Articles
Isothermal heat resistance of samples from niobium-based alloy with heat-resistant coatings for GTE parts was researched at temperature of 1350°С based on 15 h. Researches of coating microstructures in the original form and after the heat resistance test were carried out on samples of a heat resistant niobium-based alloy with coatings. Coatings Si and Cr+Si after tests have homogeneous structure and provide protection of specimens from niobium-based superalloy. The influence of the structural heterogeneity of surface of the samples from heat-resistant niobium-based alloy was analyzed, the protective properties of the heat-resistant coating were studied. It have been determined that defects in the surface layer of the heat-resistant niobium-based alloy leads to catastrophic reduction in the heat resistance of the coating. The work is executed within the implementation of the complex scientific direction 17.3. «Multilayer heat-resisting and heat-protective coatings, nanostructural stre
2. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in the thermally stable nickel alloys for single‐crystal blades of gas‐turbine engines // 7th International Symposium on Technetium and Rhenium Science and Utilization. 2011. Р. 2–7.
5. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
6. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTEs // Russian metallurgy (Metally). 2012. No. 1. P. 1–7.
7. Zaharova G.V., Popov I.A., Zhorova L.P., Fedin B.V. Niobij i ego splavy [Niobium and its alloys]. M.: Gos. nauch.-tehnich. izd-vo lit-ry po chernoj i cvetnoj metallurgii, 1961. 196 s.
8. Stupik D., Donovn M.M., Barronj A.R., Jervis T.R., Nastasi M. The interfacial mixing of silicon coatings on niobium metal: a comparative study // Thin Solid Films. 1992. No. 207. P. 138–143.
9. Streiff R. Protection of materials by advanced high temperature Coatings // Journal de physique IV. 1993. Vol. 3. No. 111. P. 17–41.
10. Fukumoto M., Matsumura Y., Hayashi S., Narita T., Sakamoto K., Kasama A., Tanaka R. Coatings of Nb-based Alloy by Cr and/or Al Pack Cementations and Its Oxidation Bahavior in Air at 1273-1473K // Materials Transactions. 2003. Vol. 44. No. 4. P. 731–735.
11. Hayashi S., Takagi S., Yamagata R., Narita T., Ukai S. Formation of Exclusive Al2O3 Scale on Nb and Nb-Rich Alloys by Two-Step Oxygen-Aluminum Diffusion Process // Oxidation of Metals. 2012. No. 78. P. 167–178.
12. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
13. Oxidation resistant coating for Niobium – based silicide Composites: pat. 6521356 US; publ. 18.02.03.
14. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
15. Tsirlin M.S., Kasatkin A.V., Byalobzheskii A.V. An oxidation-resistant silicide coating for niobium alloys // Poroshkovaya metallurgiya. 1978. No. 12. P. 31–34.
16. Novak M., Levi C. Oxidation and Volatilization of Silicide Coatings for Refractory Niobium Alloys // Proceedings of IMECE. Seattle. 2007.
The effect of the nitride and carbide barrier layers on heat resistance of the compositions of superalloy ZhS32 with heat-resistant coatings was studied. Investigations of the barrier layer microstructure in the coating structure in original form and after heat resistance test at temperatures 1150 and 1200°C on the basis of 500 and 100 hours accordingly were carried out. Kinetics change of the barrier layers and their influence on the protective properties of the coating was studied. It has been found that the use of the nitride barrier in the structure of heat-resistant protective coating composition Ni–Cr–Al–Ta–Re–Y–Hf+Al–Ni–Y improves the heat resistance of composition «ZhS32–coating». The work is executed within the implementation of the complex scientific direction 17.3. «Multilayer heat-resisting and heat-protective coatings, nanostructural strengthening erosion, corrosion, wear-resistant and antifretting coatings for protection of hot section parts and GTЕ/GTU compressor» («The
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Zharoprochnyj splav na nikelevoj osnove dlya monokristallicheskogo litya: pat. 2439184 Ros. Federaciya [Hot strength alloy on nickel basis for single-crystal molding: pat. 2439184 Russian Federation]; opubl. 05.10.10.
4. Zharoprochnyj splav na osnove nikelya: pat. 2402624 Ros. Federaciya [Hot strength alloy on the basis of nickel: pat. 2402624 Russian Federation]; opubl. 16.06.09.
5. Zharoprochnyj litejnyj splav na osnove nikelya i izdelie, vypolnennoe iz nego: pat. 2365656 Ros. Federaciya [Heat resisting cast alloy on the basis of nickel and the product which has been executed of it: pat. 2365656 Russian Federation]; opubl. 30.01.08.
6. Petrushin N.B., Ospennikova O.G., Visik E.M. i dr. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5–11.
7. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
8. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
9. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES // Russian metallurgy (Metally). 2012. №1. P. 1–7.
10. Budinovskij S.A., Matveev P.V., Smirnov A.A. Issledovanie zharostojkosti litejnyh zharoprochnyh nikelevyh splavov v oblasti temperatur 1000–1200°C [Research of heat resistance of cast heat resisting nickel alloys in the field of temperatures 1000-1200°C] // Aviacionnaya promyshlennost. 2014. №2. S. 48–52.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lutsenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
12. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys // Metal Sciens and Heat Treatment. 1995. №2. P. 15–18.
13. Suzuki A., Rae C.M.F. Secondary reaction zone formations in coated Ni-base single crystal superalloys // Journal of Physics: Conference Series. 2009. V. 165. P. 78–83.
