Articles
The given article presents the results of the potentially productive magnesium casting alloy elaboration for the new-generation aerospace engineering. On the basis of the analysis of the general regularities of interaction of the alloying elements with magnesium are chosen components of the alloy, which form the nanostructured state and increase strength ratio. There are compositions of alloys offered and investigated. By results of differential scanning calorimetry (DSC) are corrected the homogenization modes and aging of the studied compositions. There is Influence of the quantitative content of the alloying elements: Zn, Cd, Nb, Ti, Bi, In, REE on the mechanical and corrosion characteristic of the studied alloy compositions examined. There is Influence of the chemical composition and structural alloy components on mechanical properties and magnesium ligature Mg–Zn–Zr corrosion resistance established.
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Ibid. S. 183–195.
4. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Ibid. 2012. №S. S. 196–206.
5. Muhina I.Yu. Issledovanie metallicheskih sistem na osnove magniya i razrabotka principov sozdaniya korrozionnostojkih magnievyh splavov [Research of metal systems on the basis of magnesium and development of principles of creation of corrosion-resistant magnesium alloys] // MiTOM. 2014. №1. S. 8–12.
6. Splav na osnove magniya i izdeliya, vypolnennye iz nego: pat. 2198234 Ros. Federaciya [Magnesium-based alloy and the products which have been executed of it: pat. 2198234 Rus. Federation]; opubl. 10.02.03, Byul. №4.
7. Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] // Litejnoe proizvodstvo. 2013. №5. S. 2–5.
8. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
9. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: September 30, 2016).
10. Morozova G.I., Muhina I.Yu. Nanostrukturnoe uprochnenie litejnyh magnievyh splavov sistemy Mg–Zn–Zr [Nanostructural hardening of cast magnesium alloys of Mg-Zn-Zr system] // MiTOM. 2011. №11. S. 3–7.
11. Timonova M.A. Korroziya i zashhita magnievyh splavov [Corrosion and protection of magnesium alloys]. M. Mashinostroenie, 1964. S. 295–300.
12. Muhina I.Yu. Struktura i svojstva novyh litejnyh magnievyh splavov [Structure and properties of new cast magnesium alloys] // Litejnoe proizvodstvo. 2011. №12. S. 12–14.
13. Sposoby polucheniya magnievogo splava : pat. 2188873 Ros. Federaciya [Ways of receiving magnesium alloy: pat. 2188873 Rus. Federation]; opubl. 10.09.02, Byul. №25.
14. Volkova E.F., Muhina I.Yu. Novye materialy na magnievoj osnove i vysokoresursnye tehnologii ih proizvodstva [New materials on magnesian basis and high-resource technologies of their production] // Tehnologiya legkih splavov. 2007. №2. S. 28–34.
15. Sadkov V.V., Laponov Yu.L. i dr. Perspektivnye usloviya primeneniya magnievyh splavov v samoletah OAO «Tupolev» [Perspective conditions of application of magnesium alloys in JSC Tupolev airplanes] // Metallurgiya mashinostroeniya. 2007. №4. S. 19–23.
16. Muhina I.Yu., Bobryshev B.L., Antipov V.V., Koshelev A.O., Bobryshev D.B. Struktura i svojstva splavov sistemy Mg–Al–Zr pri lit'e v kokil' i formy iz HTS [Structure and properties of alloys of Mg-Al-Zr system at chill casting and forms from HTS] // Litejnoe proizvodstvo. 2014. №8. S. 6–10.
17. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: September 25, 2016)
18. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
19. Muhina I.Yu., Duyunova V.A., Frolov A.V., Uridiya Z.P. Vliyanie legirovaniya RZM na zharoprochnost litejnyh magnievyh splavov [Influence of alloying of REM on thermal stability of cast magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №5. S. 34–38.
20. Uridiya Z.P., Muhina I.Yu. O germetizacii otlivok iz magnievyh i alyuminievyh splavov [About sealing of otlivka from magnesium and aluminum alloys] // Litejnoe proizvodstvo. 2012. №2. S. 34–38.
21. Muhina I.Yu., Uridiya Z.P. Magnij – osnova sverhlegkih materialov [Magnesium is the base of extralight materials] // Metallurgiya mashinostroeniya. 2005. №6. S. 29–31.
22. Sidorov V.V., Rigin V.E., Zaitsev D.E., Goryunov A.V. Formirovanie nanostrukturirovannogo sostoyaniya v litejnom zharoprochnom splave pri mikrolegirovanii ego lantanom [Forming of the nanostructured condition in foundry hot strength alloy at microalloying its lanthanum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 01. Available at: http://www.viam-works.ru (accessed: September 26, 2016).
23. Muhina I.Yu., Koshelev A.O., Leonov A.A., Bobryshev D.B. Ustranenie litejnyh defektov otlivok iz magnievyh splavov metodom zavarki [Elimination of foundry defects of otlivka from magnesium alloys welding method] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №2. S. 22–27.
24 Frolov A.V., Muhina I.Yu., Leonov A.A., Uridiya Z.P. Vliyanie legirovaniya redkozemelnymi metallami na svojstva i strukturu litejnogo magnievogo splava eksperimentalnogo sostava sistemy Mg–Zr–Zn–Y–Nd [An influence of rare-earth metals doping on properties and structure of the experimental Mg–Zr–Zn–Y–Nd casting magnesium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 03. Available at: http://www.viam-works.ru (accessed: September 30, 2016). DOI: 10.18577/2307-6046-2016-0-3-3-3.
25. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: September 30, 2016). DOI: 10.18577/2307-6046-2014-0-12-1-1.
26. Uridiya Z.P., Mukhina I.Y., Frolov A.V., Leonov A.A. Issledovanie mikrostruktury magnievo-cirko-nievoj ligatury i zharoprochnogo litejnogo magnievogo splava ML10 [Study of microstructure of magnesium-zirconium master alloy and heat-resistant magnesium alloy ML10] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 06. Available at: http://www.viam-works.ru (accessed: September 28, 2016). DOI: 10.18577/2307-6046-2015-0-10-6-6.
27. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article presents results of large-sized deformed turbine discs from nickel-based superalloy EK151-ID manufacturing technology development. The developed process provides the manufacturing possibility of large-sized forged discs from nickel-based superalloy with regulated structure and properties using industrial ingots with limited diameter (320 mm). Metal forming simulation engineering software QForm-3D was used in this work.
2. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova[History of aviation materials science. VIAM is 80: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 245–248.
3. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov: ucheb. posobie [Thermal stability of nickel alloys: manual]. M.: Mashinostroenie, 1998. 464 s.
4. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
5. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
6. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
8. Lomberg B.S., Gorin V.A., Gerasimov D.E., Rahmanov N.S., Stepanov V.P. Vysokozharoprochnye deformiruemye nikelevye splavy dlya diskov GTD i tehnologiya ih proizvodstva [High-heat resisting deformable nickel alloys for disks GTE and technology of their production] // Tehnologiya legkih splavov, 1993. №7–8. S. 54–63.
9. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86
10. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tehnologicheskie vozmozhnosti specializirovannyh izotermicheskih pressov siloj 6,3 i 16 MN v proizvodstve detalej aviacionno-kosmicheskogo naznacheniya [Technological capabilities specialized isothermal presses with a force of 6,3 and 16 MN in production of details of aerospace assignment] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem. 2015. №9. S. 36–41.
11. Razuvaev E.I., Bubnov M.V., Grigoreva G.A., Sidorov S.A. Razvitie i prakticheskoe primenenie fiziko-himicheskoj teorii v processah obrabotki davleniem aviacionnyh stalej i splavov [Development and practical application of physico-chemical theory in of processing by pressure applied to aircraft steels and alloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 07. URL: http://www.materialsnews.ru (data obrashheniya: 23.02.2017).
12. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: February 13, 2017).
13. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
14. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: February 23, 2017). DOI: 10.18577/2307-6046-2015-0-2-3-3.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
A mathematical model of the deposition of a coating from a two-component ion-droplet plasma of a vacuum-arc discharge from an alloy VT1-0 (titanium) is considered. It is established that the temperature of the substrate during coating depends on arc current and bias voltage. A relation is obtained from which it follows that the relative amount of the microdroplet phase in the ion-plasma coating is insignificant, but monotonically increases with increasing arc current. It is established that the specific change in the mass of the sample during coating depends on the arc current, voltage and time of the process. Formulas are proposed for calculating the substrate temperature and the specific change in the sample mass for ion-plasma coating deposition from the VT1-0 alloy. The obtained results can be used in the development and planning of the coating process on the MAP-3 ion-plasma installation, as well as predicting some properties of the obtained ion-plasma condensed coatings. Work is
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
6. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
7. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
8. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
9. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym barernym sloem dlya zashhity ot okisleniya splava ZhS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36VI] // Metallovedenie i termicheskaya obrabotka metallov. 2011. №1. S. 34–40.
10. Gayamov A.M. Zharostojkoe pokrytie s kompozicionnym barernym sloem dlya zashhity vneshnej poverhnosti rabochih lopatok GTD iz renijsoderzhashhih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from rhenium containing heat resisting nickel alloys] // Fiziko-himiya i tehnologiya neorganicheskih materialov: sb. mater. XI Ros. ezhegod. konf. molodyh nauchnyh sotrudnikov i aspirantov. M.: IMET RAN, 2012. C. 473–475.
11. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Sposob obrabotki poverhnosti metallicheskogo izdeliya: pat. 2368701 Ros. Federaciya [Way of surface treatment of metal product: pat. 2368701 Rus. Federation]; opubl. 27.09.09.
13. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] // Metally. 2012. №1. S. 5–13.
14. Sposob naneseniya kombinirovannogo zharostojkogo pokrytiya: pat. 2402633 Ros. Federaciya [Way of drawing the combined heat resisting covering: pat. 2402633 Rus. Federation]; 31.03.09.
15. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostojkie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by rhenium] // Metallovedenie i termicheskaya obrabotka metallov. 2008. №6. S. 31–36.
16. Budinovskij S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoj modeli opredeleniya uprugih napryazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostojkih pokrytij dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №2. S. 26–37.
17. Budinovskij S.A. Primenenie analiticheskoj modeli opredeleniya uprugih mehanicheskih i termicheskih napryazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniyu zharostojkih alyuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting aluminide coverings] // Uprochnyayushhie tehnologii i pokrytiya. 2013. №3. S. 3–11.
18. Smirnov A.A., Budinovskij S.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlya lopatok TVD iz nikelevyh monokristallicheskih splavov VZhM4, VZhM5U [The development of thermal barrier coatings for turbine blades of single-crystal nickel alloys VZHM4, VZHM5U] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 03. Available at: http://www.viam-works.ru (accessed: March 31, 2017). DOI: 10.18577/2307-6046-2016-0-1-3-3.
19. Artemenko N.I., Simonov V.N. Inzhenernaya metodika prognozirovaniya velichiny modulya uprugosti odnoslojnyh ionno-plazmennyh kondensirovannyh pokrytij, poluchennyh metodom plazmohimicheskogo sinteza [Engineering method for predicting the value of the elastic modulus of single-layer ion-plasma fused coatings obtained by plasma chemical synthesis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 05. Available at: http://www.viam-works.ru (accessed: March 31, 2017). DOI: 10.18577/2307-6046-2016-0-7-5-5.
20. Aleksandrov D.A., Artemenko N.I. Iznosostojkie pokrytiya dlya zashhity detalej treniya sovremennyh GTD [Wear-resistant coatings to protect friction parts of modern gas turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 31, 2017). DOI: 10.18577/2307-6046-2016-0-10-6-6.
21. Bielawski M. Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering // Surface Coating Technologies. 2006. Vol. 200. P. 3987–3995.
Researches of isothermal heat resistance of samples from natural-composite material are based on niobium for GTE parts with heat-resistant coatings at a temperature of 1350°C on the basis of tests of 30 hours. Tests on the cyclic heat resistance of samples with a combined coating at a temperature of 500⇄1300°C with air cooling up to 500°C have been carried out. Investigations of the microstructures of the coatings in their original form and after tests on the heat resistance of samples from a naturally-composite material based on niobium with complex coatings were carried out. The coating of the Si+(Fe–Cr–Al–Y)+Si system has a higher crack resistance than the diffusion heat-resistant coating. Combined heat-resistant coating provides protection of parts from natural-composite material based on niobium at operating temperatures up to 1350°C, and preserves protective properties under thermal cycling conditions.
2. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in the thermally stable nickel alloys for single‐crystal blades of gas‐turbine engines // 7th International Symposium on Technetium and Rhenium Science and Utilization. 2011. P. 1–7.
3. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Zaharova G.V., Popov I.A., Zhorova L.P., Fedin B.V. Niobij i ego splavy [Niobium and its alloys]. M.: Gos. nauch.-tehn. izd-vo lit-ry po chernoj i cvetnoj metallurgii, 1961. 196 s.
6. Svetlov I.L. Vysokotemperaturnye Nb–Si kompozity [High-temperature Nb–Si composites] // Materialovedenie. 2010. №9–10. S. 18–38.
7. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising gtes // Russian metallurgy (Metally). 2012. No. 1. P. 1–7.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Hayashi S., Takagi S., Yamagata R., Narita T., Ukai S. Formation of Exclusive Al2O3 Scale on Nb and Nb-Rich Alloys by Two-Step Oxygen-Aluminum Diffusion Process // Oxidation of Metals. 2012. No. 78. P. 167–178.
10. Sosnovskij L.A., Kaplina G.S., Astahova Zh.A., Korol E.A. Kompleksnye silicidnye pokrytiya na niobii [Complex silicide coverings on niobium] // Vysokotemperaturnaya zashhita materialov. L.: Nauka, 1981. S. 83–86.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
12. Streiff R. Protection of materials by advanced high temperature Coatings // Journal de physique IV. 1993. Vol. 3. No. 111. P. 17–41.
13. Fukumoto M., Matsumura Y., Hayashi S. et al. Coatings of Nb-based Alloy by Cr and/or Al Pack Cementations and Its Oxidation Bahavior in Air at 1273–1473 K // Materials Transactions. 2003. Vol. 44. No. 4. P. 731–735.
14. Novak M., Levi C. Oxidation and Volatilization of Silicide Coatings for Refractory Niobium Alloys // Proceedings of IMECE. Seattle, 2007. P. 3–5.
15. Tsirlin M.S., Kasatkin A.V., Byalobzheskii A.V. An oxidation-resistant silicide coating for niobium alloys // Poroshkovaya metallurgiya. 1978. No. 12. P. 31–34.
16. Oxidation resistant coating for Niobium – based silicide Composites: pat. 6521356 US; publ. 18.02.03.
17. Stupik D., Donovn M.M., Barronj A.R. et al. The interfacial mixing of silicon coatings on niobium metal: a comparative study // Thin Solid Films. 1992. No. 207. P. 138–143.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Article is devoted to consideration of technologies which have been applied at construction of the fast-erected arch automobile bridge first in Russia from composite materials, and also the main stages of its construction. The bridge constructed on this technology in the regional settlement of Yazykovo of the Ulyanovsk region, has the span length of 11,98 meters, maintains loading to 100 tons, long time does not require capital investments and is constantly supervised by monitoring system using fiber optic sensors of deformation and temperature.
2. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials are the base of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
7. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: March 24, 2017).
8. Vlasenko F.S., Raskutin A.E., Doneckij K.I. Primenenie pletenyh preform dlya polimernyh kompozicionnyh materialov v grazhdanskih otraslyah promyshlennosti (obzor) [Application of braided preforms for polymer composite materials in civil industries (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 05. Available at: http://www.viam-works.ru (accessed: March 24, 2017). DOI: 10.18577/2307-6046-2015-0-1-5-5.
9. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2012. T. 14. №4 (3). S. 831–838.
10. Afanasev D.V., Oshhepkov M.Yu. Bezavtoklavnye tehnologii [Autoclave-free technology] // Kompozitnyj mir. 2010. S. 28–37.
11. Doneckij K.I., Karavaev R.Yu., Raskutin A.E., Panina N.N. Svojstva ugle- i stekloplastikov na osnove pletenyh preform [Properties of carbon fiber and fiberglass on the basis of braiding preforms] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 54–59. DOI: 10.18577/2071-9140-2016-0-4-54-59.
12. Dyshenko V.S., Raskutin A.E., Zuev M.A. Dorozhnyj detektor v sistemah bezostanovochnogo avtomaticheskogo vzveshivaniya [The road detector in systems of Weigh-In-Motion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 12. Available at: http://www.viam-works.ru (accessed: March 24, 2017). DOI: 10.18577/2307-6046-2016-0-5-12-12.
13. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] // Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
14. Gulyaev I.N., Gunyaev G.M., Raskutin A.E. Polimernye kompozitsionnye materialy s funktsiyami adaptacii i diagnostiki sostoianiya [Polymeric composite materials with functions of adaptation and condition diagnostics] // Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
15. Gulyaev I.N., Gunyaev G.M. Ispolzovanie nepreryvnyh armiruyushhih volokon v kachestve tenzorezistornyh sensornyh elementov [Use of continuous reinforcing fibers as strain gauge sensing elements] // Aviacionnye materialy i tehnologii. 2010. №2. S. 22–27.
This article presents development, carried out by FSUE «VIAM», of new generation of polymer composite material based on melted low temperature epoxy resin and domestic developed carbon fabric. Comparative elastic and strength characteristics of the cured composite and carbon fabric characteristics are submitted. The received results show that the developed composite doesn't concede on is elastic to strength properties of the import and domestic analogs.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushhih dlya polimernyh kompozicionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
6. Gusev Yu.A., Grigor'ev M.M., Timoshina L.N. Izgotovlenie etalonnyh obrazcov iz PKM s zadannoj poristostyu metodom vakuumnoj infuzii [Production of standard polymer composite samples with the set porosity by vacuum infusion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 06. Available at: http://www.viam-works.ru (accessed: March 30, 2017). DOI: 10.18577/2307-6046-2014-0-11-6-6.
7. Murashov V.V., Rumyantsev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
8. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
9. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledo-vanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-12-11-11.
10. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: April 04, 2017). DOI: 10.18577/2307-6046-2015-0-11-6-6.
11. Gulyaev I.N. Prepregi i ugleplastiki na osnove rastvornyh svyazuyushhih i tkanej firmy «Porcher Ind.» [Prepregs and carbon plastics on the basis of solution binding and firm fabrics «Porcher Ind.»] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. URL: http://www.materialsnews.ru (data obrashheniya: 06.04.2017).
