Articles
Development and application of aluminum alloys of new generation is an important task because of the active development of aerospace engineering. Weldable aluminum alloys are promising structural materials due to good complex of service characteristics and processability. The addition of rare earth elements to aluminium alloys allows significant improving the mechanical properties and at the same time the structure of deformed semi-finished products could be greatly changed. Taking into account the peculiarities of metallurgical production it is necessary to understand the impact of various parameters on the characteristics of semi-finished products. The results of studies of 1913 alloy bearing scandium in the process of rolling and heat treatment are shown. Research is executed within implementation of the complex scientific direction 8.1. «High strength weldable aluminium and low density Al–Li alloys with high fracture toughness» («Strategic directions of development of materials an
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Illarionov Je.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
4. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Zou Liang, Pan Qing-lin, He Yun-bin, Wang Chang-zhen. Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al–Zn–Mg–Cu alloys // Transactions of Nonferrous Metals Society of China. 2006. №10. P. 340–344.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 01, 2016).
7. Han G.M., Nikiforov A.O., Zaharov V.V., Novikov I.I. Vliyanie soderzhaniya skandiya na strukturu i pokazateli sverhplastichnosti alyuminievyh splavov sistemy Al–Zn–Mg–Sc–Zr [Influence of the content of scandium on structure and indicators of superplasticity of aluminum alloys of Al–Zn–Mg–Sc–Zr system] // Tsvetnye Metally. 1993. №11. S. 55–57.
8. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
9. Ryabov D., Kolobnev N., Samohvalov S. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. V. 794–796. P. 241–246.
10. Ryabov D.K., Kolobnev N.I., Mahsidov V.V., Fomina M.A. O stabilnosti peresyshhennogo tverdogo rastvora listov splava 1913 pri zakalke [About stability of super-saturated solid solution of sheets of alloy 1913 when tempering] // Metallurgiya mashinostroeniya. 2012. №3. S. 30–33.
11. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Vahromov O.V. Izmenenie mehanicheskih i korrozionnyh svojstv splava 1913 pri iskusstvennom starenii [Change of mechanical and corrosion properties of alloy 1913 at artificial aging] // Voprosy materialovedeniya. 2013. №4 (76). C. 24–29.
12. Engler O., Sachot E., Ehrstro J.C., Reeves A., Shahani R. Recrystallisation and texture in hot deformed aluminium alloy 7010 thick plates // Mater. Sci. Technol. 1996. V. 12. P. 717–729.
13. Zeng X.H., Ahmad M., Engler O. Texture gradient, average texture and plastic anisotropy in various Al–Li sheet alloys // Mater. Sci. Technol. 1994. V. 10. P. 581–591.
14. Shamraj V.F., Grushko O.E., Jegiz I.V., Borovskih S.N. Kristallograficheskaya tekstura i struktura katanyh listov iz splava Al–Cu–Li [Crystallographic structure and structure of sheets from Al–Cu–Li alloy] // Metally. 2006. №2. S. 94–98.
15. Visser R.F., Wolff I.M., Harty B.D. The Effect of Hot-Rolling Parameters on Texture Development and Microstructure in Aluminium AA5182 // Mat. Sci. Forum. 1994. V. 157–162. P. 1095–1102.
16. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vliyanie predvaritelnogo estestvennogo stareniya na svojstva splava 1913 v iskusstvenno sostarennom sostoyanii [Influence of preliminary natural aging on properties of alloy 1913 in artificially made old condition] // Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
17. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
18. Rometsch P.A., Zhang Y., Knight S. Heat treatment of 7xxx series aluminum alloys – some recent developments // Trans. Nonferrous Met. Soc. China. 2014. V. 24. P. 2003−2017.
19. Oliveira Jr. A.F., de Barros M.C., Cardoso K.R., Travessa D.N. The effect of RRA on the strength and SCC resistanceon AA7050 and AA7150 aluminum alloys // Mater. Sci. Eng. A. 2004. V. 379. P. 321–326.
20. Socorro Valdez, Suarez M., Fregoso O.A., Ju´arez-Islas J.A. Microhardness, Microstructure and Electrochemical Efficiency of an Al (Zn/xMg) Alloy after Thermal Treatment // Journal of Materials Science & Technology. 2012. V. 28 (3). Р. 255–260.
This article reviews and analyzes raw materials and production methods of aluminum strontium master alloy, such as the alloying of pure components, metallothermic recovery of strontium from its compounds, electrolytic recovery. Aluminum–strontium master alloy is intended for modifying the microstructure of hypoeutectic and eutectic cast aluminium alloys. To date, the most promising technique of inoculation is the introduction of strontium in the form of double or triple addition alloy. This alloy changes the leaf-shaped aluminum-silicon eutectic for grainy one, which significantly improves the mechanical properties of the casting. Research is executed within implementation of the complex scientific direction 8.4. «High-strength corrosion-resistant weldable magnesium and cast aluminum alloys for products of aerospace engineering of new generation» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Napalkov V.I., Mahov S.V. Legirovanie i modificirovanie alyuminiya i magniya [Alloying and aluminum and magnesium modifying]. M.: MISIS, 2002. 376 s.
4. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: spravochnik v 3-h tomah / pod obshh. red. N.P. Lyakisheva [Charts of condition of double metal systems: the directory in 3 vol. / ed. by N.P. Lyakishev]. M.: Mashinostroenie, 1996. T. 1. 992 s.
5. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
6. Belov N.A. Ekonomnolegirovannye zharoprochnye alyuminievye splavy: principy optimizacii fazovogo sostava [Economically alloyed heat resisting aluminum alloys: principles of optimization of phase structure] // Aviacionnye materialy i tehnologii. 2011. №2. S. 6–11.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Aluminium-strontium master alloy – produced by adding strontium encased in aluminium foil, to aluminium melt: pat. 2658308 DE. 1978.
9. Process for preparing a strontium and/or barium alloy: pat. 3567429 US. 1971.
10. Korс B. Zagaduienie trwaiсj modufikacji siluminow. Praca: Doktorska. Politechnika Warszawska. 1981. 342 p.
11. Napalkov V.I., Nerubashhenko V.V., Bondarev B.I. i dr. Proizvodstvo ligatur v usloviyah polucheniya jelektrolizom [Production of ligatures in the conditions of receiving by electrolysis] // Tehnologiya legkih splavov. 1976. №2. S. 24–27.
12. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
13. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
14. Lysenko A.P., Chudarev A.A., Logacheva O.A. Sposob polucheniya ligatury alyuminij stroncij [Way of receiving ligature aluminum strontium] // Tsvetnye Metally. 1994. №10. S. 28–31.
15. Ganiev I.N., Vahobov A.V., Dzhuraev T.D. Diagramma sostoyaniya Al–Si–Sr [Chart of condition of Al–Si–Sr] // Izv. AN SSSR. Ser.: Metally. 1977. №4. S. 215–218.
