Articles
By means of high-resolution methods of research including electron, laser and optical microscopy, the kinetics of glide lines accumulation process and corrosion damages of samples from aluminum-lithium alloys 1441 and V-1469 is studied at carrying out fatigue tests on rigid cycle in the conditions of combined influence of the corrosion environment and applied stress. The quantitative assessment of deformation parameters (density of slip band, sizes of plastic zones under break, surface roughness in the allocated zones) and damage parameters (the sizes and the area of corrosion pittings) is executed. The work is executed within the frames of the complex scientific direction 8.1. «High-strength welded aluminum and aluminum - lithium alloys of the lowered density with the increased fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered alyumostekloplastikov on basis aluminum - lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
3. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
4. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 01. Available at: http://viam-works.ru (accessed: December 24, 2015). DOI: 10.18577/2307-6046-2014-0-7-1-1.
5. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
6. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
7. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum - lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] // Fizicheskaya mezomehanika. 2012. T. 15. №6. S. 107–111.
8. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
9. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost' rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed: 24.12.2015).
10. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost' primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
11. Kurs M.G., Karimova S.A., Mahsidov V.V. Sravnenie korrozionnoj stojkosti deformiruemyh alyuminievyh splavov pri naturnyh i naturno-uskorennyh ispytaniyah [Comparison of corrosion resistance of deformable aluminum alloys at natural and natural accelerated tests] // Voprosy materialovedeniya. 2013. №1 (73). S. 182–190.
12. Panin S.V., Startsev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Korroziya i starenie poverhnosti konstrukcionnyh materialov po dannym 3D mikroskopii [Corrosion and aging of structural materials surface studied by 3D microscopy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 12. Available at: http://www.viam-works.ru (accessed: December 24, 2015). DOI: 10.18577/2307-6046-2014-0-12-12-12.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Terentev V.F., Belyaev M.S., Bakradze M.M. i dr. Razrushenie zharoprochnogo splava VZh175 v usloviyah zhestkogo malociklovogo nagruzheniya [Fracture of Ni-based VZH175 superalloy under strain low cycle fatigue tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 12. Available at: http://www.viam-works.ru (accessed: December 24, 2015). DOI: 10.18577/2307-6046-2014-0-11-12-12.
15. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
16. Zhegina I.P., Morozova L.V. Opredelenie diagnosticheskih priznakov predrazrusheniya po sostoyaniyu poverhnostnyh sloev zharoprochnyh nikelevyh splavov [Definition of pre-destruction diagnostic signs on condition of surface layers of heat resistant nickel alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 04. Available at: http://www.viam-works.ru (accessed: December 24, 2015). DOI: 10.18577/2307-6046-2015-0-4-4-4.
17. Glezer A.M., Shurygina N.A., Zajchenko S.G., Permyakova I.E. Vzaimodejstvie polos defor-macionnogo sdviga i nanochastic v amorfno-nanokristallicheskih splavah [Interaction of strips of deformation shift and nanoparticles in amorphous nanocrystalline alloys] // Deformaciya i razrushenie materialov. 2012. №4. S. 2–12.
Despite the increased interest of designers to composite polymer materials (PCM), aluminum alloys are still the basic constructional material of the aviation industry, therefore the questions of their corrosion protection, delivering special properties to their surface remain relevant. Modern ecological regulations of technological processes safety require to exclude application in toxic solutions for surface treatment such as hexavalent chromium. Technological solutions on preparation of aluminum alloys surface for pasting in the solutions which are not containing toxic compounds are provided in the work. The work is executed within the frames of the complex scientific direction 17.1. «Ecologically safe plasma electrolytic coatings for light alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn'. 2012. №11. S. 16–21.
4. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: December 14, 2015).
5. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka alyuminievyh splavov s primeneniem anodnogo oksidirovaniya [Preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tehnologii. 2014. №1. S. 34–38.
6. Karimova S.A., Kutyrev A.E., Pavlovskaya T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detalyah iz alyuminievyh splavov [Low temperature sealing of anodic oxide coatings on parts of aluminum alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17.
7. Shrejder A.V. Oksidirovanie alyuminiya i ego splavov [Oxidation of aluminum and its alloys]. M.: Metallurgizdat, 1960. 220 s.
8. Fomina M.A., Karimova S.A. Issledovanie korrozionnyh svojstv listov splava V-1461-T1 primenitel'no k vseklimaticheskim usloviyam ekspluatacii aviacionnoj tehniki [Study of corrosion properties of V-1461-T1 aluminum alloy sheets in all-climatic conditions of aerotechnics operation ] // Aviacionnye materialy i tehnologii. 2014. №4. S. 18–22.
9. Averyanov E.E. Spravochnik po anodirovaniyu [Directory on anodizing]. M.: Mashinostroenie, 1988. 132 s.
10. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
11. Kozlov I.A., Pavlovskaja T.G., Volkov I.A. Vlijanie poljarizujushhego toka na svojstva plazmennogo jelektroliticheskogo pokrytija dlja magnievyh splavov sistemy Mg–Zn–Zr [Influence of polarizing current on properties of plasma electrolytic covering for magnesium alloys of Mg–Zn–Zr system] //Aviacionnye materialy i tehnologii. 2013. №3. S. 7–12.
12. De Mejo L.P., Rimai D.S., Sharpe L.H. Fundamentals of Adhesion and Interfaces. London: Taylor & Francis. 1999. 201 p.
13. Skopintsev V.D. Oksidirovanie alyuminiya i ego splavov [Oxidation of aluminum and its alloys]. M.: RHTU im. D.I. Mendeleeva, 2015. 120 s.
14. Anihovskaya L.I., Pavlovskaya T.G., Dement'eva P.A., Petrova A.P. Podgotovka poverhnosti pod skleivanie [Подготовка поверхности под склеивание] // Klei. Germetiki. Tehnologii. 2008. №7. S 32–35.
