. DOI: 10.4028/www.scientific.net/MSF.595-598.689.
28. Liu E., Zheng Z., Guan X. et al. Influence of Pre-oxidation on the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4–NaCl // Journal of Materials Science and Technology. 2010. Vol. 26. Is. 10. P. 895–899. DOI: 10.1016/S1005-0302(10)60143-0.
29. Zhang K., Liu M.M., Liu S.L. et al. Hot corrosion behaviour of a cobalt-base super-alloy K40S with and without NiCrAlYSi coating // Corrosion Science. 2011. Vol. 53. Is. 5. P. 1990–1998. DOI: 10.1016/j.corsci.2011.02.022.
30. Chang J.X., Wang D., Zhang G. et al. Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys // Corrosion Science. 2017. Vol. 117. P. 35–42. DOI: 10.1016/j.corsci.2017.01.011.
31. Dever J.A., Nathal M.V., DiCarlo J.A. Research on High-Temperature Aerospace Materials at NASA Glenn Research Center // Journal of Aerospace. 2013. Vol. 26. Is. 2. P. 500–514. DOI: 10.1061/(ASCE)AS.1943-5525.0000321.
32. Supersplavy II: Zharoprochnyye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok v 2 kn. / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Khagelya; per. s angl. [Superalloys II: Heat-resistant materials for aerospace and industrial power plants in 2 books / ed. by C.T. Sims, N.S. Stoloff, W.K. Hagel; tans. from Eng.]. M.: Metallurgiya, 1995. Kn. 1. 384 s.
One of the ways to use non-destructive testing in the theory of reliability is the indirect measurement of mechanical characteristics before and after the selected period of operation. With non-destructive testing (NC), it is necessary to measure such a parameter, which would be an adequate measure of the stresses arising in the material. To improve the accuracy of the correlation equations, it is necessary to investigate witness samples with a sufficient variation of the elastic-strength properties. It is possible to determine the necessary level of variation for constructing a regression equation only by an experimental method using statistical analysis.
For the manufacture of samples with natural technological defects, between the layers of the prepreg KMU-11TR were laid layers of dry charcoal UT-900 in the ratio of 50% and 30% of the total number of layers. According to the results of the analysis with 50% dry filler, the porosity increases four times relative to the porosity at 30% and is 6.06%. This ensures the level of variation of mechanical characteristics due to the creation of defects that affect the informative control parameter Units.
The object of the study of mechanical characteristics were CFRP samples KMU-11TR with dimensions of 250 × 12 × 2 mm, intended for input control of tensile strength. After measuring the dynamic modulus of elasticity, destructive tests were carried out to determine the tensile strength.
Before you use any experimental data, it is necessary to conduct a mathematical analysis of the resulting array. Through analysis, the possibility of applying the array for further work is verified. Taking the results at a 30% dry filler content unreliable according to the statistical analysis criteria, the equations of the dependencies of tensile strength (&a
2. Murmanskiy B.E. Razrabotka, aprobatsiya i realizatsiya metodov povysheniya nadezhnosti i sovershenstvovaniya sistemy remontov paroturbinnykh ustanovok v usloviyakh ekspluatatsii: dis. dokt. tekhn. nauk [Development, testing and implementation of methods to improve the reliability and improve the repair system of steam turbine units in operation: thesis, Doc. Sc. (Tech.)]. Ekaterinburg, 2015. 457 s.
3. Mashinostroyeniye: entsiklopediya v 40 t. / pod obshch. red. K.V. Frolova [Engineering: encyclopedia of 40 vol. / gen. ed. By K.V. Frolov]. M.: Mashinostroyeniye, 1998. T. IV-3: Nadezhnost' mashin / pod red. V.V. Klyuyeva. 592 s.
4. GOST 27.002–2015. Nadezhnost v tekhnike (SSNT). Terminy i opredeleniya [State Standard 27.002–2015. Reliability in technology (SAT). Terms and Definitions]. M: Standartinform, 2016. 28 s.
5. Kompozitsionnyye materialy / pod red. L. Brautmana, R. Kroka [Composite materials / ed. L. Brautman, R. Krok]. M.: Mashinostroyeniye, 1978. T. 7: Analiz i proyektirovaniye konstruktsiy. CH. 1 / pod red. K. Chamisa. 300 s.
6. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
7. Iosilevich G.B., Lebedev P.A., Strelyayev V.S. Prikladnaya mekhanika: dlya studentov vtuzov [Applied mechanics: for students of technical colleges]. M.: Mashinostroyeniye, 2012. 576 s.
8. Feodosyev V.I. Soprotivleniye materialov: ucheb. dlya vuzov. 10-ye izd., pererab. i dop. [Resistance materials: textbook for universities. 10th ed., rev. and add.]. M.: Izd-vo MGTU im. N.E. Baumana, 1999. 592 s.
9. Bochkareva S.A. Otsenka nadezhnosti konstruktsiy iz polimernykh kompozitsionnykh materialov s uchetom razbrosa upravlyayushchikh parametrov: avtoref. dis. … kand. fiz.-mat. nauk [ssessment of the reliability of structures made of polymer composite materials, taking into account the spread of control parameters: authors thesis, Cand. Sc. (Tech.)]. Tomsk, 2006. 21 s.
10. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleevyh konstrukcij [Quality control of aviation parts made from polymer composite materials and multilayers adhered constructions] // Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
11. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for Aviadvigatel] // Permskiye aviatsionnyye dvigateli. 2014. №31. S. 43–47.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Generalov A.S., Murashov V.V., Kosarina E.I., Boychuk A.S. Postroyeniye i analiz korrelyatsionnykh svyazey dlya otsenki prochnostnykh svoystv ugleplastikov reverberatsionno-skvoznym metodom [Plotting of correlation curves and analysis of CFRP strength properties estimated by acoustic-ultrasonic technique] // Aviacionyye materialy i tehnologii. 2014. №1. S. 58–63. DOI: 10.18577/2071-9140-2014-0-1-58-63.
14. Istyagin S.E., Postnov V.I. K voprosu o korrelyatsionnoy zavisimosti informativnykh parametrov kontrolya pri diagnostike svoystv PKM [On the question of the correlation of informative control parameters in the diagnosis of PCM properties] // Izvestiya Samarskogo nauchnogo tsentra RAN. 2017. T. 19. №4 (2). S. 229–237.
15. Troitskiy V.A., Karmanov M.N., Troitskaya N.V. Nerazrushayushchiy kontrol kachestva kompozitsionnykh materialov [Non-destructive quality control of composite materials] // Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol. 2016. №1. S. 295–296.
16. Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloynykh konstruktsiy [Mechanics of multilayer structures]. M.: Mashinostroyeniye, 1980. 375 s.
17. Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. M.: Izd-vo MGU, 1984. 336 s.
18. GOST 56682–2015. Kompozity polimernyye i metallicheskiye. Metody opredeleniya obyema matritsy, armiruyushchego napolnitelya i pustot [State Standard 56682–2015. Polymer and metal composites. Methods for determining the volume of the matrix, reinforcing filler and voids]. M.: Standartinform, 2016. 24 s.
19. GOST 11262–2017. Plastmassy. Metod ispytaniya na rastyazheniye [State Standard 11262–2017. Plastics Tensile test method]. M.: Standartinform, 2018. 24 s.