Articles
Stages of formation and development of single-crystal blade casting of heat resistant intermetallic alloys, composite alloys like VKLS, the creation of experimental industrial and industrial equipment for directed crystallization process and also development of blades cooling systems through creation of complex internal cavities are adduced. The problems connected with blades manufacture with the penetrating cooling system are considered. The forecast of getting blades with the penetrating cooling system without application of ceramic forms and cores, i.e. by additive technology is discussed.
2. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov: ucheb. posobie [Thermal stability of nickel alloys: manual]. M.: Mashinostroenie, 1998. 464 s.
3. Kurc V., Zam P.R. Napravlennaya kristallizaciya evtekticheskih materialov [The directed crystallization of eutectic materials]. M.: Metallurgiya, 1980. S. 91–96.
4. Evtekticheskij splav na osnove nikelya: a. s. 1111500 [Eutectic alloy on the basis of nickel: copyright certificate 1111500]; opubl. 09.06.83.
5. Splav na osnove nikelya: a. s. 1358425 [Alloy on the basis of nickel: copyright certificate 1358425]; opubl. 08.08.87.
6. Kishkin S.T., Petrushin N.V., Svetlov I.L. Evtekticheskie zharoprochnye splavy [Eutectic hot strength alloys] // Aviacionnye materialy na rubezhe XX–XXI vekov: nauch.-tehnich. sb. M.: VIAM, 1994. S. 252–258.
7. Bibring H. Conception et etude d' eutectiques orientes fortement solicites en temperature et en contraite // Ann. Chim. 1980. V. 5. №2–3. P. 111–138.
8. Khan T. Further Assessment and Improvement of High Strength y/y`-NbC. Composites for Advanced Turbine Blades // Proc. Conf. On in Situ Composites III. 1979. P. 378–389.
9. SR. 1.2.010–84. Sertifikat na splav VKLS20 [SR. 1.2.010-84. The certificate on alloy VKLS20]. M.: VIAM, 1984.
10. Gerasimov V.V., Demonis I.M. Formirovanie kompozicionnoj struktury v evtekticheskih splavah pri poluchenii lopatok GTD [Forming of composition structure in eutectic alloys when receiving blades of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 01. Available at: http://www.viam-works.ru (accessed: February 20, 2014).
11. Vestbruk D. Issledovaniya i perspektivy primeneniya intermetallicheskih soedinenij [Researches and perspectives of application of intermetallic compounds] // Metallovedenie i termicheskaya obrabotka. 1971. №4. S. 74–80.
12. Kornilov I.I. Metallidy – materialy s unikal'nymi svojstvami [Metallides – materials with unique properties] // Vestnik AN SSSR. 1970. №12. S. 30–33.
13. Himicheskij enciklopedicheskij slovar / pod red. I.L. Knunyanc [The chemical encyclopedic dictionary / ed. by I.L. Knunyants]. M.: Sovetskaya enciklopediya, 1983. 792s.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Litye lopatki iz intermetallidov nikelya (Ni3Al) dlya vysokotemperaturnyh gazovyh turbin [Cast blades from intermetallic compound of nickel (Ni3Al) for high-temperature gas turbines] // Konversiya v mashinostroenii. 2004. №4. S. 57–59.
16. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
17. Gerasimov V.V., Petrushin N.V., Visik E.M. Usovershenstvovanie sostava i tehnologiya lit'ya monokristallicheskih lopatok iz zharoprochnogo intermetallidnogo splava [Improvement of casting technology and composition of single crystal blades made of heat-resistant intermetallic alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 01. Available at: http://www.viam-works.ru (accessed: April 21, 2015). DOI: 10.18577/2307-6046-2015-0-3-1-1.
18. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
19. Kablov E.N., Petrushin N.V. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 56–78.
20. Polaya lopatka «Vihrepor»: pat. 2078946 Ros. Federaciya [Hollow blade «Vihrepor»: pat. 2078946 Rus. Federation]; opubl. 13.05.96.
21. Single-cast high-temperature, thin wall structure and method of making the same: pat. 5295530 US; publ. 22.03.94.
22. Kablov E.N., Svetlov I.L., Demonis I.M., Folomejkin Yu.I. Monokristallicheskie lopatki s transpiracionnym ohlazhdeniem dlya vysokotemperaturnyh gazoturbinnyh dvigatelej [Single-crystal blades with transpiration cooling for high-temperature gas turbine engines] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2003. Vyp. Vysokozharoprochnye materialy dlya sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva. S. 24–33.
23. Skibin V.A., Solonin V.I., Dulnev A.A. Perspektivy razvitiya gazoturbinnyh dvigatelej [Perspectives of development of gas turbine engines] // Gazoturbinnye tehnologii. 2000. №2. S. 4–14.
24. Gerasimov V.V., Visik E.M., Kolyadov E.V. O neispolzovannyh rezervah napravlennoj kristallizacii v povyshenii ekspluatacionnyh harakteristik detalej GTD i GTU [About unused reserves of the directed crystallization in increase of utilization properties of details of GTE and GTU] // Litejnoe proizvodstvo. 2013. №9. S. 30–32.
25. Sostavnoj keramicheskij sterzhen: pat. 2094163 Ros. Federaciya [Compound ceramic rod: pat. 2094163 Rus. Federation]; opubl. 27.10.97.
26. Bouse G.K. and Sikkenga B. Characterization of Double Walled Single Crystal Turbine Blades From Russian VIAM Institute // Technical Report №1058/A. Howmet Corporation. 1997. 11 p.
27. Kablov E.N. Chtoby sobrat samolet po atomam [To collect airplane on atoms] // Industriya. Inzhenernaya gazeta. 2015. №12. S. 1–2.
28. Moldless/coreless single crystal castings of nickel-aluminide: pat. 5312584 US; publ. 17.05.94.
29. Veys J.M., Mevrel R. Influence of Protective Coatings on the Mechanical Properties of CMSX-2 and Cotac 784 // Materials Science and Engineering. 1987. №88. P. 253–260.
The effect of parameters of thermomechanical and heat treatment on microstructure and phase composition change of alloy at all the stages of flat forgings production of new superalloy VG177 including ingot homogenization, isothermal forging and heat treatment is studied. The comparative tests results of tensile strength, impact strength and high-temperature strength are presented. The effect of long high temperature exposures simulating operation time on microstructure and mechanical properties of the item is investigated.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Locq D., Caron (Onera) P. On Some Advanced Nickel-Based Superalloys for Disk Applications // High Temperature Materials AL03-01. 2011. November. Issue 3. P. 1–9.
5. Huron E.S., Bain K.R., Mourer D.P., Gabb T.Р. Development of High Temperature Capability P/M Disk Superalloys // Superalloys-2008, TMS. 2008. P. 181–189.
6. Gabb T.P., Gayda J., Telesman J. Thermal and Mechanical Property Characterization of the Advanced Disk Alloy // NASA/TM-2005-213645. June, 2005.
7. Gabb T.Р., Gayda J., Telesman J., Kantzos P.T. Realistic Subscale Evaluations of the Mechanical Properties of Advanced Disk Superalloys // NASA/TM-2003-212086. January, 2003.
8. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
9. Tian G., Zou J., Wang Y., Wang W. Hot Deformation Behaviors and Microstructure Evolution in a New PM Nickel-Base Superalloy // Advanced Materials Research. 2011. Vol. 278. P. 411–416.
10. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Effektivnaya tehnologiya izgotovleniya diskov GTD iz zharoprochnyh nikelevyh splavov [Effective manufacturing techniques of disks GTD from heat resisting nickel alloys] // Kuznechno-shtampovoe proizvodstvo. 2013. №10. S. 13–17.
11. Filonova E.V., Bakradze M.M., Kochubey A.Ya., Vavilin N.L. Issledovanie izmenenij strukturno-fazovogo sostoyaniya splava VZh175 v processe goryachej deformacii i termicheskoj obrabotki [Structural-phase evolution of VZH175-alloy during hot deformation and heat treatment] // Aviacionnye materialy i tehnologii. 2014. №3. S. 10–13. DOI: 10.18577/2071-9140-2014-0-3-10-13.
12. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
13. Ovsepyan S.V., Lomberg B.S., Bakradze M.M., Letnikov M.N. Termicheskaya obrabotka deformiruemyh zharoprochnyh nikelevyh splavov dlya diskov GTD [Thermal processing of deformable heat resisting nickel alloys for disks GTE] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 122–130.
14. Gayda J. Alloy 10: A 1300F Disk Alloy // NASA/TM-2000-210358. August, 2000.
15. Gabb T.P., Gayda J., Kantzos P. The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments // NASA/TM-2007-214912. December, 2007.
16. Ovsepyan S.V., Lomberg B.S., Alalyikin A.A., Gerasimov D.E., Gromova A.A. Methods of structure preparing of superalloy for disc turbin applications for superplastic deformation // Material Science Forum. 1994. Vol. 170–172. P. 305–310.
17. Sharpe H.J., Saxena A. Effect of Microstructure on High-Temperature Mechanical Behavior of Nickel-Base Superalloys for Turbine Disc Applications // EuroSuperalloys-2010 / Advanced Materials Research. 2011. Vol. 278. P. 259–264.
18. Zharoprochnyj deformiruemyj splav na osnove nikelya i izdelie, vypolnennoe iz etogo splava: pat. 2280091 Ros. Federaciya [Heat resisting deformable alloy on the basis of nickel and the product executed from this alloy: pat. 2280091 Rus. Federation]; zayavl. 21.12.04; opubl. 20.07.06.
The forming process of aerospace parts by special isothermal hydraulic presses of 6,3 and 16 MN with additional technical equipment is considered. Technological capabilities of their effective use for manufacturing parts of various typical sizes from Titanium-based, Nickel – based and other alloys in air environment using ZhS6U cast alloy dies are shown. Influence of low-speed forming in various temperature gradients between workpiece and die on power parameters of forging, forming process of workpieces and their structure changes are studied. The article presents the possibility of using the heat exchange between workpiece and die to improve deformation process. The work is executed within implementation of the complex scientific direction 10.2. «Isothermal deformation on air of heterophased difficult-to-form superalloys of new generation» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
3. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Effektivnaya tehnologiya izgotovleniya diskov GTD iz zharoprochnyh nikelevyh splavov [Effective manufacturing techniques of disks GTE from heat resisting nickel alloys] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2013. №10. S. 13–17.
4. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
5. Razuvaev E.I., Lebedev D.Yu., Bubnov M.V. Formirovanie ultramelkozernistoj i nanorazmernoj struktury v metallah i splavah metodami deformacii [Forming of ultrafine grained and nanodimensional structure in metals and alloys deformation methods] // Aviacionnye materialy i tehnologii. 2010. №3. S. 3–8.
6. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
7. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: September 10, 2015). DOI: 10.18577/2307-6046-2015-0-2-3-3.
8. Kishkin S.T. Sozdanie, issledovanie i primenenie zharoprochnyh splavov: izbrannye tr. (K 100-letiyu so dnya rozhdeniya) [Creation, research and application of hot strength alloys: chosen works (To the 100 anniversary)]. M.: Nauka, 2006. 407 s.
9. Savushkin A.N., Kashapov O.S., Golynec S.A. Vliyanie skorosti nagruzheniya na mehanicheskie svojstva zharoprochnyh titanovyh splavov [An influence of loading rate on mechanical properties of heat-resistant titanium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 04. Available at: http://www.viam-works.ru (accessed: September 10, 2015). DOI: 10.18577/2307-6046-2015-0-3-4-4.
10. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
11. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: September 10, 2015).
12. Skugorev A.V., Burhanova A.A., Nochovnaya N.A., Izotova A.Yu. Effektivnost primeneniya izotermicheskoj deformacii pri izgotovlenii shtampovok iz titanovyh splavov [Efficiency of application of isothermal deformation when manufacturing punchings from titanium alloys] // Titan. 2013. №1 (39). S. 31–34.
13. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. № 3–4. S. 34–38.
14. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov: ucheb. posobie [Thermal stability of nickel alloys: manual]. M.: Mashinostroenie, 1998. 464 s.
15. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: September 10, 2015).
16. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
The influence of high temperature annealing on the microstructure, dendritic liquation parameters and time to failure of intermetallic Re-containing alloy VIN1 (VKNA-25) is investigated. It is shown that reduction of liquation due to annealing leads to rise of time to failure of Ni3Al-based intermetallic alloy. By regression analysis the correlation between time to failure and parameters of annealing is fixed. The convergence of the regression model and experimental data is <1,5%.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al Based Intermetallic Alloys – Current Stage and Potential Perceptivities // Materials. 2015. No. 8. P. 2537–2568.
4. Nikolaev S.V. Sovmestnoe legirovanie nikelya reniem i perehodnymi metallami V–VI grupp: avtoref. dis. … k.t.n [: thesis Cand. Tech. Sci.]. M., 2014. 24 s.
5. Bazyleva O.A., Bondarenko Yu.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by reniye] // Metallurgiya mashinostroeniya. 2011. №4. S. 30–34.
6. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah [Reny in heat resisting nickel alloys] // Materialovedenie. 2000. №2. S. 23–29.
7. Bazyleva O.A., Goryunov A.V., Zagvozdkina T.N., Nefedov D.G. Issledovanie likvacionnoj neodnorodnosti splava VKNA-4U MONO i ee vliyaniya na svojstva [Research of segregation heterogenity of alloy VKNA-4U of MONO and its influence on properties] // Metallurgiya mashinostroeniya. 2012. №4. S. 18–21.
8. Bazyleva O.A., Arginbaeva E.G. Vliyanie termicheskoj obrabotki na strukturu i zharoprochnost' renijsoderzhashhego intermetallidnogo splava na osnove nikelya [Effect of heat treatment on the structure and heat resistance rhenium containing intermetallic nickel-based alloy] // Aviacionnye materialy i tehnologii. 2014. №2. S. 21–26. DOI: 10.18577/2071-9140-2014-0-2-21-26.
9. Bazyleva O.A., Arginbaeva E.G., Fesenko T.V., Kolodochkina V.G. Issledovanie vliyaniya likvacionnoj neodnorodnosti na strukturu i dolgovechnost' intermetallidnyh splavov na osnove nikelya [Research of influence of segregation heterogenity on structure and durability of intermetallidny alloys on the basis of nickel] // Materialovedenie. 2014. №6. S.7–12.
10. Jóźwik P., Bojar Z. Influence of Heat Treatment on the Structure and Mechanical Properties of Ni3Al-Based Alloys // Archives of Metallurgy and Materials. 2010. Vol. 55. No. 1. P. 271–279.