14. Suzuki A., Rae C.M.F., Hobbs R.A., Murakami H. Secondary reaction zone formations in Pt-Aluminised fourth generation Ni-base single crystal superalloys // Advanced Materials Research. 2011. V. 278. P. 78–83.
15. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
16. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kosmin A.A. Zharostojkie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] // MiTOM. 2008. №6. C. 31–36.
17. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym bar'ernym sloem dlya zashhity ot okisleniya splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] // MiTOM. 2011. №1. C. 34–40.
18. Gayamov A.M. Zharostojkoe pokrytie s kompozicionnym bar'ernym sloem dlya zashhity vneshnej poverhnosti rabochih lopatok GTD iz renijsoderzhashhih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] / V sb. materialov XI Rossijskoj ezhegodnoj konf. molodyh nauch. sotrudnikov i aspirantov «Fiziko-himiya i tehnologiya neorganicheskih materialov». M.: IMET RAN, 2012. C. 473–475.
19. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://viam-works.ru (accessed: March, 02 2015). DOI: 10.18577/2307-6046-2014-0-1-1-1.
The structure of the ceramic thermal barrier coating layer deposited on the blade of nickel alloy has been evaluated in the paper. The structural aspect is a crystallographic texture and the estimation parameters are an axis and scattering texture. Methodological questions of obtaining this information from the x-ray diffraction spectrum have been observed. These characteristics allow determining the crystallographic growth direction of the coating columnar grains. The average deviation of the grain growth from normal to the surface is 10 degrees. The inverse pole figure analysis method for texture parameters quantifying has been developed in the work.
2. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya s keramicheskim sloem ponizhennoj teploprovodnosti na osnove oksida cirkoniya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings with ceramic layer of the lowered heat conductivity on the basis of zirconium oxide for turbine blades of high pressure of perspective GTE] // Sovremennye dostizheniya v oblasti sozdaniya perspektivnyh nemetallicheskih kompozicionnyh materialov i pokrytij dlya aviacionnoj i kosmicheskoj tehniki: sb. dokl. konf. M.: VIAM, 2015. S. 3.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
5. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
6. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
7. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] // Metally. 2012. №1. S. 5–13.
8. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
9. Muboyadzhyan S.A., Egorova L.P., Gorlov D.S., Kosmin A.A. Teplozashhitnye pokrytiya dlya krupnogabaritnyh detalej goryachego trakta perspektivnyh gazoturbinnyh dvigatelej [Heat-protective coverings for large-size details of hot path of perspective gas turbine engines] // Aviacionnye materialy i tehnologii. 2005. №1. S. 23–30.
10. Rashkova B. Microstructural characterization of yttria-stabilized zirconia thermal barrier coatings grown on sapphire substrates. Stuttgart. Max-Planck-Institut für metallforschung, 2003. 126 р.
11. Zhe Chen. Relation microstructure et propriete mecanique des films de ZrO2 obtenus par MOCVD. Paris. Universite Paris Sud, 2011. 172 p.
12. Vasserman G., Greven I. Tekstury metallicheskih materialov [Structures of metal materials]. M.: Metallurgiya, 1969. 655 s.
13. Ivanov A.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: MISiS, 2009. Ch. 3. 22 s.
14. Umanskij Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. Ch. 3. 632 s.
15. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallah i splavah [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 344 s.
The significant part of the blade repair technology is removing used coatings from the surface of complex geometry blade. A method has been developed for removal of heat resisting condensation and diffusion coatings in electrolytic plasma by directional jet of electrolyte. This method allows uniform layer-by-layer removing heat resistant coatings from heat-resistant nickel alloys. The peculiarity of the process is a universality of usable electrolytes not requiring component correction in dependence on heat-resistant coating and alloy composition. The work is executed within the implementation of the complex scientific direction 10.11. «Power-efficient, resource-saving progressive technologies of machining of metal and non-metallic materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Orlov M.R., Ospennikova O.G. Mehanizmy obrazovaniya poristosti v monokristallicheskih lopatkah turbiny i kinetika ee ustraneniya pri goryachem izostaticheskom pressovanii [Mechanisms of formation of porosity in single crystals turbine blades and kinetics of its elimination at hot isostatic pressing ] // Aviacionnye materialy i tehnologii. 2012. №S. S. 117–129.
3. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
4. Bybin A.A., Nevyanceva R.R., Smol'nikova O.G. Zakonomernosti udaleniya vneshnej i vnutrennej zon zharostojkogo alyuminidnogo pokrytiya s dlitelnoj narabotkoj pri remonte lopatok TVD [Patterns of removal of external and internal zones of heat resisting alyuminide covering with long operating time at repair of blades of TVD] // Vestnik UGATU. 2008. T. 10. №1 (26). S. 127–130.
5. Lesnikov V.P., Kuznecov V.P., Korotkih A.V. Tehnologiya vosstanovitelnogo remonta turbinnyh lopatok GTD [Technology of restoring repair of turbine blades of GTD] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2004. №7 (15). S. 236–239.
6. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
7. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
8. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
9. Popova S.V., Muboyadzhyan S.A., Budinovskij S.A. Elektrolitno-plazmennaya finishnaya obrabotka metallov i splavov [Electrolyte-plasma finishing processing of metals and alloys] // Pisma o materialah. 2015. T. 5. №1. S. 39–42.
10. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kosmin A.A. Udalenie zharostojkih pokrytij s poverhnosti pera lopatok turbin v vodnyh malokoncentrirovannyh rastvorah [Removal of heat resisting coverings from surface of feather of blades of turbines in the aqueous low-concentrated solutions] // Tehnologiya metallov. 2006. №11. S. 15–24.
11. Kulikov I.S. i dr. Elektrolitno-plazmennaya obrabotka materialov [Electrolyte-plasma processing of materials]. Minsk: Belarus. Navuka, 2010. 232 s.
12. Galoyan A.G., Muboyadzhyan S.A., Kashin D.S. Formirovanie termodiffuzionnyh barernyh sloev na poverhnosti bezuglerodistyh zharoprochnyh renij- i renij-rutenijsoderzhashhih splavov metodom gazovoj cementacii [Termodiffusion barrier formation under vacuum cementation process on rhenium and rhenium-ruthenium comprising nickel based superalloys] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 38–43. DOI: 10.18577/2071-9140-2015-0-3-27-37.
13. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
14. Lazarenko B.R., Duradzhi V.N., Bryancev I.V. O strukture i soprotivlenii prielektrodnoj zony pri nagreve metallov v elektrolitnoj plazme [About structure and resistance of near electrode zone when heating metals in electrolyte plasma] // Elektronnaya obrabotka materialov. 1980. №2. S. 50–55.
15. Pogrebnyak A.D., Kulmeneva O.P. i dr. Processy massoperenosa i legirovaniya pri elektrolitno-plazmennoj obrabotke chuguna [Processes the transfer of mass and alloying at electrolyte-plasma processing of cast iron] // Pisma v ZhTF. 2003. T. 29. Vyp. 8. S. 8.
Control of elastic-plastic behavior of metal matrix composites reinforced with continuous fibers is the most important task of defining performance of both material and structural elements. The paper discusses methods of control, which together provide a complete understanding of fracture mechanism, strength and elastic characteristics of the metal matrix composites reinforced with continuous unidirectional fibers. It is shown that the behavior of material when applying the load specifically depends on technological defects arising during manufacture.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. 2011. №SP2. S. 13–19.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: June 18, 2016).
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
7. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
8. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
9. Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mehanika neuprugogo deformirovaniya i razrusheniya kompozicionnyh materialov [Mechanics of not elastic deformation and destruction of composite materials]. M.: Nauka–Fizmatlit, 1997. 288 s.
10. Kristensen L.M. Vvedenie v mehaniku kompozitov [Introduction in mechanics of composites]. M.: Mir, 1982. 334 s.
11. Brautman L., Krok R. Kompozicionnye materialy [Composite materials]. M.: Mir, 1978. T. 1: Poverhnosti razdela v metallicheskih kompozitah. 438 s.
12. Zirconium Diffusion Barrier in Titanium-Silicon Carbide Composite Materials: pat. 3717443 US; publ. 20.02.73.
13. Brautman L., Krok R. Kompozicionnye materialy [Composite materials]. M.: Mashinostroenie, 1978. T. 8: Analiz i proektirovanie konstrukcij. Ch. 2. 264 s.
14. Tamuzh V.P., Tetere G.A. Problemy mehaniki kompozitnyh materialov [Problems of mechanics of composite materials] // Mehanika kompozitnyh materialov. 1979. №1. S. 34–45.
15. Shaterina M.A. Tehnologiya konstrukcionnyh materialov [Technology of constructional materials]. M.: Politehnika, 2005. 597 s.
The ceramic fibers are priority subject to develop for their use as a main component of heat-shielding and heat-insulating materials for high-temperature purpose. This work investigates features of the process of formation of continuous alumina fiber by sol-gel method and also formation of inclusions in high-density fiberizing solutions during evaporation. It is established that existence of the second liquid phase in forming solution can interfere with the formation process.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznacheniya [Hermetics of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016).
6. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
7. Kablov E.N., Shhetanov B.V. Voloknistye teploizolyacionnye i teplozashhitnye materialy: svojstva, oblasti primeneniya [Fibrous heatinsulating and heat-protective materials: properties, scopes] // Fundamentalnye problemy vysokoskorostnyh techenij: sb. tez. dokl. Mezhdunar. nauch.-tehnich. konf. Zhukovskij, 2004. S. 95–96.
8. Overhead high power transmission cable comprising fiber reinforced aluminum matrix composite wire: pat. 6180232 US; publ. 30.01. 01. 13 p.
9. Ruggles-Wrenn M.B., Szymczak N.R. Effect of Steam Environment on Compressive Creep Behavior of Nextel 720/alumina Ceramic Composite at 1200°C // Сomposites: Part A. 2008. Vol. 39. P. 1829–1837.
10. Methods of producing a ceramic matrix composite: pat. 7153379 US; publ. 26.12.06. 7 p.
11. Varrik N.M., Ivahnenko Yu.A., Maksimov V.G. Oksid-oksidnye kompozicionnye materialy dlya gazoturbinnyh dvigatelej (obzor) [Oxide-oxide composites for gas-turbine engines (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 03. Available at: http://www.viam-works.ru (accessed: October 16, 2016). DOI: 10.18577/2307-6046-2014-0-8-3-3.