The research of high-temperature heat-resistant alloy based on niobium-silicon system – Nb–Nb5Si3, obtained in the process of high-gradient directional solidification with a flat growth front without the use of seed has been carried out. The data of metallography and X-ray powder diffraction have been obtained, phase, structural and quantitative analysis has been carried out, crystallographic orientation of the matrix and reinforcing phases of eutectic composite has been determined. The comparative description of structural parameters of the phases at different stages of solidification along the height of the ingot from the beginning of solidification to the residual melt has been provided. Work is executed within implementation of the complex scientific direction 9.4. «Composites on the basis of the refractory metals, strengthened by intermetallic compound» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Tolorajya V.N., Kablov E.N., Orehov N.G. Tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [Casting technologies of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2003. №1. S. 63–79.
3. Kablov E.N., Tolorajya V.N., Orehov N.G., Demonis I.M. Razrabotka zharoprochnogo renijsoderzhashhego nikelevogo splava novogo pokoleniya dlya litya monokristallicheskih turbinnyh lopatok sovremennyh GTD [Development of heat resisting rhenium containing nickel alloy of new generation for molding of single-crystal turbine blades of modern GTE] // Aviacionnye materialy i tehnologii. 2004. №1. S. 146–163.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Bazyleva O.A., Bondarenko Yu.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by rhenium] // Metallurgiya mashinostroeniya. 2011. №4. S. 30–34.
6. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
7. Dimiduk D.M., Mendiratta M.G., Subramanian P.R. Development approach for advanced intermetallic materials // Structural Intermetallics. Warrendale: TMS Publications. 1993. P. 619–630.
8. Bewlay B.P., Jackson M.R., Sutliffe J.A., Lipsitt H.A., Reeder W.J. Solidification processing of high temperature intermetallic eutectic-based alloys // Mater. Sci. 1995. A192/193. P. 534–543.
9. Tolorajya V.N., Kablov E.N., Orehov N.G., Chubarova E.N. Metody polucheniya monokristallov nikelevyh zharoprochnyh splavov [Methods of receiving monocrystals of nickel hot strength alloys] // Gornyj informacionno-analiticheskij byulleten. 2005. Tematicheskoe prilozhenie «Funkcionalnye materialy». S. 172–190.
10. Bewlay B.P., Jacson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite // Metallurgical and Materials Transactions A. 1996. V. 27A. Issues 12. P. 3801–3808.
11. Bewlay B.P., Jacson M.R., Subramanian P.R. Processing of High-Temperature Refractory-Metal Siliside In-Situ Composites // JOM. 1999. P. 32–36.
12. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizaciya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] // MITOM. 2002. №7. S. 20–23.
13. Kablov E.N., Tolorajya V.N., Demonis I.M., Orehov N.G. Napravlennaya kristallizaciya zharoprochnyh nikelevyh splavov [The directed crystallization of heat resisting nickel alloys] // Tehnologiya legkih splavov. 2007. №2. S. 60–70.
14. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: October 06, 2015). DOI: 10.18577/2307-6046-2014-0-1-6-6.
15. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] //Aviacionnye materialy i tehnologii. 2015. №1. S. 60–64.
Pressure metallurgy (MD) is actively developed in the world, the effect of higher pressure on the process of alloying, melting, crystallization of ingot is studied. A positive economic effect of MD technologies is noted. MD technologies open possibilities of creating new materials and alloying elements, the use of which in conventional metallurgical processes is impossible. FSUE «VIAM» for the first time in the history of our country produced and put into operation a new pressure electroslag furnace PESR-0,1 of semiindustrial type. The paper presents design data of the furnace, the basic ways of its practical use and materials received with its use. Work is executed within implementation of the complex scientific direction 8.2. «High-strength structural and corrosion-resistant welded steels with high fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
5. High Nitrogen steel, HNS 90. Dusseldorf: Stahl und Eisen. 1990.
6. Poschitz I.N., Kolesov V.A. Use of High-Nitrogen non-magnetic steel for production of steel-aluminum conductor // 5th Int. Conf. High Nitrogen Steels. Espoo – Finland. 1998. Р. 19.
7. Berns H. Alloy development and processing // Int. Conf. High Nitrogen Steels HNS-2004. 2004. P. 271–281.
8. Rashev C.V. Vysokoazotistye stali. Metallurgiya pod davleniem [High-nitrogen steels. Metallurgy under pressure]. Sofiya: Izd-vo «Prof. Marin Drinov». 1995. 272 s.
9. Tonysheva O.A., Voznesenskaya I.M., Eliseev E.A., Shalkevich A.B. Novaya vysokoprochnaya ekonomnolegirovannaya azotsoderzhashchaya stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
10. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3. S. 27–32.
11. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
12. Blinov M.V., Bannyh O.A., Lukin E.I., Kostina M.V., Blinov E.V. Vliyanie termicheskoj obrabotki i plasticheskoj deformacii na strukturu i mehanicheskie svojstva azotosoderzhashhej stali 04N9H2A [Influence of thermal processing and plastic strain on structure and mechanical properties of nitrogen-bearing steel 04N9H2A] // Metally. 2014. №6. S. 21–28.
13. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant became modern aircraft]. M.: MAI, 2006. S. 112–121, 130–143.
14. Krivonogov G.S., Kablov E.N. Granicy zeren i ih rol v ohrupchivanii vysokoprochnyh korrozionnostojkih stalej [Borders of grains and their role in okhrupchivaniye high-strength corrosion-resistant the staly] // Metally. 2002. №1. S. 35–45.
15. Blinov V.M., Andreev Ch., Kostina M.V., Blinov E.V. Struktura i fazovyj sostav lityh zhelezonikelevyh splavov so sverhravnovesnym soderzhaniem azota [Structure and phase composition of cast nickel iron alloys with the superequilibrium content of nitrogen] // Metally. 2009. №4. S. 57–62.
The recent developed high-temperature materials for protection against external influences of the radio engineering systems placed on aircraft and land radar installations are considered. Tendencies of development of radiotransparent materials are shown, scientific sources of information about existing radiotransparent radomes based on polymeric, quartz, glass-ceramic and ceramic materials are reviewed, the conclusion is drawn on prospects of development of new composite materials based on high-temperature ceramic matrixes. Work is executed within implementation of the complex scientific direction 14.2. «New technologies of receiving superhigh-temperature ceramic and metal composite materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solntsev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. inform. mater. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: the collection of information materials the 3rd ed., processed and added] M.: VIAM, 2015. 720 s.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
5. Rusin M.Yu. Proektirovanie golovnyh obtekatelej raket iz keramicheskih i kompozicionnyh materialov: ucheb. posobie [Design of head fairing of rockets from ceramic and composite materials: manual]. M.: Izd-vo MGTU im. N.E. Baumana, 2005. 64 s.
