Articles
The research of technological schemes (the sequence of welding and heat treatment operations) influence on the mechanical properties and the structure is carried out. The influence of technological heatings with a 300 hours duration and 650°C temperature on the weld’s structure and mechanical properties is studied. Friction welding parameters and optimal sequence of welding and heat treatment that allow getting the most high mechanical properties are determined.
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP4. S. 13–19.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
4. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
5. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: September 15, 2017). DOI: 10.18577/2307-6046-2015-0-2-3-3.
6. Belyaev M.S., Terentjev V.F., Gorbovets M.A., Bakradze M.M., Antonova O.S. [Low cycle fatigue of Ni-based superalloy VZh175 at preset strain] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 01. Available at: http://www.viam-works.ru (accessed: September 15, 2017). DOI: 10.18577/2307-6046-2015-0-9-1-1
7. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Tr. vseros. nauch.-praktich. konf. «Svarka i bezopasnost». Yakutsk: IFTPS SO RAN, 2012. S. 21–30.
8. Eliseev Yu.S., Maslenkov S.B., Gejkin V.A., Poklad V.A. Tehnologiya sozdaniya nerazemnyh soedinenij pri proizvodstve gazoturbinnyh dvigatelej [Technology of creation of permanent connections by production of gas turbine engines]. M.: Nauka i tehnologii, 2001. 544 s.
9. Sorokin L.I. Obrazovanie goryachih treshhin pri svarke zharoprochnyh nikelevyh splavov [Formation of hot cracks when welding heat resisting nickel alloys] // Svarochnoe proizvodstvo. 2005. №7. S. 29–33.
10. Sorokin L.I. Svarivaemost zharoprochnyh nikelevyh splavov (obzor). Ch. 2 [Bondability of heat resisting nickel alloys (overview). P. 2] // Svarochnoe proizvodstvo. 2004. №9. S. 3–7.
11. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
12. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
13. Vill V.I. Svarka metallov v tverdoj faze [Welding of metals in solid phase]. M.: Mashinostroenie, 1970. 176 s.
14. Svarka treniem: spravochnik [Friction bonding: directory]. L.: Mashinostroenie, 1987. 235 s.
15. Lukin V.I., Kovalchuk V.G., Samorukov M.L. i dr. Osobennosti tehnologii svarki treniem soedinenij iz splavov VKNA-25 i EP975 [Features of welding technology friction of connections from alloys VKNA-25 and ЭП975] // Svarochnoe proizvodstvo. 2010. №5. S. 28–33.
16. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlya diskov gazoturbinnyh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines ] // Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
17. Zhegina I.P., Kotelnikova L.V., Grigorenko V.B., Zimina Z.N. Osobennosti razrusheniya deformiruemyh nikelevyh splavov i stalej [Features of destruction of deformable nickel alloys and steel] // Aviacionnye materialy i tehnologii. 2012. №S. S. 455–465.
18. Stepanov A.V. Metody rentgenovskogo nerazrushayushhego kontrolya v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] // Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
The influence of heat treatment on the mechanical properties, corrosion resistance and structure of welds manufactured from high-strength aluminum-lithium V-1469 alloy pressed panels friction stir welded on the optimal welding parameters was investigated. The investigation of mechanical properties and corrosion resistance shows that the usage of technological scheme: welding+solution+ageing allows to obtain the following level of weld properties – σUTS weld≥0,83σUTS BM, KCU≥134 kJ/m2, IGC: 0,09 мм, layer corrosion of the weld: 3 point.
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnye alyuminievye splavy i tehnologii ih soedineniya dlya izdelij aviakosmicheskoj tehniki [Perspective aluminum alloys and technologies of their connection for products of aerospace equipment] // Tez. dokl. 2-j Mezhdunar. konf. «Alyuminij-21/Svarka i pajka». M., 2012. St. 8.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki alyuminijlitievyh splavov [Features and welding perspectives aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2002. №4. S. 3–12.
6. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval Yu.N. Alyuminij-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
9. Becofen S.Ya., Antipov V.V., Grushin I.A., Knyazev M.I., Hohlatova L.B., Alekseev A.A. Zakonomernosti vliyaniya sostava Al-Li splavov na kolichestvennoe sootnoshenie δ(Al3Li), S1(Al2MgLi) i Т1 (Al2CuLi) faz [Patterns of influence of structure of Al-Li of alloys on quantitative ratio δ(Al3Li), S1(Al2MgLi) and Т1 (Al2CuLi) of phases] // Metally. 2015. №1. C. 59–66.
10. Mahin I.D., Nikolaev V.V., Petrovichev P.S. Issledovanie svarivaemosti splavov V-1469 i 01570S [Research of bondability of alloys V-1469 and 01570С] // Kosmicheskaya tehnika i tehnologii. 2014. №4. S. 69–75.
11. Lukin V.I., Becofen S.Ya., Panteleev M.D., Dolgova M.I. Vliyanie termodeformacionnogo cikla STP na formirovanie struktury svarnogo soedineniya splava V-1469 [Influence of the STP thermodeformation cycle on forming of structure of welded connection of alloy V-1469] // Svarochnoe proizvodstvo. 2017. №7. S. 17–24.
12. Lukin V.I., Ioda E.N., Bazeskin A.V. i dr. Osobennosti formirovaniya svarnogo soedineniya pri svarke treniem s peremeshivaniem alyuminievogo splava V-1469 [Features of forming of welded connection at friction bonding with V-1469 aluminum alloy hashing] // Svarochnoe proizvodstvo. 2012. №6. S. 30–36.
13. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 10, 2017). DOI: 10.18577/2307-6046-2015-0-4-6-6.
14. Malard B., De Geuser F., Deschamps A. Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-welding heat treatment // Acta Materialia. 2015. Vol. 101. P. 90–100.
15. Chong Gao, Zhixiong Zhu, Jian Han, Huijun Li. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy // Materials Science & Engineering A. 2015. Vol. 639. P. 489–499.
16. Shamraj V.F., Klochkova Yu.Yu., Lazarev E.M., Gordeev A.S., Sirotkin V.P. Strukturnye sostoyaniya materiala listov alyuminij-litievogo splava 1469 [Structural conditions of material of sheets aluminum-lithium alloy 1469] // Metally. 2013. №5. S.77–84.
17. Giles T.L., Oh-Ishi K., Zhilyaev A.P., Swamianathan S. et al. The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of an Aluminum Lithium Alloy // Metallurgical And Materials Transactions A. 2009. Vol. 40A. P. 104–115.
18. Giummarra C., Thomas B., Rioja R.J. New aluminum lithium alloys for aerospace applications // Proceedings of the Light Metals Technology Conference. 2007. Available at: https://www.researchgate.net/publication/267374310_New_aluminum-lithium_alloys_for_aero-space_applications (accessed: November 13, 2017).
19. De Geuser F., Bley F., Denquin A., Deschamps A. Mapping the microstructure of a friction-stir welded (FSW) Al–Li–Cu alloy // Journal of Physics: Conference Series. 2010. Vol. 247. P. 1–7. DOI:10.1088/1742-6596/247/1/012034.
20. Chong Gao, Zhixiong Zhu, Jian Han, Huijun Li. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy // Materials Science & Engineering: A. 2015. Vol. 639. P. 489–499.
21. Mishra R.S., Ma Z.Y. Friction Stir Welding and processing // Material Science and Engineering Reports. 2005. Vol. 50. No. 1–2. P. 1–78.
22. Arbegast W.J. Friction stir welding. After a decade of development // Welding Journal. 2006. Vol. 85. No. 3. P. 28–35.
23. Welded structural members and method and use thereof: pat. US 8.420.256 B2; publ. 16.04.13.
24. Aluminum alloy products having improved property combinations and method for artificially aging same: pat. US 8.673.209 B2; publ. 18.03.14.
The task of development of industrial technology of rolling of thin sheets from V-1341 alloy Al–Mg–Si system alloyed by calcium is solved in present paper. The temperature of hot rolling is also chosen, the influence of the modes of heat treatment on structure and mechanical properties of sheets is investigated. Results of complex researches of industrial sheets 1,5 mm thick from the V-1341 alloy are presented. The anisotropy of mechanical properties of sheets in various conditions of heat treatment is investigated, structural and phase researches are conducted, the crystallographic texture and a complex of technical characteristics at cold shaping is estimated. Comparison with Al–Mg group alloys is carried out.
2. Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
5. Fridlyander I.N., Grushko O.E., Ovchinnikov V.V. i dr. Struktura, sposobnost k vydavke i svarivaemost' listov iz splava tipa «Avial», legirovannogo kalciem [Structure, push ability and bondability of sheets from alloy of the Avial type alloyed by calcium] // Sozdanie, issledovanie i primenenie alyuminievyh splavov: izbrannye trudy k 100-letiyu so dnya rozhdeniya Fridlyandera I.N. M.: Nauka. 2013. S. 166–178.