11. Li P., Li S.S., Han Y.F. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX // Intermetallics. 2011. Vol. 19. P. 182–186.
12. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: May 26, 2016). DOI: 10.18577/2307-6046-2015-0-12-2-2.
13. Rigin V.E., Sidorov V.V., Burcev V.G. Udalenie azota iz slozhnolegirovannyh rasplavov na osnove nikelya v processe ih obezuglerozhivaniya [Nitrogen removal from complex-alloyed melts based on nickel in process of decarburization] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 02. Available at: http://www.viam-works.ru (accessed: June 07, 2016). DOI: 10.18577/2307-6046-2016-0-1-2-2.
14. Echin A.B., Bondarenko Yu.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i sovremennoe oborudovanie, ispolzuemoe pri proizvodstve lopatok gazoturbinnyh dvigatelej [Modern equipment for turbine blades production designed with a glance of high-gradient directional crystallization process] // Trudy VIAM : electron. nauch.-tenhich. zhurn. 2014. №12. St. 03. Available at: http://viam-works.ru (accessed: June 01, 2016). DOI: 10.18577/2307-6046-2014-0-1-3-3.
15. Povarova K.B., Drozdov A.A., Bondarenko Yu.A., Bazyleva O.A. i dr. Vliyanie napravlennoj kristallizacii na strukturu i svojstva monokristallov splava na osnove Ni3Al, legirovannogo W, Mo, Cr i RZE [Influence of the directed crystallization on structure and property of monocrystals of alloy on the basis of Ni3Al alloyed by W, Mo, Cr and RZE] // Metally. 2014. №4. S. 35–40.
16. Novik F.S., Arsov Ya.B. Optimizaciya processov tehnologii metallov metodami planirovaniya eksperimenta [Optimization of processes of technology of metals by methods of planning of experiment]. M.: Mashinostroenie, 1980. 304 s.
Modern development of innovative equipment (primarily aviation and aerospace) makes demands to materials capable to work at high temperatures in which traditional nickel alloys cannot work. The problem of creating new heat resistant including refractory alloys acquires nowadays particular significance not only in the aircraft industry in connection with development of high-economic gas turbine engines of new generation, but also in other industries. One of the promising scientific and research directions in this field is the refractory metals and alloys development which keep considerable durability up to temperatures of 1300–2500°C. Among the metals of the kind the «big four» – tungsten, tantalum, molybdenum, niobium are outstanding that both in pure or as alloys widely used in various industrial fields.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 11, 2015).
4. Kolobov Yu.R., Kablov E.N., Kozlov E.V. i dr. Struktura i svojstva intermetallidnyh materialov s nanofaznym uprochneniem [Structure and properties of intermetallidny materials with nanophase hardening]. M.: MISiS, 2008. 328 s.
5. Stolyankov Yu.V. Zharoprochnye metallicheskie kompozicionnye materialy konstrukcionnogo naznacheniya na osnove intermetallidov nikelya (obzor) [Heat resisting metal composite materials of constructional assignment on the basis of nickel intermetallic compound (review)] // Kompozity i nanostruktury. 2016. №4 (v pechati).
6. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
7. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater.; 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials; 3rd ed.]. M.: VIAM, 2015. 720 s.
8. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnyh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №5. S. 13–26.
10. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnyh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №6. S. 10–20.
11. Savickij E.M., Povarova K.B., Makarov P.V. Metallovedenie volframa [Tungsten metallurgical science]. M.: Metallurgiya, 1978. 223 s.
12. Savickij E.M., Burhanov G.S. Metallovedenie splavov tugoplavkih i redkih metallov [Metallurgical science of alloys of refractory and rare metals]. M.: Nauka, 1971. 352 s.
13. Gavrilyuk M.I., Podyachev V.N. Issledovanie svojstv splavov volframa, legirovannyh uglerodom, tantalom, niobiem i cirkoniem [Research of properties of alloys of the tungsten alloyed by carbon, tantalum, niobium and zirconium] // MiTOM. 1975. №4. S. 24–27.
14. Zaharova G.V., Popov A.I., Zhorova A.P., Fedin B.V. Niobij i ego splavy [Niobium and its alloys]. M.: Metallurgizdat, 1961. 380 s.
15. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb–Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
16. Svetlov I.L. Vysokotemperaturnye niobij-kremnievye kompozity – zamena monokristallicheskim nikelevym zharoprochnym splavam [High-temperature niobium - silicon composites – replacement to single-crystal nickel hot strength alloys] // Dvigatel. 2010. №5. S. 36–37.
17. Svetlov I.L. Vysokotemperaturnye niobij-kremnievye kompozity [High-temperature niobium-silicon composites] // Materialovedenie. 2010. №9. S. 29–38.
18. Svetlov I.L. Vysokotemperaturnye niobij-kremnievye kompozity [High-temperature niobium-silicon composites] // Materialovedenie. 2010. №10. S. 18–27.
19. Karpov M.I., Vnukov V.I., Korzhov T.S. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si evtekticheskogo sostava, poluchennogo metodom napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb–Si-system of the eutectic structure received by method of directed crystallization] // Deformaciya i razrushenie materialov. 2012. №12. S. 2–8.
20. Kuzmina N.A., Bondarenko Yu.A. Issledovanie fazovogo sostava i struktury niobij-kremnievogo kompozita, poluchennogo metodom napravlennoj kristallizacii v zhidkometallicheskom ohladitele [The phase composition and structure of the niobium-silicon composite manufactured by directional solidification in the liquid metal cooler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 03. Available at: http://www.viam-works.ru (accessed: June 20, 2016). DOI: 10.18577/2307-6046-2016-0-5-3-3.
21. Voronin G.M., Kishkin S.T., Panasyuk I.O., Podyachev V.N., Sivakova E.V. Tugoplavkie splavy v izdeliyah aviacionnoj i kosmicheskoj tehniki [] // Aviacionnye materialy na rubezhe XX–XXI vekov: nauch.-tehnich. sb. M.: VIAM, 1994. S. 264–273.
22. Podyachev V.N., Demonis I.M., Baranova O.A. Laboratoriya tugoplavkih splavov VIAM i ee pervyj rukovoditel A.S. Stroev. K 55-letiyu so dnya organizacii [Refractory alloys in products of aviation and space engineering] // Istoriya nauki i tehniki. 2013. №4. S. 19–25.
23. Kashin D.S., Stehov P.A. Zashhitnye pokrytiya dlya zharoprochnyh splavov na osnove niobiya [Protective coatings for high-temperature niobium-based alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 01. Available at: http://www.viam-works.ru (accessed: September 16, 2015). DOI: 10.18577/2307-6046-2015-0-6-1-1.
The article presents perspectives for application of wear-resistant coatings for gas turbine engine friction parts. The main directions of development of wear-resistant coatings abroad, as well as results of work on development of high wear-resistant coatings are adduced. The data on the durability, heat resistance, wear-resistant coatings metallographic studies are presented. The research is executed within the implementation of the complex scientific direction 17.3. «Multi-layer heat-resistant coatings, nanostructured strengthening erosion and corrosion-resistant, wear-resistant, anti-fretting coatings to protect parts of hot section and compressor of turbine engine and gas turbine» («The Strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
3. Hrushhov M.M., Marchenko E.A., Dubravina A.A., Semenov A.P. Strukturnye osobennosti almazopodobnyh pokrytij s razlichnym mehanizmom legirovaniya i ih tribologicheskie harakteristiki [Structural features of diamondlike coverings with the different mechanism of alloying and their tribological characteristics] // Fizika, himiya i mehanika tribosistem. 2011. №10. S. 147–152.