12. Balinova Yu.A., Kirienko T.A., Zimichev A.M. Reologiya vodnyh rastvorov sistemy «oksihlorid alyuminiya–polivinilovyj spirt», modificirovannyh bornoj kislotoj i ee solyami dlya keramicheskih voloknistyh materialov [Rheology of aqueous solutions of system « aluminum oxychloride -polyvinyl alcohol», modified by boric acid and its salts for ceramic fibrous materials] // Ogneupory i tehnicheskaya keramika. 2012. №11–12. S. 24–26.
13. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
14. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
15. Zimichev A.M., Varrik N.M., Sumin A.V. Niti iz tugoplavkih oksidov dlya uplotnitelnoj teploizolyacii [Threads of refractory oxides for sealing thermal insulation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 05. Available at: http://www.viam-works.ru (accessed: October 16, 2016). DOI: 10.18577/2307-6046-2015-0-6-5-5.
During operation of a reverser of D18T engine 32 cases of damaged skin from D16 alloy of RU-18T reverser mobile case are revealed. In order to increase in service life of this unit it has been decided to use metal-polymeric material Alor D16/41 as a skin material of internal path (crown type). For commercial introduction of metal-polymeric material Alor D16/41 into a structure of airplane manufacturing research of its properties has been conducted. The researches have shown that forming ability of layered MPCM depends on the fiber reinforcement lay-out relative to the direction of deformation Besides all known technological processes of parts forming have been developed. Since units of the reverser are subjected to vibroacoustic impact in the process of operation researches on their sound insulation have been conducted. Application of Alor D16/41 as a skin material in engine nacelle allowed reducing in weight of the structure by 10% and considerable improving of its vibration fatigue p
2. Kablov E.N. Aviacionnoe materialovedenie v HHI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Postnova M.V., Kazakov I.A. Metallopolimernye kompozicionnye materialy – svojstva, tehnologiya formovaniya, oblasti primeneniya [Metalpolymeric composite materials – properties, technology of formation, scope] // Sloistye kompozicionnye materialy. 2001. S. 187–188.
5. Antipov V.V. Metallicheskie materialy novogo pokoleniya dlya planera perspektivnyh izdelij aviacionno-kosmicheskoj tehniki [Metal materials of new generation for glider of perspective products of aerospace equipment] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.materialsnews.ru (accessed: June 08, 2016).
6. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstrukcionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei. Garmetiki.Tehnologii. 2012. №6. S. 41–49.
7. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: June 08, 2016). DOI: 10.18577/2307-6046-2014-0-7-6-6.
8. Umanskij Ya.S. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. 289 s.
9. Myasnikov Yu.G. Rentgenovskie difraktometry dlya issledovaniya i kontrolya napryazhenno-deformirovannyh materialov [X-ray diffractometrs for research and control intense the deformed materials] // Zavodskaya laboratoriya. 1985. №7. S. 21–26.
10. Postnov V.I., Postnova M.V., Arlashkina O.Yu. Issledovanie vliyaniya napryazhenno-deformirovannogo sostoyaniya na ustalostnye harakteristiki MPKM [Research of influence intense the deformed condition on fatigue characteristics of MPCM] // Sb. mater. Mezhdunar. nauch. konf. «Novye perspektivnye materialy i tehnologii ih polucheniya–2010». Volgograd: VolGTU, 2010. S. 183–185.
11. Postnov V.I., Postnova M.V., Arlashkina O.Yu. Issledovanie vliyaniya tehnologicheskih faktorov na uroven ostatochnyh napryazhenij v MPKM obshivok reversa D18T [Research of influence of technology factors on level of residual stresses in MPKM of coverings of reverse D18T] // Vestnik SGAU im. S.P. Koroleva. 2011. T. 3. Ch. 3. S. 65–73.
12. Postnov V.I., Senatorova O.G., Karimova S.A. i dr. Osobennosti formovaniya krupnogabaritnyh listov metallopolimernyh KM, ih struktura i svojstva [Features of formation of large-size sheets of metalpolymeric CM, their structure and properties] // Aviacionnye materialy i tehnologii. 2009. №4. S. 23–32.
13. Lavro N.A., Barabash V.N., Efimov V.A. Prognozirovanie sroka sluzhby i resursa samoletnyh krupnogabaritnyh obtekatelej RLS iz polimernyh kompozicionnyh materialov [Forecasting of service life and resource of aircraft large-size fairing of RLS from polymeric composite materials] // Sb. dokl. 7-j nauch. konf. po gidroaviacii «Gidrosalon–2008». 2008. Ch. 1. S. 353–360.
14. Postnov A.V., Postnov V.I., Vyakin V.N. Uprugodempfiruyushhie svojstva metallopolimernyh kompozitov pri vysokochastotnom nagruzhenii [Elastic-demping of property of metalpolymeric composites at high-frequency loading] // Vestnik SGAU im. S.P. Koroleva. 2011. №3. Ch. 3. S. 80–87.
15. Postnov V.I., Postnova M.V., Mantusova O.Yu. Issledovanie vibroustalostnyh svojstv otseka nosovoj chasti kryla iz MPKM [Research vibro fatigue properties of compartment of nasal part of wing from MPKM] // Vestnik SGAU im. S.P. Koroleva. 2012. №3. Ch. 1. S. 281–290.
In the article theoretical approaches to calculation of elastic – strength characteristics at tension of composite materials on the basis of woven fillers are given. Manufacturing methods of samples of curing binders for tension tests are described. The influence of manufacturing method of samples on defined elastic and strength characteristics of epoxy resin VSE-34 is investigated. Theoretical calculations are carried out and experimental data of strength and elastic modulus are obtained for VPS-53/120 fiberglass at tension. Comparison of theoretically calculated values with experimental ones is given.