6. Kolachev B.A., Livanov V.A., Elagin V.I. Metallovedenie i termicheskaya obrabotka cvetnyh metallov i splavov [Metallurgical science and thermal processing of non-ferrous metals and alloys]. M.: Metallurgiya, 1981. 414 s.
7. Hirsch J., Laukli H.I. Aluminium in innovative light-weight car design // Proceedings of the 12 ICAA. 2010. P. 46–53.
8. Aiura T., Sakurai T. Development of Aluminum Alloys and New Forming Technology for Automotive Parts // Proceedings of the 12 ICAA. 2010. P. 62–67.
9. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] // Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
10. Kurdyumov A.V., Inkin S.V., Chulkov V.S., Shadrin G.G. Metallicheskie primesi v alyuminievyh splavah [Metal impurities in aluminum alloys]. M.: Metallurgiya, 1988. 143 s.
11. Grushko O.E., Ivanova L.A., Inkin S.V. i dr. Vliyanie primesnyh elementov na tehnologicheskuyu plastichnost' alyuminievo-litievyh splavov [Influence of elements of impurity on technological plasticity of aluminum-lithium alloys] // Tehnologiya legkih splavov. 1992. №1. S. 53–56.
12. Grushko O.E., Sheveleva L.M. Primesi shhelochnyh i shhelochno-zemelnyh metallov v alyuminievo-litievom splave 1420 [Impurity of alkali and alkaline earth metals in aluminum-lithium alloy 1420] // Tsvetnye metally. 1994. №4. S. 48–52.
13. Park H.-W., Jeong I.-S., Kim Y.-H., Lim S.-G. Effect of Ca addition on microstructure of semi-solid Al–Zn–Mg al alloys during reheating // Proceedings of the 12 ICAA. 2010. P. 1726–1729.
14. Furu T., Telioui N., Behrens C., Hasenclever J., Schaffer P. Trace elements in aluminium alloys: their origin and impact on processability and product properties // Proceedings of the 12 ICAA. 2010. P. 282–289.
15. Dric A.M., Rohlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Issledovanie vliyaniya dopolnitelnogo legirovaniya na okislyaemost pri nagreve splavov alyuminiya s magniem [Research of influence of additional alloying on oxidability when heating alloys of aluminum with magnesium] // Tsvetnye metally. 2011. №6. S. 67–71.
16. Strigavkova E., Vajs V., Mihna S. Issledovanie struktury i zhidkotekuchesti splava sistemy Al–Si–Mg s razlichnym soderzhaniem kalciya [Research of structure and fluidity of alloy of Al–Si–Mg system with the different content of calcium] // Metallurg. 2012. №9. S. 84–88.
17. Rohlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Svojstva magnievyh splavov, legirovannyh kalciem [Properties of the magnesium alloys alloyed by calcium] // Metallurgiya mashinostroeniya. 2008. №2. S. 31–35.
18. Rohlin L.L. i dr. Magnievye splavy, legirovannye kalciem [The magnesium alloys alloyed by calcium] // MiTOM. 2009. №4. S. 14–19.
19. Belov V.D., Koltygin A.V., Belov N.A., Pliseckaya I.V. Innovacii v oblasti litejnyh magnievyh splavov [Innovations in the field of cast magnesium alloys] // Metallurg. 2010. №5. S. 67–70.
20. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM is 80: years and people / gen. ed. byE.N. Kablov]. M.: VIAM, 2012. 520 s.
21. Klochkov G.G., Klochkova Yu.Yu., Romanenko V.A. Vliyanie temperatury deformacii na strukturu i svojstva pressovannyh profilej splava V-1341 sistemy Al–Mg–Si [Influence of deformation temperature on structure and properties of extruded products of Al–Mg–Si alloy V-1341] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 01. Available at: http://www.viam-works.ru (data obrashheniya: November 15, 2017). DOI: 10.18577/2307-6046-2016-0-9-1-1.
22. Skornyakov V.I., Antipov V.V., Semovskih S.V. Razvitie metallurgicheskogo proizvodstva Kamensk-Uralskogo metallurgicheskogo zavoda dlya polufabrikatov iz novyh alyuminievyh splavov [Development of metallurgical production of Kamensk-Uralsky Metallurgical Works for semi-finished products from new aluminum alloys] // Tsvetnye metally. 2013. №9. S. 30–33.
23. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Kolobnev I.F. Termicheskaya obrabotka alyuminievyh splavov. M.: Metallurgizdat, 1961. 413 s.
25. Grushko O.E., Ovchinnikov V.V., Alekseev V.V., Gureeva M.A., Shamraj V.F., Klochkov G.G. Struktura, sposobnost k vydavke i svarivaemost listov iz splavov sistemy Al–Mg–Si [Structure, pushability and bondability of sheets from Al-Mg-Si system alloys] // MiTOM. 2007. №7 (625). S. 15–22.
Benchmark X-ray diffraction intensities for α- and β-phases in titanium alloys have been improved with the help of polycrystalline samples of α-alloy VT1-0 and β-alloy Ti–3Al–7Mo–5,5Cr (% wt.). In order to achieve statistically significant data for each sample the corresponding X-ray diffraction patterns have been obtained in four different non-orthogonal macroplanes. Theoretical calculation of specific integral diffraction intensities for h.c.p. and f.c.c. lattices of α- and β-phases has been accomplished in accordance with kinematic theory. As a result a number of averaged normalized diffraction intensities for α- and β-phases have been obtained, the intensities being suitable for direct use in quantitative phase and texture analysis of various titanium alloys.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauchno-informacionnyh materialov. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection fo scientific information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
6. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
7. Nochovnaya N.A. Perspektivy i problemy primeneniya titanovyh splavov [Perspectives and problems of application of titanium alloys] // Aviacionnye materialy i tehnologii. 2007. №1. S. 4–8.
8. Petuhov A.N. Aktualnye voprosy konstrukcionnoj prochnosti titanovyh splavov i detalej iz nih [Topical issues of constructional durability of titanium alloys and details from them] // Aviacionnye materialy i tehnologii.2007. №1. S. 8–13.
9. Vasserman G., Greven I. Tekstury metallicheskih materialov [Structures of metal materials]. M.: Metallurgiya, 1969. 654 s.
10. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallah i splavah [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 343 s.
11. Borodkina M.M., Spektor E.N. Rentgenograficheskij analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
12. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 3-e izd., pererab. i dop. [Radiographic and electron-optical analysis: the manual for higher education institutions. 3rd ed., rev. and add.]. M.: MISiS, 1994. 328 s.
13. Smirnov V.S., Durnev V.D. Teksturoobrazovanie metallov pri prokatke [Structure formation of metals when rolling]. M.: Metallurgiya, 1971. 254 s.
14. Skvorcova S.V., Ilin A.A., Becofen S.Ya., Filatov A.A., Dzunovich D.A., Panin P.V. Anizotropiya mehanicheskih svojstv i tekstura listovyh polufabrikatov iz titanovyh splavov [Anisotropy of mechanical properties and structure of sheet semi-finished products from titanium alloys] // Tehnologiya legkih splavov. 2006. №1–2. S. 81–87.
15. Murty K.L., Charit I. Texture development and anisotropic deformation of zircaloys // Progress in nuclear energy. 2006. Vol. 48. P. 325–359.
16. Zaharchenko I.G., Volchok N.A., Bryuhanov P.A., Sovkova T.S. Vliyanie kombinacii pryamoj i poperechnoj prokatok na teksturu i anizotropiyu svojstv listov α-titanovogo splava
Ti–3Al–1,5V [Influence of combination of direct and cross rollings on structure and anisotropy of properties of sheets α-титанового alloy Ti–3Al–1,5V] // Novi materiali i tehnologii v metalurgii ta mashinobuduvanni. 2010. №1. S. 93–98.
17. Panin P.V. Kristallograficheskaya tekstura i anizotropiya uprugih svojstv splavov na osnove alyuminidov titana [Crystallographic structure and anisotropy of elastic properties of alloys on the basis of titanium aluminides] // Sb. materialov V Mezhdunarodnoj konferencii «Deformaciya i razrushenie materialov i nanomaterialov» (26–29 noyab. 2013 g.). M.: IMET RAN. 2013. S. 341–342.
18. Skvorcova S.V. Zakonomernosti formirovaniya tekstury v titanovyh splavah raznyh klassov [Patterns of forming of structure in titanium alloys of different classes] // Aviacionnye materialy i tehnologii., 2007. №1. S. 40–42.
19. Skvorcova S.V., Dzunovich D.A., Panin P.V., Snegireva L.A. Teksturoobrazovanie v listovyh polufabrikatah titanovogo splava VT16 pri plasticheskoj deformacii i termicheskoj obrabotke [Structure forming in sheet semi-finished products of BT16 titanium alloy at plastic strain and thermal processing] // Aviacionnaya promyshlennost. 2007. №4. S. 25–29.