15. Kutyrev A.E., Karimova S.A., Pavlovskaya T.G., Kuzin Ya.S. Issledovanie degradacii svojstv zashhitnyh kombinirovannyh pokrytij na alyuminievyh splavah s celyu razrabotki metodov prognozirovaniya ih srokov sluzhby [Research of properties degradation of protective combined coatings applied on aluminum alloys to develop methods of forecasting of their service life] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 69–78. DOI: 10.18577/2071-9140-2015-0-3-69-78.
16. Emelyanchenko A.M., Bajkovich L.B. Analiz smachivaniya kak effektivnyj metod izucheniya harakteristik pokrytij, poverhnostej i proishodyashhih na nih processah [Research of degradation of properties of the protective combined coverings on aluminum alloys for the purpose of development of methods of forecasting of their service life] // Zavodskaya laboratoriya. 2010. №9. S. 27–36.
Research work on synthesis of layered metal composite material of the Ti–TiAl3 system by the method of vacuum reaction synthesis and the method of electrothermal explosion are conducted. The optimal temperature and time parameters of formation of intermetallic phase in the layered composite material are determined. The underlying conditions of gas emission and the possibility of outgassing treatment in the process of preparation to the intermetallides synthesis are considered. The work is performed within the framework of an integrated research direction 12.2. «Metal intermetallic and metal–ceramics systems layered metal matrix composites (MMC) for lightweight protection» («Strategic directions of development of materials and technologies to process them for the period up to 2030»)
2. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 143–156.
3. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 86. №6. S. 520–530.
5. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
6. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
7. Li T., Fenghun J., Olevsky E.A., Vecchio K.S., Meyers M.A. Damage evolution in Ti6Al4V–Al3Ti metal-intermetallic laminate composites // Materials Science and Engineering: A. V. 443. 2007.
P. 1–15.
8. Vecchio K.S. Synthetic Multifunctional Metallic-Intermetallic Laminate Composites // JOM. 2005. March. P. 25–31.
9. Process for making metallic/intermetallic composite laminate materian and materials so produced especially for use in lightweight armor: pat. 6357332 US; publ. 19.03.2002.
10. Sauthoff G. Intermetallics. Weinheim: VCH Publishers, 1995. P. 14.
11. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Berezovskij V.V. Issledovanie sloistogo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Study of Ti–TiAl3 laminate metal composite material ] // Aviacionnye materialy i tehnologii. 2013. №3. S. 16–19.
12. Berlin A.A., Shtejnberg A.S., Krasnov E.I., Shavnev A.A., Lomov S.B., Serpova V.M. Eksperimentalnoe issledovanie polucheniya sloistyh kompozicionnyh materialov metodom elektroteplovogo vzryva. Ocenka ostatochnyh napryazhenij [Experimental study of receipt of layer composite materials by the method of electro-thermal explosion. Аssessment of residual stresses] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 5–10.
13. Anderson P.M., Bingert J.F., Misra A., Hirth J.P. Rolling textures in nanoscale Cu/Nb multilayers // Acta Material. V. 51. Issue 20. 2003. P. 6059–6075.
14. Dyer T.S., Munir Z.A. The synthesis of nickel aluminides by multilayer self-propagating combustion // Metallurgical and Materials Transactions B. V. 26. Issue 3. 1995. P. 603–610.
15. Kalidindi S.R., Smith R.W., Koczak M.J., Hussey T.S. Synthesis of nickel aluminides by vacuum plasma spraying and exothermic in-situ reactions // Materials Science and Engineering: A. V. 229. Issue 1–2. 1997. P. 137–146.
This research paper provides with a methodology to develop methods for zirconium determination in high complex alloyed steels of aerospace purposes. It analyzes the subject through various literary sources. Summarizing the obtained data and through the performed work it is established that the determination of zirconium with a reagent Arsenazo III is possible if not more than 0,5% niobium and 1,0% tungsten are presented in the steels. Higher amounts of these elements lead to a distortion of obtained results in determining the content of zirconium. In this technique, the hydroxylamine should be used as a reducing agent for iron as the most effective one. It is found that the reagent xylenol orange is the most sensitive and selective in the zirconium photometric determination method in steels with high contents of niobium and tungsten. The process of zirconium alloy quantitative separation from main alloying elements using phenylarsonic acid has to be the previous operation to photome
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: December 21, 2015).
3. Parshin A.M., Kirillov N.B., Petkova A.P., Nikolaeva O.V. Mikrolegirovanie redkozemelnymi elementami i svojstva stalej i splavov [Microalloying rare earth elements and properties staly and alloys] // Nauchno-tehnicheskie vedomosti SPb GTU. 2002. T. 27. №1. S. 33.
4. Kablov E.N., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [REE microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
7. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
8. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
9. GOST 12365–84. Stali legirovannye i vysokolegirovannye. Metody opredeleniya cirkoniya [GOST 12365-84. Became alloyed and high-alloy. Methods of definition of zirconium]. M.: Izdatelstvo standartov, 1984. 13 s.
10. OST1-90433–96. Splavy nikelevye zharoprochnye. Metod opredeleniya cirkoniya i gafniya [OCT1-90433-96. Alloys the nickel heat resisting. Method of definition of zirconium and hafnium]. M.: VIAM, 1996. 8 s.
11. Romanova N.B., Pechishheva N.V., Shunyaev K.Yu., Titov V.I., Gundobin N.V. Opredelenie nizkih soderzhanij Zr, Ce, La, Y v nikelevyh zharoprochnyh splavah metodom ICP OES
12. Koshel N.V. Analiticheskaya himiya i ekstrakcionnye process [Analytical chemistry and ekstraktsionny processes]. Kiev: Naukova dumka, 1970. S. 100–107.
13. Savvin S.B. Organicheskie reagenty gruppy arsenazo III [Organic reagents of group arsenazo III]. M.: Atomizdat, 1971. 349 s.
14. Basangova N.O. Fiziko-himicheskie metody analiza i kontrolya proizvodstva. Chast 2. Fotometricheskie metody [Physical and chemical methods of the analysis and production control. Part 2. Photometric methods] // Sb. tr. konf. Dagestanskogo gos. un-ta im. V.I. Lenina i Rostovskogo-na-Donu gos. un-ta. Mahachkala, 1972. S. 17–19.