The work is performed within the implementation of the complex scientific direction 13.2. «Constructional PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] // Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
3. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
4. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PKM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
5. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
6. Vavilova M.I., Kavun N.S. Stekloplastiki na osnove cianefirnyh svyazuyushhih [Glassfibers on the base of cyan-ester resins] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 19–23. DOI: 10.18577/2071-9140-2014-0-s2-19-23.
7. Kurnosov A.O., Melnikov D.A. Harakteristiki stekloplastikov na osnove vysokodeformativnyh rasplavnyh svyazuyushhih v usloviyah vozdejstviya ekspluatacionnyh faktorov [Characteristics of fibreglasses on the basis of highly deformation molten operational factors binding in the conditions of influence] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №11. S. 14–18.
8. Ilichev A.V., Raskutin A.E. Issledovanie vliyaniya koncentratora napryazhenij na napryazhenno-deformacionnoe sostoyanie ugleplastika metodom korrelyacii cifrovyh izobrazhenij [Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method] // Aviacionnye materialy i tehnologii. 2014. №3. S. 62–66. DOI: 10.18577/2071-9140-2014-0-3-26-30.
9. Kargin V.A., Slonimskij G.L. Kratkie ocherki o fiziko-himii polimerov [Short sketches about physical-chemistry of polymers]. M.: Himiya, 1967. 232 s.
10. Rabinovich A.L. Vvedenie v mehaniku armirovannyh polimerov [Introduction in mechanics of the reinforced polymers]. M.: Himiya, 1970. 482 s.
11. Roginskij S.L., Kanovich M.Z., Koltunov M.A. Vysokoprochnye stekloplastiki [High-strength fibreglasses]. M.: Himiya, 1979. 144 s.
12. Kiselev B.A. Stekloplastiki [Fibreglasses]. M.: Gos. nauch.-tehnich. izd-vo him. lit-ry. 1961, 240 s.
13. Gunyaev G.M. Struktura i svojstva polimernyh voloknistyh kompozitov [Structure and properties of polymeric fibrous composites]. M.: Himiya, 1981. 232 s.
14. Skudra A.M., Bulave F.Ya. Prochnost' armirovannyh plastikov [Durability of the reinforced plastics]. M.: Himiya, 1982. 216 s.
15. Voloskov G.A., Morozov V.N. K voprosu ocenki mehanicheskih svojstv materialov na osnove otverzhdayushhihsya sinteticheskih smol [To question of assessment of mechanical properties of materials on basis setting synthetic pitches] // Sintez i issledovanie epoksidnyh oligomerov i polimerov: sb. nauch. tr. Cherkassy: Izd.-poligraf. otdel otdeleniya NIITEHIMa, 1979. S. 85–91.
16. Gunyaev G.M. Konstruirovanie vysokomodulnyh polimernyh kompozitov [Designing of high-modular polymeric composites]. M.: Mashinostroenie, 1977. 160 s.
17. Tarnopolskij Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannye kompozitnye materialy: spravochnik [The space reinforced composite materials: directory]. M.: Mashinostroenie, 1987. 224 s.
18. Kucher N.K., Dvejrin A.Z., Zemcov M.P., Ankyanec O.K. Harakteristiki uprugosti sloistyh tkanyh stekloplastikov [Characteristics of elasticity of layered woven fibreglasses] // Problemy prochnosti. 2004. №6. S. 26–32.
19. Kucher N.K., Dvejrin A.Z., Zarazovskij M.N., Zemcov M.P. Deformirovanie sloistyh stekloplastikov, armirovannyh tkanyu satinovoj struktury pri komnatnoj i nizkih temperaturah [Deformation of the layered fibreglasses reinforced by fabric of sateen structure at room and low temperatures] // Mehanika kompozitnyh materialov. 2004. №3. S. 341–354.
This paper presents researches on the development of a methodology of defining tantalum in refractory niobium alloys with a reagent pyrogallol. The publications on the subject from various sources are analyzed. Upon summary review of the data and performed work it has been revealed that determination of tantalum with pyrogallol in refractory niobium alloys is possible in the presence of matrix as niobium and alloying chemical elements (zirconium, hafnium, titanium). Only alloying molybdenum also forms a colored complex, the absorbance of which is proportional to the concentration of molybdenum. In order to mitigate molybdenum content interfering determination of tantalum content a curve for the determination of tantalum is constructed taking into account the influence of molybdenum. To prevent oxidation of pyrogallol by atmospheric oxygen (whereby it becomes dark) the color reaction is carried out in reducing medium. Thus, the developed method allows direct photometric determinatio
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // TLS. 2007. №2. S. 6–16.
4. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
5. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP4. C. 13–19.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Kablov E.N., Petrushin N.V. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] // Aviacionnye materialy i tehnologii. 2004. №1. S. 3–21.
8. Kablov E.N., Petrushin N.V., Sidorov V.V., Demonis I.M. Razrabotka monokristallicheskih vysokorenievyh zharoprochnyh nikelevyh splavov metodom komp'yuternogo konstruirovaniya [Development of single-crystal high-rhenium heat resisting nickel alloys by method of computer designing] // Ibid. S. 22–36.
9. Kablov E.N., Petrushin N.V., Svetlov I.L. Komp'yuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina: izbrannye tr. M.: Nauka, 2006. S. 98–116.