20. Ilin A.A., Skvorcova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vliyanie parametrov termicheskoj i termomehanicheskoj obrabotki na teksturoobrazovanie v listovyh polufabrikatah iz titanovyh splavov [Influence of parameters of thermal and thermomechanical processing on structure forming in sheet semi-finished products from titanium alloys] // Tehnologiya mashinostroeniya. 2012. №8. S. 8–12.
21. Dzunovich D.A., Shalin A.V., Panin P.V. Struktura, tekstura i mehanicheskie svojstva deformirovannyh polufabrikatov iz splava VT6, poluchennyh po promyshlennym i opytnym tehnologiyam [Structure, structure and mechanical properties of the deformed semi-finished products from alloy of BT6 received on industrial and pilot technologies] // Deformaciya i razrushenie materialov. 2017. №6. S. 19–27.
22. Kolachev B.A., Becofen S.Ya., Bunin S.Ya., Volodin V.A. Fiziko-mehanicheskie svojstva legkih konstrukcionnyh materialov [Physicomechanical properties of light constructional materials]. M.: Metallurgiya, 1995. 442 s.
23. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy cvetnyh metallov dlya aviacionnoj tehniki [Non-ferrous alloys for aviation engineering]. Rybinsk: RGATA, 2002. 219 s.
24. Grytsyna V., Stukalov A., Chernyaeva T. et al. Destruction of crystallographic texture in zirconium alloy tubes // Proceedings of 14th International Symposium «Zirconium in the Nuclear Industry». ASTM, 2005. Vol. 2. No. 8. Р. 305–329.
25. Vanitha C., Kiran Kumar M., Dey G.K. et al. Recrystallization texture development in single-phase Zircaloy-2 // Materials Science and Engineering: A. 2009. Vol. 519. P. 51–60.
26. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
27. Ageev N.V., Babareko A.A., Becofen S.Ya. Opisanie tekstury metodom obratnyh polyusnyh figure [Structure description method of return polar figures] // Izvestiya AN SSSR. Ser.: Metally. 1974. №1. S. 94–103.
28. Rusakov A.A. Rentgenografiya metallov [X-ray graphic of metals]. M.: Atomizdat, 1977. 479 s.
29. Van Houtte P.A. New Method for the determination of texture functions from incomplete pole figures – comparison with older methods // Gordon and British Science Publishers Inc. «Textures and Microstructures». 1984. Vol. 6. P. 137–162.
30. Dahms M., Bunge H.J. ODF calculation by series expansion from incompletely measured pole figures using positivity condition // Gordon and British Science Publishers Inc. «Textures and Microstructures». 1987. Vol. 7. P. 171–185.
31. Kearns J.J. On the relationship among «f» texture factors for the principal planes of zirconium, hafnium and titanium alloys // Journal of Nuclear Materials. 2001. No. 299. Р. 171–174.
32. Becofen S.Ya., Smirnov V.G., Ashmarin A.A., Shaforostov A.A. Kolichestvennye metody opisaniya tekstury i anizotropii svojstv splavov na osnove titana i magniya [Quantitative methods of the description of structure and anisotropy of properties of titanium-based alloys and magnesium ] // Titan. 2010. №2. S. 16–22.
33. Mani Krishna K.V., Srivastava D., Dey G.K. et al. Comparative study of methods of the determination of Kearns parameter in zirconium // Journal of Nuclear Materials. 2011. No. 414. Р. 492–497.
34. Dzunovich D.A., Becofen S.Ya., Panin P.V. Metodicheskie aspekty kolichestvennogo teksturnogo analiza listovyh polufabrikatov iz GPU-splavov (Ti, Zr) [Methodical aspects of the quantitative textural analysis of sheet semi-finished products from GPU-splavov (Ti, Zr)] // Deformaciya i razrushenie materialov. 2016. №11. S. 8–16.
35. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
36. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
37. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation are the base of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
38. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] // Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
In this paper, organosilicon polymers, as well as composite materials of various purposes on their basis, were considered. The most important properties of organosilicon compounds were identified, which caused their wide application in various spheres: aircraft and rocket engineering, electronics and radio engineering, construction, and medicine. A brief review was carried out in the field of modern silicone sealants, rubbers, paint and varnish materials, materials for electrical and thermal insulation, medical supplies, as well as modern composite materials. Various applications and methods for the modification of silicone rubbers, in particular polydimethylsiloxane rubber, and others have been considered. Special attention was paid in the article to organosilicon stair block copolymers. A number of polymer and composite materials obtained on its basis, include sound-absorbing material, as well as biocompatible coatings, are described.
2. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Investigation of properties changing of serial rubber compounds on the base of different rubbers in standardized working fluids] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
3. Kahramanov N.T., Gurbanova R.V., Kahramanly Yu.N. Sostoyanie problemy polucheniya, issledovaniya i primeneniya kremnijorganicheskih polimerov [Condition of problem of receiving, research and application of organic silicone polymers] // Evrazijskij soyuz uchenyh. 2016. №2 (27). S. 112–118.
4. Nanushyan S.R. Kremnijorganicheskie materialy uskorennoj vulkanizacii: istoriya sozdaniya i razvitiya napravleniya [Organic silicon materials of the accelerated curing: history of creation and direction development] // Himicheskaya promyshlennost segodnya. 2015. №11. S. 21–26.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
7. Kablov E.N., Semenova L.V., Es'kov A.A., Lebedeva T.A. Kompleksnye sistemy lakokrasochnyh pokrytij dlya zashhity metallicheskih polimernyh kompozicionnyh materialov, a takzhe ih kontaktnyh soedinenij ot vozdejstviya agressivnyh faktorov [Complex systems of paint coatings for protection of metal polymeric composite materials, and also their contact joints against influence of aggressive factors] // Lakokrasochnye materialy i ih primenenie. 2016. №6. S. 32–35.
8. Eskov A.A., Lebedeva T.A., Belova M.V. Lakokrasochnye materialy s ponizhennym soderzhaniem letuchih veshhestv (obzor) [Paint-and-lacquer materials with lowered content of volatile organic compounds (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 08. Available at: http://www.viam-works.ru (accessed: June 04, 2017). DOI: 10.18577/2307-6046-2015-0-6-8-8.
9. Suhareva K.V., Andriasyan Yu.O., Mihajlov I.A., Popov A.A. Zashhitnye pokrytiya na osnove sinteticheskih kauchukov [Protecting covers on the basis of synthetic rubbers] // Plasticheskie massy. 2015. №11–12. S. 57–63.
10. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznacheniya [Hermetics of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
11. Minasyan R.M., Polivanov A.N., Minasyan O.I. Osnovnye napravleniya rabot GNIIHTEOS v oblasti kremnijorganicheskih kleev-germetikov [The main directions of works GNIIKHTEOS in the field of organic silicon glues-hermetics] // Himicheskaya promyshlennost segodnya. 2015. №11. S. 28–32.
12. Krasnov L.L., Eliseev O.A., Kirina Z.V., Venediktova M.A., Rogovickij V.A. Issledovanie i modifikaciya termostojkogo germetiziruyushhego sostava i razrabotka tehnologii izgotovleniya lentochnogo germetika na ego osnove [Research and modification of the heat-resistant sealing composition and the development of manufacturing technology of the tape sealant based on it] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 08. Available at: http://www.viam-works.ru (accessed: June 04, 2017). DOI: 1018577/2307-6046-2017-0-4-8-8.
13. Chigorina T.M. Novye sshivayushhie agenty dlya kremnijorganicheskih kompozicij [New sewing agents for organic silicon compositions] // Aktualnye problemy himii, biologii i biotehnologii: mater. H Vseros. nauch. konf. Vladikavkaz, 2016. S. 247–249.
14. Nejolova O.V. Kremnijorganicheskaya kompoziciya dlya zashhity izdelij elektronnoj tehniki s povyshennymi adgezionnymi svojstvami i termo- i morozostojkostyu pokrytij [Organic silicon composition for protection of products of electronic equipment with the increased adhesive properties both thermo- and frost resistance of coverings] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2014. T. 57. №9. S. 86–92.
15. Nejolova O.V., Gazzaeva R.A., Koblova L.B. Zashhitnye pokrytiya na osnove kremnijorganicheskih lestnichnyh blok-sopolimerov, primenyaemye v mikroelektronike [Protecting covers on the basis of the organic silicon ladder block copolymers, applied in microelectronics] // Fundamentalnye issledovaniya. 2016. №2–1. S. 76–80.
16. Horoshavina Yu.V., Francuzova Yu.V., Nikolaev G.A. Svojstva vulkanizatov na osnove polifenilsilseskvioksanpolidimetilsiloksanovogo blok-sopolimera [Properties of cured stocks on basis polyphenylsilsexvyoxanpolydimetilsiloxane block copolymer] // Kauchuk i rezina. 2015. №1. S. 10–11.