4. Kononov D.M., Zhdanov A.A., Morozov V.V. Poluchenie i issledovanie almazopodobnyh PVD-pokrytij [Receiving and research of diamondlike PVD coverings] // Nauchno-tehnicheskij vestnik Povolzhya. 2012. №6. S. 275–278.
5. Muratore C., Jones D.R., Voevodin A.A. Smart tribological coating with wear sensing capability // Wear. Vol. 265, Issues 5–6, P. 913–920.
6. Voevodin A.A., Zabinski J.S. Nanocomposite and nanostructured tribological materials for space applications // Composites Science and Technology. 2005. Vol. 55. P. 741–748.
7. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8
8. Muboyadzhyan S.A., Pomelov Ya.A. Zashhitnye pokrytiya dlya lopatok kompressora GTD [Protecting covers for GTD compressor blades] // Aviacionnye materialy i tehnologii. M.: VIAM, 2003. Vyp.: Vysokozharoprochnye materialy dlya sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva. S. 116–131.
9. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 149–163.
10. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTD by method of ionic modifying of surface] // Aviacionnye materialy i tehnologii. M.: VIAM, 2006. №1. S. 42–53.
11. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Ionno-plazmennye nanoslojnye erozionnostojkie pokrytiya na osnove karbidov i nitridov metallov [Ion-plasma nanolayer coverings erosion steady on the basis of carbides and nitrides of metals] // Metally. 2010. №5. S. 39–51.
12. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
13. Muboyadzhyan S.A., Lucenko A.N., Aleksandrov D.A., Gorlov D.S., Zhuravleva P.L. Issledovanie svojstv nanoslojnyh erozionnostojkih pokrytij na osnove karbidov i nitridov metallov [Research of properties of nanolayer erosion steady coverings on the basis of carbides and nitrides of metals] // Metally. 2011. №4. S. 91–101.
14. Aleksandrov D.A., Muboyadzhyan S.A., Gorlov D.S., Konnova V.I. Povyshenie erozionnoj i korrozionnoj stojkosti stalnyh lopatok kompressora GTD s pomoshhyu nanoslojnogo pokrytiya [Increase of erosion and corrosion resistance of steel compressor blades of GTD by means of nanolayer covering] // Problemy chernoj metallurgii i materialovedeniya. 2013. №4. S. 1–7.
15. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
16. Belous V.Ya., Varlamova V.E., Muboyadzhyan S.A., Aleksandrov D.A. Ionno-plazmennye pokrytiya dlya zashhity ot korrozii kompressornyh lopatok i drugih detalej GTD, ekspluatiruyushhihsya vo vseklimaticheskih usloviyah [Ионно-плазменные покрытия для защиты от коррозии компрессорных лопаток и других деталей ГТД, эксплуатирующихся во все климатических условиях] // Korroziya: materialy, zashhita. 2012. №1. S. 20–24.
17. Shchepilov A.V., Muboyadzhyan S.A., Gorlov D.S., Konnova V.I. Issledovanie vliyaniya ionno-plazmennyh pokrytij na dempfiruyushhuyu sposobnost' kompozicii «splav–pokrytie» pri ispytaniyah na vibrodinamicheskom stende [Investigation of the ion-plasma coatings influence on damping capacity of «alloy-coating» composition during testing on vibrodynamic bench] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 08. Available at: http://www.viam-works.ru (accessed: May 04, 2016). DOI: 10.18577/2307-6046-2015-0-4-8-8.
18. Artemenko N.I., Muboyadzhyan S.A. Inzhenernaya metodika ocenki velichiny i haraktera vnutrennih napryazhenij v odnoslojnyh uprochnyayushhih kondensirovannyh pokrytiyah [Engineering method of estimating the magnitude and nature of the internal stresses in the condensed monolayer reinforcing coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 04. Available at: http://www.viam-works.ru (accessed: May 04, 2016). DOI: 10.18577/2307-6046-2016-0-1-25-35.
19. Artemenko N.I., Muboyadzhyan S.A., Simonov V.N., Aleksandrov D.A. Ocenka otnositelnoj iznosostojkosti ionno-plazmennyh kondensirovannyh pokrytij na splavah VT8 i EP742 [Assessment of the relative wear resistance of ion-plasma fused coatings on VT8 and EP742 alloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 09. Available at: http://www.materialsnews.ru (accessed: May 04, 2016).
The structure formation features and mechanical properties of laser welded joints of Al–Li alloys V-1461, V-1469 are studied. It is found that the use of Al–Cu (Al–6Cu and Al–10Cu) filler materials improves the welded seam formation and mechanical properties of welded joint, reduces probability of defects formation such as porosity and incomplete fusion. For the welding joints done by laser welding with or without filler materials Sv-1201 and Sv-1217 there is no tendency to exfoliation and intergranular corrosion of laser welded joints. Postweld heat treatment slightly reduces the corrosion resistance. The work is executed within the frames of the complex scientific direction 10.8. «Fusion welding technologies of new structural materials» («The strategic direction of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnye alyuminievye splavy i tehnologii ih soedineniya dlya izdelij aviakosmicheskoj tehniki [Perspective aluminum alloys and technologies of their connection for products of aerospace equipment] // Tez. dokl. 2-j Mezhdunar. konf. i vyst. «Alyuminij–21. Svarka i pajka». 2012. S. 8.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Alyuminievo-litievye splavy: metallurgiya, svarka, metallovedenie [Aluminum-lithium alloys: metallurgy, welding, metallurgical science]. M.: Nauka, 2014. 296 s.
5. Kablov E.N., Lukin V.I., Zhegina I.P. i dr. Osobennosti i perspektivy svarki alyuminij-litievyh splavov [Features and welding perspectives aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. M.: VIAM, 2002. Vyp.: Tehnologiya proizvodstva aviacionnyh metallicheskih materialov. S. 3–12.
6. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Svarka i bezopasnost: Mater. Vseros. nauch.-praktich. konf. 2012. T. 1. S. 21–30.
7. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka alyuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika. 2013. №2. S. 47–52.
8. Shiganov I.N., Holopov A.A., Trushnikov A.V. i dr. Lazernaya svarka vysokoprochnyh alyuminij-litievyh splavov s prisadochnoj provolokoj [Laser bonding high-strength aluminum-lithium alloys with filler wire] // Svarochnoe proizvodstvo. 2016. №6. S. 44–50.
9. Lukin V.I., Shalin R.E., Efremov I.S., Yarovinskii Yu.U. Design and fabrication of large structures of aluminium-lithium alloys for aerospace technology // Welding International. 1997. V. 11. №5. P. 387–392.
10. Shiganov I.N., Shahov S.V., Holopov A.A. Lazernaya svarka alyuminievyh splavov aviacionnogo naznacheniya [Laser bonding of aluminum alloys of aviation assignment] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2012. №5. S. 34–50.