12. Raskutin A.E. Konstrukcionnye ugleplastiki na osnove novyh svyazuyushhih rasplavnogo tipa i tkanej PORCHER [Constructional carbon plastics on the basis of new binding molten type and PORCHER fabrics] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 01. URL: http://www.materialsnews.ru (data obrashheniya: 06.04.2017).
13. Dushin M.I., Hrulkov A.V., Raskutin A.E. K voprosu udaleniya izlishkov svyazuyushchego pri avtpklavnim formovanii izdeliy iz polimernyh kompozitsionnyh materialov [To question of removal of excesses binding at avtoklavny formation of products from polymeric composite materials]// Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 03. Available at: http://viam-works.ru (accessed: April 10, 2017).
14. Postnov V.I., Petuhov V.I., Kazakov I.A., Abramov P.A., Postnov A.V., Senatorova O.G., Zhelezina G.F. Izgotovlenie iz MPKM konstruktivnyh elementov planera samoleta i osobennosti ih formoobrazovaniya [Manufacturing from MPCM of constructive elements of glider of airplane and feature of their morphogenesis] // Aviacionnye materialy i tehnologii. 2009. №3. S. 10–19.
15. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
The use of composite materials is increasingly on a large scale. In the automotive industry composite materials has been used for many years, and every year the level of usage is increasing. If previously, PCM was mainly used as interior trim in the parts not bearing a significant load, but now the polymers were used in large-size details, and foreign companies such as BMW, Ford, Mercedes, Audi and it made the car body which consists entirely of composites.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation are the base of innovations, technological leadership and national security of Russia] // Intellekt & Tehnologii. 2016. №4. S. 41–46.
5. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatel» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
6. Kablov E.N. O nastoyashhem i budushhem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossijskaya akademiya nauk. 2015. 19 yanvarya.
7. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
8. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushhih dlya polimernyh kompozicionnyh materialov [Development of FSUE «VIAM» in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
9. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
10. Chursova L.V., Dushin M.I., Hrulkov A.V., Muhametov R.R. Osobennosti tehnologii izgotovleniya detalej iz kompozicionnyh materialov metodom propitki pod davleniem [Researches and development of autoclave and autoclave-free technologies of formation of PCM] // Kompozicionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotras. nauch.-tehnich. konf. M.: VIAM, 2009. S. 17.
11. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
12. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
13. Vicari A. Will Carbon Fiber Find Widespread Use in the Automotive Industry? // Composites today. 2015. №3. Р. 3–10.
14. Mirnyj M.M. Avtomobili budushhego budut na 75% iz plastika [Cars of the future will be for 75 % from plastic] // Kompozitnyj mir. 2015. №3. S. 5–10.
15. Mirnyj M.M. Avtomobilestroenie kak drajver sprosa na polimernuyu produkciyu [Automotive industry as driver of demand for polymeric products] // Informacionno-analiticheskij spravochnik. 2014. S. 15–18.
16. Available at: http://www.1gai.ru/techno-cars/514689-bmw-originalnym-obrazom-okazalis-vperedi-po-konstrukcii-novoy-7-serii.html (accessed: April 17, 2017).
17. Available at: http://remontpeugeot.ru/avtozhizn/ novye-kompozitnye-materialy-v-avtomobile-primenenie-konstrukcii.html (accessed: April 18, 2017).
18. Kichigin A.S. Plastmassovaya evolyuciya [Plastic evolution] // Neftehimiya RF. 2016. №2. S. 1–4.
19. Sabitov A.A. Primenenie v avtomobilestroenii kompozicionnyh materialov [Application in automotive industry of composite materials]. Irkutsk: Irkutskij tehnikum mashinostroeniya, 2016. S. 5–6.
20. Available at: https://rg.ru/2016/05/26/avtoprom-budushchee-rynka-za-avtomobiliami-iz-polimerov.html (accessed: April 18, 2017).
Development of technical progress in aerospace, transport, power and other industries is inseparably linked with creation of new and improvement traditional materials [1–4]. Broad application of radio engineering and electrotechnical means defines need for development of radio absorbing materials (RAM) with the set technical characteristics. In this article results of working off of technological modes of drying fibrous foam materials, broadband radio absorbing materials applied to manufacturing are provided. Influence of modes of heat treatment for receiving stable and uniform fibrous materials is shown. Work is executed within implementation of the complex scientific direction 15.3. «Materials and coverings for protection against EMR, shock, vibrating, acoustic and electric influences» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran»]. M.: Nauka i zhizn, 2013. 128 s.
5. Bibikov S.B., Prokofev M.V., Kulikovskij K.E., Zhuravlev V.A. Razrabotka materialov i pokrytij, ispolzuemyh dlya provedeniya radiotehnicheskih ispytanij i obespecheniya elektromagnitnoj sovmestimosti [Development of materials and the coverings used for carrying out radio engineering tests and ensuring of electromagnetic compatibility] // Voprosy oboronnoj tehniki. Ser.: Tehnicheskie sredstva protivodejstviya terrorizmu. 2013. №5–6. S. 56–64.
6. Bibikov S.B., Titov A.N., Cherepanov A.K. Sintez materiala s zadannym koefficientom otrazheniya v shirokom diapazone chastot i uglov padeniya [Material synthesis with the set reflection coefficient with the broad range of frequencies and incidence angles] // Sb. trudov XV Mezhdunar. nauch.-tehnich. konf. «Radiolokaciya, navigaciya, svyaz'». Voronezh, 2009. S. 1578–1584.
7. Mihajlin Yu.A. Specialnye polimernye kompozicionnye materialy [Special polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii, 2014. 664 s.
8. Latypova A.F., Kalinin Yu.E. Analiz perspektivnyh radiopogloshhayushhih materialov [The analysis of perspective radio absorbing materials] // Vestnik Voronezhskogo gos. teh. un-ta. 2012. T. 8. №6. S. 70–76.
9. Belyaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhayushhie materialy [Radio absorbing materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
10. Belyaev A.A., Bespalova E.E., Romanov A.M. Pozharobezopasnye radiopogloshhayushhie materialy dlya bezehovyh kamer [Fireproof radio absorbing materials for anechoic cameras] // Aviacionnye materialy i tehnologii. 2013. №1. S. 53–55.
11. Lushina M.V., Parshin S.G., Rzhevskij A.A. Sovremennye ekraniruyushhie i radiopogloshhayushhie materialy [Modern shielding and radio absorbing materials] // Sistemy upravleniya i obrabotka informacii. 2011. №22. S. 208–223.
