Articles
Investigation of low cycle fatigue of Ni-based superalloy VZH175 was carried out at total strain ranged, symmetrical strain ratio R=-1, strain amplitude ε=0,5–0,8%, tem-peratures 20 and 650°С. Superalloy VZH175 has high mechanical properties under static and cyclic deformation. At LCF sufficiently stable hardening / softening diagrams are observed. Values of LCF limits were evaluated. The special signs of the mechanisms of initiation and propagation of fatigue cracks at temperatures 20 and 650°С were in-vestigated.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Terent'ev V.F. Ustalost' metallicheskih materialov [Fatigue of metal materials]. M.: Nauka. 2003. 254 s.
4. Reed R.C. The Superalloys – Fundamentals and Applications. Cambridge University Press. 2006. 372 p.
5. Gorbovec M.A., Bazyleva O.A., Beljaev M.S., Hodinev I.A. Malociklovaja ustalost' monokristallicheskogo intermetallidnogo splava tipa VKNA v uslovijah «zhestkogo» nagruzhenija [Low-cyclic fatigue of single-crystal intermetallidny alloy of VKNA type in the conditions of «rigid» loading] //Metallurg. 2014. №8. S. 111–114.
6. Beljaev M.S., Terent'ev V.F., Bakradze M.M., Gorbovec M.A., Gol'dberg M.A. Malociklovaja ustalost' zharoprochnogo splava VZh175 v uslovijah uprugo-plasticheskoj deformacii [Low-cyclic fatigue of VZh175 hot strength alloy in the conditions of elasto-plastic deformation] //Deformacija i razrushenie materialov. 2014. №7. S. 27–33.
7. Golubovskij E.R., Svetlov I.L., Petrushin N.V., Cherkasova S.A., Volkov M.E. Malociklovaja ustalost' monokristallov zharoprochnyh nikelevyh splavov pri povyshennyh temperaturah [Low-cyclic fatigue of monocrystals of heat resisting nickel alloys at elevated temperatures] //Deformacija i razrushenie materialov. 2009. №8. S. 41–48.
8. Wright J.K., Carroll L.J., Simpson J.A. et al. Low Cycle Fatigue of Alloy 617 at 850°C and 950°C //J. of Eng. Mat. and Tech. 2013. V. 135. №7. P. 031005-1–031005-8.
9. Tobias J., Chlupova A., Petrenec M. et al. Low Cycle Fatigue and Analysis of the Cyclic Stress-Strain Response in Superalloy Inconel 738LC /In: 18-th International Conference «En-gineering Mechanics 2012». Svratka. 2012. P. 1407–1411.
10. Kumar J., Prasad K., Kumar V. High-temperature low cycle fatigue damage assessment in near alpha IMI-834 titanium alloy //Fatigue Fract Engng Mater Struct. 2010. V. 34. P. 131–138.
11. Chen X., Yang Z., Sokolov M.A. et al. Low cycle fatigue and creep – fatigue behaviour on Ni – based alloy 230 at 850°C //Mater. Sci. and Eng. A. 2013. V. 563. P. 152–162.
12. Maier G., Riedel H., Somsen C. Cyclic deformation and lifetime of Alloy 617B during iso-thermal low cycle fatigue //Int. J. Fatigue. 2013. V. 55. P. 126–135.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
14. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zha-roprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
15. Bakradze M.M., Ovsepjan S.V., Shugaev S.A., Letnikov M.N. Vlijanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava JeK151-ID [Influence of modes of tempering on structure and property of punchings of disks from heat resisting EK151-ID nickel alloy] //Trudy VIAM. 2013. №9. St. 01 (viam-works.ru).
16. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
17. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz super-zharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from super - hot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
18. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
19. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
20. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlja perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTD] //Tehnologija legkih splavov. 2007. №2. S. 6–16.
21. Stepnov M.N., Shavrin A.V. Statisticheskie metody obrabotki rezul'tatov mehanicheskih ispytanij [Statistical methods of processing of results of mechanical tests]: Spravochnik. M.: Mashinostroenie. 2005. 400 s.
22. Dzhonson N., Lion F. Statistika i planirovanie jeksperimenta v tehnike i nauke [Statistics and experiment planning in equipment and science]: Per. s angl. /Pod red. Je.K. Leckogo. M.: Mir. 1980. 610 s.