11. Hohlatova L.B., Blinkov V.V., Kondratyuk D.I., Ryabova E.N., Kolesenkova O.K. Struktura i svojstva svarnyh soedinenij listov iz splavov 1424 i V-1461, izgotovlennyh lazernoj svarkoj [Structure and properties of welded joints of sheets from 1424 and V-1461 alloys made by laser welding] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 9–13. DOI: 10.18577/2071-9140-2015-0-4-9-13.
12. Milewski J.O., Lewis O.K., Wittig J.E. Microstructural Evaluation of Low and High Duty Cycle Nd:YAG Laser Beam Welds in 2024-T3 aluminum // Welding Journal. 1993. V. 72. №7. P. 341–346.
13. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: July 07, 2016). DOI: 10.18577/2307-6046-2015-0-4-6-6.
14. Annin B.D., Fomin V.M., Antipov V.V., Ioda E.N., Karpov E.V., Malikov A.G., Orishich A.M., Cherepanov A.N. Issledovanie tehnologii lazernoj svarki alyuminievogo splava 1424 [Research of technology of laser bonding of aluminum alloy 1424] // Doklady Akademii nauk, 2015. T. 465. №4. S. 1–6.
15. Morozova L.V., Ishodzhanova I.V. Issledovanie zakonomernostej izmeneniya relefa poverhnosti obrazcov iz alyuminij-litievyh splavov metodom lazernoj mikroskopii [Research of patterns of change of a relief of a surface of samples from aluminumlithium alloys a method of laser microscopy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 08. Available at: http://www.viam-works.ru (accessed: July 07, 2016). DOI: 10.18577/2307-6046-2014-0-10-8-8.
Control of a chemical composition of alloys in conditions of modern metallurgical production is carried out by an optical emission analysis method. However, matrix effects and spectral interferences significantly impact on the accuracy of analysis results. It is possible to minimize systematic errors using certified reference materials (CRM's) with similar chemical composition to the analyzed alloy. Therefore the development and application of CRM's of composition of new advanced alloys is an actual task. This work presents information on CRMs of composition of advanced aviation alloys which developed in FSUE «VIAM». The work is executed within implementation of the complex scientific direction 2.1. «Fundamentally oriented research» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-dencsity] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
3. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A. Vysokoprochnye alyuminievye splavy [High-strength aluminum alloys] // Tsvetnye metally. 2013. №9. S. 63–65.
5. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
6. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
7. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
8. Letov A.F., Karachevcev F.N. Opyt razrabotki standartnyh obrazcov aviacionnyh splavov [Experience of development of standard samples of aviation alloys] // Mir izmerenij. 2012. №8. S. 31–35.
9. Karachevcev F.N., Letov A.F., Procenko O.M., Yakimova M.S. Razrabotka standartnyh obrazcov sostava aviacionnyh splavov [Development of standard samples of structure of aviation alloys] // Standartnye obrazcy. 2013. №4. S. 30–34.
10. Karachevcev F.N., Rassohina L.I., Gerasimov V.V., Visik E.M. Poluchenie standartnyh obrazcov dlya ekspress-analiza zharoprochnyh nikelevyh splavov [Receiving standard samples for the express analysis of heat resisting nickel alloys] //Metallurgiya mashinostroeniya. 2013. №6. S. 18–19.
11. GOST 8.753-2011. GSOEI. Standartnye obrazcy materialov (veshhestv) [GOST 8.753-2011. GSOYEI. Standard samples of materials (substances)]. M.: Standartinform, 2011. 19 s.
12. GOST 8.563–2009. GSI. Metodiki (metody) izmerenij [GOST 8.563-2009. GSI. Techniques (methods) of measurements]. M.: Standartinform, 2009. 20 s.
13. GOST 8.531–2002 GSOEI. Standartnye obrazcy sostava monolitnyh i dispersnyh materialov. Sposoby ocenivaniya odnorodnosti [GOST 8.531-2002 GSOYEI. Standard samples of structure of monolithic and disperse materials. Ways of estimation of uniformity]. M.: Izd-vo standartov, 2002. 15 s.
14. Dvoreckov R.M., Karachevcev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie himicheskogo sostava vysokolegirovannyh nikelevyh splavov aviacionnogo naznacheniya metodom AES-ISP v sochetanii s mikrovolnovoj probopodgotovkoj [Definition of chemical composition of high-alloy nickel alloys of aviation assignment by nuclear power plant-ISP method in combination to microwave test by preparation] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
15. Karachevtsev F.N., Dvoretskov R.M., Zagvozdkina T.N. Mikrovolnovaya probopodgotovka nikelevyh splavov dlya opredeleniya legiruyushhih elementov metodom AES-ISP [Microwave probe preparation of nickel alloys for determination of alloying elements using ICP-AES method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 11. Available at: http://www.viam-works.ru (accessed: May 27, 2016). DOI: 10.18577/2307-6046-2014-0-11-11-11.
16. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: May 27, 2016).
The results of research of the properties of thermoplastic polymer composition on the basis of polydodecanolactam (PA-12 polyamide) for creation of a new material with the lowered fire hazard for FDM of the additive technology are presented. On the basis of the spent researches it is shown that the composition on the basis of PA-12, comprising in its composition a halogenated flame retardant, possesses the viscosity comparable to materials used for 3D-printing, such as ABS plastic and Nylon-618 and also the improved characteristics of fire safety. The factual results can find application in the creation of functional products for aircraft interior by 3D--printing methods meeting the requirements of AP-25 on fire safety characteristics.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. № 3. S. 2–14.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials 3rd ed.] M.: VIAM, 2015. 720 s.
5. Normy letnoj godnosti samoletov transportnoj kategorii: AP-25: utv. Postanovleniem 28-j Sessii po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–7 [Standards of the flight validity of airplanes of transport category: AP-25: are approved as the resolution of the 28th Session on aircraft and use of air space 12.11.2008. 3rd ed. with corrections 1-7.]. M.: Aviaizdat. 2014. 278 s.
6. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: June 15, 2016).
7. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: June 15, 2016).
8. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
9. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
10. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 1. Ispytaniya na goryuchest. Vliyanie tolshhiny obrazca na registriruemye harakteristiki [Features of tests of aviation materials on fire danger. Part 1. Tests for combustibility. Influence of thickness of sample on registered characteristics] // Pozharovzryvobezopasnost. 2015. №1. S. 40–49.
11. Barbot'ko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 2. Ispytaniya na goryuchest – vliyanie prodolzhitel'nosti ekspozicii plamenem gorelki [Features of tests of aviation materials on fire danger. Part 2. Tests for combustibility – influence of duration of exposure by torch flame] // Pozharovzryvobezopasnost. 2015. №3. S. 13–24.
12. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 3. Ispytaniya na dymoobrazovanie – vliyanie tolshhiny monolitnogo obrazca polimernogo kompozicionnogo materiala [Features of tests of aviation materials on fire danger. Part 3. Tests on smoke emission – influence of thickness of monolithic sample of polymeric composite material] // Pozharovzryvobezopasnost. 2015. №4. S. 7–23.
13. Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: a literature review // Int. J. Adv. Manuf. Technol. 2013. Vol. 67. P. 1191–1203. DOI: 10.1007/s00170-012-4558-5.
14. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // Int. J. Adv. Manuf. Technol. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
15. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manuf. and Ind. Eng. 2012. No. 11 (1). P. 24–27.
16. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. No. 20/3. P. 221–227. DOI: 10.1108/RPJ-04-2013-0039.