10. Kablov E.N., Bazyleva O.A., Voroncov M.A. Novaya osnova dlya sozdaniya litejnyh vysokotemperaturnyh zharoprochnyh splavov [New basis for creation of cast high-temperature hot strength alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2006. №8. S. 21–25.
11. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Tr. Mezhdunar. nauch.-tehnich. konf. «Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie». 2006. S. 39–55.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye splavy novogo pokoleniya [Foundry hot strength alloys of new generation] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 27–44.
13. Voronin G.M., Kishkin S.T., Panasyuk I.O., Podyachev V.N., Sivakova E.V. Tugoplavkie splavy v izdeliyah aviacionnoj i kosmicheskoj tehniki [Refractory alloys in products of aviation and space engineering] // Aviacionnye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 264–273.
14. Podyachev V.N., Demonis I.M., Baranova O.A., Barasheva T.V. G.V. Zaharova – razrabotchik otechestvennyh niobievyh splavov. K 100-letiyu so dnya rozhdeniya [G. V. Zakharova – the developer of domestic niobic alloys. To the 100 anniversary since the birth of] // Metallurgiya mashinostroeniya. 2012. №3. S. 4–11.
15. Gibalo I.M. Analiticheskaya himiya niobiya i tantala [Analytical chemistry of niobium and tantalum]. M.: Nauka, 1967. 352 s.
16. Elinson S.V. Novye fotometricheskie metody opredeleniya niobiya i tantala v metallah i splavah [New photometric methods of definition of niobium and tantalum in metals and alloys] // Sovremennye metody analiza materialov. M.: Metallurgiya, 1969. S. 3–17.
17. Elinson S.V. Spektrofotometriya niobiya i tantala [Niobium and tantalum spectrophotometry]. M.: Atomizdat, 1973. 288 s.
18. Elinson S.V., Pobedina L.I. Novye fotometricheskie metody opredeleniya niobiya i tantala v metallah i splavah [New photometric methods of definition of niobium and tantalum in metals and alloys] // Zhurnal analiticheskoj himii. 1963. T. 18. S. 734–737.
19. Gazieva M.T., Pometun E.A., Pachadzhanov D.N. Atomno-emissionnoe spektralnoe opredelenie niobiya, tantala, cirkoniya i gafniya s primeneniem napravlennyh termohimicheskih reakcij [Nuclear and emission spectral definition of niobium, tantalum, zirconium and hafnium using the directed thermochemical reactions] // Zhurnal analiticheskoj himii. 2006. T. 61. №3. S. 269–271.
Features of static and low-cyclic fatigue fracture of two-phase titanium alloys VT3-1, VT6, VBT8, VT9, VТ18U and VТ22 in sea water and air were investigated by scanning electron microscopy. Threshold values of stress intensity factors in the conditions of static and low-cyclic loading corresponding to the beginning of crack propagation were determined by the mechanism of corrosion cracking. Work is performed within implementation of «The strategic directions of development of materials and technologies of their processing for the period till 2030» [1]: – direction 2. «Fundamental oriented researches, qualification of materials, non-destructive testing»; – direction 18. «Environmental test for providing protection of materials, structures and complex technical systems against corrosion, aging and biodamages».
2. Kablov E.N. K 80-letiyu VIAM [To VIAM 80 anniversary] // Zavodskaya laboratoriya. Diagnostika materialov. 2012. T. 78. №5. S. 78–82.
3. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
4. Kablov E.N., Grinevich A.V., Erasov V.S. Harakteristiki prochnosti metallicheskih aviacionnyh materialov i ih raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 370–379.
5. Drozdovskij B.A., Prohodceva L.V., Novosilceva N.I. Treshhinostojkost titanovyh splavov [Crack firmness of titanium alloys]. M.: Metallurgiya, 1983. 192 s.
6. Polyanskij V.M., Puchkov Yu.A., Orlov M.R., Naprienko S.A., Lavrov A.V. Vliyanie rastyagivayushhih napryazhenij na korrozionnuyu stojkost titanovogo splava VT22 v vodnom rastvore NaCl [Influence of pulling stresses on corrosion resistance of BT22 titanium alloy in NaCl aqueous solution] // Materialovedenie. 2016. №7. S. 13–19.
7. Orlov M.R., Puchkov Yu.A., Naprienko S.A., Lavrov A.V. Issledovanie ekspluatacionnogo razrusheniya lopatki ventilyatora aviacionnogo gazoturbinnogo dvigatelya iz titanovogo splava VT3-1 [Research of operational destruction of blade of the fan of the aviation gas turbine engine from BT3-1 titanium alloy] // Titan. 2014. №4. S. 23–30.
8. Orlov M.R., Naprienko S.A., Lavrov A.V. Fraktograficheskij analiz ekspluatacionnogo razrusheniya diska kompressora vysokogo davleniya iz splava VT18U [Research of operational destruction of blade of the fan of the aviation gas turbine engine from VT18U titanium alloy] // Titan. 2014. №2. S. 16–21.
9. Orlov M.R., Naprienko S.A., Lavrov A.V. Issledovanie razrusheniya dvuhfaznyh titanovyh splavov v usloviyah vozdejstviya morskoj vody [Research of destruction of two-phase titanium alloys in the conditions of influence of sea water] // Sb. dokl. IV Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov «TestMat-2014». M.: VIAM, 2014. S. 9.