12. Nikolskij V.V., Nikolskaya T.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and radio propagation]. M.: URSS, 2012. S. 163–164.
13. Shirokov V.V., Romanov A.M. Issledovanie dielektricheskih harakteristik steklosotoplasta volnovodnym metodom [Waveguide method research of honeycomb glass fibre plastics dielectric characteristics] // Aviacionnye materialy i tehnologii. 2013. №4. S. 62–68.
14. Belyaev A.A., Agafonova A.S., Antipova E.A., Botanogova E.D. Konstrukcionnyj radiopogloshhayushhij material trehslojnoj struktury s soglasuyushhim sloem [Constructional radio absorbing material of three-layered structure with approval layer] // Trudy VIAM: elektron. nauch. tehnich. zhurn. 2013. №7. St. 02. Available at: http://www.viam-works.ru (accessed: May 15, 2017).
15. Agafonova A.S., Belyaev A.A., Kondrashov E.K., Romanov A.M. Osobennosti formirovaniya monolitnyh konstrukcionnyh radiopogloshhayushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of the formation of monolithic structural radio absorbing materials based on composites filled with resistive fibers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
16. Bespalova E.E., Kondrashov E.K. Osobennosti korrektirovki receptury pozharobezopasnogo materiala dlya bezehovyh kamer pri izmenenii parametrov radiopogloshhayushhego napolnitelya [Features of updating of a composition of a fireproof material for anechoic chambers when changed of parameters radio absorbing filler] // Aviacionnye materialy i tehnologii. 2014. №2. S. 48–52. DOI: 10.18577/2071-9140-2014-0-2-48-52.
17. Romanov A.M., Belyaev A.A., Shirokov V.V. Osobennosti optimizacii rezonansnyh radiopogloshhayushhih materialov nemagnitnogo tipa [Peculiar features of optimization of resonant radar-absorbing materials of nonmagnetic type] // Trudy VIAM: elektron. nauch. tehnich. zhurn. 2014. №11. St. 05. Available at: http://www.viam-works.ru (accessed: May 15, 2017). DOI: 10.18577/2307-6046-2014-0-11-5-5.
18. Bibikov S.B., Zasovin E.A., Cherepanov A.K., Hmelnik G.I. Matematicheskoe modelirovanie parametrov mnogoslojnyh radiopogloshhayushhih pokrytij [Mathematical modeling of parameters of multi layer radio absorbing coatings] // Sb. trudov XV Mezhdunar. nauch.-tehnich. konf. «Radiolokaciya, navigaciya, svyaz'». Voronezh, 2009. S. 1585–1595.
19. Volkov V.P., Zeleneckij A.N. i dr. Poluchenie radiozashhitnyh polimernyh materialov ponizhennoj goryuchesti [Receiving radio protective polymeric materials of the lowered combustibility] // Plasticheskie massy. 2008. №6. S. 42–46.
20. D'yachenko P.B., Rybalko V.P., Nikityuk A.I., Pisarenko E.I., Kireev V.V. Pozharobezopasnye termostojkie polimernye kompozicionnye materialy s ponizhennoj plotnostyu [Fireproof heat-resistant polymeric composite materials with lowered density] // Uspehi v himii i himicheskoj tehnologii. T. XXV. 2011. №2 (118). S. 94–99.
21. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
22. Micmaher M.Yu., Torgovanov V.A. Bezehovye kamery SVCh. [Microwave ovens anechoic cameras]. M.: Radio i svyaz, 1982. 129 s.
23. Maslov M.Yu., Semakov L.M., Skachkov D.V. Ispytatelnaya bezehovaya kamera diapazona 1200 MGc [Test anechoic chamber of the range of 1200 MHz] // Telekommunikacii i transport. 2009. Spec. vyp.: Tehnologii informacionnogo obshhestva. S. 123–125.
24. Radiopogloshhayushhij material: pat. 2417491 Ros. Federaciya [Radio absorbing material: pat. 2417491 Rus. Federation]; opubl. 27.04.11.
This paper describes a method for computing effective electrodynamic parameters (susceptibility tensors) of a partially disordered periodic medium with a rectangular cell; the cell must be considerably smaller that the electromagnetic wave length in the medium. The computational complexity of the suggested iterative algorithm is O(NxNyNzlnNxlnNylnNz) per iteration, and the required memory size is Θ(NxNyNz), where Nx, Ny and Nz stand for the grid size in the respective directions. The algorithm can be extended so that it will also support periodic media with non-rectangular cells, which only requires a few additional linear transforms.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kondrashov S.V., Gurevich Ya.M., Popkov O.V., Shashkeev K.A. i dr. Shirokopolosnye radiopogloshhayushhie materialy na osnove poristyh kompozitov s uglerodnymi nanotrubkami [Broadband radio absorbing materials on the basis of porous composites with carbon nanotubes] // Vse materialy: Enciklopedicheskij spravochnik (v pechati).
4. Qinand F., Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles // J. Appl. Phys. 2012. Vol. 111. Paper No. 061301. DOI: 10.1063/1.3688435.
5. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Perspektivnye tehnologii polucheniya funkcionalnyh materialov konstrukcionnogo naznacheniya na osnove nanokompozitov s UNT (obzor) [Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 07. Available at: http://www.viam-works.ru (accessed: July 05, 2016). DOI: 10.18577/2307-6046-2016-0-3-7-7.
6. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Fiziko-mehanicheskie svojstva nanokompozitov s UNT (obzor) [Mechanical properties of CNT nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 08. Available at: http://www.viam-works.ru (accessed: July 05, 2016). DOI: 10.18577/2307-6046-2016-0-5-8-8.
7. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 28–42.
8. Kondrashov S.V., Gunyaeva A.G., Shashkeev K.A., Barinov D.Ya., Soldatov M.A., Shevchenko V.G., Muzafarov A.M. Elektroprovodyashhie gibridnye polimernye kompozicionnye materialy na osnove nekovalentno funkcionalizirovannyh uglerodnyh nanotrubok [Electrically-conductive hybrid polymer composite materials on the basis of noncovalent functional carbon nanotubes] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 10. Available at: http://www.viam-works.ru (accessed: July 05, 2016). DOI: 10.18577/2307-6046-2016-0-2-10-10.