17. Masood S.H., Song W.Q. Development of new metal/polymer materials for rapid tooling using Fused deposition modeling // Materials and Design. 2004. Vol. 25. P. 587–594. DOI: 10.1016/j.matdes.2004.02.009.
18. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. P. 506–518. DOI: 10.1016/j.commatsci.2013.06.041.
19. Turner B., Strong R., Gold S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling // Rapid Prototyping Journal. 2014. No. 20/3. P. 192–204. DOI: 10.1108/RPJ-01-2013-0012.
20. Durgun I., Ertan R. Experimental investigation of FDM process for improvement of mechanical properties and production cost // Rapid Prototyping Journal. 2014. No. 20/3. P. 228–235. DOI: 10.1108/RPJ-10-2012-0091.
21. Riddick J.C., Haile M.A., Wahlde R.V., Cole D.P., Bamiduro O., Johnson T.E. Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling // Additive Manufacturing. 2016. Vol. 11. P. 49–59. DOI: 10.1016/j.addma.2016.03.007.
22. Dul S., Fambri L., Pegoretti A. Fused deposition modelling with ABS–graphene nanocomposites // Composites: Part A. 2016. Vol. 85. Р. 181–191. DOI: 10.1016/j.compositesa.2016.03.013.
23. Domingo-Espin M., Puigoriol-Forcada J. M., Garcia-Granada A.-A., Llumà J., Borros S., Reyes G. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts // Materials & Design. 2015. Vol. 83. P. 670–677. DOI: 10.1016/j.matdes.2015.06.074.
The physical principles are considered and a simplified acoustic tract calculation algorithm for the C-SAFT antenna arrays digital focusing method with arbitrary size prism is developed heedful of any number of reflections and transformations of types of waves, improving efficiency of ultrasonic testing of products with flat-parallel boundaries. Existing techniques of digital focusing for given control items are either solve numerically the inverse task of diffraction with a certain set of assumptions and may not provide sufficient throughput capability, or use simplified algorithms which are not attentive to many important criteria (the presence of the inclined prism for antenna array, the attenuation of the signal amplitude on the way from the source to the receiver, the transformation of types of waves, etc.) that negatively affects the accuracy of the synthesized image and respectively reliability of control. To eliminate these shortcomings an algorithm for the reconstruction of
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviacionnoy tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Samokrutov A.A., Shevaldykin V.G. Ultrazvukovaya tomografiya metallokonstruktsiy metodom tsifrovoy fokusirovki antennoy reshetki [Ultrasonic tomography of metalwork method of digital focusing of the antenna array] // Defektoskopiya. 2011. №1. S. 21–38.
6. Bazulin E.G. Vosstanovlenie izobrazheniya defektov metodom C-SAFT po ekhosignalam, izmerennym antennoy matritsey v rezhime troynogo skanirovaniya [Recovery of the image of defects by the C-SAFT method on ekhosignalam, measured by antenna matrix in mode of threefold scanning] // Defektoskopiya. 2012. №1. S. 3–19.
7. Dalin M.A., Generalov A.S., Bojchuk A.S., Lozhkova D.S. Osnovnye tendencii razvitiya akusticheskih metodov nerazrushayushhego kontrolya [Basic development tendencies of acoustic non-destructive control methods] // Aviacionnye materialy i tehnologii. 2013. №1. S. 64–69.
8. Boychuk A.S., Stepanov A.V, Kosarina E.I., Generalov A.S. Primenenie tehnologii ultrazvukovyh fazirovannyh reshetok v nerazrushayushhem kontrole detalej i konstrukcij aviacionnoj tehniki, izgotavlivaemyh iz PKM [Application of ultrasonic phased lattice technique for nondestructive testing of aviation FRP parts structures] // Aviacionnye materialy i tehnologii. 2013. №2. S. 41–46.
9. Lozhkova D.S., Dalin M.A. Izmerenie parametrov kontrolnogo otrazhatelya, primenyaemogo pri nastroyke oborudovaniya pri kontrole diafragmy gasitelya pulsatsiy [The measure of FBH’s parameters, which is using for equipment set0up for inspection of the pulsation absorber diaphragm] // Aviacionnye materialy i tehnologii. 2013. №4. S. 58–61.
10. Boychuk A.S., Generalov A.S., Stepanov A.V. Nerazrushayushhij kontrol ugleplastikov na nalichie nesploshnostej s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [NDT monitoring of CFRP structural health by ultrasonic phased array technique] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
11. Noel Dude, Dr. Michael D.C. Moles. Advances in Phased Array Ultrasonic Technology Applications: Olympus NDT (Canada), 2007. 512 р.
12. Bernus von L., Bulavinov A., Joneit D. et al. Sampling Phased Array. A New Technique for Signal Processing and Ultrasonic Imaging // 9th ECNDT - We.3.1.2 (September 25–29, 2006). Berlin. 2006. P. 1–13.
13. Le Ber L., Roy O., Reverdy F., Mahaut S. Application and Simulation of Advanced Ultrasonic Array Techniques // 10th ECNDT (June 7–11, 2010). Moscow. 2010. P. 1–6.
14. Jobst М., Connolly G.D. Demonstration of the Application of the Total Focusing Method to the Inspection of Steel Welds // 10th ECNDT - Rep. 1.3.4 (June 7–11, 2010). Moscow. 2010. P. 1–11.
15. Bazulin E.G., Golubev A.S., Kokolev S.A. Primenenie ultrazvukovoy antennoy reshetki dlya registratsii ekhosignalov metodom dvoynogo skanirovaniya dlya polucheniya izobrazheniy defektov [Use of the ultrasonic antenna array for registration ekhosignalov method of double scanning for obtaining images of defects] // Defektoskopiya. 2009. №2. S. 18–32.
16. Chatillon S., Fidahoussen A., Iakovleva E., Calmon P. Time of flight inverse matching reconstruction of ultrasonic array data exploiting forwards models // NDT in Canada: National Conference. 2009. August 25–27.
17. Bulavinov A., Dalichow M., Kröning M., Kutz J.H.,Walte F. and Reddy K. Quantitative Ultrasonic Testing of Pressurized Components Using Sampling Phased Array // Proc. Nationals Seminar on Non-Destructive Evaluation (December 7–9, 2006). Hyderabad. 2006 P. 437–448.
18. Danilov V.N., Samokrutov A.A., Lyutkevich A.M. Teoreticheskie i eksperimental'nye issledovaniya maloaperturnykh pryamougolnykh preobrazovateley [Theoretical and pilot studies of low-aperture rectangular converters] // Kontrol. Diagnostika. 2003. №7. S. 29–37.
19. Aleshin N.P., Belyy V.E., Vopilkin A.Kh. i dr. Metody akusticheskogo kontrolya metallov [Methods of acoustic control of metals]. M.: Izd-vo MGTU im. Baumana, 2000. 496 s.
20. Klyuev V.V., Sosnin F.R., Filinov V.N. i dr. Nerazrushayushchiy kontrol i diagnostika: spravochnik [Non-destructive testing and diagnostics: directory]. M.: Mashinostroenie, 1995. 489 s.