15. Elinson S.V., Petrov K.I. Analiticheskaya himiya cirkoniya i gafniya [Analytical chemistry of zirconium and hafnium]. M.: Nauka, 1965. 267s.
16. Blyumental U.B. Himiya cirkoniya [Zirconium chemistry]. M.: IzdatInLit, 1963. 345 s.
17. Veneckij S.I. Cirkonij. Rasskazy o metallah [Zirconium. Stories about metals]. M.: Metallurgiya, 1979. 240 s.
The paper presents an engineering method for predicting the value of the modulus of elasticity in the condensed ion-plasma coatings obtained by plasma-chemical synthesis. The process of plasma-chemical synthesis of titanium nitride is considered, the basic characteristics of the process at a degree of binary compound conversion less than 1 is designated. It is found that the degree of conversion is equal to 1 in the excess of reaction gas in vacuum chamber of the ion-plasma unit. The method of measuring the elastic modulus of the material coating by bending the free end of the cantilever beam is developed and described. The elastic modulus of the coating material obtained by plasma synthesis with a deficiency of the reaction gas in chamber of the ion plasma unit is measured. It is found that the elastic modulus of the coating material is proportional to the degree of conversion. A formula is suggested for calculating the modulus of elasticity of the coating obtained by plasma synthesis
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
6. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
7. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
8. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
9. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym bar'ernym sloem dlya zashhity ot okisleniya splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] // MiTOM. 2011. №1. S. 34–40.
10. Gayamov A.M. Zharostojkoe pokrytie s kompozicionnym bar'ernym sloem dlya zashhity vneshnej poverhnosti rabochih lopatok GTD iz renijsoderzhashhih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] // Fiziko-himiya i tehnologiya neorganicheskih materialov: sb. mater. XI Ros. ezhegod. konf. molodyh nauchnyh sotrudnikov i aspirantov. M.: IMET RAN, 2012. C. 473–475.
11. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Sposob obrabotki poverhnosti metallicheskogo izdeliya: pat. 2368701 Ros. Federaciya [Way of surface treatment of metal product: pat. 2368701 Rus. Federation]; opubl. 27.09.09.
13. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] // Metally. 2012. №1. S. 5–13.
14. Sposob naneseniya kombinirovannogo zharostojkogo pokrytiya: pat. 2402633 Ros. Federaciya [Way of drawing the combined heat resisting covering: pat. 2402633 Rus. Federation]; 31.03.09.
15. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostojkie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] // MiTOM. 2008. №6. S. 31–36.
16. Budinovskij S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoj modeli opredeleniya uprugih napryazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostojkih pokrytij dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №2. S. 26–37.
17. Budinovskij S.A. Primenenie analiticheskoj modeli opredeleniya uprugih mehanicheskih i termicheskih napryazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniyu zharostojkih alyuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] // Uprochnyayushhie tehnologii i pokrytiya. 2013. №3. S. 3–11.
18. Feodosev V.I. Soprotivlenie materialov. 10-e izd., pererab. i dop. [Resistance of materials. 10th ed., processed and added]. M.: MGTU im. N.E. Baumana, 1999. 592 s.
19. Samsonov G.V. Svojstva elementov: spravochnik. 2-e izd. [Properties of elements: directory. 2nd ed.] M.: Metallurgiya, 1976. Ch. 1. Fizicheskie svojstva. 600 s.
20. Samsonov G.V., Vinickij I.M. Tugoplavkie soedineniya: spravochnik. 2-e izd. [High-melting connections: directory. 2nd ed.] M.: Metallurgiya, 1976. 560 s.
21. Bielawski M. Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering // Surf. Coat. Technol. 2006. V. 200. P. 3987–3995.
22. Artemenko N.I., Muboyadzhyan S.A. Inzhenernaya metodika ocenki velichiny i haraktera vnutrennih napryazhenij v odnoslojnyh uprochnyayushhih kondensirovannyh pokrytiyah [Engineering method of estimating the magnitude and nature of the internal stresses in the condensed monolayer reinforcing coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 04. Available at: http://www.viam-works.ru (accessed: February 12, 2016). DOI: 10.18577/2307-6046-2016-0-1-25-35.
A nickel coating was deposited on samples from structural composite materials such as fiberglass and carbon plastic in the galvanic bath by the electrodeposition method and then the surface was scratched by the hardness meter under various degree of loading. The morphology of the scratches channels is studied; their width and depth depending on the applied load are measured. The calculations of tensions heading to local destructions are conducted using Viver’s formula. It is established that nickel-cobalt coating has high strength of adhesion with both kinds of composite materials; no chippage or exfoliation is detected. Work is executed within the frames of the complex scientific direction 13.2. «Constructional PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity ugleplastikov and protection of metal load bearing structures in contact with the carbon plastics] // Korroziya: materialy, zashhita. 2011. №12. S. 1–7.
4. Titareva A.S., Kirillov V.N., Startsev O.V. Povedenie materialov v elementah konstrukcij aviacionnoj tehniki, izgotovlennyh s primeneniem PKM i sistem LKP v usloviyah umerenno teplogo klimata [Behavior of materials in structural components of aeronautical engineering, manufactured using PCM and PC systems under conditions of temperate thermal climate] // Aviacionnye materialy i tehnologii. 2013. №S2.
5. Semenychev V.V., Salahova R.K., Smirnova T.B. Ocenka tokov korrozii razlichnyh par materialov metodom pryamogo izmereniya [Assessment of currents of corrosion of different couples of materials method of direct measurement] // Praktika protivokorrozionnoj zashhity. 2015. №2 (76). S. 44–50.
6. Semenychev V.V., Smirnova T.B. O vozmozhnosti ocenki poristosti pokrytij potenciostaticheskimi metodami [About possibility of assessment of porosity of coverings potentiostatic methods] // Aviacionnye materialy i tehnologii. 2009. №2. S. 7–10.
7. Semenychev V.V., Koshelev V.N., Panarin A.V. Ekologicheski bezopasnyj tehnologicheskij process naneseniya zashhitnyh piroliticheskih alyuminievyh pokrytij bez navodorozhivaniya stal'noj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without hydrogen saturation of steel substrate] // Izvestiya Samarskogo nauchnogo centra RAN. 2008. T. 1. Specialnyj vypusk. S. 18–23.
