Articles
Results of comprehensive investigations of extruded panel from high-strength weldable aluminum-lithium alloy V-1469 with low density made at JSC KUMZ industrial-scale production are given in the article. Mechanical, corrosion, resource characteristics and weldability of extruded panel are investigated. The welded extruded panel from alloy V-1469 application in wing design of perspective products of aviation engineering will allow to reduce weight thanks to increased strength-to-weight ratio of alloy in comparison with serial alloy V95o.ch.-Т2 and also due to application of welded joints instead of bolt and rivet. The work is executed within implementation of the complex scientific direction 8.1. «High-strength welded aluminum and aluminum - lithium alloys of the lowered density with the increased fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Shulzhenko I.I. Konstrukciya samoletov [Design of planes]. M.: Mashinostroenie. 1971. 415 s.
3. Giummarra С., Yocum L. New Developments in Extruded Integrally Stiffened Panels // Proceedings of 17th AeroMat Conference & Exposition. Seattle. 2006.
4. Fridlyander I.N. Alyuminievye splavy v letatelnykh apparatakh v periody 1970–2000 i 2001–2015 gg. [Aluminum alloys in flight vehicles during the period 1970-200 and 2001-2015] // Tekhnologiya legkikh splavov. 2002. №4. S. 12–15.
5. Zhirnov A.D. Krylatye metally i splavy [Winged metals and alloys] // Nauka i zhizn. 2007. №6. S. 36–38.
6. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhajlov M.D. Alyuminijlitievye splavy dlya samoletostroeniya [Aluminum-lithium alloys for aircraft industry] // Metallurg. 2012. №5. S. 31–35.
7. Belov A.F., Dobatkin V.I. i dr. Alyuminievye splavy. Proizvodstvo polufabrikatov iz alyuminievykh splavov [Aluminum alloys.Production of semi-finished materials from aluminum alloys]. M.: Metallurgiya, 1971. 493 s.
8. Available at: http://www.buran.ru/htm/memory55.htm (accessed: September 08, 2015).
9. Gureeva M.A., Grushko O.E., Ovchinnikov V.V. Svarivaemye alyuminievye splavy v konstrukciyakh transportnykh sredstv [Welded aluminum alloys in constructions of vehicles] // Zagotovitelnye proizvodstva v mashinostroenii. 2009. №3. S. 11–21.
10. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., KHokhlatova L.B. Alyuminijlitievye splavy [Aluminum-lithium alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauchn.-tekhn. sb. M.: VIAM, 2007. S. 163–171.
11. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminievo-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and properties.]. Kiev: Naukova dumka, 1992. 192 s.
12. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoj i atomnoj tekhniki iz alyuminievykh splavov [Memories of development of aerospace and nuclear equipment from aluminum alloys]. M.: Nauk,. 2005. 275 s.
13. Kablov E.N. Materialy i khimicheskie tehnologii dlya aviacionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520.
14. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs materials of new generation] // Redkie zemli. 2014. №3. S. 813.
15. Fridlyander I.N., Sadkov V.V., Sandler V.S., Fedorenko T.P. Svojstva polufabrikatov iz vysokotekhnologichnogo Al–Li-splava 1441 [Properties of semi-finished products from high-technology Al-Li alloy 1441] // Tekhnologiya legkikh splavov. 2002. №4. S. 24–27.
16. Aviacionnye materialy: spravochnik v 12 t.; 7-e izd., pererab. i dop. / pod obshh. red. E.N. Kablova[Aviation materials:directory in 12 vol.; 7th ed., proc. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2009. T. 4. Ch. 1. Kn. 1. 170 s.
17. Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S., Klochkova Yu.Yu. Vysokoprochnye splavy sistemy Al–Cu–Li s povyshennoj vyazkost'yu razrusheniya dlya samoletnykh konstrukcij [High-strength alloy of Al-Cu-Li system with the increased fracture toughness for aircraft designs] // Tsvetnye metally. 2013. №9 (849). S. 66–71.
18. Fridlyander I.N., Grushko O.E., Shamraj V.F., Klochkov G.G. Vysokoprochnyj konstrukcionnyj Al–Cu–Li–Mg splav ponizhennoj plotnosti, legirovannyj serebrom [High-strength structural low-density alloy Al-Cu-Li-Mg, alloyed by silver] // MiTOM. 2007. №6 (624). S. 3–7.
19. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
20. Kolobnev N.I., KHokhlatova L.B., Oglodkov M.S., Klochkova Yu.Yu. Vysokoprochnye splavy sistemy Al–Cu–Li s povyshennoj vyazkost'yu razrusheniya dlya samoletnykh konstrukcij [High-strength alloys of Al-Cu-Li system with increased fracture toughness for aircraft designes] // Tsvetnye metally. 2013. №9. S. 66–71.
21 Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 01. Available at: http://viam-works.ru (accessed: September 08, 2015). DOI: 10.18577/2037-6046-2014-0-7-1-1.
22. Lukin V.I., Ioda E.N., Bazeskin A.V., Zhegina I.P., Kotelnikova L.V., Ovchinnikov V.V. Svarka treniem s peremeshivaniem vysokoprochnogo alyuminievo-litievogo splava V-1469 [Friction stir welding of high-strength aluminum-lithium alloy V-1469] // Svarochnoe proizvodstvo. 2011. №4. S. 26–30.
23. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 08, 2015). DOI: 10.18577/2307-6046-2015-0-4-6-6.
The development of new aviation products requires the improvement of applicable alloys. Alloying complication of disk Ni-base superalloys leads to technical difficulties in their production and particularly during forging. Powder metallurgy allows successfully solving this problem and achieving mechanical characteristic that are very difficult to provide with traditional production methods. This article presents the basic principles of Russian P/M disk alloys development and also points the perspective directions of research in FSUE «VIAM». The work is executed within implementation of the complex scientific direction 10.2. «Isothermal deformation on air of new generation heterophase difficult-to-form superalloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Kablov E.N. Osnovatel otechestvennoj shkoly vysokotemperaturnykh aviacionnykh konstrukcionnykh materialov. K 100-letiyu so dnya rozhdeniya akademika S.T. Kishkina [Founder of domestic school of high-temperature aviation constructional materials. To the centenary of the birth of Academician S.T. Kishkin] // Krylya Rodiny. 2006. №5. S. 6.
3. Kablov E.N., Bronfin M.B. Effekt S.T. Kishkina, ili pochemu struktura zharoprochnykh nikelevykh splavov dolzhna byt geterofaznoj [S.T. Kishkin`s effect or why the structure of heat-resistant nickel alloys should be heterogeneous] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 7–14.
4. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Issledovanie kompozicij sistemy Ni–Al–Co pri razrabotke novogo zharoprochnogo deformiruemogo intermetallidnogo splava [Investigation ekhperimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 10. St. 01. Available at: http://www.viam-works.ru (accessed: August 08, 2016).
5. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2015-0-2-3-3.
6. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
7. Belov A.F., Anoshkin N.F., Fatkullin O.Kh. Struktura i svojstva granuliruemykh nikelevykh splavov [Structure and properties of granulated nickel alloys]. M.: Metallurgiya. 1984. 128 s.
8. Zaderej A.G. Fenomen akademika A.F. Belova [Phenomenon of academician A.F. Belov] // Tekhnologiya legkikh splavov. 2006. №3. S. 37–40.
9. Iz nauchnogo naslediya akademika A.F. Belova (K 105-letiyu so dnya rozhdeniya) [From scientific heritage of academician A.F. Belov (To the 105th anniversary)] // Tekhnologiya legkikh splavov. 2011. №1. S. 5–7.
10. Inozemcev A.A., Anoshkin N.F., Bashkatov I.G., Garibov G.S., Koryakovcev A.S. Primenenie diskov iz granul zharoprochnykh nikelevykh splavov v serijnykh GTD aviacionnoj i nazemnoj tekhniki [Application of disks from grains of heat-resistant nickel alloys in serial GTE of aviation and ground engineering] // Perspektivnye tehnologii legkikh i specialnykh splavov. M.: FIZMATLIT, 2006. S. 371–376.
11. Garibov G.S. Sovremennyj uroven razvitiya poroshkovoj metallurgii zharoprochnykh nikelevykh splavov [Modern level of development of powder metallurgy of heat-resistant nickel alloys] // Tekhnologiya legkikh splavov. 2000. №6. S. 58–68.
12. Garibov G.S., Gric N.M., Vostrikov A.V., Fedorenko E.A. Krupnogabaritnye diski iz granul novogo vysokozharoprochnogo splava VV750P dlya perspektivnykh GTD [Large-sized disks from grains of new heat-resistant alloy VV750P for advanced GTE] // Tekhnologiya legkikh splavov. 2008. №1. S. 31–36.
13. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: August 08, 2016).
14. Chabina E.B., Lomberg B.S., Filonova E.V., Ovsepyan S.V., Bakradze M.M. [Change of structural and phase condition of heat resisting deformable nickel alloy at alloying tantalum and rhenium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 03. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2015-0-9-3-3.
15. Garibov G.S., Gric N.M., Vostrikov A.V., Fedorenko E.A. Sozdanie novogo vysokoprochnogo splava VV751P dlya perspektivnykh gazoturbinnykh dvigatelej [Development of new heat-resistant alloy VV750P for advanced gas turbine engines] //Tekhnologiya legkikh splavov. 2009. №1. S. 34–39.
16. Garibov G.S., Gric N.M., Volkov A.M., Vostrikov A.V., Fedorenko E.A. Metallovedcheskie aspekty proizvodstva zagotovok diskov iz granuliruemykh zharoprochnykh nikelevykh splavov metodom GIP [Metallic aspects of stocks production of disks from granulated heat-resistant nickel alloys by HIP method] // Tekhnologiya legkikh splavov. 2014. №3. S. 54–59.
17. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
18. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tehnologii. 2013. №1. S. 13–16.
In this article the issue of PREP powders application in modern AM units both for SLS and DMD technologies is analyzed. The essential powder properties for these powders application in AM units are shown. The analytic forecast of development of PREP method for its most effective application in AM is made. The conclusions on its prospects and implementation in Russia are made as well. The work is executed within implementation of the complex scientific direction 10.3. «Technologies for receiving high-quality powders of alloys on different basis for the additive technologies and powders of solders for the soldering» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Kablov E.N. Chto takoe innovacii [What are innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
3. Kablov E.N. Materialy i tehnologii VIAM v konstrukciyakh perspektivnykh dvigatelej razrabotki OAO «Aviadvigatel» [VIAM`s materials and technologies applied in constructions of advanced engines developed by OPSC “Aviadvigatel”] // IB «Permskie aviacionnye dvigateli». 2014. №31. S. 43–47.
4. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
5. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel heat-resistant alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: sb. tr. Mezhdunar. nauch.-tekhn. konf. 2006. S. 39–55.
6. Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskov gazovykh turbin (materialy i tehnologii) [Modern heat-resistant nickel alloys for disks of gas turbines (materials and technologies)]. M.: Nauka i tehnologii, 2013. 264 s.
7. ASTM F2792−12a. Standard Terminology for Additive Manufacturing Technologies. West Conshohocken: ASTM International. 2012. DOI: 10.1520/F2792–12A.
8. Shahzad K., Deckers J., Kruth J.-P., Vleugels J. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing // Journal of Materials Processing Technology. 2013. P 1484–1494.
9. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: November 11, 2015). DOI: 10.18577/2307-6046-2014-0-3-1-1.
10. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: November 11, 2015). DOI: 10.18577/2307-6046-2014-0-5-4-4.
11. Available at: http://nami.ru/uploads/docs/centr_technology_docs/ 55a62fc89524bAT_metall.pdf (accessed: November 11, 2015)
12. Wohlers Report. Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report. 2012. 286 p.
13. Available at: http://files.lib.sfu-kras.ru/ebibl/umkd/63/u_lectures.pdf (accessed: November 11, 2015).
14. Capus J.M. Metal Powders. A Global Survey of Production, Applications and Markets to 2010. 4th edition. Elsevier. 2005. 314 р.
15. Dunkley J.J. Atomization // Powder Metal Technologies and Applications. ASM International Publishers. 1998. V. 7. P. 35–52.
16. Lawley A., Atomization // Metal Powder Industries Federation Publishers. Princeton. 2003. 166 p.
17. Smagorinski M.E., Tsantrizos P.G. Production of spherical titanium powder by plasma atomization // Proc. World Congress of PM & Particulate Matter. Metal Powder Ind. Fed. 2002. V. 3. P. 248–260.
18. Sukhov D.I. Primenenie matematicheskoj modeli dlya analiza vliyaniya parametrov plazmennogo raspyleniya na krupnost granul iz titanovogo splava VT25UP [Application of mathematical model for influence analyses of plasma spraying parameters on size of grains from VT25UP titanium alloy] // Tekhnologiya legkikh splavov. 2013. №2. S. 57–68.