Research results on the matter of thermoplastic polymer – polycarbonate parts marking are adduced. Influence of marking composition on the physical and mechanical characteristics of the pure (not modified) and modified by polycarbonate fluoropolymer 42 is studied. The polymers properties dependences on marking presence and kind of influence (thermal and heat – humidity aging) are adduced. It is found that applying the marking composition on polycarbonate practically does not make impact on mechanical properties of material and does not reduce «silver-resistance» of the pure and modified polycarbonate. It is shown that the marking paint of 7010 series and marking composition on the basis of VK-14 glue can be used for marking parts of polycarbonate as pure so modified by the fluoropolymer 42.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Yakovlev A.D. Himiya i tehnologiya lakokrasochnyh pokrytij [Chemistry and technology of paint coatings]. L.: Himiya, 1981. 352 s.
5. Chebotarevskij V.V., Kondrashov E.K. Tehnologiya lakokrasochnyh pokrytij v mashinostroenii [Technology of paint coatings in mechanical engineering]. M.: Mashinostroenie, 1978. 294 s.
6. OST1 90210–85. Specialnye markirovochnye kraski dlya priborov i elektroagregatov. Obshhie tehnicheskie trebovaniya. Vybor markirovochnyh krasok [OCT1 90210-85. Special marking paints for devices and electrounits. General technical requirements. Choice of marking paints]. M.: VIAM, 1986. 27 s.
7. Karyakina M.I. Ispytanie lakokrasochnyh materialov i pokrytij [Testing of paint and varnish materials and coverings]. M.: Himiya, 1988. 272 s.
8. Petrova G.N., Abakumova N.M., Rumyanceva T.V. i dr. Pozharobezopasnye litevye termoplasty [Fireproof molding thermoplastics] // Plasticheskie massy. 2005. №1. S. 45–46.
9. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29.
10. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviacionnoj tehniki [Molding thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №7. S. 21–29.
11. Sorokin A.E., Krasnov A.P., Zyuzina G.F. i dr. Stroenie i svojstva vysokomolekulyarnogo litevogo poliarilata [Structure and properties of high-molecular lityevy polyarylate] // Plasticheskie massy. 2012. №1. S. 8–12.
12. Petrova G.N., Beyder E.Yа. Construction materials based on reinforced thermoplastics Chemistry and Materials Science // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. Р. 1001–1007.
13. Brandshtetter F. Tendencii i perspektivy razvitiya polimernyh materialov [Tendencies and perspectives of development of polymeric materials] // Polimernye materialy: izdeliya, oborudovanie, tehnologii. 2005. №5. S. 2–4.
14. Petrova G.N., Beyder E.Ya. Povyshenie ognestojkosti polibutilentereftalata (obzor) [Increasing of fire resistance of polybutylene terephthalate (review)] // Aviacionnye materialy i tehnologii. 2014. №4. S. 58–64. DOI: 10.18577/2071-9140-2014-0-4-58-64.
15. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: June 15, 2016).
16. Orehov N.G., Starostina I.V. Analiz kachestva litoj prutkovoj (shihtovoj) zagotovki iz zharoprochnyh splavov proizvodstva FGUP «VIAM» [Quality analysis of the charge bar castings made from superalloys by FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 23–30. DOI: 10.18577/2071-9140-2014-0-s5-23-30.
17. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
18. Nesterova T.A., Zuev A.V., Platonov M.M. Teploizolyacionnyj material na osnove organicheskogo volokna dlya sistem kondicionirovaniya vozduha samoletov [Heat insulation material based on organic fiber for aircraft air conditioning systems] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 32–38. DOI: 10.18577/2071-9140-2015-0-2-32-38.
19. Petrova G.N. Napravlennaya modifikaciya polisulfonov i sozdanie na ih osnove litevyh i kompozicionnyh materialov: avtoref. dis. … kand. tehn. nauk [The directed updating of polysulphones and creation on their basis of lityevy and composite materials: thesis of Cand. Tech. Sci.]. M.: VIAM, 2011. S. 10–27.
20. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Vibropogloshhayushhie materialy na osnove termojelastoplastov [Vibro absorbing materials on the basis of thermoelastoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 06. Available at: http://viam-works.ru (accessed: July 14, 2016).
21. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ih osnove [Thermosteady polymers and polymeric materials on their basis] // Polimernye materialy. 2005. №4. S. 29–32.
22. Hazova T.N. Sostoyanie rynka v proizvodstve polikarbonata [Condition of the market in production of polycarbonate] // Mezhdunarodnye novosti mira plastmass. 2005. №1–2. S. 35–39.
23. Nazarov V.G., Stolyarov V.P., Petrova G.N., Gryaznov V.I., Buznik V.M. Osobennosti poverhnostnogo ftorirovaniya termoelastoplastov na osnove poliuretana i ego vliyanie na svojstva polimera [Features of surface fluorine of thermoelastoplastics on the basis of polyurethane and its influence on properties of polymer] // Perspektivnye materialy. 2016. №2. S. 52–60.
24. Semyonova L.V., Bejder E.Ya., Petrova G.N., Nefedov N.I. Elektroizolyacionnye svojstva polimernyh pokrytij [Electro-insulative properties of polymer coatings] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2014. №8. St. 07. Available at: http://www.viam-works.ru (accessed: March 16, 2016). DOI: 10.18577/2307-6046-2014-0-8-7-7.
25. Mihajlin Yu.A. Pokazateli ognestojkosti PM i metody ih opredeleniya [Indicators of fire resistance of PM and methods of their definition] // Polimernye materialy. 2011. №8. S. 32–34.
26. Petrova G.N., Zhuravleva P.L., Iskhodzhanova I.V., Beider E.Ya. Influence of Carbon Fillers on Properties and Structure of Polyethylene-Based Polymer Composites // Nanotechnologies in Russia. 2014. Vol. 9. No. 5–6. P. 305–310.
27. Richardson M. Promyshlennye polimernye kompozicionnye materialy / pod red. P.G. Babaevskogo [Industrial polymeric composite materials / ed. by P.G. Babaevskiy]. M.: Himiya,1980. 472 s.
28. Petrova G.N., Barbotko S.L., Bejder E.Ya. i dr. Pozharobezopasnye litevye termoplasty [Fireproof molding thermoplastics] // Plasticheskie massy. 2006. №1. S. 46–48.
29. Polimernye kompozicionnye materialy. Svojstva. Struktura. Tehnologii / pod red. A.A. Berlina [Polymeric composite materials. Properties. Structure. Technologies / ed. by A.A.Berlin]. SPb.: Professiya, 2009. 560 s.
30. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiya, 2006. S. 29–30.
31. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozicionnyh materialov na osnove konstrukcionnyh termoplastov [Problems of creation of composite materials on the basis of constructional thermoplastics] // Uspehi v himii i himicheskoj tehnologii 2010. T. 24. №4. S. 58–63.
32. Petrova G.N., Platonov M.M., Bo'shakov V.A., Ponomarenko S.A. Issledovanie kompleksa harakteristik bazovyh materialov dlya FDM-tehnologii additivnogo sinteza. Fiziko-mehanicheskie i teplofizicheskie svojstva [Research of complex of characteristics of base materials for FDM technology of the additive synthesis. Physicomechanical and heatphysical properties] // Plasticheskie massy. 2016. №5–6 (v pechati).
33. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Novyj termoplastichnyj material s ponizhennoj pozharoopasnostyu dlya FDM-tehnologii [New thermoflexible material with the lowered fire danger for FDM-technology] // Additivnye tehnologii: nastoyashhee i budushhee: mater. II Mezhdunar. konf. M.: VIAM, 2016. St. 05.