8. Biryuk V.I., Golovan V.I., Gunyaev G.M., Kryuchkov E.I. Primenenie kompozicionnyh materialov v koncevoj chasti kryla dlya snizheniya vesa kryla v celom [Application of composite materials in end part of wing for wing total weight reduction] // Trudy TsAGI. Ser.: Prochnost, kolebaniya, resurs aviacionnyh konstrukcij i sooruzhenij. 2002. Vyp. 2658. S. 44–49.
9. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
10. Borisova N.V., Artemenko A.A., Sladkov O.M. Issledovanie processov na granice razdela faz pri nanesenii metallicheskih pokrytij na ugleplastik [Research of processes on limit of the section of phases when drawing metallic coatings on carbon plastic] // Plasticheskie massy. 2009. №1. S. 7–9.
11. Popova S.S. Metallizaciya ugleplastikov galvanicheskim sposobom [Metallization carbon plastics in the galvanic way] // Plasticheskie massy. 2007. №3. S. 27–29.
12. Syrkin V.G. CVD-metod. Himicheskoe parofaznoe osazhdenie [CVD method. Chemical vapor-phase deposition]. M.: Nauka, 2000. 496 s.
13. Elektrolit nikelirovaniya: pat. 2293803 Ros. Federaciya [Nickel plating electrolyte: pat. 2293803 Rus. Federation]; zayavl. 01.08.05; opubl. 20.02.2007 Byul. №5. 6 s.
14. Elektrolit nikelirovaniya: pat. 2449063 Ros. Federaciya [Nickel plating electrolyte: pat. 2449063 Rus. Federation]; zayavl. 05.04.11; opubl. 27.04.12 Byul. №12. 7 s.
15. Nagaeva L.V. Primenenie nanoporoshkov v elektrolitah nikelirovaniya, kak sposob polucheniya nikelevyh pokrytij, po svojstvam, ne ustupayushhim hromovym pokrytiyam [Application of nanopowders in nickel plating electrolytes, as way of receiving nickel coverings, on the properties which are not conceding to chrome plating] // Korroziya: materialy, zashhita. 2007. №9. S. 32–36.
16. Salahova R.K., Semenychev V.V., Tyurikov E.V. Izbiratelnoe nanesenie zashhitnyh elektrohimicheskih pokrytij [Selective drawing protective electrochemical coatings] // Galvanotehnika i obrabotka poverhnosti. T. XVI. 2008. №4. S. 36–40.
17. Naletov B.P., Sysoev E.K., Salahova R.K., Tyurikov E.V. Lokalnye metody naneseniya gal'vanicheskih pokrytij [Local methods of drawing galvanic coverings] // Izvestiya Samarskogo nauchnogo centra RAN. 2008. T. 1. Specialnyj vypusk. S. 33–37.
18. P. Benjamin, C. Weaver. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
19. Weaver C. Adhesion of Thin Films // Vac. Sci. Technol. 1975. P. 18–25.
20. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. M.: Nauchnye osnovy i tehnologii, 2010. 558 s.
21. Sinkevich Yu.V., Belyaev G.Ya., Yankovskij I.N. Vliyanie elektroimpulsnogo polirovaniya podlozhki na prochnost scepleniya galvanicheskih pokrytij [Influence of electropulse polishing of substrate on durability of coupling of galvanic coverings] // Progresivnі tehnologії і sistemi mashinobuduvannya. 2009. №1–37 (37). S. 228–232.
Application experience of highly elastic phenolic and rubber adhesives VK-3, VK-25, VK-50, liquid phenolic rubber adhesive VK-32-200B as glue intermediate layer and high-strength epoxy film adhesives VK-36P and VK-51 for blades manufacturing of main and tail helicopter propellers is shown. The main mechanical characteristics and purpose of adhesives are presented. Ways of development in the field of new adhesive materials application in helicopter equipment and technical efficiency in helicopters design are shown. The work is executed within implementation of the complex scientific direction 15.1. «Multifunction adhesive systems» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen ed. by E.N.Kablov]. M.: VIAM, 2012. 520 s.
3. Batizat V.P., Anihovskaya L.I., Dementeva L.A. Klei dlya skleivaniya konstrukcij iz metallov i kompozicionnyh materialov [Glues for pasting of designs from metals and composite materials] // Aviacionnaya promyshlennost. 1983. №11. S. 15–17.
4. Anihovskaya L.I., Petrova A.P., Batizat D.V. Vysokoelastichnyj plenochnyj klej VK-50 [Highly elastic film VK-50 glue] // Klei. Germetiki. Tehnologii. 2016 (v pechati).
5. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka poverhnosti alyuminievyh splavov s primeneniem anodnogo oksidirovaniya [Surface preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tehnologii. 2014. №1. S. 34–38.
6. Petrova A.P., Lukina N.F. Primenenie adgezionnyh gruntov i sistem modifikacii poverhnosti pri skleivanii [Application of adhesive soil and systems of updating of surface when pasting] // Klei. Germetiki. Tehnologii. 2013. №9. S. 24–28.
7. Petrova A.P., Lukina N.F. Vliyanie adgezionnyh gruntov na resursnye harakteristiki kleevyh soedinenij [Influence of adhesive soil on resource characteristics of glued joints] // Klei. Germetiki. Tehnologii. 2015. №11. S. 20–23.
8. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
9. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
10. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: January 25, 2016).
11. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Kleyashhie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. S. 589.
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tyumeneva T.Yu., Zhadova N.S. Klei dlya aviacionnoj tehniki [Glues for aviation engineering] // RZhH. 2010. T. LIV. №1. C. 46–52.
14. Kablov E.N., Minakov V.T., Anihovskaya L.I. Klei i materialy na ih osnove dlya remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. Vyp.: Remontnye tehnologii v aviastroenii. S. 61–65.
15. Anihovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
16. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svojstva kleev i kleyashhih materialov dlya izdelij aviacionnoj tehniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tehnologii. 2009. №1. S. 14–24.