9. Akatenkov R.V., Anoshkin I.V., Belyaev A.A., Bitt V.V., Bogatov V.A., Dyachkova T.P., Kutsevich K.E., Kondrashov S.V., Romanov A.M., Shirokov V.V., Horobrov N.V. Vliyanie strukturnoj organizacii uglerodnyh nanotrubok na radiojekraniruyushhie i elektroprovodyashhie svojstva nanokompozitov [Influence of the structural organization of carbon nanotubes on radio shielding and electrocarrying-out properties of nanocomposites] // Aviacionnye materialy i tehnologii. 2011. №1. S. 35–42.
10. Challa R.K., Kajfez D., Demir V., Gladden J.R., Elsherbeni A.Z. Characterization of Multiwalled Carbon Nanotube (MWCNT) Composites in a of Square Cross Section Waveguide // IEEE Microwave and Wireless Components Letters. 2008. Vol. 18. No. 3. P. 161–163. http://ieeexplore.ieee.org/document/4459260/ (accessed: December 23, 2017). DOI: 10.1109/LMWC.2008.916776.
11. De Vivo B., Guagno L., Lamberti P. et al. Electromagnetic properties of Carbon NanoTube/epoxy nanocomposites // International Symposium on Electromagnetic Compatibility – EMC Europe. Athens, 2009. P. 1–4. http://ieeexplore.ieee.org/document/5189674/ (accessed: December 23, 2017). DOI: 10.1109/EMCEUROPE.2009.5189674.
12. Huang Q., Holland T.B., Mukherjee A.K. et al. Carbon nanotube RF absorbing materials // Proc. SRF2009. Berlin, 2009. P. 648–651.
13. Huang Yi., Li N., Ma Y. et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites // Carbon. 2007. Vol. 45. P. 1614–1621. DOI: 10.1016/j.carbon.2007.04.016.
14. Liu Z.F., Bai G., Huang Y. et al. Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites // J. Phys. Chem. C. 2007. Vol. 111. No. 37. P. 13696–13700. DOI: 10.1021/jp0731396.
15. Fan Z., Luo G., Zhang Z. et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites // Materials Science and Engineering B. 2006. Vol. 132. P. 85–89.
16. Zhang Y., Zhang A., Ding L. et al. The effect of polymer spatial configuration on the microwave absorbing properties of non-covalent modified MWNTs // Composites. Part A. 2016. Vol. 81. P. 264–270.
17. Che R.C., Liang C.Y., Shi H.L. et al. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes// Nanotechnology. Vol. 18. No. 35. Paper No. 355705.
18. Qi X., Hu Q., Xu J. et al. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids // Materials Science and Engineering B. 2016. Vol. 211. P. 53–60.
Complex research of products from AMg4,5 aluminum alloys and AMn after long-term operation for the purpose of identification of signs of degradation of material is conducted. Mechanical tests for assessment of strength properties of base material and welded seams, are carried out by methods of non-destructive testing, optical and scanning microscopy the material structure is investigated, the fractographic analysis of the destroyed samples is carried out. It is established that degradation signs at observance of operating conditions do not come to light.
2. Primenenie alyuminievyh splavov: spravochnik / M.B. Altman, G.N. Andreev, Yu.P. Arbuzov i dr. 2-e izd., pererab. i dop. [Application of aluminum alloys: directory / M.B. Altman, G.N. Andreev, Yu.P. Arbuzov et al. 2nd ed., rev. and add.]. M.: Metallurgiya, 1985. 344 s.
3. Alyuminij: svojstva i fizicheskoe metallovedenie: spravochnik / pod red. Dzh. E. Hetcha. Per. s angl. [Aluminum: properties and physical metallurgical science: directory / ed. by J.E. Hetch. Trans from Engl.]. M.: Metallurgiya, 1989. 422 s.
4. Sinyavskij V.S., Valkov V.D., Kalinin V.D. Korroziya i zashhita alyuminievyh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1986. 368 s.
5. Kozlova L.S., Sibileva S.V., Chesnokov D.V., Kutyrev A.E. Ingibitory korrozii (obzor) [Corrosion inhibitors (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 67–75. DOI: 10.18577/2071-9140-2015-0-2-67-75.
6. Korrozionnaya stojkost oborudovaniya himicheskih proizvodstv. Neftepererabatyvayushhaya promyshlennost: spravochnoe rukovodstvo / pod red. A.M. Suhotina, Yu.I. Archakova [Corrosion resistance of the equipment of chemical productions. Oil-processing industry: reference guide / ed. by A.M. Suhotin, Yu.I. Archakov]. L.: Himiya, 1990. 400 s.
7. Kravchenko N.G., Petrova V.A. Opredelenie korrozionnoj agressivnosti aviacionnyh benzinov [Determination of aviation gasolines corrosion aggression] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11 (47). St. 10. Available at: http://www.viam-works.ru (accessed: April 24, 2017). DOI: 10.18577/2307-6046-2016-0-11-10-10.
8. Kutyrev A.E., Karimova S.A., Pavlovskaya T.G., Kuzin Ya.S. Issledovanie degradacii svojstv zashhitnyh kombinirovannyh pokrytij na alyuminievyh splavah s celyu razrabotki metodov prognozirovaniya ih srokov sluzhby [Research of properties degradation of protective combined coatings applied on aluminum alloys to develop methods of forecasting of their service life] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 69–78. DOI: 10.18577/2071-9140-2015-0-3-69-78.
9. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kurs M.G. Atmosfernaya korrozionnaya stojkost perspektivnyh Al–Li splavov pri provedenii naturno-uskorennyh ispytanij v usloviyah umerenno teplogo klimata [Atmospheric corrosion resistance of advanced Al–Li alloys by nature full-scale accelerated tests in the conditions of temperate warm climate] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 88–94. DOI: 10.18577/2071-9140-2016-0-2-88-94.
11. Rabkin D.M., Lozovskaya A.V., Sklabinskaya I.E. Metallovedenie svarki alyuminiya i ego splavov [Metallurgical science of welding of aluminum and its alloys]. Kiev: Naukova dumka, 1992. 160 s.