6. Available at: http://www.imc-vega.ru (accessed: November 05, 2015).
7. Suzdaltsev E.I. Radioprozrachnye, vysokotermostojkie materialy XXI veka [Radio transparent, high-heat-resistant materials of the XXI century] // Ogneupory i tehnicheskaya keramika. 2002. №3. S. 42–50.
8. Available at: http://www.matweb.com (accessed: April 15, 2015).
9. Silicon nitride articles with controlled multi-density regions: pat. 5103239 US; publ. 07.04.92. 6 p.
10. Electromagnetic window: pat. 5573986 US; publ. 12.11.96. 5 p.
11. Ablative-resistant dielectric ceramic articles: pat. 4304870 US; publ. 08.12.81. 3 p.
12. Aluminum nitride-boron nitride composite article and method of making same: pat. 4666873 US; publ. 19.05.87. 10 p.
13. Method of making radar transparent window material operable above: pat. 5627542 US; publ. 06.05.97. 5 p.
14. Teplozashhitnoe pokrytie: pat. 2497783 Ros. Federaciya [Heat-protective covering: pat. 2497783 Rus. Federation]; opubl. 10.11.13. Byul. №31. 9 s.
15. Adaptively ablatable radome: pat. 5457471 US; publ. 10.10.95. 6 p.
16. Silica, boron nitride, aluminum nitride, alumina composite, article and method of making the same: pat. 5891815 US; publ. 06.04.99. 8 p.
17. Maksimov V.G., Basargin O.V., Shheglova T.M., Nikitina V.Yu. O proyavlenii sverhplastichnosti v polidispersnoj keramike mullit–oksid cirkoniya s razmerom kristallov bolee 10 mkm [About superplasticity manifestation in unequigranular ceramics mullit-zirconium oxide with size of crystals more than 10 microns] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 04. Available at: http://www.viam-works.ru (accessed: November 05, 2015).
18. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: November 05, 2015).
19. Maksimov V.G., Grashhenkov D.V., Lomovskoj V.A., Babashov V.G., Basargin O.V., Kolyshev S.G. Issledovanie vysokotemperaturnoj polzuchesti v polidispersnoj keramike mullit–oksid cirkoniya [Research of high-temperature creep in unequigranular ceramics mullit-zirconium oxide] // Steklo i keramika. 2014. № 5. S. 36–40.
20. Grashchenkov D.V., Lomovskoj V.A., Basargin O.V., Balinova Yu.A., Babashov V.G., Maksimov V.G., Kolyshev S.G. Issledovanie vysokotemperaturnoj polzuchesti v polidispersnoj keramike na osnove mullita, uprochnennogo dioksidom cirkoniya [Research of high-temperature creep in unequigranular ceramics on basis mullit, strengthened by zirconium dioxide] // Vestnik RFFI. №1 (85). 2015. S. 47–53.
21. Varrik N.M., Ivahnenko Yu.A., Maksimov V.G. Oksid-oksidnye kompozicionnye materialy dlya gazoturbinnyh dvigatelej (obzor) [Oxide-oxide composites for gas-turbine engines (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 03. Available at: http://www.viam-works.ru (accessed: November 05, 2015). DOI: 10.18577/2307-6046-2014-0-8-3-3.
The article provides information on the basic factors influencing the widespread implementation and use of composite materials (composites), structures and products from them in various industries in Russia. Since production of composites in Russia is at the initial stage of development, the identification and resolution of problems of implementation of composite materials is an important task. In order to increase the efficiency of production of composite materials and the simultaneous growth of domestic demand for them it is needed to systematize impeding factors and develop preventive measures to address them. Work is executed within implementation of the complex scientific direction 13.2. «Structural PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». VIAM’s materials and technologies for ISS of «Energiya–Buran» / ed. by E.N. Kablova]. M.: Fond «Nauka i zhizn», 2013. 128 s.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: October 24, 2015).
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
7. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3. S. 36–44.
8. Kablov E.N. Pravo na rejting. Kak ocenit intellektualnyj resurs Rossii? [Right to rating. How to evaluate intellectual resource of Russia?] // Poisk. 2013. №45–46. S. 11.
9. Kablov E.N. VIAM. Napravlenie glavnogo udara [Direction of main attack] // Nauka i zhizn. 2012. №6. S. 14–18.
10. Kablov E.N. Na perekrestke nauki, obrazovaniya i promyshlennosti [At intersection of science, education and the industry] // Ekspert. 2015. №15 (941). S. 49–53.
11. Kablov E.N. Rossiya na rynke intellektualnyh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
12. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: October 24, 2015). DOI: 10.18577/2307-6046-2015-0-8-9-9.
13. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov [Foreign experience of development of production of products with use for the second time the processed polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. Ст. 12. URL: http://www.viam-works.ru (accessed: October 24, 2015). DOI: 10.18577/2307-6046-2015-0-12-12-12.
14. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: October 24, 2015).
15. Sharova I. A. Otechestvennyj i zarubezhnyj opyt v oblasti razrabotki epoksidnyh kleev holodnogo otverzhdeniya [Domestic and foreign experience in area of cold curing epoxy adhesive development] // Trudy VIAM : electron. elektron. nauch.-tehnich. zhurn. 2014. №7. St. 05. Available at: http://www.viam-works.ru (accessed: October 24, 2015). DOI: 10.18577/2307-6046-2014-0-7-5-5.
Application of composite materials becomes more and more wide that causes growth of volume of their manufacture. From manufacturing methods of PCM existing for today, out-of-autoclave techniques are most efficient as they allow excluding use of expensive equipment and providing demanded level of properties. In connection with growth of volumes of application of out-of-autoclave techniques, creation of high-quality semi-products for some their varieties becomes a topical problem. This article describes methods of manufacture of film binder processed by RFI. Work is executed within implementation of the complex scientific direction 13.2 «structurall PCM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
3. Andreev A. V., Demidenko Z. N., Andreeva V. A. Tehnologicheskie aspekty primeneniya plenochnyh svyazuyushhih pri sozdanii konstrukcij iz kompozicionnyh materialov passazhirskih i transportnyh samoletov [Technological aspects of application of film binding designs at creation from composite materials of passenger and transport aircrafts] // Voprosy proektirovaniya i proizvodstva konstrukcij letatelnyh apparatov. 2013. Vyp. 4. S. 21–26.
4. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii. 2008. 822 s.
5. Nelyub V.A., Grashhenkov D.V., Kogan D.I., Sokolov I.A. Primenenie pryamyh metodov formovaniya pri proizvodstve krupnogabaritnyh detalej iz stekloplastikov [Application of direct methods of formation by production of large-size details from fibreglasses] // Himicheskaya tehnologiya. 2012. №13. S. 735–739.
6. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Материалы и химические технологии для авиационной техники] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
7. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
8. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: September, 10 2015).
9. Postnova M.V., Postnov V.I. Opyt razvitija bezavtoklavnyh metodov formovanija PKM [Development experience out-of-autoclave methods of formation PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September, 10 2015). DOI: 10.18577/2307-6046-2014-0-4-6-6.
10. Timoshkov P.N., Platonov A.A., Hrulkov A.V. Propitka plenochnym svyazuyushhim (RFI) kak perspektivnaya bezavtoklavnaya tehnologiya polucheniya izdelij iz PKM [Film resin infusion as an advanced method for out-of-autoclave processing of polymer composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 09. Available at: http://www.viam-works.ru (accessed: September, 10 2015). DOI: 10.18577/2307-6046-2015-0-5-9-6.
11. Kogan D.I. Tehnologiya izgotovleniya polimernyh kompozicionnyh materialov metodom propitki plenochnym svyazuyushhim: avtoref. dis. … kand. tehn. nauk [Manufacturing techniques of polymeric composite materials method of impregnation by the film binding: thesis. … cand. eng. sci.]. M., 2011. 215 s.
12. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ya.M., Platonov A.A. Plenochnye svyazuyushhie dlya RFI-tehnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
13. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. №1. S. 3–8.
14. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya / pod red. A.A. Berlina [Polymeric composite materials: structure, properties, technology / ed. by A.A. Berlin]. SPb.: Professiya, 2009. 556 s.
15. Postnov V.I., Burhan O.L., Kachura S.M., Rahmatullin A.E., Samsonov A.V., Yamaev R.R., Shershak P.V. Nepreryvnyj avtomatizirovannyj kontrol massovogo soderzhaniya plenochnogo kleevogo svyazuyushhego v prepregah v processe ih izgotovleniya [The continuous automated control of the mass contents film glue binding in prepregs in the course of their manufacturing] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. №4–3. S. 830–833.
A review of publications on polymer CNT nanocomposites mechanical properties is presented. A model of the polymer-CNT system using the Mori–Tanaka method is described. Mechanical properties of CNT- nanocomposites are shown to be mainly defined by the CNT distribution within the polymer matrix, not the intrinsic properties of nanotubes. CNT-containing systems based on polyamide and polycarbonate are thoroughly reviewed. Data on the effect of impurities size on mechanical properties of nanocomposites prepared by melt blending are provided. Data on the effect of CNTs on epoxy binders are provided. Nanotubes are shown to affect the degree of conversion during epoxy composite curing, nanocomposite glass point and matrix structure at the boundary layer near CNTs. Effect of functionalized and non-functionalized CNTs on mechanical properties of epoxy nanocomposites is considered. Work is executed within implementation of the complex scientific direction 15 « Nanostructured, amorphous mat
2. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. Р. 56–58.
3. Thostenson E.T., Ren Z., Chow T.W. Advances in the science and technology of carbon nanotube and their composites: a review // Compos. Sci. Technol. 2001. V. 61. Р. 1899–1912.
4. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Russian nanotechnologies. 2013. V. 8. Issue 3–4. P. 163–185.
5. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
6. Kislyakov P.P., Hohlov Yu.A., Krynin A.G., Kondrashov S.V. Poluchenie i primenenie polimernoj plenki s prozrachnym elektroprovodyashhim pokrytiem na osnove oksida indiya, legirovannogo olovom [Receiving and application of polymer film with transparent electroconducting coating on the basis of the indium oxide alloyed by tin] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 06. Available at: http://viam-works.ru (accessed at: September, 15 2015).
7. Yurkov G.Yu., Kondrashov S.V., Kraev I.D. Nanokompozity na osnove polijetilena vysokogo davleniya i nanochastic kobal'ta: sintez, struktura i svojstva [Nanocomposites based on high-density polyethylene and cobalt nanoparticles: synthesis, structure and properties] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 29–33.
8. Akatenkov R.V., Anoshkin I.V., Belyaev A.A., Bitt V.V., Bogatov V.A., Dyachkova T.P., Kutsevich K.E., Kondrashov S.V., Romanov A.M., Shirokov V.V., Horobrov N.V. Vliyanie strukturnoj organizacii uglerodnyh nanotrubok na radiojekraniruyushhie i elektroprovodyashhie svojstva nanokompozitov [Influence of the structural organization of carbon nanotubes on radio shielding and electrocarrying-out properties of nanocomposites] // Aviacionnye materialy i tehnologii. 2011. №1. S. 35–42.
9. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovaniya polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with functionalizing nanotubes] // Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
10. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
11. Perepelkin K.E. Armiruyushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymeric composites]. SPb.: Izd-vo NOT, 2009. 379 s.
12. Barber A.H., Cohen S.R., Wagner H.D. Measurement of carbon nanotube-polymer interfacial strength // Appl Phys Lett. 2003. V. 82 (23). Р. 4140–4142.
13. Haque A., Ramasetty A. Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites // Composite Structures. 2005. V. 71 (1). Р. 68–77.
14. Fisher F.T., Bradshaw R.D., Brinson L.C. Fiber waviness in nanotube-reinforced polymer composites – I: Modulus predictions using effective nanotube properties // Composites Science and Technology. 2003. V. 63. Р. 1689–1703.
15. Andrews R., Jacques D., Minot M., Rantell T. Fabrication of carbon multiwalled nanotube/polymer composites by shear mixing // Macromolecular Materials and Engineering. 2002.
V. 287 (6). Р. 395–403.
16. Shi D.-Li., Feng X.-Q., Huang Y.Y., Hwang K.Ch., Gao H. The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites // Journal of engineering materials and technology. 2004. V. 126. P. 250–257.
17. Mori T., Tanaka K. Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions // Acta Metall. 1973. V. 21. P. 571–574.
18. Pegel S., Potschke P., Petzold G., Alig I., Dudkin S.M., Lellinger D. Dispersion, agglomeration, and network formation of multi walled carbon nanotubes in polycarbonate melts // Polymer. 2008. V. 49. P. 974–984.
19. Villmow T., Kretzschmar B., Pötschke P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites // Composites Science and Technology. 2010. V. 70. P. 2045–2055.
20. Kasaliwal G.R., Pegel S., Göldel A., Pötschke P., Heinrich G. Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate // Polymer. 2010. V. 51. P. 2708–2720.
21. Chen L., Pang X.J., Yu Z.-L. Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing // Materials Science and Engineering. A. 2007. V. 457. P. 287–291.
22. Mack C., Sathyanarayana S., Weiss P., Mikonsaari I., Hübner C., Henningand F., lsner P.E.
Twin-screw extrusion of multiwalled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties // IOP Conf. Ser.: Mater. Sci. Eng. 2012.