19. Garibov G.S., Vostrikov A.V., Gric N.M., Fedorenko E.A. Razrabotka novykh granulirovannykh zharoprochnykh nikelevykh splavov dlya proizvodstva diskov i valov aviacionnykh dvigatelej [Development of new granulated heat-resistant nickel alloys for production of disks and shafts of aviation engines] // Tekhnologiya legkikh splavov. 2010. №2. S. 34–44.
20. Vostrikov A.V., Garibov G.S., Ber L.B., Shlyapin S.D. Issledovanie fiziko-mekhanicheskikh svojstv i struktury granul iz novogo vysokoprochnogo nikelevogo splava, izgotovlennykh metodom PREP [Researches of physical and mechanical properties and structures of grains from new heat-resistant nickel alloy produced by PREP] // Tekhnologiya legkikh splavov. 2013. № 2. S. 69–75.
21. Vostrikov A.V., Garibov G.S. Investigation in the Field of Physico-Mechanical Properties and a Structure of New Ni-Base Superalloy Powder // Proceeding HIP’14. Stockholm. 2014. P. 427–439.
22. Sposob proizvodstva granul zharoprochnykh splavov: pat. 2468891 Ros. Federaciya [Method of production of grains of heat-resistant alloys]; zayavl. 18.11.11; opubl. 10.12.2012.
23. Ustanovka dlya polucheniya metallicheskogo poroshka: pat. 2356696 Ros. Federaciya [Unit for production of metal powder]; zayavl. 14.09.07; opubl. 27.05.2009.
24. Available at: http://www.itp-forum.ru/conf2015/documents/Section_prezentations/1_Logacheva_Kompozit.pdf (accessed: October 15, 2015).
25. Garibov G.S., Gric N.M. V.I. Dobatkin i metallurgiya granul zharoprochnykh nikelevykh splavov [V.I. Dobatkin and metallurgy of grains of heat-resistant nickel alloys] // Tekhnologiya legkikh splavov. 2015. №2. S. 34–40.
The ZS32-VI metal alloy powder for laser metal deposition dispersed by gas atomi-zation at HERMIGA 10/100 VI is researched. It is shown that the granules have a regular spherical shape with a small number of defective granules. The deposition quality of the rotor blade feather end of the high-pressure turbine first stage is performed. Laser metal deposition, performed with ZS32-VI metal alloy powder with granulometric composition 40–80 µm after degassing annealing and heating, provides with high quality deposited material (defects such as microcrack or lack of penetration are not revealed), and geometry retailoring in full. The work is executed within implementation of the complex scientific direction 10.4. «Technologies of bi-and polymetallic naturally reinforced metal materials by method of direct laser synthesis from metal powders» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
5. Razuvaev E.V. Proizvodstvo polufabrikatov iz sovremennyh i perspektivnyh zharoprochnyh splavov [Production of semi-finished products from modern and perspective hot strength alloys] // Aviacionnye materialy i tehnologii. M.: VIAM, 2002. Vyp.: Tehnologii proizvodstva aviacionnyh materialov. S. 35–39.
6. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: July 10, 2015).
8. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlya lazernoj LMD-naplavki [Research of finely divided metal powder of hot strength alloy on nickel basis for laser LMD welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
9. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: July 10, 2015). DOI: 10.18577/2014-0-3-1-1.
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: July 10, 2015). DOI: 10.18577/2307-6046-2015-0-2-2-2.
11. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 10, 2015). DOI: 10.18577/2307-6046-2014-0-5-4-4.
12. Ospennikova O.G., Evgenov A.G., Nerush S.V., Afanasev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev na nikelevoj osnove primenitelno k polucheniyu vysokotehnologichnogo polufabrikata v vide samokleyushhijsya lenty na organicheskom svyazuyushhem [Research of finely divided powders of solders on nickel basis with reference to receiving hi-tech semi-finished product in look self-glued tapes on the organic binding ] // Vestnik UGATU. 2012. №5 (50). S. 137–144.
13. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanas'ev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlya diffuzionnoj vakuumnoj pajki, poluchennyh metodom avtomizacii rasplava [Research of finely divided powders of solders for the diffusion vacuum soldering, received by avtomizatsiya method rasplava] // Vestnik MGTU im. N.E. Baumana. 2011, Spec. vyp.: Perspektivnye konstrukcionnye materialy i tehnologii. S. 79–87.
14. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
15. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] // Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
The paper presents results of investigation of interfaces in composite metal material (MMC) based on aluminum alloy reinforced by alumina fiber. The continuous fibers of alumina and Al–Mg–Cu alloy are used as precursor components. The chemical compo-sition and structure of the investigated materials, estimation of the volume fraction of interfacial zones in microns is performed by methods of x-ray and x-ray fluorescence analysis. The work is executed within implementation of the complex scientific direction 12.1. «Metal composite materials (MCM) reinforced by particles and fibers of refractory compounds» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Alyuminievye splavy [Aluminum alloys] // Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 143–156.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 86. №6. S. 520–530.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 10, 2015).
6. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizacii v resursosberegayushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: June 10, 2015).
7. Shhetanov B.V., Kuptsov R.S., Svistunov V.I. Metody polucheniya monokristallicheskih volokon oksida alyuminiya dlya sozdaniya kompozicionnyh materialov i vysokotemperaturnoj volokonnoj optiki [Methods of receiving single-crystal fibers of aluminum oxide for creation of composite materials and high-temperature fiber optics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 01. Available at: http://www.viam-works.ru (accessed: June 10, 2015).
8. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspecty primeneniya vysokoprochnyh i vysokomodulnyh voloknistyh metallicheskih kompozitsionnyh materialov aviatsionnogo naznacheniya (obzor) [Aspects of application of high-strength and high-modulus fiber metal composite materials for aeronautical purpose (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 05. Available at: http://www.viam-works.ru (accessed: June 10, 2015). DOI: 10.18577/2307-6046-2014-0-10-5-5.
9. Kompozicionnye materialy: Spravochnik / pod red. D.M. Karpinosa [Composite materials: the directory / ed. by D.M. Karpinosa]. Kiev: Naukova dumka, 1985. C. 110–124.
10. Itogi nauki i tehniki. Kompozicionnye materialy / pod. red. L.P. Kobets [Science and equipment results. Composite materials / ed. by L.P. Kobets]. M.: VINITI, 1988. T. 3. S. 65–75.