10. Naprienko S.A., Zajcev D.V., Popov M.A., Zavodov A.V. Osobennosti razrusheniya titanovogo splava VT41 pri udarnom (dinamicheskom) nagruzhenii pri razlichnyh temperaturah [Features of destruction of VT41 titanium alloy in shock (dynamic) loading at different temperatures] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 60–68. DOI: 10.18577/2071-9140-2016-0-2-60-68.
11. Prohodceva L.V., Naprienko S.A. Osobennosti razrusheniya titanovogo splava VT41 v razlichnom strukturnom sostoyanii pri staticheskom i dinamicheskom nagruzhenii [Features of destruction of BT41 titanium alloy in different structural condition at static and dynamic loading] // Deformaciya i razrushenie materialov. 2014. №2. S. 42–47.
12. Prohodtseva L.V., Filonova E.V., Naprienko S.A., Moiseeva N.S. Issledovanie zakonomernostej razvitiya processov razrusheniya pri ciklicheskom nagruzhenii splava VT41 [Research of patterns of development of processes of destruction at cyclic loading of alloy VТ41] // Aviacionnye materialy i tehnologii. 2012. №S. S. 407–412.
13. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
14. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: May 18, 2016).
15. Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlya lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] // Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
Test of ways of obtaining special CFRP specimens with different porosity by autoclave molding and infusion method are observed in this paper. For infusion method these results were obtained by low compression, air pumping-in to binder, lower binder input and addition of pore-forming agent. For autoclave molding these results were obtained without external pressure and molding at heat chamber with vacuum slide into the bag to 0,03–0,05 at.
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M., 2002. S. 23–47.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
5. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
6. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation carbon plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
7. Lin L., Luo M., Tian H.T., Li X.M., Guo G.P. Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient // 17th World Conference on Nondestructive Testing. Shanghai, China. October 25–28, 2008. Available at: http://www.ndt.net/article/ wcndt2008/papers/222.pdf (accessed: June 11, 2016).
8. Daniel I.M., Wooh S.C., Komsky I. Quantitative Porosity Characterization of Composite Materials by Means of Ultrasonic Attenuation Measurements // Journal of Nondestructive, Evaluation. 1992. Vol. 1L. No. L. Available at: http://link.springer.com/article/10.1007/BF00566012 (дата обращения: 11.07.2016).
9. Ding S., Jin S., Luo Z., Liu H., Chen J., Lin L. Investigations on relationship between porosity and ultrasonic attenuation efficient in CFRP laminates based on RMVM // 7th International Symposium on NDT in Aerospace. Мo.5.A.1. Available at: https://www.ndt-aerospace.com/Portals/aerospace2015/BB/mo5a1.pdf (accessed: June 11, 2016).
10. Dominguez N., Mascaro B. Ultrasonic Non-Destructive Inspection of Localised Porosity in Composite Materials // ECNDT. 2006. Tu.2.1.4. Available at: https://www.ndt-aerospace.com/Portals/aerospace2015/BB/mo5a1.pdf (accessed: June 11, 2016).
11. Hillger W., Elze S. Determination of porosity in aerospace structures by ultrasonic pulse echo technique // 8 th ECNDT. Barcelona. 2002. Available at: http://www.dlr.de/fa/Portaldata/17/Resources/dokumente/institut/2002/u2002_2.pdf (accessed: June 11, 2016).
12. Bojchuk A.S. Nerazrushayushhij kontrol detalej i konstrukcij aviacionnoj tehniki iz polimernyh kompozicionnyh materialov pri ispolzovanii ultrazvukovyh fazirovannyh reshetok [Non-destructive testing of details and designs of aviation engineering from polymeric composite materials when using the ultrasonic phased grids] // Tez. dokl. 19-j Vseros. nauch.-tehnich. konf. po nerazrushayushhemu kontrolyu i tehnicheskoj diagnostike. Samara, 2011. S. 289–291.
13. Bojchuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Kontrol tehnologicheskih i ekspluatacionnyh narushenij sploshnosti ploskih panelej iz polimernyh kompozicionnyh materialov pri ispolzovanii ultrazvukovyh fazirovannyh reshetok [Control of technological and operating disturbances of continuity of flat panels from polymeric composite materials when using the ultrasonic phased grids] // Tez. dokl. Vseros. konferencii po ispytaniyam i issledovaniyam materialov «TestMat 2012». M.: VIAM, 2012. S. 6.
14. Bojchuk A.S., Generalov A.S., Stepanov A.V. Yuhackova O.V. Nerazrushayushhij kontrol PKM s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [Non-destructive testing of PKM with use of the ultrasonic phased grids] // Promyshlennye ASU i kontrollery. 2013. №2. S. 54–58.
15. Boychuk A.S., Stepanov A.V, Kosarina E.I., Generalov A.S. Primenenie tehnologii ultrazvukovyh fazirovannyh reshetok v nerazrushayushhem kontrole detalej i konstrukcij aviacionnoj tehniki, izgotavlivaemyh iz PKM [Application of ultrasonic phased lattice technique for nondestructive testing of aviation FRP parts structures] // Aviacionnye materialy i tehnologii. 2013. №2. S. 41–46.
Creation and application of rubber sealing materials are described. The main types of sealants are shown as well as features of their design and operation. Both sealants of mass use and special functions are described. Their main utilization properties and features of application are given. The main properties of rubbers applied to manufacture of sealants are shown.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red.