DOI: 10.1088/1757-899X/40/1/012020.
23. Pardo S.G., Arboleda L., Ares A., Garc X., Dopico S., Abad M.J. Toughening Strategies of Carbon Nanotube/Polycarbonate Composites with Electromagnetic Interference Shielding Properties // Polymer Composites. 2013. V. 34. №11. P. 1938–1949.
24. Eitan A., Fisher F.T., Andrews R., Brinson L.C., Schadler L.S. Reinforce mentmechanisms in MWCNT-filled polycarbonate // Composites Science and Technology. 2006. V. 66. P. 1159–1170.
25. Man Y.H., Liand Z.C., Zhang Z.J. Interface-Dependent Mechanical Properties in MWNT-Filled Polycarbonate // Materials Transactions. 2009. V. 50. №6. P. 1355–1359.
26. Chin Y.-Ch. Design and Fabrication of Transparent Polycarbonate/Carbon Nanotube Composite Films // Electronic Theses, Treatises and Dissertations. 2007. Paper 3811.
27. Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene // Polymer. 2004. V. 45. P. 739–748.
28. Li J., Fang Zh., Tong L., Gu A., Liu F. Improving Dispersion of Multiwalled Carbon Nanotube sin Polyamide 6 Composites Through Amino-Functionalization // Journal of Applied Polymer Science. 2007. V. 106. P. 2898–2906.
29. Liu H., Wang X., Fang P., Wang Sh., Qi X., Pan Ch., Xie G., Liew K.M. Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide
6 composites // Carbon. 2010. V. 48. P. 721–729.
30. Ferreira T., Paiva M.C., Pontes A.J. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding // J. Polym Res. 2013. V. 20. P. 301.
31. Paiva M., Simon F., Novais R., Ferreira T., Proença M., Xu W., Besenbacher F. Controlled Functionalization of Carbon Nanotubes by a Solvent-free Multicomponent Approach // ACSNano. 2010. V. 4 (12). P. 7379–7386.
32. Nasir M., Mohammad I., Asad H., Shaukat S., Ahmad N.Kh. Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique // Journal of Composite Materials. 2014. V. 48. №10. P. 1197–1207.
33. Nasir M., Mohammad I., Asad H., Shaukat S. Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties // Polymers. 2013. V. 5.
P. 1380–1391.
34. Tager A.A. Fiziko-himiya polimerov / pod red. A.A. Askadskogo. 4-e izd., pererab. i dop. [Fiziko-himiya polymers / ed. by A.A.Askadsky. 4th ed, processed and added] M.: Nauchnyj mir, 2007. 573s.
35. Xiao K.Q., Zhang L.C., Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites // Composites Science and Technology. 2007. V. 67. P. 177–182.
36. Prashantha K., Soulestin J., Lacrampe M.F., Krawczak P., Dupin G., Claes M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties // Composites Science and Technology. 2009. V. 69. P. 1756–1763.
37. Siochi E.J., Working D.C., Park C., Lillehei P.T., Rouse J.H., Topping C.C., Bhattacharyya A.R., Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers // Compos. Part B: Eng. 2004. V. 35. P. 439–446.
38. Irzhak V.I. Epoksidnye kompozicionnye materialy s uglerodnymi nanotrubkami [Epoxy composite materials with carbon nanotubes] // Uspehi himii. 2011. T. 80. №8. S. 821–840.
39. Zhuang G.S., Sui G.X., Sun Z.S., Yang R. Pseudoreinforcement Effect of Multiwalled Carbon Nanotubes in Epoxy Matrix Composites // Journal of Applied Polymer Science. 2006. V. 102.
P. 3664–3672.
40. Liang Z., Gou J., Zhang C., Wang B., Kramer L. Investigation of molecular interactions between (10, 10) single-walled nanotube and Epon 862 resin/DETDA curing agent molecules // Materials Science and Engineering. A. 2004. V. 365. Issue 1–2. P. 228–234.
41. Puglia D., Valentini L., Kenny J.M. Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy // Journal of Applied Polymer Science. 2003. V. 88. P. 452–458.
42. Valentini L., Armentano I., Puglia D., Kenny J.M. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy // Carbon. 2004. V. 42. P. 323–329.
43. Zhou T., Wangaand X., Wang T. Cure reaction of multi-walled carbon nanotubes/diglycidylether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs // Polym Int. 2009. V. 58. P. 445–452.
44. Bae J., Jang J., Yoon S.-H. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction // Macromol. Chem. Phys. 2002. V. 203. P. 2196–2204.
45. Byun J., Kim D.S. Curing Behavior and Physical Properties of Epoxy Nanocomposites Comprising Amine-Functionalized Carbon Nanofillers // Polymer Composites. 2010. V. 31. №8. P. 1449–1456.
46. Visco A.M., Calabrese L., Milone C. Cure Rate and Mechanical Properties of a DGEBF Epoxy Resin Modified with Carbon Nanotubes // Journal of Reinforced Plastics and Composites. 2009. V. 28. №8. P. 937–949.
47. Xie H., Liu B., Sun Q., Yuan Z., Shen J., Cheng R. Cure Kinetic Study of Carbon Nanofibers/Epoxy Composites by Isothermal DSC // Journal of Applied Polymer Science. 2005. V. 96. P. 329–335.
48. Xie H., Liu B., Yuan Z., Shen J., Cheng R. Cure Kinetics of Carbon Nanotube/Tetrafunctional Epoxy Nanocomposites by Isothermal Differential Scanning Calorimetry // Journal of Polymer Science. Part B: Polymer Physics. 2004. V. 42. №20. P. 3701–3712.
49. Zhoua T., Wanga X., Zhub H., Wang T. Influence of carboxylic functionalization of MWCNTs on the thermal properties of MWCNTs/DGEBA/EMI-2,4 nanocomposites // Composites. Part A. 2009. V. 40. P. 1792–1797.
50. Tseng Ch.H., Wang Ch.-Ch., Chen Ch.-Y. Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-Integrated Epoxy Composites // Chem. Mater. 2007. V. 19.
P. 308–315.
51. Kim L.T., Kim H.-Ch., Kim S.-K., Kathi J. 2,3-Aminopropyltriethoxysilane Effect on Thermal and Mechanical Properties of Multi-walled Carbon Nanotubes Reinforced Epoxy Composites // Journal of Composite Materials. 2009. V. 43. №22. P. 2533–2541.
52. Wang Sh., Liang R., Wang B., Zhang Ch. Covalent Addition of Diethyltoluenediamines Onto Carbon Nanotubes for Composite Application // Polymer Composites. 2009. V. 30. №8. P. 1050–1057.
53. Wang Sh., Liang Zh., Liu T., Wang B., Zhang Ch. Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites // Nanotechnology. 2006. V.17. P. 1551–1557.