12. Kablov E.N., Morozova L.V., Grigorenko V.B., Zhegina I.P., Fomina M.A. Issledovanie vliyaniya korrozionnoj sredy na process nakopleniya povrezhdenij i harakter razrusheniya konstrukcionnyh alyuminievyh splavov 1441 i V-1469 pri ispytaniyah na rastyazhenie i malociklovuyu ustalost [Research of influence of the corrosion environment on process of accumulation of damages and nature of destruction of structural aluminum alloys 1441 and V-1469 at tension tests and low-cyclic fatigue] // Materialovedenie. 2017. №1. S. 41–48.
13. Morozova L.V., Zhegina I.P., Grigorenko V.B. Osobennosti deformacionnogo povedeniya splava V-1469 v usloviyah sovmestnogo vozdejstviya prilozhennoj nagruzki i korrozionno-aktivnoj sredy [Particular properties of deformation behavior of alloy V-1469 in conditions of joint influence of applied loading and active corrosion environment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 10. Available at: http://viam-works.ru (accessed: October 17, 2016). DOI: 10.18577/2307-6046-2016-0-9-10-10.
14. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: April 24, 2017). DOI: 10.18577/2307-6046-2016-0-8-10-10.
15. Kablov E.N., Lukina E.A., Sbitneva S.V., Hohlatova L.B., Zajcev D.V. Formirovanie metastabilnyh faz pri raspade tverdogo rastvora v processe iskusstvennogo stareniya alyuminievyh splavov [Forming of metastable phases at disintegration of solid solution in the course of artificial aging of aluminum alloys] // Tehnologiya legkih splavov. 2016. №3. S. 7–17.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The complex of properties of the fabric film material consisting of polyester fabric (art. 208) with the double-sided polyurethane covering on the basis of SKU-8TB rubber with functional additives, intended for manufacturing ballonet pneumatic ladder for emergency evacuation of cabin of the helicopter is investigated. Results of research of properties of this material in initial condition and after the operational and climatic factors carried out after influence (elevated temperature, humidity, mold fungi, influence of humid tropical climate, etc.) have shown that properties change slightly from reference values that confirms its working capacity at temperatures from -60 to +80°С.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Klyuchevaya problema – materialy [Materials are the key problem] // Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. inform. mater. 3-e izd., pererab. i dop. M.: VIAM, 2015. S. 458–464.
4. Kablov E.N. Sozdanie nacionalnoj seti klimaticheskih stancij – neobhodimoe uslovie nadezhnosti i resursa aviacionnoj tehniki [Creation of national network of climatic stations – necessary condition of reliability and resource of aviation engineering] // Krylya Rodiny. 2010. №8. S. 3–6.
5. Normy letnoj godnosti samoletov transportnoj kategorii: AP-25. 5-e izd., s popravkami 1–8 [Standards of the flight validity of airplanes of transport category: AP-25. 5th ed., with corrections 1–8]. M.: Aviaizdat, 2015. 278 s.
6. Normy letnoj godnosti grazhdanskih legkih samoletov: AP-23. 4-e izd., s popravkami 1–5 [Standards of the flight validity of civil light aircrafts: AP-23. 4 ed., with corrections 1–5.]. M.: Aviaizdat, 2014. 207 s.
7. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
8. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
9. Platonov M.M., Nazarov I.A., Nesterova T.A. Tkaneplenochnye materialy dlya naduvnyh aviacionnyh sredstv spaseniya [Fabrics film materials for inflatable aviation survival equipment] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 06. Available at: http://www.materialsnews.ru (accessed: February 20, 2017).
10. Platonov M.M., Nazarov I.A., Nesterova T.A. Tkaneplenochnye materialy dlya naduvnyh aviacionnyh sredstv spaseniya [Fabrics film materials for inflatable aviation survival equipment] // Sb. dokl. konf. «Teploizolyacionnye i tekstilnye materialy aviacionnogo naznacheniya». M.: VIAM, 2013. S. 7.
11. Nesterova T.A., Platonov M.M., Sharakina L.A. Ocenka svojstv pozharobezopasnogo tkaneplenochnogo materiala dlya dorozhki skolzheniya spasatelnogo trapa [Assessment of properties of the fireproof fabric film material for path of sliding of the saving rescue ladder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 09. Available at: http://www.viam-works.ru (accessed: February 20, 2017). DOI: 10.18577/2307-6046-2014-0-10-9-9.
12. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Issledovanie svojstv ugleplastika na polifenilensulfidnom svyazuyushhem posle uskorennyh i naturnyh klimaticheskih ispytanij [Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
13. Sorokin A.E., Bejder E.Ya., Perfilova D.N. Vliyanie klimaticheskih faktorov na svojstva ugleplastika na polifenilensulfidnom svyazuyushhem [Effect of climatic factors on properties of carbon fiber reinforced plastic based on polyphenylenesulfide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 10. Available at: http://www.viam-works.ru (accessed: September 20, 2015). DOI: 10.18577/2307-6046-2015-0-1-10-10.
14. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] // Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
15. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Investigation of polymer composite materials under effect of climatic factors and loads in laboratory and environmental conditions] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
16. Barbotko S.L., Nesterova T.A., Kirienko O.A., Volnyj O.S. Issledovanie vliyaniya ekspluatacionnyh i klimaticheskih faktorov na goryuchest tekstilnyh materialov aviacionnogo naznacheniya [The research of operational and climatic factors influence on flammability of textile materials used in aviation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 12. Available at: http://www.viam-works.ru (accessed: February 20, 2017). DOI: 10.18577/2307-6046-2016-0-3-12-12.
17. Platonov M.M., Shuldeshov E.M., Nesterova T.A., Sagomonova V.A. Akusticheskie polimernye materialy novogo pokoleniya (obzor) [Acoustic polymeric materials of new generation (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 09. Available at: http://viam-works.ru (accessed: February 16, 2017). DOI: 10.18577/2307-6046-2016-0-4-9-9.
18. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
19. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Nesterova T.A., Platonov M.M., Nazarov I.A., Barbotko S.L. Issledovaniya po razrabotke novogo materiala dlya balloneta pnevmaticheskogo trapa dlya avarijnogo pokidaniya kabiny vertoleta [Researches on development new material for ballonet of pneumatic emergency slide of helicopter] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №12 (48). St. 07. Available at: http://www.viam-works.ru (accessed: February 20, 2017). DOI: 10.18577/2307-6046-2016-0-12-7-7.