11. Chawla N., Chawla K.K. Metal Matrix Composites. Springer Sience+Business Media Inc., 2006. 401 p.
12. Sholoshov M.H., Kolpashnikov A.I., Kostikov V.I. i dr. Voloknistye kompozicionnye materialy s metallicheskoj matricej [Fibrous composite materials with metal matrix]. M.: Mashinostroenie, 1981. C. 12–45.
13. Vashukov Yu.A. Tehnologiya raketnyh i aerokosmicheskih konstrukcij iz kompozitnyh materialov: multimed. obrazovat. modul [Technology of rocket and space designs from composite materials: multimedical to form. module]. Samara: Izd-vo SGAU. 2012. (CD-R-disk).
14. Ping Shen, Hidetoshi Fujii, Taihei Matsumoto, Kiyoshi Nog. Critical Factors Affecting the Wettability of α-alumina by Molten Aluminum // J. Am. Ceram. Soc. 2004. V. 87. №11. Р. 2151–2159.
15. Jonas T.R., Cornie J.A., Russell K.C. Interfaces and Wetting of Alumina Particulates Preforms by Aluminum and Aluminum-Magnesium Alloys // Metall. Trans. A. 1995. V. 26A. P. 1491–1497.
16. Hallstedt B., Liu Z.K., Agren J. Reactions in Al2О3–Mg Metal-Matrix Composites During Prolonged Heat-Treatment At 400°C, 550°C and 600°C // Mater. Sci. Eng. A. 1993. V. 169. P. 149–157.
17. Levi C.G., Abbaschian G.L., Mehrabian R. Interface Interactions During Fabrication of Aluminum Alloy – Alumina Fiber Composites // Metall. Trans. 1978. V. 9A. P. 697–710.
In the present article the results of rheology characteristics investigations of alumina-based slurries for foam-ceramics production are presented. It is shown that replacement of water, that is used as technological ligament, by water solution of carbamide and aluminum oxychloride, leads to decrease of thickness of corundum particles electric dou-ble layer, that facilitates green bodies formability and improves mechanical characteristics of ceramic materials. The ratios of solid phase (sintering powders) to liquid phase (technological ligament) where either coagulation contacts or direct contacts between solid phase particles appears to form are determined.
2. Gasparyan M.D., Grunskiy V.N., Bespalov A.V., Popova N.A. i dr. Primenenie keramicheskikh vysokoporistykh blochno-yacheistykh palladievykh katalizatorov v protsesse okisleniya izotopov vodoroda [Use of ceramic high-porous block and cellular palladic catalysts in the course of oxidation of isotopes of hydrogen] // Steklo i keramika. 2014. №11. S. 22–25.
3. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Keramicheskiy filtr, soderzhashchiy uglerodnoe pokrytie, i sposob ego izgotovleniya: pat. 2456056 Ros. Federatsiya [The ceramic filter containing carbon covering, and way of its manufacturing: pat. 2456056 Rus. Federation]; zayavl. 28.01.08; opubl. 20.07.12. Byul. №20. 15 s.
66. Yang W., Jiang B., Wang A., Shi H. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy // Journal of Material Science and Technology. 2012. №28 (8). P. 707–712.
7. Vogt U.F., Gorbar M., Dimopoulos-Eggenschwiler P., Broenstrup A., Wagner G., Colombod P. Improving the properties of ceramic foams by a vacuum infiltration process // Journal of the European Ceramic Society. 2010. №30. P. 3005–3011.
8. Antsiferov V.N. Problemy poroshkovogo materialovedeniya [Problems of powder materials science]. Ekaterinburg: UrO RAN, 2002. Chast II. 263 s.
9. Khimicheskaya tekhnologiya keramiki: uch. posob. dlya vuzov / pod red. I.Ya. Guzmana [Chemical technology of ceramics: uch. posob. for higher education institutions / ed. by I.Ya.Guzman]. M.: Stroymaterialy, 2003. 496 s.
10. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
11. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: April 19, 2016).
12. Markova S.V., Turlova O.V., Ponomarenko A.A. Primenenie PAV v proizvodstve silikatnykh materialov [Application of PEAHENS in production of silicate materials] // Steklo i keramika. 2013. №3. S. 20–22.
13. Buchilin N.V., Prager E.P. Reologicheskie harakteristiki shlikernyh suspenzij na osnove oksida alyuminiya [Rheology of alumina-based slurry suspensions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 06. Available at: http://www.viam-works.ru (accessed: April 19, 2016). DOI: 10.18577/2307-6046-2015-0-5-6-6.
14. Shchukin E.D., Pertsov A.V., Amelina E.A. Kolloidnaya khimiya. 3-e izd., pererab. i dop. [Colloid chemistry. 3rd ed., processed and added]. M.: Vysshaya shkola. 2004. 445 s.
15. Praktikum i zadachnik po kolloidnoy khimii / pod red. V.V. Nazarova, A.S. Grodskogo [Workshop and the book of problems on colloid chemistry / ed. by V. V. Nazarov, A.S.Grodsky]. M.: Akademkniga, 2007. 374 s.
16. Malkin A.Ya., Isaev A.I. Reologiya: kontseptsii, metody, prilozheniya [Rheology: concepts, methods, appendices]. SPb: Professiya, 2007. 560 s.
17. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58.
18. Shchetanov B.V., Balinova Yu.A., Lyulyukina G.Yu., Soloveva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] // Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
19. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38.
20. Tekhnologiya stekla. 3-e izd./ pod red. I.I. Kitaygorodskogo [The technology has flown down. 3rd ed. / ed. by I.I.Kitaigorodsky]. M.: Gos. izd-vo lit-ry po str-vu, arkh. i str-nym mater. 1961. 624 s.
21. Pikalov E.S., Sysoev E.P., Sidneva Yu.V. Reologicheskie svoystva shlikerov na osnove glin Msterskogo mestorozhdeniya [Rheological properties of slip on basis clays the Mstersky deposit] // Steklo i keramika. 2014. №6. S. 28–33.
22. Uvarova N.E., Grashchenkov D.V., Isaeva N.V., Orlova L.A., Sarkisov P.D. Vysokotemperaturnye radioprozrachnye materialy: segodnya i zavtra [High-temperature radio transparent materials: today and tomorrow] // Aviacionnye materialy i tehnologii. 2010. №1. S. 16–21.
23. Balinova Yu.A., Shheglova T.M., Lyulyukina G.Yu., Timoshin A.S. Osobennosti formirovaniya α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida alyuminiya 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of formation α-Al2O3 in polycrystalline fibers containing 99% alumina doped with Fe2O3, MgO, SiO2] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 03. Available at: http://www.viam-works.ru (accessed: April 19, 2016). DOI: 10.18577/2307-6046-2014-0-3-3-3.