Harmful impurity (sulfur and phosphorus) and microalloying additives (boron and lanthanum) competition at model heat resisting nickel alloy of Ni–Co–Cr–Al–Ti–W–Mo–Nb system inner interfaces segregations formation was investigated. It was shown that sulfur and phosphorus form segregation on grain boundaries and interphase interfaces «inclusion – matrix». Boron and lanthanum force out sulfur and phosphorus from interfaces, and these microalloying additives action mechanisms are different: boron refines and strengthens grain boundaries, and the lanthanum connects sulfur and phos-phorus in favorable morphology inclusions
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vlijanie mikrolegirujushhih jelementov na strukturno-fazovuju stabil'nost' i svojstva zharoprochnogo deformiruemogo splava (pri dlitel'nyh narabotkah) [Influence of microdoping elements on structural and phase stability and property of heat resisting deformable alloy (at long practices)] //Metallurg. 2013. №9. S. 93–97.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
6. Artjushov V.N., Kudrin A.A., Kirpichnikov M.S., Ponomareva L.L. Vlijanie mikrolegirovanija na tehnologicheskuju plastichnost' zharoprochnogo splava HN62MBKTJu (JeP742) [Influence of microalloying on technological plasticity of HN62MBKTYU hot strength alloy (ЭП742)] //Metallurg. 2011. №8. S. 69–72.
7. Chabina E.B., Filonova E.V., Lomberg B.S., Zajcev D.V. Osobennosti formirovanija struktury vysokozharoprochnogo nikelevogo splava pri kompleksnom mikrolegirovanii lantanoidami [Features of forming of structure of high-heat resisting nickel alloy at complex microalloying lanthanoids] //Metally. 2014. №6. S. 62–69.
8. Kozlov Je.V., Nikonenko E.L., Popova N.A., Koneva N.A. Vlijanie legirovanija lantanom na fazovyj sostav supersplava na osnove Ni–Al–Cr [Alloying influence by lanthanum on phase structure of superalloy on the basis of Ni–Al–Cr] //Vestnik TGU. 2013. T. 18. №4. S. 1527–1528.
9. Supersplavy [Superalloys]. T. II /Pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Hagelja. M.: Metallurgija. 1995. Kn. 1. 384 s.
10. Ohrupchivanie konstrukcionnyh stalej i splavov [Okhrupchivaniye constructional staly and alloys] /Pod red. K.L. Brajenta, S.K. Bener-dzhi. M.: Metallurgija. 1988. 551 s.
11. Gibbons T.B. Some effects of trace elements in reducing creep performance in high-strength superalloys //Materials Science and Technology. 1985. №1. P. 1033–1039.
12. Guttmann M. The influence of interfacial segregation in embrittlement phenomena //Adv. Mech. and Phys. Surfaces. 1981. V. 1. P. 1–109.
13. McLean M., Strang A. Effects of trace elements on mechanical properties of superalloys //Metals Technology. 1984. V. 11. №10. P. 454–465.
14. Meetham G.W. Trace elements in superalloys (review) //Metals technology. 1984. V. 11. №10. P. 414–418.
15. Fizicheskoe metallovedenie. T. 1. Atomnoe stroenie metallov i splavov [Physical metallurgical science. V. 1. Nuclear structure of metals and alloys] /Pod red. R.U. Kana, P. Haazena. M.: Metallurgija. 1987. 639 s.
16. Guttmann M. Temper embrittlement and ternary equilibrium segregation //Material Science and Engineering. 1980. V. 42. P. 227–232.
17. Mak Lin D. Granicy zeren v metallah [Borders of grains in metals]. M.: Metallurgizdat. 1960. 322 s.
18. Zhuanggi H., Hongwei S., Shouren G. Role of P, S and B on creep behavior of alloy 718 //Jour-nal of Material Science and Technology. 2001. V. 17. №4. P. 399–402.
19.Bokshtejn S.Z., Vasilenok L.B., Kishkin S.T., Radin I.V., Shpunt K.Ja. Izotopnoe issledovanie mikrolegirovanija granic zeren v nikelevyh splavah [Isotope research of microalloying of borders of grains in nickel alloys] //Poverhnost'. Fizika. Himija. Mehanika. 1987. №3. S. 117–122.
20. Bruemmer S.M., Jones R.H., Thomas M.T., Baer D.R. //Metallurgical Transaction. 1983. V. 14A. №2. P. 223.
21. Mulford R.A. Grain Boundary Embrittlement of Ni and Ni Alloys //Treatise on materials sci-ence and technology. 1983. V. 25. P. 1–18.
22. Swindeman R.W., Sikko V.H., Kluch R.L. //Metallurgical Transaction. 1983. V. 14A. №4. P. 584.
23. Loier C., Boos J.Y. The influence of grain boundary sulfur concentration on the intergranular brittleness of nickel of different purities //Metallurgical Transaction. 1981. V. 12A. №7. P. 1223–1233.
24. Guttmann M. Grain boundary segregation, two dimensional compound formation and precip-ita-tion //Metal Transaction. 1977. V. A8. №9. P. 1383–1403.