17. Alifanov E.V., Chajkun A.M., Naumov I.S., Eliseev O.A. Elastomernye materialy povyshennoj teplostojkosti (obzor) [Elastomeric materials with high heat resistance (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2 (50). St. 06. Available at: http://www.viam-works.ru (accessed: June 04, 2017). DOI: 10.18577/2307-6046-2017-0-2-6-6.
18. Kopylov V.M., Kovyazin V.A., Kostyleva E.I., Fedorov A.Yu., Kovyazin A.V. Termostabilizaciya i keramoobrazovanie silikonovyh rezin [Thermostabilization and ceramic formation of silicone rubbers] // Kauchuk i rezina. 2015. №5. S. 52–59.
19. Minasyan R.M., Polivanov A.N., Minasyan O.I. Puti povysheniya termostojkosti kremnijorganicheskih elastomernyh materialov [Ways of increase of thermal stability of organic silicon elastomeric materials] // Klei. Germetiki, tehnologii. 2015. №7. S. 24–26.
20. Krasnov L.L., Kirina Z.V., Eliseev O.A., Menshutina N.V. Bezusadochnyj penoteplozashhitnyj material FKM-S-1B [Non-shrinkable foam protection material FKM-S-1B] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №6. S. 19–24.
21. Shajdurova G.I., Vasilev I.L., Karmanova L.I. Razrabotka i podtverzhdenie rabotosposobnosti remontnogo sostava dlya naruzhnogo teplozashhitnogo pokrytiya [Development and confirmation of operability of repair structure for outer heat-protective coating] // Vestnik PNIPU. Aerokosmicheskaya tehnika. 2014. №36. S. 49–63.
22. Volkov D.P., Egorov A.G., Mironenko M.E. Teplofizicheskie svojstva polimernyh kompozicionnyh materialov [Heatphysical properties of polymeric composite materials] // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2017. T. 17. №2. S. 287–293.
23. Lyubchenko O.D. Razrabotka sovremennyh materialov dlya endoprotezirovaniya [Development of modern materials for endo prosthetics] // Actualscience. 2016. T. 2. №7. S. 5–6.
24. Shirokova E.S., Vesnin R.L., Husainov A.D. Materialy na osnove termoelastoplastov dlya primeneniya v medicine i farmacevticheskoj promyshlennosti [Materials on the basis of thermoelastoplastics for application in medicine and pharmaceutical industry] // Vestnik tehnologicheskogo universiteta. 2016. T. 19. №11. S. 106–110.
25. Dudarikov S.A., Emec A.N., Sharofeev A.N. I dr. Endoprotezirovanie melkih sustavov kisti i stopy [Endo prosthetics of small joints of brush and foot] // Amurskij medicinskij zhurnal. 2015. №4 (12). S. 196–198.
26. Sevostyanov M.A., Baikin A.S., Nasakina E.O., Leonov A.V., Kaplan M.A., Kraev I.D., Kolmakov A.G. Issledovanie mehanicheskih svojstv polimernyh plenok dlya medicinskih izdelij [Research of mechanical properties of polymer films for medical products] // XX Mendeleevskij sezd po obshhej i prikladnoj himii. M., 2016. S. 366. 27. Sevostyanov M.A., Sergienko K.V., Konushkin S.V., Kraev I.D., Kolmakov A.G. Nanesenie biostabilnogo polimernogo pokrytiya na nikelid titana dlya medicinskih izdelij [Drawing biostable polymer coating on nikelid titanium for medical products] // XX Mendeleevskij sezd po obshhej i prikladnoj himii. M., 2016. S. 85.
28. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
29. Chuhlanov V.Yu., Kriushenko S.S. Tonkoslojnye pokrytiya na osnove vysokonapolnennyh sintaktnyh penoplastatov s siloksanovym svyazuyushhim [Thin layer coverings on the basis of high-filled syntactic foam with the siloxane binding // Himicheskaya promyshlennost' segodnya. 2014. №7. S. 44–51.
30. Klyushnikov S.A., Kochetkov A.I., Morozova M.R. Optimizaciya sostava dispersnoj fazy dlya sozdaniya termostojkih i vysokoprochnyh kompozitov na osnove polimetilsiloksanovoj smoly [Optimization of structure of disperse phase for creation of heat-resistant and high-strength composites on the basis of polymethylsiloxane pitch] // Uspehi v himii i himicheskoj tehnologii. 2016. T. HHH. №10. S. 34–36.
31. Davydova I.F., Kavun N.S. Plenochnye kremnijorganicheskie svyazuyushhie dlya stekloplastikov [Film silicon organosilicon resins for glassfibers] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 15–18. DOI: 10.18577/2071-9140-2014-0-s2-15-18.
32. Chuhlanov V.Yu., Selivanov O.G. Issledovanie dielektricheskih svojstv sintakticheskih pen na osnove kremnijorganicheskogo svyazuyushhego [Research of dielectric properties of syntactic foams on the basis of the organic silicon binding] // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2014. №8–1. S. 26–29.
33. Mihajlov V.A. Sintaktnye materialy s vysokimi dielektricheskimi svojstvami na osnove kremnijorganicheskogo polimera [Syntactic materials with high dielectric properties on the basis of organosilicon polymer] // Himicheskie nauki. 2015. №12. S. 47–50.
34. Kraev I.D., Govorov V.A., Popkov O.V., Filonova E.V., Shuldeshov E.M., Yurkov G.Yu. Poluchenie tonkodispersnyh poroshkov ferrita nikelya NiFe2O4 metodom vysokoenergeticheskogo pomola na bisernoj melnice zamknutogo kontura [Production of nickel ferrite (NiFe2O4) superfine powders by high energy milling in a closed loop bead mill] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 24–30. DOI: 10.18577/2071-9140-2017-0-2-24-30.
35. Shuldeshov E.M., Platonov M.M. Zvukopogloshhayushhij material s rasshirennym chastotnym diapazonom effektivnogo pogloshheniya dlya perspektivnyh dvigatelnyh ustanovok [Sound-proof material with expanded frequency range of effective absorption for perspective propulsion units] // Sb. dokl. konf. «Funkcional'nye materialy dlya snizheniya aviacionnogo shuma v salone i na mestnosti». M.: VIAM, 2015. St. 12.
36. Polimernyj zvukopogloshhayushhij material i sposob ego izgotovleniya: pat. 2612674 Ros. Federaciya [Polymeric sound-proof material and way of its manufacturing: pat. 2612674 Rus. Federation]; opubl. 13.03.17.
The analysis of imported materials for the manufacture of air conditioning ducts has been carried out and, based on it, the basic minimum requirements for the Russian materials being developed are determined. Сompositions for flexible and rigid SCR elements were selected, and technological parameters for the manufacture of GRP for rigid SCR elements were investigated and worked out. A new domestic glass fiber reinforced plastic for the manufacture of rigid elements of air ducts SKV was developed. The study of its properties is carried out.
2. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and technologies of VIAM for ISS «Energiya–Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
5. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E. i dr. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». M., 2012. S. 122–123. 6. Prognozy razvitiya mirovogo rynka grazhdanskoj aviacii [Forecasts of development of the world market of civil aviation] // Tehnicheskaya informaciya. 2003. Vyp. 3–4. S. 6.
7. Global Market Forecast [Electronic resource]. Available at: http://www.airbus.com (accessed: November 17, 2017).
8. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 17, 2017). DOI 10.18577/2307-6046-2014-0-4-6-6.
9. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Opyt primeneniya tehnologicheskogo kontrolya polufabrikatov PKM [Experience of application of technological control of semi-finished products of PCM] // Izvestiya Samarskogo nauchnogo centra RAN. 2014. T. 16. №6 (2). S. 393–398.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Gurit: official site. Available at: http://www.mobile.gurit.com (accessed: November 17, 2017).
12. Hexcel: official site. Available at: http://www.hexcel.com (accessed: November 17, 2017).
13. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
14. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A. Tehnologiya uskorennogo formovaniya trehslojnyh sotovyh panelej samoleta [Technology of the accelerated formation of three-layered cellular panels of airplane] // Izvestiya Samarskogo nauchnogo centra RAN. 2013. №4–4. S. 799–805.
15. Veshkin E.A., Abramov P.A., Postnov V.I., Strel'nikov S.V. Vliyanie tehnologii podgotovki preprega na svojstva PKM [Influence of technology of preparation of prepreg on PCM properties] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №9. S. 8–14.
16. Satdinov R.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. Vozduhovody nizkogo davleniya iz PKM v letatelnyh apparatah [РСМ low-pressure air ducts in aircraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 08. Available at: http://www.viam-works.ru (accessed: November 17, 2017). DOI: 10.18577/2307-6046-2016-0-8-8-8.
17. Satdinov R.A., Istyagin S.E., Veshkin E.A. Analiz temperaturno-vremennyh parametrov rezhimov otverzhdeniya PKM s zadannymi harakteristikami [Analysis of the temperature-time parameters mode curing PCM with specified characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №3. St. 09. Available at: http://www.viam-works.ru (accessed: November 17, 2017). DOI: 10.18577/2307-6046-2017-0-3-9-9.
18. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: November 17, 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
19. Postnov V.I., Strelnikov S.V., Makrushin K.V., Veshkin E.A. Semipreg dlya polimernyh osnastok [Semipreg for polymeric equipments] // Sistemy upravleniya zhiznennym ciklom izdelij aviacionnoj tehniki: aktualnye problemy, issledovaniya, opyt vnedreniya i perspektivy razvitiya: tez. dokl. V Mezhdunar. nauch.-praktich. konf. Ulyanovsk, 2016. S. 186–188.
20. Satdinov R.A., Veshkin E.A., Postnov V.I., Abramov P.A. Rol antiadgezionnyh pokrytij v tehnologicheskom processe formovaniya PKM [The role of anti-adhesive coatings in the technological process of PCM molding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4 (40). St. 10. Available at: http://www.viam-works.ru (accessed: November 17, 2017). DOI: 10.18577/2307-6046-2016-0-4-10-10.
Samples from cured polyester resin and polymer concrete, made on its basis, were treated with an ultraviolet irradiator for two minutes to two hours. On the initial samples and samples subjected to ultraviolet irradiation, the microhardness values and the width of the grooves obtained with the help of a laboratory sclerometer with a load on a diamond indentor of 10 N were evaluated. It was shown that with increasing duration of ultraviolet irradiation, the microhardness values increase, and the width sclerometric grooves decreases. The increase in the degree of polymerization of the samples leads to the alignment of the shoreline grooves.
2. Paturoev V.V. Polimerbetony [Polymer concrete]. M.: Strojizdat, 1987. 286 s.
3. Figovskij O.L., Bejlin D.A. Nanostrukturirovannyj silikatnyj polimerbeton [Nanostructured silicate polymer concrete] // Vestnik MGSU. 2014. №3. S. 197–204.
4. Satdinov R.A., Veshkin E.A., Postnov V.I., Abramov P.A. Rol antiadgezionnyh pokrytij v tehnologicheskom processe formovaniya PKM [The role of anti-adhesive coatings in the technological process of PCM molding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4 (40). St. 10. Available at: http://www.viam-works.ru (accessed: October 04, 2017). DOI: 10.18577/2307-6046-2016-0-4-10-10.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
7. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
8. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
9. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
10. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
11. Postnov V.I., Veshkin E.A., Abramov P.A. Osobennosti podgotovki polimernogo svyazuyushhego dlya snizheniya poristosti stekloplastikov, poluchaemyh metodom vakuumnogo formovaniya [Features of preparation polymeric binding for decrease in porosity of the fibreglasses received by method of vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2011. T. 13. №4 (2). S. 462–468.
12. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. T. 14. №4 (3). S. 834–839.
13. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: October 04, 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
14. Tager A.A. Fiziko-himiya polimerov [Physics and chemistry of polymers]. M.: Nauchnyj mir, 2007. 128 s.
15. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM] // Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 04, 2017). DOI 10.18577/2307-6046-2014-0-4-6-6.
16. Ilin V.A., Postnov V.I., Semenychev V.V., Petuhov V.I., Nikitin K.E. Effektivnost sovremennyh naukoemkih tehnologij [Efficiency of modern high technologies] // 75 let. Aviacionnye materialy. M.: VIAM, 2007. S. 413–416.
17. Semenychev V.V., Panarin A.V. Primenenie sklerometrii dlya povysheniya informativnosti izmeryaemyh harakteristik hromovyh i nikelevyh pokrytij [Application of sclerometry for more informativeness measured characteristics of chromium and nickel coatings] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 05. Available at: http://www. materialsnews.ru (accessed: October 04, 2017).
18. Semenychev V.V. Nikelirovanie stali metodom elektronatiraniya [Nickel plating became method of electro polish] // Galvanotehnika i obrabotka poverhnosti. 2017. №1. S. 23–27.
19. Semenychev V.V., Salahova R.K. Ocenka adgezii nikel-kobaltovogo pokrytiya k steklo- i ugleplastiku metodom carapanya [Evaluation of nickel-cobalt coating adhesion to fiberglass and carbon fiber-reinforced plastic by scratching] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7 (43). St. 06. Available at: http://www.viam-works.ru (accessed: October 04, 2017). DOI: 10.18577/2307-6046-2016-0-7-6-6.
20. Panarin A.V., Semenychev V.V. Ocenka tribotehnicheskih harakteristik karbidohromovogo pokrytiya [Assessment of tribe of technical characteristics of carbide chrome plating] // Fizika i himiya obrabotki materialov. 2016. №5. S. 65–70.
21. Panarin A.V., Semenychev V.V. Iznos karbidohromovogo pokrytiya pri razlichnyh urovnyah udel'noj nagruzki [Wear of carbide chrome covering at different levels of unit load] // Materialovedenie. 2017. №6. S. 39–42.
22. Semenychev V.V., Salahova R.K. Pribor dlya ocenki svojstv pokrytij [The device for assessment of properties of coverings] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №2. S. 60–65.
23. Veshkin E.A., Postnov V.I., Semenychev V.V. Ocenka svyazuyushhego VST-1210 s razlichnymi rezhimami otverzhdeniya metodami sklerometrii // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8. St. 09. Available at: http://www.viam-works.ru (accessed: October 04, 2017). DOI: 10.18577/2307-6046-2017-0-8-9-9.
24. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Increase in demand for designs from polymeric composite materials (РСМ) has demanded decrease from cost value and as a result, search of replacement to rather expensive and autoclave formation which is now the main way of manufacturing of the high-loaded products. Use of vacuum formation of prepregs has not shown satisfactory results in view of receiving plastics with the high maintenance of time. As one of solutions of this problem, it was offered to pass to development of other materials – semi-pregs, consisting of the dry (not impregnated) part of fabric and binding. Many manufacturing firms of materials include in the nomenclature of the materials wide ruler semi-pregs. Semi-pregs are considered by large developers and consumers of polymeric composite materials when manufacturing perspective elements of rocket and aviation engineering of military and civil assignment. Pressure and temperature are important parameters of processing of such PСM, to questions on air removal from semi-
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Fahrang L., Fernlund G. Void evolution and gas transport during cure in out-of-autoclave prepreg laminates // Proceedings of the SAMPE 2011 Conference (Long Beach, CA, United States, May 23–26, 2011). 2011. Paper No. 1153.
6. Kostyukov V.I. Stekloplastiki na osnove kapillyarnyh volokon i mikrosfer // Aviacionnye materialy na rubezhe XX–XXI veka. M.: VIAM, 1994. S. 197–203.
7. Platonov A.A., Kogan D.I., Dushin M.I. Izgotovlenie trehmernorazmernyh PKM metodom propitki plenochnym svyazuyushhim // Plasticheskie massy. 2013. №6. S. 56–61.
8. Sloan J. Research sheds light on air and air-bubble behavior in OOA aerospace prepregs. Case Study Post: 06.01.2015.
9. Thomas S., Nutt S.R. Temperature dependence of resin flow in a resin film infusion (RFI) process by ultrasound imaging // Applied Composition Materials. 2009. Vol. 16. P. 183–196.
10. Centea T., Hubert P. Measuring the impregnation of an out-of-autoclave prepreg by micro-CT // Composition Science Technologies. 2011. Vol. 71. P. 593–599.
11. Centea T., Hubert P. Modelling the effect of material properties and process parameters on tow impregnation in out-of-autoclave prepregs // Composition Applied Science Manufacture. 2012. Vol. 43. P. 1505–1513.
12. Simacek P., Neacsu V., Advani S.G. A phenomenological model for fiber tow saturation of dual scale fabrics in liquid composite molding // Polymer Composites. 2010. Vol. 31. P. 1881–1889.
13. Hwang W.R., Advani S.G. Numerical simulations of Stokes–Brinkman equations for permeability prediction of dual scale fibrous porous media // Physical Fluids. 2010. Vol. 22. P. 113–115.
14. Zhou F., Alms J., Advani S. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions // Composition Science Technologies. 2008. Vol. 68. P. 699–708.
15. Zhou F., Kuentzer N., Simacek P., Advani S., Walsh S. Analytic characterization of the permeability of dual-scale fibrous porous media // Composition Science Technologies. 2006. Vol. 66. P. 2795–2803.
16. Bickerton S., Advani S.G. Characterization of racetracking in liquid composite molding processes // Composition Science Technologies. 1999. Vol. 59. P. 2215–2229.
17. Dushin M. I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovleniya izdelij iz PKM metodom propitki pod davleniem [Features of manufacturing of products from PCM impregnation method under pressure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
18. Dushin M.I., Muhametov R.R., Platonov A.A., Merkulova Yu.I. Issledovanie filtracionnyh harakteristik armiruyushhih napolnitelej i svyazuyushhih pri razrabotke tehnologii bezavtoklavnogo formovaniya polimernyh kompozicionnyh materialov [Study of filtration characteristics of reinforcing fillers and binders in the development of non-out-autoclave technology for polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №2. S. 22–25.