It was conducted studies of organic and inorganic corrosion inhibitors, their combined effect on the development of cracks on high-strength steels and in aqueous media when introduced into the paint coating. It was found that among the inorganic salts and oxides of the most effective in protecting from high-strength steels are brittle chromates provide the longest time to failure of samples and the best protection against general corrosion of steel. Studies have shown that the greatest protective effect is a mixture of inorganic and organic corrosion inhibitors provide a synergistic effect.
2. Rozenfeld I.L., Rubinshtejn F.I. Antikorrozionnye gruntovki i ingibirovannye lakokrasochnye pokrytiya [Corrosion inhibiting primers and inhibited paint coatings]. M.: Himiya, 1980. S. 95–112.
3. Ingibitor «Reakor-2» korrozionno-mehanicheskogo razrusheniya nizkolegirovannyh stalej: pat. 2068628 Ros. Federaciya. №94010478/02 [Reakor-2 inhibitor of corrosion and mechanical destruction of low-alloy steels: pat. 2068628 Rus. Federation. No. 94010478/02]; zayavl. 25.03.94; opubl. 27.10.96, Byul. №30. 5 s.
4. Rahmankulov D.L., Bugaj D.E., Gabitov A.I., Golubev M.V., Laptev A.B., Kalimullin A.A. Ingibitory korrozii [Corrosion inhibitors]. Ufa: Reaktiv, 1997. T. 1: Osnovy teorii i praktiki primeneniya. S. 117–128.
5. Bugaj D.E., Golubev M.V., Laptev A.B. i dr. O zashhitnyh svojstvah nekotoryh aminov, ketosulfidov, acetalej i ih analogov pri ingibirovanii korrozii pod napryazheniem stroitelnoj stali [About protective properties of some ammines, cetosulfides, atsetaly and their analogs at corrosion inhibition energized building steel]// Bashkirskij himicheskij zhurnal. 1996. T. 3. №4. S. 59–63.
6. Astafev V.I., Radaev Yu.N, Stepanova L.V., Shiryaeva L.K. Nakoplenie povrezhdennosti i razrushenie metallov v usloviyah korrozionnogo rastreskivaniya pod napryazheniem [Accumulation of povrezhdennost and destruction of metals in the conditions of stress corrosion cracking]. Samara: Izd-vo Samar. un-ta, 1998. 123 s.
7. Gareev A.G., Nasibullina O.A., Rizvanov R.G. Issledovanie osobennostej korrozionnogo rastreskivaniya pod napryazheniem obrazca stali H70, otobrannogo iz ochagovoj zony razrusheniya [Research of features of stress corrosion cracking of sample of the X70 steel which has been selected from zone of destruction] // Neftegazovoe delo. 2015. T. 13. №4. S. 244–248.
8. n-izobutil-n-2-trimetilsililoksi(etil)-n-ciklogeksan-2-onilmetilamin v kachestve ingibitora kor-rozionno-mehanicheskogo razrusheniya nizkolegirovannyh stalej: pat. 2119492 Ros. Federaciya. №93047885 [n-isobutyl-n-2-threemethylsililoxi(etil)-n-ciclogexan-2-onilmethylamine as inhibitor of corrosion and mechanical destruction of low-alloy steels: pat. 2119492 Rus. Federation. No. 93047885]; zayavl. 15.10.93; opubl. 27.09.98, Byul. №30. 5 s.
9. Bugaj D.E., Laptev A.B., Gabitov A.I. Uchet haraktera adsorbcii ingibitorov na stali pri opredelenii zashhitnyh svojstv v serovodorodnyh sredah pri korrozii pod napryazheniem [Accounting of nature of adsorption of inhibitors on steel at determination of protective properties in hydrosulphuric environments at corrosion energized] // Bashkirskij himicheskij zhurnal. 1994. T. 1. №2. S. 25–27.
10. Bugaj D.E., Gabitov A.I., Laptev A.B. i dr. Mehanizm zashhitnogo dejstviya ingibitorov stress-korrozii klassa acetalej [Mechanism of protective effect of inhibitors stress corrosion of class of the acetale] // Bashkirskij himicheskij zhurnal. 1994. T. 1. №2. S. 28–32.
11. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM is 80: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
12. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
13. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
14. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri naturno-uskorennyh ispytaniyah. Chast 1 [Research of corrosion destruction of deformable aluminum alloys at natural accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1. S. 116–126.
15. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science ] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Chebotarevskij V.V., Kondrashov E.K. Tehnologiya lakokrasochnyh pokrytij v mashinostroenii [Technology of paint coatings in mechanical engineering]. M.: Mashinostroenie, 1978. S. 76–105.
18. Kondrashov E.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A. Osnovnye napravleniya povysheniya ekspluatacionnyh, tehnologicheskih i ekologicheskih harakteristik lakokrasochnyh pokrytij dlya aviacionnoj tehniki [The main directions of increase of utilization, technical and ecological properties of paint coatings for aviation engineering] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
19. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
20. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
21. Kozlova A.A., Kondrashov E.K., Deev I.S., Shhegoleva N.E. Issledovanie vliyaniya frakcionnogo sostava i udelnoj poverhnosti antikorrozionnyh pigmentov na zashhitnye svojstva epoksidnyh pokrytij [Research of influence of fractional structure and specific surface of anticorrosive pigments on protective properties of epoxy coverings] // Korroziya: materialy, zashhita. 2013. №3. S. 42–48.
22. Kozlova A.A., Kondrashov E.K., Deev I.S. Zashhitnye svojstva lakokrasochnyh pokrytij na osnove ftorsoderzhashhego plenkoobrazuyushhego [Protective properties of paint coatings on the basis of the fluorinated film-forming] // Korroziya: materialy, zashhita. 2014. №4. S. 43–48.
23. Yakovlev A.D. Himiya i tehnologiya lakokrasochnyh pokrytij: ucheb. posob. dlya vuzov [Chemistry and technology of paint coatings: manual for higher education institutions]. L.: Himiya, 1981. S. 166–170.
24. Kondrashov E.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitie aviacionnyh lakokrasochnyh materialov [Development of aviation paint and varnish materials] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 49–54.
25. Semenova L.V., Nefedov N.I. Primenenie epoksidnyh modificirovannyh gruntovok v sistemah LKP [Application of modified epoxy primers in the painting systems] // Aviacionnye materialy i tehnologii. 2014. №3. S. 38–44. DOI: 10.18577/2071-9140-2014-0-3-38-44.