24. Shramm G. Osnovy prakticheskoy reologii i reometrii [Bases of practical rheology and rheometry]. M.: KolosS. 2003. 312 s.
The properties of composite adhesive materials (CAM) based on wide range of adhesive prepregs on glass- and carbon fillers are presented. The information about benefits and features of PCM elements manufacturing process from adhesive prepregs is presented. The CAM application for manufacturing parts from PCM including the honeycomb structure, single or double curvature designed for operation at temperatures 80–175°C is shown. The research work is executed within implementation of the complex scientific direc-tion 13.2. «Constructional polymer composite materials» («The strategic directions of development of materials and technologies of their processing for the period up to 2030») [1].
2. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [The history of aviation materials science. VIAM – 80 years: years and people/ gen. ed. by E.N. Kablov]. M.: VIAM. 2012. 520 s.
3. Batizat V.P., Anikhovskaya L.I., Dementeva L.A. Klei dlya skleivaniya konstrukcij iz metallov i kompozicionnykh materialov [Adhesives for structural gluing from metals and composite materials] // Aviacionnaya promyshlennost. 1983. №11. S. 15–17.
4. Petrova A.P., Lukina N.F. Primenenie adgezionnykh gruntov i sistem modifikacii poverkhnosti pri skleivanii [Application of adhesive soils and systems of surface modification when agglutinating] // Klei. Germetiki. Tehnologii. 2013. №9. S. 24–28.
5. Petrova A.P., Lukina N.F. Vliyanie adgezionnykh gruntov na resursnye kharakteristiki kleevykh soedinenij [Impact of adhesive soils on life characteristics of adhesive bindings] // Klei. Germetiki. Tehnologii. 2015. №11. S. 20–23.
6. Prepreg i izdelie, vypolnennoe iz nego: pat. 2427594 Ros. Federaciya [Prepreg and product made from it: pat. 2427594 Russian Federation]; opubl. 23.07.13.
7. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
8. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
9. Petrova A.P., Donskoj A.A., Chalykh A.E., Shherbina A.A. Kleyashhie materialy. Germetiki: spravochnik / pod red. A.P. Petrovoj [Adhesive materials. Sealants: reference book/ ed. by A.P. Petrova]. SPb.: Professional, 2008. S. 589.
10. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
11. Antyufeeva N.V., Zhuravleva P.L., Aleksashin V.M., Kucevich K.E. Vliyanie stepeni otverzhdeniya svyazuyushhego na fiziko-mekhanicheskie svojstva ugleplastika i mikrostrukturu mezhfaznogo sloya uglerodnoe volokno/matrica [Influence of degree of curing binding on physical and mechanical properties of carbon fiber and microstructure of interphase layer of carbon fiber/matrix] // Klei. Germetiki. Tehnologii. 2014. №12. S. 26–30.
12. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tyumeneva T.Yu., Zhadova N.S. Klei dlya aviacionnoj tekhniki [Adhesives for aviation engineering] // RZhKH. 2010. T. LIV. №1. C. 46–52.
13. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstrukcij aviacionnoj tekhniki [Adhesives and materials based on them for repair of constructions of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. №1. S. 61–65.
14. Dement'eva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnykh materialov na osnove kleevykh prepregov [Properties of composite materials based on glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
15. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdelij aviakosmicheskoj tekhniki [Adhesives and glue prepregs for advanced products of aviation engineering] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tekhnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
16. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svojstva kleev i kleyashhikh materialov dlya izdelij aviacionnoj tekhniki [Properties of adhesives and gluing materials for articles of aviation engineering] // Klei. Germetiki. Tehnologii. 2009. №1.
S. 14–24.
17. Dementeva L.A., Lukina N.F., Serezhenkov A.A., Kucevich K.E. Osnovnye svojstva i naznachenie PKM na osnove kleevykh prepregov [Main properties and destination of PCM based on adhesive prepregs] // Konstrukcii i tekhnologiya polucheniya izdelij iz nemetallicheskikh materialov: tez. dokl. KHIKH Mezhdunar. nauch.-tekhnich. konf. Obninsk: ONPP «Tekhnologiya», 2010. S. 11–12.
18. Morozov B.B. Primenenie polimernykh kompozicionnykh materialov v izdeliyakh razrabotki OKB Sukhogo [Application of polymer composite materials in articles produced by experimental design bureau Sukhoi] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 31–36.
19. KHrychev Yu.I., Shkodinova E.P., Dement'eva L.A. Razrabotka tekhnologicheskogo processa izgotovleniya radioprozrachnogo obtekatelya iz kleevykh prepregov tipa KMKS-2m.120 [Technologies development of manufacturing process of radio transparent fairing from glue prepregs of KMKS-2M.120 type] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 43–47.
20. Lukina N.F., Dement'eva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushhie dlya detalej iz PKM sotovoj konstrukcii [Adhesive bindings for details from PCM of honeycomb] // Klei. Germetiki. Tehnologii. 2016 (v pechati).
21. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
22. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Anikhovskaya L.I., Lukina N.F. Kompozicionnye materialy kleevye na osnove steklyannykh i uglerodnykh napolnitelej [Composite glue materials based on glass and carbon fillers] // Klei. Germetiki. Tehnologii. 2009. №1. S. 24–27.
23. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory “Adhesives and glue prepregs” – achievements and perspectives] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
24. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidelnikov V.V., Kutsevich K.E. Adhesive prepregs and composite materials on their basis // Russian Journal of General Chemistry. 2011. V. 81. №5. С. 1022–1024.
25. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Vliyanie polisul'fonov razlichnogo stroeniya na svojstva kleevykh materialov [Impact of polysulfones of different structure on properties of adhesive materials] // Klei. Germetiki. Tehnologii. 2014. №4. S. 6–8.
A review of the literature in the field of materials for low-pressure air ducts in the air-conditioning system is presented. A comparison of the major domestic and imported materials for the manufacture of air ducts is performed. The requirements for development of a competitive domestic material for manufacture of low-pressure air duct elements of PCM are determined.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskikh ispytanijj aviacionnykh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
4. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskijj I.Eh., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskojj stancii GCKI krupnogabaritnykh konstrukcijj iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunarod. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
5. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Assessment of fire safety of polymeric composite materials of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
6. Spravochnik po kompozicionnym materialam / pod red. Dzh. Lyubina [Directory on composite materials / ed. by Dzh. Lyubin]. M.: Mashinostroenie, 1988. 446 s.