54. Thakre P.R., Bisrat Y., Lagoudas D.C. Electrical and Mechanical Properties of Carbon Nanotube-Epoxy Nanocomposites // Journal of Applied Polymer Science. 2010. V. 116. P. 191–202.
55. Zhou Y.X., Wu P.X., Cheng Z.-Y., Ingram J., Jeelani S. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube // eXPRESS Polymer Letters. 2008.
V. 2. №1. P. 40–48.
56. Zhou Y., Pervin F., Lewis L., Jeelani Sh. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy // Materials Science and Engineering. A. 2007. V. 452–453. P. 657–664.
57. Miyagawa H., Rich M.J., Drzal L.T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers // Thermochimica Acta. 2006. V. 442.
P. 67–73.
58. Allaoui A., Baia S., Cheng H.M., Baia J.B. Mechanical and electrical properties of a MWNT/epoxy composite // Composites Science and Technology. 2002. V. 62. P. 1993–1998.
59. Valentini L., Puglia D., Carniato F., Boccaleri E., Marchese L., Kenny J.M. Use of Plasma Fluorinated Single-walled Carbon Nanotubes for the Preparation of Nanocomposites with Epoxy Matrix // Composites Science and Technology. 2008. V. 68. P. 1008–1014.
60. Hernandez-Perez A., Aviles F., May-Pat A., Valadez-Gonzalez A., Herrera-Franco P.J., Bartolo-Perez P. Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes // Composites Science and Technology. 2008. V. 68. P. 1422–1431.
61. Gojny F.H., Schulte K. Functionalization effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites // Composites Science and Technology. 2004. V. 64.
P. 2303–2308.
62. Shen J., Huang W., Wu L., Hu Y., Ye M. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites // Composites Science and Technology. 2007. V. 67. P. 3041–3050.
63. Shen J., Huang W., Wu L., Hu Y., Ye M. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes // Composites. Part A. 2007. V. 38. P. 1331–1336.
64. Lau K., Lu M., Lam Ch., Cheung H., Sheng F.-L., Li H.-L. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion // Composites Science and Technology. 2005. V. 65. P. 719–725.
65. Loos M.R., Pezzin S.H., Amico S.C., Bergmann C.P., Coelho L.A.F. The matrix stiffness role on tensile and thermal properties of carbon nanotubes/epoxy composites // J. Mater. Sci. 2008. V. 43.
P. 6064–6069.
66. Zhuang G.S., Sui G.X., Sun Z.S., Yang R. Pseudoreinforcement Effect of Multiwalled Carbon Nanotubes in Epoxy Matrix Composites // Journal of Applied Polymer Science. 2006. V. 102.
P. 3664–3672.
67. Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites //Composites. Part A. 2008. V. 39.
P. 1876–1883.
68. Kim J.A., Seong D.G., Kang T.J., Youn J.R. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites // Carbon. 2006. V. 44. P. 1898–1905.
69. Moniruzzaman M., Du F., Romero N., Winey K.I. Increased Flexural Modulus and Strength in SWNT / Epoxy Composites by a New Fabrication Method // Department of Materials Science & Engineering. Papers (MSE). 2006.
70. Liao Y.-H., Marietta-Tondin O., Liang Zh., Zhang Ch., Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxyresin nanocomposites // Materials Science and Engineering. A. 2004.
V. 385. P. 175–181.
71. Xie H., Liu B., Yuan Z., Shen J., Cheng R. Cure Kinetics of Carbon Nanotube/Tetrafunctional Epoxy Nanocomposites by Isothermal Differential Scanning Calorimetry // Journal of Polymer Science. Part B: Polymer Physics. 2004. V. 42. P. 3701–3712.
72. Allaoui A., Bounia N.E. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? // eXPRESS Polymer Letters. 2009. V. 3. №9. P. 588–594.
73. Chow W.Sh., Tan P.L. Epoxy/Multiwall Carbon Nanotube Nanocomposites Prepared By Sonication and Planetary Mixing Technique // Journal of Reinforced Plastics and Composites. 2010. V. 29. №15. P. 2331–2342.
74. Ji A.F., Dyu Dzh., Tuliss M.D. Uprochnenie epoksidnyh smol [Hardening of epoxies] // Polimernye smesi. SPb.: Izd-vo NOT, 2009. T. 2. Funkcionalnye svojstva / pod red. D.R. Pola, K.B. Baknella. 605 s.
75. Kunz-Douglass S., Beaumont P.W.R., Ashby M.F. A model for the toughness of epoxy-rubber particulate composites // J. Mater. Sci. 1980. V. 15. P. 1109–1123.
In this work functional polymer coatings which can be used as hydrophobic processing for increase of protective properties of carbon steel working in fuels at influence of condensate are investigated. Data on resistance of functional polymer coatings on carbon steels in the salt spray chamber (SSC) and aviation fuel TS-1 are obtained. Method of measurement of interfacial angle (IFA) by water was used as an express method of estimation of hydrophobic behavior of the surface. The most effective hydrophobic agents for receiving polymer coatings are functional fluorinated oligomers. On the basis of the researches structures of functional polymer coatings which can be used in fuel systems of aircraft for additional protection of carbon steel have been chosen. Work is executed within implementation of the complex scientific direction 2.2. «Qualification and researches of materials» («The strategic directions of development of materials and technologies of their processing for the period
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. C. 2–14.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
5. Mikov D.A., Kutyrev A.E., Petrova V.A. Gidrofobiziruyushhie sostavy dlya dopolnitelnoj zashhity alyuminievyh splavov v toplivnyh sistemah izdelij aviatehniki [Hydrophobic compositions for additional protection of aluminum alloys in fuel systems of aviation equipment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 08. Available at: http://www.viam-works.ru (accessed: October 11, 2015). DOI: 10.18577/2307-6046-2015-0-9-8-8.
6. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashhita. 2013. №12. S. 06–18.
7. Salahova R.K. Korrozionnaja stojkost stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] // Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
8. Emelyanenko A.M., Bojnovich L.B. Analiz smachivaniya, kak jeffektivnyj metod izucheniya harakteristik pokrytij, poverhnostej i proishodyashhih na nih processov [The wetting analysis, as effective method of studying of characteristics of coverings, surfaces and processes occurring on them] // Zavodskaya laboratoriya. 2010. №9. S. 27–36.
9. Sostav dlya polucheniya supergidrofobnogo pokrytiya: pat. 2400510 Ros. Federaciya [Structure for receiving superhydrophobic coating: pat. 2400510 Rus. Federation]; opubl. 27.09.10. Byul. №27.
10. Gnedenkov S.V., Egorkin V.S., Sinebryuhov S.L., Vyalyj I.E., Pashinin A.S., Emelyanenko A.M., Bojnovich L.B. [Superhydrophobic composition coatings on surface of magnesium alloy] Supergidrofobnye kompozicionnye pokrytiya na poverhnosti magnievogo splava // Vestnik DVO RAN. 2013. №5. S. 3–11.
11. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
12. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovanie processa vozdejstviya agressivnyh komponentov promyshlennoj atmosfery na metallicheskie materialy v kamere solevogo tumana [Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S.86–94.
13. Shkolnikova V.M. Topliva. Smazochnye materialy. Tehnicheskie zhidkosti. Assortiment i primenenie [Lubricants. Technical liquids. Range and application]. M.: Izdatelsлшн centr «Tehinform», 1999. S. 62–75.
14. Mikov D.A., Kravchenko N.G., Petrova V.A., Kutyrev A.E. Opredelenie soderzhaniya medi v aviacionnyh toplivah metodom atomno-absorbcionnoj spektrometrii [Quantitative analysis of copper in aviation fuel by atomic absorption spectrometry] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 12. Available at: http://www.viam-works.ru (accessed: October 11, 2015). DOI: 10.18577/2307-6046-2015-0-10-12-12.
15. Privalenko A.N., Balak G.M., Bagramova E.K. Opredelenie soderzhaniya metallov v neftyanyh toplivah metodom atomno-absorbcionnoj spektrometrii [Definition of the content of metals in oil fuels method of nuclear and absorbing spectrometry] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. M.: 25 GOSNII Himmotologii, 2014. C. 298–306.
16. Mansfild F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coating // Journal of Applied Electrochemistry. 1995. V. 25. P. 187–202.
The method of laboratory tests of aluminum alloys for determination of corrosion resistance depending on duration of moistening, temperature and deposition rate of chlorides is offered. When developing test method mathematical planning of experiment was used. As a result of research of mathematical models, dependences of corrosion losses on duration of moistening and sedimentation of chlorides are received at different values of temperature. The received results give preliminary rough estimate of corrosion resistance of aluminum alloys at operation in conditions of the sea atmosphere. In article results of works on the complex scientific direction 18.3. «Мodeling and forecasting of climatic resistance» are provided («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovanie processa vozdejstviya agressivnyh komponentov promyshlennoj atmosfery na metallicheskie materialy v kamere solevogo tumana [Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber] //Aviacionnye materialy i tehnologii. 2015. №1 (34). 86–94.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
6. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
7. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
8. Panchenko Yu.M., Kovtanyuk V.V., Nikolaeva L.A. Dolgosrochnye prognozy korrozionnyh poter' plastin i provolochnyh spiralej tehnicheski vazhnyh metallov v razlichnyh regionah mira. Ch. 2. [Long-term forecasts of corrosion losses of plates and wire spirals of technically important metals in different regions of the world. Part 2.] // Korroziya: materialy, zashhita. 2013. №8. S. 8–15.
9. Mihajlovskij Yu.N., Strekalov V.P., Agafonov V.V. Model atmosfernoy korrozii metallov, uhtyvayushchaya meteorologicheskie i aerohimicheskie kharakteristiki [Model of atmospheric corrosion of the metals, considering meteorological and aero chemical characteristics] // Zashhita metallov. 1980 T. 16. №4. S. 397–413.
10. Mihajlov A.A., Strekalov P.V. Modelirovanie atmosfernoj korrozii materialov i vidy funkcij doza-otvet [Modeling of atmospheric corrosion of materials and types of functions dose–answer] // Korroziya: materialy, zashhita. 2006. №3. S. 2–13.
11. Agafonov V.V. Razrabotka fiziko-matematicheskoj modeli atmosfernoj korrozii metallov i metoda prognozirovaniya ih korrozionnoj stojkosti v razlichnyh klimaticheskih rajonah: avtoref. dis. … kand. tehn. nauk [Development of physical and mathematical model of atmospheric corrosion of metals and method of forecasting of their corrosion resistance in different climatic areas: thesis of Cand. Tech. Sci.]. M.: NIFHI, 1978. 25 s.
12. Panchenko Yu.M., Shuvahina L.A., Mihajlovskij Yu.N. Zavisimost skorosti atmosfernoy korrozii metallov ot klimaticheskikh usloviy raionov Dalnege Vostoka [Dependence of speed of atmospheric corrosion of metals on weather conditions of regions of the Far East] // Zashhita metallov. 1984. T. 20. №6. S. 851–863.
13. Strekalov P.V., Vu Din' Vuj. Matematicheskaya model i raschet veroyatnoj skorosti atmosfernoj korrozii metallov v tropicheskom i umerennom climate [Mathematical model and calculation of probable speed of atmospheric corrosion of metals in tropical and temperate climate] // Zashhita metallov. T. 21. №4. S. 525–533.
14. Panchenko Yu.M. Strekalov P.V., Zhilikov V.P., Karimova S.A., Berezina L.G. Zavisimost korrozionnoj stojkosti splava D16 ot zasolennosti i meteoparametrov primorskoj atmosfery [Dependence of corrosion resistance of alloy Д16 on salinity and meteoparameters of the seaside atmosphere] // Korroziya: materialy, zashhita. 2011. №8. S. 1–12.
15. Karimova S.A., Zhilikov V.P., Mihajlov A.A., Chesnokov D.V., Igonin T.N., Karpov V.A. Naturno-uskorennye ispytaniya alyuminievyh splavov v usloviyah vozdejstviya morskoj atmosfery [Natural accelerated tests of aluminum alloys in the conditions of influence of the sea atmosphere] // Korroziya: materialy, zashhita. 2012. №10. S. 1–3.
Stability of strength characteristics of polymeric composite materials ( carbon fiber and fibreglass based on epoxy binder)in the process of thermal aging has been evaluated. Calculation of energy of activation during the process of thermal aging for polymeric composite materials has been carried out. An influence of freeze-traw cycles on mechanical characteristics of materials is shown. The level of stability of strength characteristics for long-term operation has been determined. Work is executed within implementation of the complex scientific direction 18.3. «Modeling and forecasting of climatic resistance» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Gunyaev G.M. Tumanov A.T. – iniciator sozdaniya kompozitov [A.T Tumanov – initiator of creation of composites] // Kompozicionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotrasl. nauch.-tehnich. konf. M.: VIAM, 2009. S. 6–9.
3. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
5. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM [Use of three-dimensional reinforcing preforms during the production of polymer composite products] // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
6. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
7. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour // Aircraft Eng. and Aerosp. technol. 2010. V. 82. №4. P. 258–266.
8. 88ABW-2012-0190. Firefighting and emergency responsestudy of advanced composites aircraft // Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires: distribution A. Approved for public release 10.01.2012. P. 3.
9. Sugita Y., Winkelmann C., La Saponara V. Environmental and chemical degradation of carbon/epoxy lap joints for aerospace applications, and effects on their mechanical performance // Compos. Sci. and Technol. 2010. V. 70. №5. P. 829–839.