19. Tavares S.S., Michaud V., Mаnson E. Semipregs: how through-thickness air permeability and resin flow correlate during vacuum-bag only cure // The 9th International Conference on Flow Processes in Composite. 2008. P. 76–81.
20. Maguire J., Brádaigh C.Ó., Simacek P., Advani S.G. Through thickness resin flow and heat transfer modeling of partially impregnated composite materials for thick-section parts // The 13th International conference on flow processing in composite materials. 2010. P. 132–138.
21. Van West B.P., Pipes R.B., Advani S.G. The consolidation of commingled thermoplastic fabrics // Polymer Composites. 1991. Vol. 12 (6). P. 417–427.
22. Chan A.W., Morgan R.J. Tow impregnation during resin transfer molding of bi-directional nonwoven fabrics // Polymer Composites. 1993. Vol. 14 (4). P. 335–340.
23. Sadiq T.A.K., Advani S.G., Parnas R.S. Experimental investigation of transverse flow through aligned cylinders // International Journal of Multiphase Flow. 1995. Vol. 21 (5). P. 755–774.
24. Bernet N., Michaud V., Bourban P.E., Manson E. An impregnation model for the consolidation of thermoplastic composites made from commingled yarns // Journal of Composites Materials. 1999. Vol. 33 (8). P. 751–772.
25. Foley M.E., Gillespie W. Modeling the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding processes // Journal of Composites Materials. 2005. Vol. 39 (12). P. 1045–1065.
26. Neacsu V., Abu Obaid A., Advani S.G. Spontaneous radial capillary impregnation across a bank of aligned micro-cylinders – Part I: Theory and model development // International Journal of Multiphase Flow. 2006. Vol. 32 (6). P. 661–676.
27. Yamaleev N., Mohan R. Effect of the phase transition on intra-tow flow behavior and void formation in liquid composite molding // International Journal of Multiphase Flow. 2006. Vol. 32 (10–11). P. 1219–1233.
28. Centea T., Hubert P. Modelling the effect of material properties and process parameters on tow impregnation in out-of-autoclave prepregs // Composites: Part A. 2012. Vol. 43. P. 1505–1513.
29. Gebart B.R. Permeability of unidirectional reinforcements for RTM // Journal of Composites Materials. 1992. Vol. 26 (8). P. 1100–1112.
30. Simacek P., Neacsu V., Advani S.G. A phenomenological model for fiber tow saturation of dual scale fabrics in liquid composite molding // Polymer Composites. 2010. Vol. 31 (11). P. 1881–1889.
31. Lundström T.S., Gebart B.R. Effect of perturbation of fibre architecture on permeability inside fibre tows // Journal of Composites Materials. 1995. Vol. 29 (4). P. 424–443.
32. Bechtold G., Ye L. Influence of fibre distribution on the transverse flow permeability in fibre bundles // Composites Science Technologies. 2003. Vol. 63 (14). P. 2069–2079.
33. Chen X., Papathanasiou T. The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing // Transparence Porous Media. 2008. Vol. 71 (2). P. 233–251.
34. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture // Composites Science Technologies. 2010. Vol. 70. P. 2304–2309.
35. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation carbon plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
36. Dushin M.I., Doneckij K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya poristosti pri izgotovlenii PKM [Identification of the reasons of porosity formation when manufacturing composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: October 30, 2017). DOI: 10.18577/2307-6046-2016-0-6-8-8.
37. Olivier P., Cottu J.P., Ferret B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates // Composites. 1995. Vol. 26 (7). P. 509–515.
38. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
39. Lykov A.V. Teoriya sushki [Drying theory]. M.: Energiya, 1968. 472 s.
40. Ruiz E., Achim V., Bread J., Chatel S., Trouchu F. A fast numerical approach to reduce voud formation in liquid composite molding // The 8-th International Conference on Flow Processes in Composite Materials. 2006. P. 251–260.
41. Arafath A.R.A., Fernlund G., Poursartip A. Gas Transport in Prepregs:Model and Permeability Experiments // Proceedings of the 17th International Conference on Composite Materials (Edinburgh, UK, July 27–31, 2009). 2009. P. 220–226.
42. Arbter R., Beraud J.M., Binetruy C. et al. Experimental Determination of the Permeability of Textiles: A Benchmark Exercise // Composites Part A: Applied Science and Manufacturing. 2011. Vol. 42. No. 9. P. 1157–1168.
43. Louis B., Hsiao K., Fernlund G. Gas Permeability Measurements of Out of Autoclave Prepreg MTM45-1/CF2426A // International SAMPE Symposium. Seattle, 2010. P. 342–354.
44. Putnam J.W., Seferis J.C. Prepreg Gas Permeation as a Function of Fiber Orientation and Aging Time // Journal of Advanced Materials. 1995. Vol. 26. No. 3. P. 35–41.
45. Xin C., Li M., Gu Y., Li Y., Zhang Z. Measurement and Analysis on in-Plane and through-Thickness Air Permeation of Fiber/Resin Prepreg // Journal of Reinforced Plastics and Composites. 2011. Vol. 30. No. 17. P. 1467–1479.
46. Umemoto Y., Gouke M., Mashima Y. Out of autoclave «semi-preg». Technical development of resin transfer molding // Proceedings of the 18th International Conference on Composite materials (Korea, August 21–26, 2011). 2011. Paper No. TH05-2.
In aviation and space engineering are widely used materials allowing the passage of electromagnetic energy – radio transparent materials. In the design of radio-transparent materials, especially multilayer and broadband is a very important point is the determination by experiment of the transmission coefficient (KP) as separate layers of the materials and multilayer material (or parts) in the whole specified frequency range (from decimeter to millimeter wavelengths). One of the most common methods is the measurement of dielectric properties of materials and then calculate KP. However, besides the fact that it is not direct measurement, such measurements are accompanied by errors due to inaccuracy of manufacture of the samples to the dimensions of the waveguide or resonator. In addition, at frequencies above 10 GHz, the dimensions of the waveguide or resonator section become smaller than the inhomogeneities of heterogeneous materials, which makes it impossible to carry out measurements
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
5. Belyaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhayushhie materialy [Radio absorbing materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
6. Belyaev A.A., Bespalova E.E., Romanov A.M. Pozharobezopasnye radiopogloshhayushhie materialy dlya bezehovyh kamer [Fireproof radio absorbing materials for anechoic cameras] // Aviacionnye materialy i tehnologii. 2013. №1. S. 53–55.
7. Agafonova A.S., Belyaev A.A., Kondrashov E.K., Romanov A.M. Osobennosti formirovaniya monolitnyh konstrukcionnyh radiopogloshhayushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of the formation of monolithic structural radio absorbing materials based on composites filled with resistive fibers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
8. Hippel A.R. Dielektriki i ih primenenie [Dielectrics and their application]. M.–L.: Gosenergoizdat, 1959. 336 s.
9. Brandt L.A. Issledovaniya dielektrikov na sverhvysokih chastotah [Researches of dielectrics at super-high frequencies]. M.: Gos. izd-vo fiz.-mat. lit., 1963. S. 191–201.
10. Krylov V.P. Izmerenie dielektricheskih svojstv dioksida kremniya na chastote 10 GGc pri nagreve do 1200°С v cilindricheskom volnovodnom rezonatore [Measurement of dielectric properties of silicon dioxide at frequency of 10 GHz when heating to 1200°С in the cylindrical waveguide resonator] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. T. 73. №9. S. 47–49.
11. Ustrojstvo dlya opredeleniya dielektricheskoj pronicaemosti obrazca materiala pri vozdejstvii vneshnih faktorov: pat. 2453856 Ros. Federaciya [The device for determination of dielectric permittivity of sample of material at influence of external factors: pat. 2453856 Rus. Federation]; opubl. 22.02.11.
12. Krylov V.P. Opredelenie dielektricheskoj pronicaemosti materialov pri vysokotemperaturnom nagreve v obemnom volnovodnom rezonatore [Determination of dielectric permittivity of materials at high-temperature heating in the cavity waveguide resonator] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. T. 82. №7. S. 36–39.
13. Krylov V.P., Grachev V.A., Rogov D.A. Izmerenie dielektricheskoj pronicaemosti dioksida kremniya pri nagreve v vysokotemperaturnom obemnom volnovodnom rezonatore [Measurement of dielectric permittivity of silicon dioxide when heating in the high-temperature cavity waveguide resonator] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. T. 82. №10. S. 39–43.
14. Litovchenko A.V., Ignatenko G.K. Nekotorye aspekty metrologicheskogo obespecheniya izmereniya dielektricheskih svojstv materialov na sverhvysokoj chastote v intervale temperatur 20–1200°S [Some aspects of metrological ensuring measurement of dielectric properties of materials at super-high frequency in the range of temperatures 20-1200°C] // Zavodskaya laboratoriya. Diagnostika materialov. 2010. T. 76. №8. S. 66–69.