7. Polimernye kompozicionnye materialy: struktura, svojjstva, tekhnologiya / pod red. A.A. Berlina [Polymeric composite materials: structure, properties, technology / ed. by A.A. Berlin]. SPb.: Professiya, 2009. 556 s.
8. Minakov V.T., Postnov V.I., Shvec N.I., Zastrogina O.B., Petukhov V.I., Makrushin K.V. Osobennosti izgotovleniya trekhslojjnykh sotovykh panelejj s polimernym zapolnitelem goryachego otverzhdeniya [Features of manufacturing of three-layered cellular panels with polymeric filler of hot curing] // Aviacionnye materialy i tehnologii. 2009. №3. S. 6–9.
9. Kondrashov Eh.K., Postnov V.I., Petukhov V.I., Kavun N.S., Abramov P.A., Yudin A.A., Barbotko S.L. Issledovanie svojjstv trekhslojjnykh panelejj na modificirovannom svyazuyushhem FPR-520G [Research of properties of three-layered panels on modified binding FPR-520G] // Aviacionnye materialy i tehnologii. 2009. №3. S. 19–23.
10. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 17, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
11. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Opyt primeneniya tekhnologicheskogo kontrolya polufabrikatov PKM [Experience of application of technological control of semi-finished products of PCM] // Izvestiya Samarskogo nauchnogo centra RAN. 2014. T. 16. №6 (2). S. 393–398.
12. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
13. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
14. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: April 20, 2016). DOI 10.1857/2307-6046-2016-0-2-7-7.
15. Available at: http://www.mobile.gurit.com (accessed: May 25, 2016).
16. Available at: http://www.hexcel.com (accessed: May 30, 2016).
The description of new developments of Federal State Unitary Enterprise VIAM in the field of elastomeric adhesives and technologies of their application in aviation engineering is provided. The main properties of rubber adhesives of cold curing and the adhesives intended for coupling rubbers with metals during vulcanization are represented. The way of increase of durability of adhesive connections based on rubbers is shown. The work is executed within implementation of the complex scientific direction 15.1. «Multifunction adhesive systems» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kardashov D.A., Petrova A.P. Polimernye klei [Polymer adhesives]. M.: Khimiya, 1983. 256 s.
4. Petrova A.P., Donskoj A.A., Chalykh A.E., Shherbina A.A. Kleyashhie materialy. Germetiki: spravochnik / pod red. A.P. Petrovoj [Adhesive materials. Sealants: reference book / ed. by A.P. Petrova]. SPb.: Professional, 2008. 589 s.
5. Petrova A.P., Lukina N.F., Dementeva L.A., Tyumeneva T.Yu., Avdonina I.A., Zhadova N.S. Klei dlya aviacionnykh materialov [Adhesives for aviation materials] // RZhKH. 2010. T. LIV. №1. S. 46–52.
6. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstrukcij aviacionnoj tekhniki [Adhesives and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. №1. S. 61–65.
7. Pestov S.S. Kak povysit prochnost' i termostojkost kleevogo krepleniya prorezinennykh tkanej [How increase durability and thermal resistance of adhesive binding of rubber-coated fabrics] // Tez. dokl. II Vseross. nauch.-tekhnich. konf. «Kauchuk i rezina–2010». M., 2010. 426 s.
8. Voyuckij S.S. Autogeziya i adgeziya vysokopolimerov [Self-adhesion and adhesion of high-molecular polymer]. M.: Rostekhizdat,1960. 244 s.
9. Tyumeneva T.Yu., Kogtyonkov A.S., Lukina N.F., Chursova L.V. Vliyanie napolnitelej na svojstva kleev rezinotekhnicheskogo naznacheniya [Influence of fillers on properties of adhesives of industrial rubber assignment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 05. Available at: http://www.viam-works.ru (accessed: February 17, 2016). DOI: 10.18577/2307-6046-2014-0-4-5-5.
10. Lukina N.F., Dement'eva L.A., Petrova A.P., Tyumeneva T.Yu. Svojstva kleev i kleyashhikh materialov dlya izdelij aviacionnoj tekhniki [Properties of adhesions and glue materials for articles of aviation engineering] // Klei. Germetiki. Tehnologii. 2009. №1. S. 14–24.
11. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Novye vibropogloshhayushhie materialy [New vibro absorbing materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 51–54.
12. Tyumeneva T.Yu., Kogtyonkov A.S., Lukina N.F., Grashhenkov D.V. Vysokoprochnyj klej rezinotekhnicheskogo naznacheniya [High-strength adhesive of industrial rubber application] // Klei. Germetiki. Tehnologii. 2013. №5. S. 10–14.
13. Tyumeneva T.Yu., Kogtyonkov A.S., Lukina N.F., Chursova L.V. Uspekhi v oblasti razrabotki kleev i tekhnologij dlya izgotovleniya rezinotekhnicheskikh izdelij aviacionnoj tekhniki [Achievements in the field of development of adhesives and technologies for production of industrial rubber articles of aviation engineering] // Klei. Germetiki. Tehnologii. 2013. №10. S. 7–10.
14. Bajersdorf D. Kreplenie reziny k metallu s pomoshhyu svyazuyushhikh sistem «Khemosil®» [Bonding of rubber to metal by means of binder systems “Chemosil”] // Kauchuk i rezina. 1996. №6. S. 3–7.
15. Logacheva E.P., Bokov S.V., Polsman G.S. Klei dlya krepleniya rezin mezhdu soboj i s drugimi substratami [Adhesives for binding rubbers among themselves and with other substrates] // Klei. Germetiki. Tehnologii. 2007. №9. S. 26–30.
16. Tyumeneva T.Yu., Lukina N.F., Petrova A.P. Povyshenie adgezii e'lastomernykh kleev k rezinam pri ispol'zovanii adgezionnogo podsloya [Increase of adhesion of elastomer glues to rubbers when using adhesive interlayer] // Klei. Germetiki. Tehnologii. 2015. №11. S. 7–10.
17. Kleevaya kompoziciya: pat. 2471842 Ros. Federaciya [Adhesion composition: pat. 2471842 Russian Federation]; opubl. 11.05.11.
18. Tyumeneva T.Yu., Lukina N.F., Zhuravleva P.L., Gulyaev A.I. Vliyanie nanomodifikatorov na svojstva e'lastomernykh kleevykh sistem [Impact of nanomodifiers on properties of elastomer adhesive systems] // Klei. Germetiki. Tehnologii. 2015. №3. S. 11–16.