34. Sudarushkin Yu.K., Gudimov M.M., Romanov D.S., Sokolov M.Yu. Primenenie litevyh polikarbonatov v aviapriborostroenii [Application of molding polycarbonates in avionics] // Aviacionnaya promyshlennost. 2003. №2. S. 48–52.
The variations in surface temperature of D16-AT aluminum samples with white, grey and black epoxy coatings subjected to 9 years of natural weathering in Gelendzhik Climatic Testing Center are studied. The multilinear predication model of temperature variations including 12 meteorological indexes is proposed to predict the sample surface temperature. High reliability of model is shown. The rigorous 12-month intervals in the value of mean square error of monthly models surface temperature prediction are shown.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
3. Kablov E.N. i dr. Korrozionnaya agressivnost' primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 2. Novye podhody k ocenke korrozivnosti primorskih atmosfer [Corrosion aggression of the seaside atmosphere. H. 2. New approaches to assessment of korrozivnost of the seaside atmospheres] // Korroziya: materialy, zashhita. 2016. №1. S. 1–15.
5. Berdahl P., Akbari H., Levinson R. Weathering of Roofing Materials-An Overview // Constr. Build. Mater. 2006. P. 23.
6. Dan Z., Muto I., Hara N. Constant Dew Point Corrosion Tests for Metals, Developments in Corrosion Protection // Developments in Corrosion Protection / ed. by M. Aliofkhazraei. 2014. P. 81–101.
7. Dursun T., Soutis C. Recent developments in advanced aircraft aluminum alloys // Mater. Des. 2014. Vol. 56. P. 862–871.
8. Pickett J.E., Sargent J.R. Sample temperatures during outdoor and laboratory weathering exposures // Polym. Degrad. Stab. 2009. Vol. 94. P. 189–195.
9. Bijl P. и др. Modelling of sample surface temperature in an outdoor weathering test // Polym. Test. 2011. Vol. 30. P. 485–492.
10. Myers D. Predicting temperatures of exposure panels: models and empirical data // ACS Symposium Series, D. / ed. by R. Bauer, J. W. Martin. 1999. Vol. 722. P. 71–84.
11. Haillant O., Dumbleton D., Zielnik A. An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors // Sol. Energy Mater. Sol. Cells. 2011. Vol. 95. P. 1889–1895.
12. Tocháček J., Vrátníčková Z. Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers // Polym. Test. 2014. Vol. 36. P. 82–87.
13. Boxhammer J. Surface temperatures and temperature measurement techniques on the level of exposed samples during irradiational weathering in equipment // Weather. Plast. Test. to Mirror Real Life Perform. 1999. P. 105–119.
14. Schönlein A., Haillant O., Senff S. Surface temperatures of color painted samples in natural and artificial weathering with different laboratory light sources for optimized testing and investigations // Weathering Symposium: Natural and Artificial. 2009.
15. Burch D., Martin J. Predicting the temperature and relative humidity of polymer coatings in the field // ACS Symp. Ser. Am. Chem. Soc. 1999. P. 85–107.
16. Pickett J.E.E., Gibson D.A.A., Gardner M.M.M. Effects of irradiation conditions on the weathering of engineering thermoplastics // Polym. Degrad. Stab. 2008. Vol. 93. No. 8. P. 1597–1606.
17. Draper N.R., Smith H. Applied regression analysis. John Wiley & Sons, 1998. 736 p.
18. Kondratev K.Ya. Aktinometriya [Actinometry]. L.: Gidrometeorologicheskoe izdatelstvo, 1965. 693 s.
19. Startsev O.V. i dr. Zavisimost temperatury poverhnosti obrazcov ot harakteristik klimata pri ekspozicii v naturnyh usloviyah [Dependence of surface temperature of samples on climate characteristics on exposure in natural conditions] // Korroziya: materialy, zashhita. 2013. №7. S. 43–47.
20. Hromov S.P., Petrosyanc M.A. Meteorologiya i klimatologiya [Meteorology and climatology]. M.: Nauka, 2006. 582 s.
21. Kalitkin N.N. Chislennye metody [Numerical methods]. M.: Nauka, 1978. 512 s.
22. Tejlor Dzh. Vvedenie v teoriyu oshibok; per. s angl. [Introduction in the theory of mistakes; trans. form English]. M.: Mir, 1985. 272 s.
23. Moore D.S., McCabe G.P., Craig B.A. Introduction to the Practice of Statistics. Sixth Edit. New York, 2009. 766 p.
24. Stenli R. Perechislitelnaya kombinatorika [Enumerative combinatory]. M.: Mir, 1990. 440 s.
25. Handbook of Linear Algebra. Edited by Leslie Hogben. Chapman&Hall/CRC, Taylor&Francis Group, 2007. 1402 р.
26. Startsev O.V., Krotov A.S., Golub P. Effect of climatic and radiation ageing on properties of glass fibre reinforced epoxy laminates // Polym. Polym. Compos. 1998. Vol. 6. No. 7. P. 481–488.
27. Startsev O.V., Krotov A.S., Mashinskaya G.P. Climatic ageing of organic fiber reinforced plastics: water effect // Int. J. Polym. Mater. 1997. Vol. 37. No. 3–4. P. 161–171.
28. Afshar A. и др. Effect of long-term exposure to marine environments on the flexural properties of carbon fiber vinylester composites // Compos. Struct. 2015. Vol. 126. P. 72–77.
29. Starcev V.O., Frolov A.S. Vliyanie klimaticheskogo vozdejstviya na cvetovye harakteristiki lakokrasochnyh pokrytij [Influence of climatic influence on color characteristics of paint coatings] // Lakokrasochnye materialy i ih primenenie. 2015. №3. S. 16–18.
30. Startsev V.O., Nizina T.A. Prognozirovanie klimaticheskogo stareniya epoksidnyh polimerov po izmeneniyu cvetovyh pokazatelej [The modeling of epoxy polymers weathering by the color characteristics measurements] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2015. №12. St. 10 Available at: http://www.viam-works.ru (accessed: July 04, 2016). DOI: 10.18577/2307-6046-2015-0-12-10-10.
31. Dan Z. et al. Applicability of Constant Dew Point Corrosion Tests for Evaluating Atmospheric Corrosion of Aluminium Alloys // Corros. Sci. 2011. Vol. 53. P. 2006–2014.
32. Titareva A.S., Kirillov V.N., Startsev O.V. Povedenie materialov v elementah konstrukcij aviacionnoj tehniki, izgotovlennyh s primeneniem PKM i sistem LKP v usloviyah umerenno teplogo klimata [Behavior of materials in structural components of aeronautical engineering, manufactured using PCM and PC systems under conditions of temperate thermal climate] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 81–85.
33. Panin S.V., Startsev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Korroziya i starenie poverhnosti konstrukcionnyh materialov po dannym 3D mikroskopii [Corrosion and aging of structural materials surface studied by 3D microscopy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 12. Available at: http://www.viam-works.ru (accessed: July 04, 2016). DOI: 10.18577/2307-6046-2014-0-12-12-12.
34 Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2014. №7. St. 09. Available at: http://viam-works.ru (accessed: July 04, 2016). DOI: 10.18577/2307-6046-2014-0-7-9-9.
35. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.