25. Orehov N.G., Cherkasova E.R., Chabina E.B., Sidorenko V.I. Izuchenie poverhnostej razrushenija sovremennyh nikelevyh splavov metodom Ozhe-jelektronnoj spektroskopii [Studying of surfaces of destruction of modern nickel alloys by method Ozhe-elektronnoy of spectroscopy] /V sb. Voprosy aviacionnoj nauki i tehniki. Ser. «Aviacionnye materialy». Vyp. Metody issledovanija konstrukcionnyh materialov. M.: VIAM. 1987. S. 150–156.
26. Kablov E.N., Bronfin M.B. Jeffekt S.T. Kishkina, ili pochemu struktura zharoprochnyh nikelevyh splavov dolzhna byt' geterofaznoj [Kishkin's effect or why the structure of heat resisting nickel alloys has to be heterophase] /V kn. Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina: nauchn.-tehn. sb.; Pod. red. E.N. Kablova. M.: Nauka. 2006. S. 7–14.
27. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvjaz' struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] //Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
28. Chabina E.B., Filonova E.V., Lomberg B.S., Morozova G.I. Jevoljucija struktury i fazovogo sostava deformiruemyh zharoprochnyh nikelevyh splavov dlja diskov GTD s uslozhneniem ih legirovanija [Evolution of structure and phase composition of deformable heat resisting nickel alloys for disks GTD with complication of their alloying] //MiТОМ. 2015. №3 (717). S. 8–12.
29. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennyh deformiruemyh nikelevyh splavov [Structure of modern deformable nickel alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №6. S. 22–27.
30. Bokshtejn S.Z., Kishkin S.T., Shalin R.E. Strukturnaja stabil'nost' konstrukcionnyh materialov [Structure of modern deformable nickel alloys] /V sb. Aviacionnye materialy na rubezhe XX–XXI vekov. M.: VIAM. 1994. S. 547–553.
31. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
32. Metody analiza poverhnosti [Methods of the analysis of surface] /Pod red. A. Zanderny. M.: Mir. 1979. 582 s.
33. Edwards B.C., Byre B.L., Gage G. //Acta Metallurgica. 1980. V. 28. R. 335–356.
34. Babikova Ju.F., Gusakov A.A., Rjabova T.T. Avtoradiografija po mgnovennomu izlucheniju [Autoradiography on prompt radiation]: Uchebnoe posobie. M.: MIFI. 1980. 52 s.
35. Was G.S., Martin J.R. The influence of grain boundary precipitation on the measurement of chromium redistribution and phosphorous segregation in Ni–16Cr–9Fe //Metallurgical Trans-action. 1985. V. 16A. №3. P. 349–359.
36. Guttmann M., Dumoulin P., Tan-Tai N., Fontaine P. An Auger Electron Spectroscopic study of phosphorus segregation in the grain boundaries of nickel base alloy 600 //Corrosion NACE. 1981. V. 37. №7. P. 416–425.
37. Briant C.L. Grain boundary segregation in Ni-base alloy 182 //Metallurgical Transaction. 1988. V. 19A. №1. P. 137–143.
Change of structural and phase condition of heat resisting deformable nickel alloy for disks of the turbines ЭК151 is investigated at additional alloying by rhenium and tantalum. It is established that the alloying rhenium of alloy ЭК151 leads to essential decrease in diffusion activity of principal alloying elements and additional solid solution strengthening. The alloying of alloy ЭК151 tantalum increases quantity of strengthening γ'-phase, promotes forming more thermodynamic steady carbides and particles of γ'-phase.
2. Bokshtejn S.Z., Kishkin S.T., Shalin R.E. Strukturnaja stabil'nost' konstrukcionnyh materialov [Structural stability of constructional materials] /V sb. Aviacionnye materialy na rubezhe XX–XXI vekov. M.: VIAM. 1994. S. 547–553.
3. Supersplavy II [Superalloys II] /Pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Hagelja. M.: Metallurgija. 1995. Kn. 1. 384 s.
4. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennyh deformiruemyh nikelevyh splavov [Structure of modern deformable nickel alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №6. S. 22–27.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
6. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Novyj zharoprochnyj nikelevyj splav dlja diskov gazoturbinnyh dvigatelej i gazoturbinnyh ustanovok [New heat resisting nickel alloy for disks of gas turbine engines and gas turbine units] //Materialovedenie. 2010. №7. S. 24–28.