15. Arhangel'skij Yu.S., Kalganov S.G., Trigorlyj S.V. Izmerenie dielektricheskih parametrov dielektrikov v diapazone SVCh pri vysokoj temperature [Measurement of dielectric parameters of dielectrics in the range of the microwave oven at high temperature] // Voprosy elektrotehnologii. 2017. №2 (15). S. 102–108.
16. Gdaljov A.V., Ogurcov K.N. Izmerenie dielektricheskih svojstv materialov pri vysokih temperaturah [Measurement of dielectric properties of materials at high temperatures] // Voprosy elektrotehnologii. 2013. №1 (1). S. 27–30.
17. Arzhannikov A.V., Ahmetov T.D., Kalinin P.V. i dr. Stend issledovanij po SVCh nagrevu i prevrashheniyu veshhestv [Stand of researches on the microwave oven to heating and transformation of substances]. Novosibirsk: In-t yader. fiziki im. G.I. Budkera SO RAN, 2004. S. 6–11.
18. Batura V.G., Moiseev V.K., Rybalka N.V. Pribor dlya izmereniya parametrov dielektrikov na SVCh v intervale temperatur 20–1500°C [The device for measurement of parameters of dielectrics on the microwave oven in the range of temperatures 20-1500°C] // Elektronnaya tehnika. Ser.: Elektronika SVCh. 1974. №1. S. 17–24.
19. Litovchenko A.V. Vysokotochnyj SVCh-izmeritel ε i tg nagrevaemyh obrazcov [High-precision microwave measuring instrument ε and tgδ of heated-up samples] // Zavodskaya laboratoriya. Diagnostika materialov. 2002. T. 68. №10. S. 35–38.
20. Brehovskih S.M., Demyanov V.V., Zalcman E.B. i dr. Ustanovka dlya izmereniya dielektrikov v sverhvysokochastotnom diapazone pri temperaturah do 2300 K [Installation for measurement of dielectrics in the superhigh-frequency range at temperatures up to 2300 K] // Pribory i tehnika eksperimenta. 1985. №4. S. 141–143.
21. Nikolskij V.V., Nikolskaya T.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and radio propagation]. M.: URSS, 2012. S. 44–164.
22. Krylov V.P. Modelirovanie aktualnyh radiofizicheskih zadach prohozhdeniya volny cherez dielektricheskij sloj [Modeling of actual radio physical problems of passing of wave through dielectric layer] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №9. S. 28–32.
We consider non-stick protective coatings that prevent the mold material from adhering to the metal surface of the casting, which ensures its easy extraction. The main task of the non-stick coating is to reduce the mold or rod to mold castings. For this use materials on water or alcohol basis. Paints for molds and rods from cold-hardening mixtures contain gluing additives and refractory components, which makes it possible to increase the strength of the working surface and reduce the scattering of shapes and rods. Coatings are applied with a brush or an atomizer, the rods are painted in one layer, and the molds, depending on the mass of the casting, are in several layers.
2. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3. S. 36–44.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: October 16, 2017).
7. Duyunova V.A., Goncharenko N.S., Muhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievyh i litejnyh alyuminievyh splavov v VIAM [Scientific heritage of academician I.N.Fridlyander. Modern researches of magnesium and cast aluminum alloys in VIAM] // Tsvetnye metally. 2013. №9. S. 71–78.
8. Duyunova V.A. Metody zashhity magnievyh splavov v otechestvennom litejnom proizvodstve s 1930-h gg. do nastoyashhego vremeni [Methods of protection of magnesium alloys in domestic foundry production since the 1930th till nowadays] // Litejshhik Rossii. 2010. №10. S. 35–37.
9. Duyunova V.A., Uridiya Z.P. Issledovanie vosplamenyaemosti litejnyh magnievyh splavov sistemy Mg–Zn–Zr [Research of inflammability of cast magnesium alloys of Mg–Zn–Zr system] // Litejshhik Rossii. 2012. №11. S. 21–23.
10. Kablov E.N., Muhina I.Yu., Korchagina V.A. Prisadochnye materialy dlya formovochnyh smesej pri lite magnievyh splavov [Additive materials for forming mixes when molding magnesium alloys] // Litejnoe proizvodstvo. 2007. №5. S. 15–18.
11. Duyunova V.A., Muhina I.Yu., Uridiya Z.P. Novye protivoprigarnye prisadochnye materialy dlya litejnyh form magnievyh otlivok [New antiburn additive materials for molding molds of magnesian cast] // Litejnoe proizvodstvo. 2009. №9. S. 18–21.
12. Duyunova V.A., Kozlov I.A. Holodnotverdeyushhie formovochnye smesi: perspektivy ispolzovaniya pri lite magnievyh splavov [Cold hardening forming mixes: use perspectives when molding magnesium alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №1. S. 41–43.
13. Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] // Litejnoe proizvodstvo. 2013. №5. S. 2–5.
14. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: October 20, 2017). DOI: 10.18577/2307-6046-2014-0-12-1-1.
15. Trofimov N.V., Leonov A.A., Duyunova V.A., Uridiya Z.P. Litejnye magnievye splavy (obzor) [Cast magnesium alloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №12. St. 01. Available at: http://www.viam-works.ru (accessed: October 20, 2017). DOI: 10.18577/2307-6046-2016-0-12-1-1.
16. Muhina I.Yu., Uridiya Z.P. Magnij – osnova sverhlegkih materialov [Magnesium is the base of extralight materials] // Metallurgiya mashinostroeniya. 2005. №6. S. 29–31.
17. Muhina I.Yu. Bobryshev B.L., Antipov V.V., Koshelev A.O., Bobryshev D.B. Struktura i svojstva splavov sistemy Mg–Al–Zr pri lite v kokil i formy iz HTS [Structure and properties of alloys of Mg–Al–Zr system at chill casting and forms from HTS] // Litejnoe proizvodstvo. 2014. №8. S. 6–10.
18. Volkova E.F., Muhina I.Yu. Novye materialy na magnievoj osnove i vysokoresursnye tehnologii ih proizvodstva [New materials on magnesian basis and high-resource technologies of their production] // Tehnologiya legkih splavov. 2007. №2. S. 28–34.
A mathematical model of the process of depositing titanium nitride from a vacuum-arc discharge plasma is considered. It is established that the temperature of the substrate during coating depends on arc current and bias voltage. It is established that the specific change in the mass of the sample during coating depends on the arc current, voltage and time of the process. Formulas are proposed for calculating the substrate temperature, the specific change in the sample mass for ion-plasma coating of titanium nitride, as well as the required pressure of the reaction gas in the chamber. The obtained results can be used in the development and planning of the technological process of coating with titanium nitride on the ion-plasma installation MAP-3.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
6. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
7. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
8. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
9. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym bar'ernym sloem dlya zashhity ot okisleniya splava ZhS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36VI] // MiTOM. 2011. №1. S. 34–40.
10. Gayamov A.M. Zharostojkoe pokrytie s kompozicionnym barernym sloem dlya zashhity vneshnej poverhnosti rabochih lopatok GTD iz renijsoderzhashhih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] // Sb. materialov XI Ros. ezhegod. konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tehnologiya neorganicheskih materialov». M.: IMET RAN, 2012. C. 473–475.
11. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Sposob obrabotki poverhnosti metallicheskogo izdeliya: pat. 2368701 Ros. Federaciya [Way of surface treatment of metal product: pat. 2368701 Russ. Federation]; opubl. 27.09.2009.
13. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] // Metally. 2012. №1. S. 5–13.
14. Sposob naneseniya kombinirovannogo zharostojkogo pokrytiya: pat. 2402633 Ros. Federaciya [Way of drawing the combined heat resisting covering: pat. 2402633 Rus. Federation]; opubl. 27.10.2010.
15. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostojkie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by rhenium ] // MiTOM. 2008. №6. S. 31–36.
16. Budinovskij S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoj modeli opredeleniya uprugih napryazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostojkih pokrytij dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines ] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №2. S. 26–37.
17. Budinovskij S.A. Primenenie analiticheskoj modeli opredeleniya uprugih mehanicheskih i termicheskih napryazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniyu zharostojkih alyuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting aluminide coverings] // Uprochnyayushhie tehnologii i pokrytiya. 2013. №3. S. 3–11.
18. Artemenko N.I., Muboyadzhyan S.A. Inzhenernaya metodika ocenki velichiny i haraktera vnutrennih napryazhenij v odnoslojnyh uprochnyayushhih kondensirovannyh pokrytiyah [Engineering method of estimating the magnitude and nature of the internal stresses in the condensed monolayer reinforcing coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 04. Available at: http://www.viam-works.ru (accessed: August 23, 2017). DOI: 10.18577/2307-6046-2016-0-1-25-35.