E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Uplotneniya i uplotnitelnaya tehnika: spravochnik / pod obshh. red. A.I. Golubeva, L.A. Kondakova [Consolidations and sealing equipment: directory / gen. ed. by A.I. Golubev, L.A. Kondakov]. M.: Mashinostroenie, 1986. 464 s.
7. Bolshoj spravochnik rezinshhika v 2 ch. [Big directory for specialist in rubber in 2 parts]. M.: Tehinform, 2012. 1385 s.
8. Maskalyunajte O.E., Morozov Yu.L., Suhinin N.S. i dr. Vliyanie sposoba vvedeniya plastifikatorov na svojstva parafinatnyh kauchukov BNKS i standartnyh rezin na ih osnove [Influence of way of introduction of plasticizers on properties of the BNKS parafinatny rubbers and standard rubbers on their basis] // Kauchuk i rezina. 2006. №3. S. 14–17.
9. Nikolaeva Yu.K., Zaharenko N.V., Doncov A.A. Osobennosti optimal'noj koncentracii dibutilsebacinata pri sozdanii morozostojkih rezin [Features of optimum concentration of dibutyl sebacate at creation of cold-resistant rubbers] // Kauchuk i rezina. 1984. №10. S. 4–7.
10. Nikolaeva Yu.K., Kucherskij A.M., Zaharenko N.K., Doncov A.A. Vliyanie vvedeniya plastifikatorov nabuhaniem na morozostojkost rezin [Influence of introduction of plasticizers by swelling on frost resistance of rubbers] // Proizvodstvo shin, RTI i ATI. 1983. №11. S. 4–7.
11. Petrova V.P., Pashina N.R. Ocenka morozostojkih svojstv rezin, kontaktiruyushhih so sredami neftyanogo proishozhdeniya [Assessment of cold-resistant properties of the rubbers contacting to environments of oil origin] // Proizvodstvo shin, RTI i ATI. 1983. №12. S. 27–29.
12. Hemmer K. Polimernye plastifikatory // Polimernye smesi / pod red. D. Pola, S. Nyumena [Polymeric plasticizers]. M.: Mir, 1981. S. 237–260.
13. Reznichenko S.V., Lysova G.A., Morozov Yu.L. Syrevye problemy materialovedeniya maslobenzostojkih rezinovyh izdelij [Raw problems of materials science oil and petrol resistant rubber products] // Kauchuk i rezina. 1997. №6. S. 28–32.
14. Nesterova S.L. Svojstva novyh tipov butadien-nitrilnyh kauchukov, poluchennyh s razlichnymi emulgatorami i osobennosti ih pererabotki: avtoref. dis. … kand. tehn. nauk [Properties of new types of the butadiene nitrile rubbers received with different emulsifiers and feature of their processing: : thesis, Cand.. Sc. (Tech.)]. M.: MITHT im. M.V. Lomonosova, 2004. 15 s.
15. Nudelman Z.N. Ftorkauchuki: osnovy, pererabotka, primenenie [Fluoroelastomers: bases, processing, application]. M.: RIAS, 2007. 383 s.
16. Nudelman Z.N. K voprosu o morozostojkih ftorelastomerah [To question of cold-resistant fluoroelastomers ] // Kauchuk i rezina. 2005. №1. S. 8–10.
17. Nudelman Z.N. Sovmeshhenie ftorkauchukov s drugimi polimerami [Combination of fluoroelastomers with other polymers] // Kauchuk i rezina. 2006. №4. S. 27–37.
18. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: August 10, 2016).
19. Kuznecova O.V., Donskoj A.A., Markin E.A. Reziny na osnove ftorsiloksanovyh elastomerov: sostoyanie i perspektivy razvitiya [Rubbers on basis fluorine siloxane elastomer: condition and development perspectives] // Kauchuk i rezina. 2007. №3. S. 37–43.
20. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
21. Govorova O.A. Recepturostroenie i svojstva rezin na osnove etilenpropilenovyh kauchukov [Compounding structure and properties of rubbers on the basis of ethylene-propylene rubbers]. M.: CNIITEneftehim, 1989. Vyp. 4. 60 s.
22. Govorova O.A., Frolov A.E., Sorokin G.A. Svojstva rezin na osnove etilenpropilenovyh kauchukov [Properties of rubbers on the basis of ethylene-propylene rubbers]. M.: CNIITEneftehim, 1986. Ser.: Proizvodstvo shin, RTI i ATI. 64 s.
23. Handbook of Rubber Bonding / ed. by B. Crowther. Rapra Technology, 2001. 400 p.
24. Jerschow P. Silicone elastomers (Rapra Review Reports). Smithers Rapra Technology, 2001. 172 p.
25. Marciniec B. Hydrosilylation: a comprehensive review on recent advances. Berlin: Springer. 2009. 408 p.
26. Wilks E.S. Industrial polymers: handbook // Syntetic polymers (continued), biopolymers and their derivates. Weinheim: Wiley–VHS, 2001. Vol. 3. 1364 p.
27. Naumov I.S., Petrova A.P., Barbotko S.L., Eliseev O.A. Reziny s ponizhennoj goryuchestyu [Rubbers with the lowered combustibility] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №4. S. 27–33.
28. Naumov I.S., Petrova A.P., Barbotko S.L. Povyshenie pozharnoj bezopasnosti reziny na osnove siloksanovogo kauchuka [Increase of fire safety of rubber on the basis of siloxane rubber] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №3. S. 30–35.