17. Dementeva L.A., Lukina N.F., Serezhenkov A.A., Kucevich K.E. Osnovnye svojstva i naznachenie PKM na osnove kleevyh prepregov [The main properties and PCM assignment on the basis of glue prepregs] // Konstrukcii i tehnologiya polucheniya izdelij iz nemetallicheskih materialov»: sb. tez. dokl. XIX Mezhdunarodnoj nauch.-tehnich. konf. / ONPP «Tehnologiya». Obninsk, 2010. S. 11–12.
18. Lukina N.F., Dementeva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushhie dlya detalej iz PKM sotovoj konstrukcii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tehnologii. 2016 (v pechati).
19. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Anihovskaya L.I., Lukina N.F. Kompozicionnye materialy kleevye na osnove steklyannyh i uglerodnyh napolnitelej [Composite materials glue on the basis of glass and carbon fillers] // Klei. Germetiki. Tehnologii. 2009. №1. S. 24–27.
20. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory «Glues and glue prepregs» – achievements and perspectives] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
21. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
22. Prepreg i izdelie, vypolnennoe iz nego: pat. 2427594 Ros. Federaciya [Prepreg and the product which has been executed of it: pat. 2427594 Rus. Federation]; opubl. 23.07.13.
23. Lukina N.F., Dement’eva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel’nikov V.V., Kutsevich K.E. Adhesive prepregs and composite materials on their basis // Russian Journal of General Chemistry. 2011. T. 81. №5. С. 1022–1024.
24. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
25. Morozov B.B. Primenenie polimernyh kompozicionnyh materialov v izdeliyah razrabotki OKB Suhogo [Application of polymeric composite materials in products of development of Sukhoi Design Bureau] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 31–36.
26. Hrychev Yu.I., Shkodinova E.P., Dementeva L.A. Razrabotka tehnologicheskogo processa izgotovleniya radioprozrachnogo obtekatelya iz kleevyh prepregov tipa KMKS-2m.120 [Development of technological process of manufacturing of radio transparent fairing from glue prepregs of the KMKS-2M.120 type] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf.. M.: VIAM, 2013. S. 43–47.
In this article the results of microstructural research of carbon fiber/epoxy composites produced by autoclave moulding and by vacuum infusion processing are represented. Research works are carried out by means of scanning electron microscopy in combination with the computer image analysis. The method of quantitative representation of results of microstructural research of fiber–matrix interface in carbon fiber reinforced polymers is suggested. The volume fraction of microdisperse phase in boundary layer is defined and it is shown that this parameter not linearly depends on distance from the surface of the fiber. The work is executed within implementation of the complex scientific directions 2.1. «Fundamental oriented research», 2.2. «Qualification and research of materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation coal plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
4. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
7. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: December 10, 2015). DOI: 10.18577/2307-6046-2015-0-8-9-9.
8. Chalyh A.E., Gerasimov V.K., Buhteev A.E., Shapagin A.V., Kudryakova G.H., Branceva T.V., Gorbatkina Yu.A., Kerber M.L. Sovmestimost i evolyuciya fazovoj struktury smesej polisul'fon-otverzhdayushhiesya epoksidnye oligomery [Compatibility and evolution of phase structure of mixes weed sulphone hardening epoxy oligomers] // Vysokomolekulyarnye soedineniya. Seriya A. 2003. T. 45. №7. S. 1148–1159.
9. Greenhalgh E.S., Hiley M.J. Fractography of polymer composites: current status and future issues // Proceedings of the 13th European conference on composite materials (ECCM13). Stockholm, 2008.
10. Gulyaev A.I., Ishodzhanova I.V., Zhuravleva P.L. Primenenie metoda opticheskoj mikroskopii dlya kolichestvennogo analiza struktury PKM [Application of optical microscopy method for the quantitative analysis of polymer composite material structure] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 07. Available at: http://viam-works.ru (accessed: December 10, 2015). DOI: 10.18577/2307-6046-2014-0-7-7-7.
11. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics (review)] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://viam-works.ru (accessed: December 10, 2015). DOI: 10.18577/2307-6046-2015-0-6-9-9.
12. Polimernye smesi: per. s angl. / pod red. D.R. Pola, K.B. Baknella [Polymeric mixes: trans. from English / ed. by D.R. Paul, K.B.Backnell]. SPb.: Nauchnye osnovy i tehnologii, 2009. T. 1: Sistematika. 618 s.
13. Polimernye smesi: per. s angl. / pod red. D.R. Pola, K.B. Baknella [Polymeric mixes: trans. from English / ed. by D.R. Paul, K.B.Backnell]. SPb.: Nauchnye osnovy i tehnologii, 2009. T. 2: Funkcionalnye svojstva. 606 s.
14. Babaevskij P.G., Kulik S.G. Treshhinostojkost otverzhdennyh polimernyh kompozicij [Crack firmness of the hardened polymeric compositions]. M.: Himiya, 1991. 336 s.
15. Gupta V.B., Drzal L.T., Adams W.W., Omlor R. An electron microscopic study of the morphology of cured epoxy resin // Journal of Materials Science. 1985. V. 20. №10. P. 3439–3452.
16. Deev I.S., Kobec L.P. Mikrostruktura epoksidnyh matric [Microstructure of epoxy matrixes] // Mehanika kompozitnyh materialov. 1986. №1. S. 3–8.
17. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: December 10, 2015). DOI: 10.18577/2307-6046-2014-0-7-6-6.
18. Dusek K. Are cured thermoset resins inhomogeneous? // Die Angewandte Makromolekulare Chemie. 1996. №240. P. 1–15.
19. Duchet J., Pascault J.P. Do Epoxy–Amine Networks Become Inhomogeneous at the Nanometric Scale? // Journal of Polymer Science. Part B: Polymer Physics. 2003. V. 41. №20. P. 2422–2432.
20. Mezhikovskij S.M., Irzhak V.I. Himicheskaya fizika otverzhdeniya oligomerov [Chemical physics of curing of oligomers]. M.: Nauka, 2008. 269 s.