By certification of aluminium alloys the investigation of their liability to isolated types of corrosion determined in laboratory conditions is obligatory as well as investigation of corrosion resistance of materials determined in the course of full-scale exposition. Regularly environmental tests of aluminium alloys are carried out under the conditions of open areas. This paper shows that investigations under the roof are more significant for the given class of materials as they provide amplification of monitoring factors of corrosive process – damping duration of the surface and expansion in the number of chlorides. Also this paper throws light on correlation problems of laboratory and full-scale corrosion testing and presents the procedure of full-scale accelerated tests allowing to reduce the time of environmental tests by 4–5 times in comparison with the exposition under full-scale conditions.
2. Grinevich A.V., Lutsenko A.N., Karimova S.A. Dolgovechnost izdeliy i korrozionnaya ustalost konstruktsionnykh materialov [Durability of products and corrosion fatigue of constructional materials] // Voprosy materialovedeniya. 2013. №1. S. 220–229.
3. Zhuk N.P. Kurs teorii korrozii i zashchity metallov [Course of the theory of corrosion and protection of metals]. M.: Metallurgiya, 1976. 472 s.
4. GOST 9.913–90. Edinaya sistema zashchity ot korrozii i stareniya. Alyuminiy, magniy i ikh splavy. Metody uskorennykh korrozionnykh ispytaniy / Gos. komitet SSSR po standartam [GOST 9.913-90. Uniform system of corrosion protection and aging. Aluminum, magnesium and their alloys. Methods of the accelerated corrosion tests / State committee of the USSR on standards]. M., 1990. 10 s.
5. GOST 9.021–74. Edinaya sistema zashchity ot korrozii i stareniya. Alyuminiy i splavy alyuminievye. Metody uskorennykh ispytaniy na mezhkristallitnuyu korroziyu / Gos. komitet SSSR po standartam [GOST 9.021-74. Uniform system of corrosion protection and aging. Aluminum and alloys aluminum. Methods of accelerated tests on between crystalline corrosion / State committee of the USSR on standards]. M., 1974. 4 s.
6. GOST 9.904–82. Edinaya sistema zashchity ot korrozii i stareniya. Splavy alyuminievye. Metod uskorennykh ispytaniy na rasslaivayushchuyu korroziyu / Gos. komitet SSSR po standartam [GOST 9.904-82. Uniform system of corrosion protection and aging. Alloys aluminum. Method of accelerated tests on stratifying corrosion / State committee of the USSR on standards]. M., 1982. 10 s.
7. GOST 9.019–74. Edinaya sistema zashchity ot korrozii i stareniya. Splavy alyuminievye i magnievye. Metody uskorennykh ispytaniy na korrozionnoe rastreskivanie / Gos. komitet SSSR po standartam [GOST 9.019-74. Uniform system of corrosion protection and aging. Alloys aluminum and magnesian. Methods of accelerated tests on corrosion cracking / State committee of the USSR on standards]. M., 1974. 18 s.
8. Moran J.P., Bovard F.S., Chrzan J.D., Rioja R.J., Colvin E.L. Improvements in corrosion resistance offered by newer generation 2x99 aluminum-lithium alloys for aerospace applications // Proceedings of the12th International Conference on Aluminium Alloys. Yokohama, Japan. 2010. P. 1492–1497.
9. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
10. Semenychev V.V. Korrozionnaya stoykost i svoystva alyuminievykh splavov aviatsionnogo naznacheniya v usloviyakh morskogo subtropicheskogo klimata: dis. … kand. tekhn. nauk [Corrosion resistance and properties of aluminum alloys of aviation assignment in the conditions of sea subtropical climate: thesis … Cand. Tech. Sci.]. M., 2006. 125 s.
11. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoy atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
12. Karimova S.A., Zhilikov V.P., Mikhaylov A.A., Chesnokov D.V., Igonin T.N., Karpov V.A. Naturno-uskorennye ispytaniya alyuminievykh splavov v usloviyakh vozdeystviya morskoy atmosfery [Natural accelerated tests of aluminum alloys in the conditions of influence of the sea atmosphere] // Korroziya: materialy, zashchita. 2012. №10. S. 1–3.
13. Sinyavskiy V.S., Kalinin V.D., Aleksandrova T.V. Novyy metod uskorennykh korrozionnykh ispytaniy alyuminievykh splavov [New method of the accelerated corrosion tests of aluminum alloys] // Tekhnologiya legkikh splavov. 2013. №2. S. 89–93.
14. Semenychev V.V. Korrozionnaya stoykost obraztsov splava 1201 v morskikh subtropikakh [Corrosion resistance of samples of alloy 1201 in sea subtropics] // Korroziya: materialy, zashchita. 2015. №3. S. 1–5.
15. Panchenko Yu.M., Strekalov P.V., Chesnokov D.V., Zhirnov A.D., Zhilikov V.P., Karimova S.A., Tararaeva T.I. Zavisimost korrozionnoy stoykosti splava D16 ot zasolennosti i meteoparametrov primorskoy atmosfery [Dependence of corrosion resistance of alloy D16 on salinity and meteoparameters of the seaside atmosphere] // Aviacionnye materialy i tehnologii. 2010. №3. S. 8–14.
16. Semenychev V.V. Korrozionnaya stojkost' listov splava D16ch.-T v morskih subtropikah [Corrosion resistance of alloy D16ch.-T sheets in marine subtropics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 11. Available at: http://www.viam-works.ru (accessed: December 15, 2015). DOI: 10.18577/2307-6046-2014-0-7-11-11.
17. Rozenfeld I.L., Rubinshteyn F.I., Zhigalova K.A. Zashchita metallov ot korrozii lakokrasochnymi pokrytiyami [Protection of metals against corrosion by paint coatings]. M.: Khimiya, 1987. S. 7–9.
18. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
19. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitievye splavy dlya samoletostroeniya [Aluminum lithium alloys for aircraft construction] // Metallurg. 2012. №5. S. 31–35.
20. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
21. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] //Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
22. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vliyanie predvaritelnogo estestvennogo stareniya na svojstva splava 1913 v iskusstvenno sostarennom sostoyanii [Influence of preliminary natural aging on properties of alloy 1913 in artificially made old condition] // Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
23 Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
24. Andreattaa F., Druartb M.-E., Lanzuttiaandother A. Localized corrosion inhibition by cerium species on clad AA2024 aluminum alloy investigated by means of electrochemical micro-cell // Corrosion Science. 2012. V. 65. P. 376–386.