10. Kirillov V.N., Efimov V.A. Problemy issledovaniya klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 379–388.
11. Mikols W.J., Seferis J.C., Apicella A., Nicolais L. Evaluation of structural changes in epoxy systems by moisture sorption-desorption and dynamic mechanical studies // Polym. Compos. 1982.
V. 3. №3. P. 118–124.
12. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Issledovanie zakonomernostej vlagoperenosa i razrabotka standarta po opredeleniyu koefficienta diffuzii i predelnogo vlagosoderzhaniya dlya ocenki mehanicheskih svojstv ugleplastikov [Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics] // Aviacionnye materialy i tehnologii. 2013. №3. S. 44–48.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
14. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
15. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: December 01, 2015).
16. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2012. №6. S. 17–19.
17. Van Krevelen D.V. Svojstva i himicheskoe stroenie polimerov [Properties and chemical structure of polymers]. M.: Himiya, 1976. 416 s.
18. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i jekspluatacionnyh faktorov na novoe pokolenie jepoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 1. Issledovanie vliyaniya sorbirovannoj vlagi na jepoksidnuyu matricu i ugleplastik na ee osnove [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of the influence of sorbate moisture on epoxy matrix and layered carbon fiber on its basis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: January 25, 2015). DOI: 10.18577/2307-6046-2015-0-12-11-11.
19. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i jekspluatacionnyh faktorov na novoe pokolenie jepoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove jepoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: February 15, 2016). DOI: 10.18577/2307-6046-2016-0-1-10-10.
20. Janz G.J., Estimation of thermodynamic properties of organic compounds. New York: Academic press, 1958. 224 p.
21. Parks G.S., Huffman H.M. The free energies of some organic compounds. New York: Chem. Cat. Co.,1932. 60 p.
22. Rossini F.D. Chemical termodinamics. New York: Wiley, 1950. 514 p.
23. Karpuhin O.N. Opredelenie sroka sluzhby polimernogo materiala kak fiziko-himicheskaya problema [Definition of service life of polymeric material as physical and chemical problem] // Uspehi himii. 1980. T. 49. Vyp. 8. S. 1523–1553.
In article the substantiation of the use of monitoring systems of traffic and advantages of systems of weigh-in-motion are presented, factors reducing accuracy of measurements and ways of their elimination are considered. Physical aspects of the use of optical fiber Bragg lattice in road detectors are considered and functional requirements to road detectors are defined. One possible solution of the problem of determining the speed of vehicles using a pair of parallel optical fibers is described. Requirements for road detectors case taking into account strength characteristics and operating conditions on highways have been defined. The research are executed within realization of the complex scientific problem 4.1. «Smart PCM of the 2-nd and 3-rd generation» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] // Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Brodnikovskij A.M., Isaev V.A. Chto WIM gryadushhij nam gotovit? [What WIM future prepares for us?] // Avtomobilnye dorogi. 2014. №5 (990). S. 11–14.
5. Ying Huang, Leonard Palek, Robert Strommen, Ben Worel, Genda Chen. Real-Time Weigh-In-Motion Measurement Using Fiber Bragg Grating Sensors /Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems. 2014. V. 9061. P. 96–102.
6. Sorokin K.V., Murashov V.V. Mirovye tendencii razvitiya raspredelennyh volokonno-opticheskih sensornyh sistem (obzor) [Global trends in development of distributed fiber-optic sensor systems (review)] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 90–94. DOI: 10.18577/2071-9140-2015-0-3-90-94.
7. Fedotov M.Yu. Koncepcii sozdaniya i tendencii razvitiya intellektualnyh materialov (obzor) [Concepts of creation and trends of smart materials development (review)] // Aviacionnye materialy i tehnologii. 2015. №1. S. 71–80.
8. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Dianov E.M., Vasilev S.A., Medvedkov O.I. Primenenie opticheskogo volokna v kachestve datchikov deformacii v polimernyh kompozicionnyh materialah [Application of optical fiber as deformation sensors in polymeric composite materials] // Vse materialy. Enciklopedicheskij spravochnik. 2010. №3. S. 10–15.
9. Tosi D., Olivero M., Vallan A., Perrone G. Weigh-in-motion through fibre Bragg grating optical sensors // Electronics letters. 2010. V. 46. №17. P. 73–78.
10. Mahsidov V.V., Fedotov M.Yu., Shienok A.M., Zuev M.A. K voprosu ob integracii optovolokna v PKM i izmerenii deformacii materiala s pomoshhyu volokonnyh brjeggovskih reshetok [To question of integration of optical fiber in PCM and measurement of deformation of material by means of fiber Bragg grids] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №4. S. 568–574.
11. Fedotov M.Yu., Goncharov V.A., Shienok A.M., Sorokin K.V. Issledovanie izgibnyh deformacij ugleplastika optovolokonnymi sensorami na brjeggovskih reshetkah [Research of flexural deformations ugleplastika fiber optic sensors on Bragg grids] // Voprosy materialovedeniya. 2013. №2 (74). S. 139–147.
12. Zhi Zhou, Wanqiu Liua, Ying Huang, Huaping Wang, Jianping Hea, Minghua Huang, Jinping Ou. Optical Fiber Bragg Grating Sensor Assembly for 3D Strain Monitoring and Its Case Study in Highway Pavement // Mechanical Systems and Signal Processing. 2012. V. 28 P. 36–49.
13. Ke Wang, Zhanxiong Wei, Hongtao Zhang, Xiaoyang Huang, Bingquan Chen, Hong-Liang Cui. Fiber-Bragg-grating-based weigh-in-motion system using fiber-reinforced composites as the load-supporting material // Optical Engineering. 2006. V. 45. №6. P. 33–39.
14. Hongtao Zhang, Zhanxiong Wei, Lingling Fan, Shangming Yang, Pengfei Wang, Hong-Liang. Sensing System and a High Performance Optical Fiber Bragg Grating (FBG) Demodulator // Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems. 2010. V. 7647. P. 102–109.
15. Reznikov V.A., Mahsidov V.V., Gulyaev I.N. Sovremennoe sostoyanie metodov opredeleniya deformacii materiala s pomoshhyu integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Current state of methods of definition of deformation of material by means of the fiber Bragg grids integrated into its structure] // Kontrol i diagnostika. 2015. №11. S. 49–56.
16. Mahsidov V.V., Fedotov M.Yu., Goncharov V.A., Sorokin K.V. Mehanicheskie svojstva polimernyh kompozicionnyh materialov s integrirovannym opticheskim voloknom (obzor) [Mechanical properties of polymeric composite materials with the integrated optical fiber (overview)] // Deformaciya i razrushenie materialov. 2014. № 9. S. 2–7.