19. Artemenko N.I., Simonov V.N. Inzhenernaya metodika prognozirovaniya velichiny modulya uprugosti odnoslojnyh ionno-plazmennyh kondensirovannyh pokrytij, poluchennyh metodom plazmohimicheskogo sinteza [Engineering method for predicting the value of the elastic modulus of single-layer ion-plasma fused coatings obtained by plasma chemical synthesis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 05. Available at: http://www.viam-works.ru (accessed: August 23, 2017). DOI: 10.18577/2307-6046-2016-0-7-5-5.
20. Aleksandrov D.A., Artemenko N.I. Iznosostojkie pokrytiya dlya zashhity detalej treniya sovremennyh GTD [Wear-resistant coatings to protect friction parts of modern gas turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 06. Available at: http://www.viam-works.ru (accessed: August 23, 2017). DOI: 10.18577/2307-6046-2016-0-10-6-6.
21. Artemenko N.I., Simonov V.N. Matematicheskoe modelirovanie processa osazhdeniya titana na ustanovke ionno-plazmennogo napyleniya MAP-3 [Mathematical modeling of the titanium deposition process at the MAP-3 ion-plasma deposition unit] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6. St. 03. URL: http://www.viam-works.ru (accessed: August 23, 2017). DOI: 10.18577/2307-6046-2017-0-6-3-3.
22. Muboyadzhyan S.A. Erozionnostojkie pokrytiya iz nitridov i karbidov metallov i ih plazmohimicheskij sintez [Erosion resistant of covering from nitrides and carbides of metals and their plasmochemical synthesis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 103–109.
23. Deshman S. Nauchnye osnovy vakuumnoj tehniki [Scientific bases of vacuum equipment]. M.: Izd-vo inostr. liter., 1950. 695 s.
24. Barvinok V.A., Bogdanovich V.I. Fizicheskoe i matematicheskoe modelirovanie processa plazmohimicheskogo geterogennogo sinteza pokrytij iz plazmennyh potokov [Physical and mathematical modeling of process of plasmochemical heterogeneous synthesis of coverings from plasma flows] // Zhurnal tehnicheskoj fiziki, 2008. T. 78. Vyp. 1. S. 68–73.
25. Simonov V.N., Artemenko N.I. Kurs lekcij po discipline «Fizicheskaya himiya materialov» [Course of lectures on discipline «Physical chemistry of materials»]. M.: MGTU im. N.E. Baumana, 2015. 72 s.
By optical and scanning electron microscopy methods together with EBSD-analysis nickel-base superalloy ZhS6K-VI made by a selective laser melting sample structure was investigated. EBSD-analysis application allowed finding structure features, which do not observe during microscopic research: fragments primary orientation existence, which is inherited by melt baths; cracks development on boundaries between fragments with various crystallographic orientations.
2. Venables J.A., Harland C.J. Electron back-scattering patterns – A new technique for obtaining crystallographic information in the scanning electron microscope // Philosophic Magazine. 1973. Vol. 2. P. 1193–1200.
3. Vilaro T., Colinb C., Bartoutb J.D., Naz L., Sennour M. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy // Materials Science and Engineering: A. 2012. Vol. 534. P. 446–451.
4. Raevskih A.N., Chabina E.B., Filonova E.V., Belova N.A. Issledovanie osobennostej struktury nikelevyh zharoprochnyh splavov, poluchennyh selektivnym lazernym splavleniem, s primeneniem metoda difrakcii obratnootrazhennyh elektronov (EBSD/DOE) [Research of features of structure of the nickel hot strength alloys received by the selection laser fusing, using method of diffraction of back reflected electrons (EBSD/DOE)] // Materialy III Mezhdunar. konf. «Additivnye tehnologii: nastoyashhee i budushhee» (Moskva, 23 mar. 2017 g.). M.: VIAM, 2017. Stat'ya 3016F6F6. 1 elektron. opt. disk (CD-R).
5. Chabina E.B., Filonova E.V., Raevskih A.N. Vliyanie tehnologicheskih parametrov processa selektivnogo lazernogo splavleniya na formirovanie struktury zharoprochnogo nikelevogo splava [Influence of technological parameters of process of the selection laser fusing on forming of structure of heat resisting nickel alloy] // Materialy II Mezhdunar. konf. «Additivnye tehnologii: nastoyashhee i budushhee» (Moskva, 16 mar. 2016 g.). M.: VIAM, 2016. Stat'ya №4. 1 elektron. opt. disk (CD-R).
6. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Cvetkova E.V. Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZhS6K-VI pri selektivnom lazernom splavlenii [Features of forming of structure of heat resisting ZhS6K-VI nickel alloy at the selection laser fusing] // Tsvetnye metally. 2016. №3. S. 57–63.
7 Lapteva M.A., Belova N.A., Raevskih A.N., Filonova E.V. Issledovanie zavisimosti sherohovatosti, morfologii poverhnosti i kolichestva defektov struktury ot moshhnosti lazera, skorosti skanirovaniya i tipa shtrihovki v zharoprochnom splave, sintezirovannom metodom SLS [Dependence of roughness, surface morphology structure and number of defects on the power of the laser, scanning speed and the type of hatching in the high-temperature alloys synthesized by SLS] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 09. Available at: http://www.viam-works.ru (accessed: September 21, 2017). DOI: 10.18577/2307-6046-2016-0-9-9-9.
8. Soula A. Grain Boundary and Intergranular deformations during High Temperature Creep of a PM Nickel-Based Superalloy // Superalloys-2008. Warrendale, PA: The Mineral, Metals and Materials Society, 2008. Р. 387–394.
9. Muñoz-Moreno R., Divya V.D., Messé O.M.D.M. Effect of heat treatments on the microstructure and texture of cm247lc processed by selective laser melting. Minerals, Metals & Materials Society, 2016. P. 375–382.
10. Wang Di, Yang Yongqiang, Su Xubin, Chen Yonghua. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM // The International Journal of Advanced Manufacturing Technology. 2012. Vol. 58. Issue 9. P. 1189–1199.
11. Carter L.N., Martin C., Withers P.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behavior in SLM powder-bed fabricated nickel superalloy // Journal of Alloys and Compounds. 2014. Vol. 615. P. 338–347.
12. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: September 21, 2017). DOI: 10.18577/2307-6046-2015-0-2-2-2.
13. Zemin Wang, Kai Guana, Ming Gao et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting // Journal of Alloys and Compounds. 2012. Vol. 513. P. 518–523.
14. Amato K.N., Gaytan S.M., Murr L.E. et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting // Acta Materialia. 2012. Vol. 60. P. 2229–2239.
15. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
16. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
17. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
18. Kablov E.N. Nastoyashhee i budushhee additivnyh tehnologij [Present and future of the additive technologies] //Metally Evrazii. 2017. №1. S. 2–6.
19. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for «Aircraft engine»] // Permskie aviacionnye dvigateli. 2014. №31. S. 43–47.
20. Grigorev S.N., Tarasova T.V. Vozmozhnosti tehnologii additivnogo proizvodstva dlya izgotovleniya slozhnoprofilnyh detalej i polucheniya funkcionalnyh pokrytij iz metallicheskih poroshkov [Possibilities of technology of the additive production for manufacturing of of difficult profile details and receiving functional coverings from metal powders] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №10 (724). S. 5–10.
21. Grigorev S.N. Problemy i perspektivy razvitiya otechestvennogo mashinostroitelnogo proizvodstva [Problems and perspectives of development of domestic machine-building production] // Spravochnik: inzhenernyj zhurnal s prilozheniem. 2011. №12. S. 3–7.
22. Smurov I.Yu., Movchan I.A., Yadrojcev I.A. i dr. Additivnoe proizvodstvo s pomoshhyu lazera [The additive production by means of the laser] // Vestnik MGTU «Stankin». 2011. T. 2. №4. S. 144–146.
23. Strano G., Hao L., Everson R.M., Evans K.E. Surface roughness analysis, modelling and prediction in selective laser melting // Journal of Materials Processing Technology. 2013. Vol. 213. No. 4. P. 589–597.
24. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Treninkov I.A., Cvetkova E.V. Vliyanie parametrov selektivnogo lazernogo plavleniya na strukturno-fazovoe sostoyanie zharoprochnogo nikelevogo splava ZhS6K-VI [Influence of parameters of the selection laser melting on structural and phase condition of heat resisting ZhS6K-VI nickel alloy] // Metally. 2017. №4. S. 63–71.
25. Supersplavy II / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Hagelya [Superalloys II / ed. by Ch.T. Sims, N.S. Stoloff, U.K. Hagel]. M.: Metallurgiya, 1995. Kn. 1. 384 s.
26. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: September 21, 2017). DOI: 10.18577/2307-6046-2014-0-5-4-4.
28. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: September 21, 2017). DOI: 10.18577/2307-6046-2014-0-3-1-1.
29. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray-structural analysis for research of structural and phase condition of materials] // Sb. dokl. Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov «TestMat–2013». M., 2013. S. 32–37.