Considering the possession fact a point on a surface of a firm body superfluous in comparison with a point in body volume potential energy, models of deformation and destruction of loaded bodies at the expense of processes of change of volume, the areas of a surface and the linear sizes of a body are developed. The assessment of the extent of defect from a time to the critical sizes of a crack depending on locality of concentration of energy in body volume is carried out, possibility of growth of defects till the critical sizes is shown. Comparison of conditions of loss of stability in crack development by Griffith criterion and to the criterion received in work is presented. Work is executed within implementation of the complex scientific direction 3.3. «Technology of forecasting of properties, modeling and implementation of modern processes of designing and production of products from non-metallic and composite materials with use of the digital methods compatible to CAD/CAM/CAE an
2. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskijj I.Eh., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskojj stancii GCKI krupnogabaritnykh konstrukcijj iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PKM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
3. Kablov E.N., Grinevich A.V., Erasov V.S. Kharakteristiki prochnosti metallicheskikh aviacionnykh materialov i ikh raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // Sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: yubilejnyj nauch.-tehnich. sb. VIAM, 2007. S. 370–379.
4. Gadenin M.M. Ocenka vliyaniya rezhimov nagruzheniya na usloviya dostizheniya predel'nykh sostoyanijj i naznacheniya zapasov [Impact assessment of modes of loading on conditions of achievement of limiting conditions and assignment of stocks] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №10. S. 65–70.
5. Erasov V.S. Fiziko-mekhanicheskie kharakteristiki kak osnovnye integralnye pokazateli kachestva aviacionnykh konstrukcionnykh materialov: metod. posobie [Physicomechanical characteristics as main integral figures of merit of aviation constructional materials: methodical grant]. M.: VIAM, 2011. 16 s.
6. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
7. Oreshko E.I., Erasov V.S., Lutsenko A.N. Osobennosti raschetov ustojjchivosti sterzhnejj i plastin [Features of calculations of stability of rods and plates] //Aviacionnye materialy i tehnologii. 2017 (v pechati).
8. Oreshko E.I., Erasov V.S., Lutsenko A.N. Matematicheskoe modelirovanie deformirovaniya konstrukcionnogo ugleplastika pri izgibe [Mathematical modeling of deformation constructional carbon fiber at a bend] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 50–59. DOI: 10.18577/2071-9140-2016-2-50-59.
9. Dimitrienko Yu.I., Gubareva E.A., Sborshhikov S.V., Bazyleva O.A., Lutsenko A.N., Oreshko E.I. Modelirovanie uprugoplasticheskikh kharakteristik monokristallicheskikh intermetallidnykh splavov na osnove mikrostrukturnogo chislennogo analiza [Modeling of elasto-plastic characteristics of single-crystal intermetallidny alloys on the basis of the microstructural numerical analysis] // Matematicheskoe modelirovanie i chislennye metody. 2015. №2. S. 3.
10. Dimitrienko Yu.I., Lutsenko A.N., Gubareva E.A., Oreshko E.I., Bazyleva O.A., Sborshhikov S.V. Raschet mekhanicheskikh kharakteristik zharoprochnykh intermetallidnykh splavov na osnove nikelya metodom mnogomasshtabnogo modelirovaniya struktury [Calculating of mechanical characteristics of heat resistant intermetallic alloys on the basis of nickel by method of multi-scale modeling of structure] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 33–48. DOI: 10.18577/2071-9140-2016-0-3-33-48.
11. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
12. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Yu. Gibridnye sloistye materialy dlya primeneniya v usloviyakh Severa [Hybrid layered materials for application in the conditions of the North] // Mekhanika kompozitnykh materialov. 2016 (v pechati).
13. Erasov V.S., Bajramukov R.R. Rol faktora vremeni pri provedenii mehanicheskih ispytanij, obrabotke dannyh i predstavlenii rezultatov [Role of factor of time at carrying out mechanical tests, data processing and representation of results] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 62–67.
14. Erasov V.S., Bajjramukov R.R., Nuzhnyjj G.A. Opredelenie skorosti plasticheskojj deformacii pri ispytanii na rastyazhenie [Speed sensing of plastic strain at tension test] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №5. S. 61–63.
15. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. . 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2016-0-4-91-94.
16. Oreshko E.I., Erasov V.S., Lutsenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trekhmernom prostranstve σ–ε–t [Creation of charts of deformation in three-dimensional space σ–ε–t] // Aviacionnye materialy i tehnologii. 2017 (v pechati).
17. Nott Dzh.F. Osnovy mekhaniki razrusheniya: per. s angl. [Fracture mechanics bases: trans. form English] M.: Metallurgiya. 1978. S. 97–98.
The analysis of various tissues of fibrous fillers to create polymer composite materials (PCM) is performed, their structure and possible technology of their destruction with the aim of further processing of the fibers is considered. It is suggested to process recycled fiber from PCM into nonwoven materials as the most convenient and universal direction for further processing. The technology of producing nonwoven fabrics of carbon fibers and their application are considered. The work was executed within implementation of the complex scientific direction 13.1. «Binding for polymer and composite materials of constructional and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1].
2. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
3. Available at: http://www.cordis.europa.eu/project/rcn/90590_en.html (accessed: February 10, 2016).
4. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: May 24, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
5. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii [Polymeric composite materials in railway transport of Russia] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 12. Available at: http://www.viam-works.ru (accessed: July 25, 2016). DOI: 10.18577/2307-6046-2016-0-7-12-12.
6. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
7. Kiryuhin S.M., Shustov Yu.S. Tekstilnoe materialovedenie [Textile materials science]. M.: KolosS, 2011. 360 s.
8. Bershev E.N., Smirnov G.P., Zametta B.V., Nazarov Yu.P., Korneev V.N. Netkanye tekstilnye polotna: spravochnoe posobie [Nonwoven textile cloths: handbook]. M.: Legprombytizdat, 1987. 400 s.
9. Gorchakova V.M., Sergeenkov A.P., Voloshhik T.E. Oborudovanie dlya proizvodstva netkanyh materialov [The equipment for production of nonwoven materials]. M.: MGTU im. A.N. Kosygina, 2006. Ch. 2. 776 s.
10. Available at: http://www.cfk-recycling.com (accessed: February 10, 2016).
11. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
12. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
13. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
14. Kablov E.N. Materialy – osnova lyubogo dela [Materials – basis of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
15. Kablov E.N. Innovacionnoe razvitie – vazhnejshij prioritet gosudarstva [Innovative development – the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.