21. Gulyaev A.I., Zhuravleva P.L., Filonova E.V., Antyufeeva N.V. Vliyanie otverditelya kataliticheskogo dejstviya na morfologiyu mikrostruktury epoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy carbon plastics] // Materialovedenie. 2015. №5. S. 41–46.
22. Valevin E.O., Zelenina I.V., Marahovskij P.S., Gulyaev A.I., Buharov S.V. Issledovanie vliyaniya teplovlazhnostnogo vozdejstviya na ftalonitrilnuyu matricu [Research of influence of influence of humidity and heat on ftalonitrilny matrix] // Materialovedenie. 2015. №9. S. 15–19.
23. Williams J.G., Donnellan M.E., James M.R., Morris W.L. Properties of the interphase in organic matrix composites // Materials Science and Engineering A. 1990. V. 126. №1–2. P. 305–312.
24. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Oxford: Elsevier, 1998. 486 р.
25. Summerscales J. Microstructural characterisation of fibre-reinforced composites. Cambridge: Woodhead Publishing Ltd., 1998. 303 p.
26. Guigon M. Characterization of the interface in a carbon-epoxy composite using transmission electron microscopy // Journal of Materials Science. 1992. V. 27. №17. P. 4591–4597.
27. Turmel D.J.-P., Partridge I.K. Heterogeneous phase separation around fibres in epoxy/PEI blends and its effect on composite delamination resistance // Composites Science and Technology. 1997. V. 57. №8. P. 1001–1007.
28. Varley R.J., Hodkin J.H. Effect of reinforcing fibres on the morphology of a toughened epoxy/amine system // Polymer. 1997. V. 38. №5. P. 1005–1009.
29. Olmos D., Gonzalez-Benito J. Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites // European Polymer Journal. 2007. V. 43. №4. P. 1487–1500.
30. Finogenov G.N., Erasov V.S. Treshchinnostoikost polimernykh kompozitov pri mezhsloevom otrive I sdvige [Crack firmness of polymeric composites at separation and shift between layers] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
31. Yakovlev N.O., Lutsenko A.N., Artemeva I.V. Metodi opredeleniya mezhsloevoi treshchinnostoikosti sloistikh materialov [Definition methods crack of firmness of layered materials between layers] // Vse materialy. Enciklopedicheskiy spravochnik. 2015. №10. S. 7–14.
32. Kobets L.P., Deev IS. Strukturoobrazovanie v termoreaktivnykh svyazuyushchikh I matricakh kompozicionnykh materialov na ikh osnove [Structurization in thermosetting binding and matrixes of composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. Т. LIV. №1. S. 67–78.
33. Lipatov Yu.S. Mezhfaznie yavliniya v polimerakh [The interphase phenomena in polymers]. Kiev: Naukova dumka, 1980. 260 s.
34. Gulyaev A.I., Yakovlev N.O., Krylov V.D. Shurtakov S.V. Mikromekhanika razrusheniya stekloplastikov pri passoenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II ] // Materialovedenie. 2016 (v pechati).
ATL and AFP methods of automated placement are widely used worldwide to increase the productivity and accuracy of prepregs placement in manufacture of large PCM-based parts. However conventional prepregs are not always suitable for processing by these methods - they are subject to specific requirements in technological tack providing with precise fixation and orientation of layers and easy separation from backing paper. There is no standard method for the tack determination, so this article reviews various widely used in Russian and international industry tack determination methods, conclusions are made on their precision, efficiency and usability for different prepreg laying methods. The work was executed within implementation of the complex scientific direction 13.2. «Constructional PCM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
5. Epoksidnaya kompoziciya: pat. 2447104 Ros. Federaciya [Epoxy composition: pat. 2447104 Rus. Federation]; opubl. 05.10.10.
6. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
7. Shaghaghi S., Beheshty M.H., Rahimi H. Preparation and rheological characterization of phenolic/glass prepregs // Iranian Polymer Journal. 2011. V. 20 (12). P. 969–977.
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozitsionnyh materialov, poluchaemyh metodom propitki rasplavnym svyazuyushchim [Modern technologies of hotmelt polymer composite materials processing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 04. Available at: http://www.viam-works.ru (accessed: January 19, 2016). DOI: 10.18577/2307-6046-2014-0-8-4-4.
10. Grimshaw M.N. Automated Tape Laying // Composites. 2001. V. 21. P. 480–500.
11. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Osobennosti prepregov dlya avtomatizirovannoj vykladki metodami ATL i AFP [Features of prepregs intended for automated laying by ATL and AFP technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 06. Available at: http://www.viam-works.ru (accessed: January 20, 2016). DOI: 10.18577/2307-6046-2015-0-3-6-6.
12. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: January 20, 2016). DOI: 10.18577/2307-6046-2015-0-11-6-6.
13. Banks R. et al. Development of a new structural prepreg: characterisation of handling, drape and tack properties // Composite Structures. 2004. V. 66 (1–4). P. 169–174.
14. Crossley R.J., Schubel P.J., Warrior N.A. The experimental determination of prepreg tack and dynamic stiffness // Composites. Part A. 2012. V. 43. P. 423–434.
15. Crossley R.J., Schubel P.J., Warrior N.A. The experimental characterisation and Investigate on of prepreg tack / In Proceedings of ICCM-18. Edinburgh. 2009. P. 1–11.
16. Postnov V.I., Nikitin K.E., Petuhov V.I., Burhan O.L., Orzaev V.G. Metod i ustrojstvo dlya opredeleniya lipkosti prepregov [Method and the device for determination of stickiness of prepregs] // Aviacionnye materialy i tehnologii. 2009. №3. S. 29–33.
Research results on possibility of non-destructive quality testing of PCM covers of arch elements applied in bridges are considered. Applicability of acoustic impedance method for identification of material integrity disturb in the form of zones with poor binder impregnation at formation, exfoliation and filling degree of arch elements by concrete is shown. The work is executed within implementation of the complex scientific direction 2.3. «Methods of nondestructive research and control» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki // Aviacionnye materialy i tehnologii [Quality control of materials – security accreditation of operation of aviation engineering]. M.: VIAM, Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. 2001. S. 3–8.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Nerazrushayushhij kontrol: spravochnik v 8 t. 2-e izd., ispr. / pod obshh. red. V.V. Klyueva [Non-destructive testing: directory in 8 vol. / gen. ed. by V. V. Kluyev]. M.: Mashinostroenie, 2006. T. 3. Ultrazvukovoj control / I.N. Ermolov, Yu.V. Lange. 864 s.
5. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya. Chast 1. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 1. Defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №4. C. 23–31.
6. Murashov V.V. Types of production and operational defects of the multilayer glued constructions and polymer composite materials products and methods to detect them // Proc. 5th European-American Workshop on Reliability of NDT. 2013. Available at: http://www.nde-reliability.de/Proceedings/Posters (accessed: July 12, 2015).
7. Murashov V.V., Mishurov K.S. Opredelenie poristosti ugleplastikov v aviacionnyh konstrukciyah ultrazvukovym metodom [The determinations of carbon fiber reinforced plastics porosity in aircraft constructions by the ultrasonic method] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 88–92.
8. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. 2006. №2. Р. 7–10.
9. Murashov V.V., Rumyancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
10. Bobrov V.T., Rozlovenko S.G., Murashov V.V. Materials characterization // Testing. Diagnostics. 2010. №2. S. 42–44.
11. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Definition of physicomechanical characteristics and composition of polymeric composite materials acoustic methods] // Aviacionnye materialy i tehnologii. 2012. №S. S. 465–475.
12. Karabutov A.A., Murashov V.V., Oraevsky A.A., Podymova N.B. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor // Conf. Nondestructive Evaluation of Materials and Composites II. San Antonio: Published by SPIE, 1998. V. 3396. Р. 103–111.
13. Karabutov A.A., Murashov V.V., Podymova N.B. Diagnostika sloistyh kompozitov s pomoshh'yu lazernogo optiko-akusticheskogo preobrazovatelya [Diagnostics of layered composites by means of the laser optics-acoustic converter] // Mehanika kompozitnyh materialov. 1999. T. 35. №1. S. 125–134.
14. Sposob opredeleniya fiziko-mehanicheskih harakteristik polimernyh kompozicionnyh materialov i ustrojstvo dlya ego osushhestvleniya: pat. 2214590 Ros. Federaciya [Way of definition of physicomechanical characteristics of polymeric composite materials and the device for its implementation: stalemate. 2214590 Rus. Federation]; opubl. 20.10.03 Byul. №29.
15. Murashov V.V. K voprosu opredeleniya uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] // Deformaciya i razrushenie materialov. 2014. №11. S. 39–45.
16. Murashov V.V., Rumyancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detalyah i konstrukciyah [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. № 8. S. 13–17.
17. Murashov V.V. Opredelenie sostava i plotnosti konstrukcionnyh ugleplastikov lazerno-akusticheskim sposobom ul'trazvukovogo kontrolya [Definition of structure and density constructional ugleplastikov in the laser and acoustic way of ultrasonic control] // Materialovedenie. 2014. №11. S. 24–29.
18. Murashov V. The determinations of CFRP porosity by laser-acoustic method of ultrasonic control // Proc. of the 4th International Conference on Thermosets 2015. Berlin: Fraunhofer Research Institution for Polymeric Materials and Composites PYCO. 2015. P. 58–60. URL: http://www.thermosets.de/Proceedings (дата обращения: 20.12.2015).
19. Rose J.L., Soley L.E. Ultrasonic guided waves for anomaly detection in aircraft components // Materials Evaluation. 2000. V. 58. №9. Р. 1080–1086.
20. Hsu D.K., Dayat V., Barnard D.J. Technology of production of samples to configure and control of the equipment for the control of glue joints // Materials Evaluation. 2009. V. 67. №7. P. 843–850.
21. Armstrong N. Control of honeycomb panels and products made of foam by amplitude method of passing // Materials Evaluation. 2010. V. 68. №12. P. 27–31.
22. Murashov V.V., Rumyancev A.F. Defektoskopiya i diagnostika polimernyh kompozicionnyh materialov akusticheskimi metodami [Defectscopy and diagnostics of polymeric composite materials by acoustic methods] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 342–347.
23. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya. Chast 2. Metody vyyavleniya defektov monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 2. Methods of detection of defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №5. S. 31–42.
24. Gunasekera A.M. Monitoring of impact damage products from PCM // Materials Evaluation. 2010. V. 68. №8. Р. 880–887.
25. Murashov V.V., Trifonova S.I. Kontrol kleevyh soedinenij v konstrukciyah i izdeliyah iz PKM ul'trazvukovym tenevym metodom [Control of glued joints in designs and products from PKM ultrasonic shadow method] // Klei. Germetiki. Tehnologii. 2015. №5. S. 15–23.
26. Murashov V.V., Laptev A.S. Kontaktnye zhidkosti dlya sozdaniya akusticheskogo kontakta pri ul'trazvukovom kontrole mnogoslojnyh konstrukcij iz PKM [Contact liquids for creation of an acoustic contact at ultrasonic control of multi-layer structures from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 10. Available at: http://viam-works.ru (accessed: December 20, 2015). DOI: 10.18577/2307-6046-2015-0-8-10-10.
27. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleevyh konstrukcij [Quality control of aviation parts made from polymer composite materials and multilayers adhered constructions] // Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
28. Lange Yu.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushhego kontrolya mnogoslojnyh konstrukcij [Acoustic low-frequency methods and means of non-destructive testing of multilayer designs]. M.: Mashinostroenie, 1991. 272 s.
29. Murashov V.V. Kontrol kleenyh konstrukcij [Control of the glued designs] // Klei. Germetiki. Tehnologii. 2005. №1. S. 21–27.
30. Murashov V.V. Nerazrushayushhij kontrol kleevyh soedinenij [ Non-destructive testing of glued joints] // Klei. Germetiki. Tehnologii. 2008. №7. S. 21–28.
31. Murashov V.V. Kontrol mnogoslojnyh kleenyh konstrukcij iz polimernyh kompozicionnyh materialov [Control of multi-layer glued designs from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2011. №10. S. 16–23.
32. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
33. V.V. Murashov, S.I. Trifonova Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] //Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
34. Murashov V.V. Vyyavlenie zon otsutstviya adgezionnogo soedineniya sloev v mnogoslojnyh konstrukciyah [Identification of zones of lack of adhesive connection of layers in multi-layer designs] // Klei. Germetiki. Tehnologii. 2013. №3. S. 29–31.
35. Murashov V.V. Nerazrushayushhij kontrol zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlya mnogorazovogo kosmicheskogo korablya «Buran» [Non-destructive testing of preparations and details from carbon - carbon composite material for the reusable «Buran» spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 05. Available at: http://www.viam-works.ru (accessed: October 04, 2015).
36. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. V. 3. №4. Р. 267–273.
37. Viktorov I.A. Fizicheskie osnovy primeneniya ultrazvukovyh voln Releya i Lemba v tehnike [Physical bases of application of ultrasonic waves of Reley and Lamb in equipment]. M.: Nauka, 1966. S. 84–87.
38. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii. «Gidroaviasalon-2012». 2012. S. 122–123.
An overview of modern methods of polymer materials testing on aging under the influence of natural and artificial weathering factors is presented. The mechanisms of thermal and photo-degradation of polymers under the influence of solar radiation are described. The basic parameters of equipment used for testing are shown. A comparison of the spectral distribution of the intensity of natural sunlight radiation and a radiation generated by the arc xenon lamp is performed. A comparison is conducted and found differences in the methods of accelerated laboratory tests for Russian and foreign standards are presented. The conclusions are made about the need to update the existing regulations in the Russian Federation. The work is executed within the frames of the complex scientific directions 18.2. «Development of methods of climatic tests and instrumental methods of research», 18.3. «Modeling and forecasting of climatic resistance» («The strategic directions of development of materials and t
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour // Aircraft Eng. and Aerosp. technol. 2010. V. 82. №4. P. 258–266.
5. Kablov E.N., Gunyaev G.M. Tumanov A.T. – iniciator sozdaniya kompozitov [A.T Tumanov – initiator of creation of composites] // Kompozicionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. Mezhotrasl. nauch.-tehnich. konf. M.: VIAM, 2009. S. 6–9.
6. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
7 Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
8. Sorokin A.E., Bejder E.Ya., Perfilova D.N. Vliyanie klimaticheskih faktorov na svojstva ugleplastika na polifenilensulfidnom svyazuyushhem [Effect of climatic factors on properties of carbon fiber reinforced plastic based on polyphenylenesulfide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 10. Available at: http://www.viam-works.ru (accessed: September 20, 2015). DOI: 10.18577/2307-6046-2015-0-1-10-10.
9. Voinov S.I., Zhelezina G.F., Soloveva N.A., Yamshhikova G.A., Timoshina L.N. Vliyanie vneshnej sredy na svojstva ugleplastika, poluchennogo metodom propitki pod davleniem (RTM) [Environmental effects on properties of CFRP manufactured by RTM method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 08. Available at: http://www.viam-works.ru (accessed: September 20, 2015). DOI: 10.18577/2307-6046-2015-0-2-8-8.
10. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svyazuyushhie. Nastoyashhee i budushhee [Thermoplastic binders. The present and the future] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 07. Available at: http://www.viam-works.ru (accessed: September 20, 2015).
11. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: September 20, 2015).
12. Kuleznev V.N., Ushakova O.B. Struktura i mehanicheskie svojstva polimerov [Structure and mechanical properties of polymers]. M.: MITHT, 2006. 86 s.
13. Arhireev V.P. Starenie i stabilizaciya polimerov [Aging and stabilization of polymers]. Kazan: KGTU, 2002. 88 s.
14. Kirillov V.N., Efimov V.A., Nikolaev E.V., Shvedkova A.K., Korenkova T.G., Deev I.S. K voprosu o metodike provedeniya naturnyh klimaticheskih ispytanij polimernyh kompozicionnyh materialov [To question of technique of carrying out natural climatic tests of polymeric composite materials] // Sb. dokladov VIII nauch. konf. po gidroaviacii «Gidroaviasalon–2010». M., 2010. Ch. II. S. 102–106.
15. Nikolaev E.V., Kirillov V.N., Efimov V.A., Grashhenkov D.V. Moskovskij centr klimaticheskih ispytanij FGUP «VIAM» – regionalnyj centr ispytanij materialov v predstavitelnoj zone umerennogo klimata» [The Moscow center of climatic tests of VIAM Federal State Unitary Enterprise – the regional center of tests of materials in representative zone of temperate climate»] // Sb. dokladov IX nauch. konf. po gidroaviacii «Gidroaviasalon–2012». M. 2012. Ch. II. S. 202–208.
Companies engaged in development and introduction of polymer composite materials in the rail transport in Russia are presented. Structures based on composites are exemplified. Brief analysis of main advantages of their application comparing with traditional materials and recommendations on improvement of composite materials implementation in railway are provided. The work is executed within the frames of the complex scientific direction 13.1. «Binders for polymer and composite materials for structural and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Bogdanov A. Plastiki na relsah [Plastics on rails] // Plastik. 2013. №8 (126). S. 16–22.
3. G. Welty. «Railway Age», 1997, N 8, pр. 41, 43–45. Available at: http://center-science.ru/files/zgd.pdf (accessed: January 20, 2016).
4. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: May 20, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
5. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: January 20, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
6. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://www.viam-works.ru (accessed: January 20, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
7. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
8. Kablov E.N. Materialy – osnova lyubogo dela [Materials – basis of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
9. Kablov E.N. Innovacionnoe razvitie – vazhnejshij prioritet gosudarstva [Innovative development – the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.
10. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
11. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity carbon plastics and protection of metal load bearing structures in contact with the carbon plastics] // Korroziya: materialy, zashhita. 2011. №12. S. 1–7.
12. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: January 20, 2016).
13. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
14. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3. S. 36–44.
15. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E., Il'in V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PKM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon-2012». 2012. S. 122–123.