7. Lomberg B.S., Ovsepjan S.V., Limonova E.N., Letnikov M.N., Bakradze M.M., Chabina E.B., Latyshev V.B. Zharoprochnye nikelevye splavy dlja diskov GTD. Zharoprochnye svarivaemye splavy dlja detalej gorjachego trakta GTD [Heat resisting nickel alloys for disks GTD. Heat resisting welded alloys for details of hot path of GTD] /V sb. tezisov Mezhdunarodnoj nauchn.-tehnich. konf. «Aktual'nye voprosy aviacionnogo materialovedenija». M.: VIAM. 2007. S. 19–20.
8. Lomberg B.S., Ovsepjan S.V., Latyshev V.B., Chabina E.B. Zharoprochnye deformiruemye splavy dlja gorjachego trakta gazoturbinnyh dvigatelej (GTD) [Heat resisting deformable alloys for hot path of gas turbine engines (GTD)] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007»: Jubilejnyj nauch.-tehnich. M.: VIAM. 2008. S. 59–64.
9. Chabina E.B., Filonova E.V., Lomberg B.S., Morozova G.I. Jevoljucija struktury i fazovogo sostava deformiruemyh zharoprochnyh nikelevyh splavov dlja diskov GTD s uslozhneniem ih legirovanija [Evolution of structure and phase composition of deformable heat resisting nickel alloys for disks GTD with complication of their alloying] //MiTOM. 2015. №3 (717). S. 8–12.
10. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
11. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vlijanie mikrolegirujushhih jelementov na strukturno-fazovuju stabil'nost' i svojstva zharoprochnogo deformiruemogo splava (pri dlitel'nyh narabotkah) [Influence of microdoping elements on structural and phase stability and property of heat resisting deformable alloy (at long practices)] //Metallurg. 2013. №9. S. 93–97.
12. Chabina E.B., Filonova E.V., Lomberg B.S., Zajcev D.V. Osobennosti formirovanija struktury vysokozharoprochnogo nikelevogo splava pri kompleksnom mikrolegirovanii lantanoidami [Features of forming of structure of high-heat resisting nickel alloy at complex microalloying lanthanoids] //Metally. 2014. №6. S. 62–69.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija iz-otermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
14. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvjaz' struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] //Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
15. Bakradze M.M., Ovsepjan S.V., Shugaev S.A., Letnikov M.N. Vlijanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava JeK151-ID [Influence of modes of tempering on structure and property of punchings of disks from heat resisting EK151-ID nickel alloy] //Trudy VIAM. 2013. №9. St. 01 (viam-works.ru).
16. Morozova G.I. Kompensacija disbalansa legirovanija zharoprochnyh nikelevyh splavov [Compensation of imbalance of alloying of heat resisting nickel alloys] //MiTOM. №12. 2012. S. 52–56.
17. Kablov E.N., Bronfin M.B. Jeffekt S.T. Kishkina, ili pochemu struktura zharoprochnyh nikelevyh splavov dolzhna byt' geterofaznoj [Kishkina or why the structure of heat resisting nickel alloys has to be heterophase] /V sb. Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina: nauchn.-tehn. sb.; Pod. red. E.N. Kablova. M.: Nauka. 2006. S. 7–14.
18. Skljarenko V.G., Moiseev N.V., Gerasimov V.V., Petrushin N.V., Chabina E.B. Razrabotka tehnologii formirovanija reglamentirovannoj struktury v shtampovkah diskov ih slitkov vysokogradientnoj kristallizacii splava JeK151 [Development of technology of forming of the regulated structure in punchings of disks of their ingots of high-gradient crystallization of alloy ЭК151] /V sb. tezisov Mezhdunarodnoj nauchn.-tehnich. konf. «Aktual'nye voprosy aviacionnogo materialovedenija». M.: VIAM. 2007. S. 70–71.
19. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (prodolzhenie) [Reny in heat resisting nickel alloys for blades of gas turbines (continuation)] //Materialovedenie. 2000. №3. S. 38–43.
20. Kablov E.N. Fiziko-himicheskie i tehnologicheskie osobennosti sozdanija zharoprochnyh splavov, soderzhashhih renij [Physical and chemical and technological features of creation of the hot strength alloys, containing reniye] //Vestnik Moskovskogo universiteta. Ser. 2: Himija. 2005. T. 46. №3. S. 155–167.
21. Bakradze M.M., Lomberg B.S., Ovsepjan S.V., Chabina E.B., Filonova E.V. Vlijanie renija na fazovyj sostav i svojstva zharoprochnogo deformiruemogo splava na nikelevoj osnove dlja diskov turbin GTD [Influence of reniye on phase structure and property of heat resisting deformable nickel-based alloy for disks of turbines GTD] //Materialovedenie. 2015. №1. S. 38–44.
22. Fizicheskoe metallovedenie. T. 1. Atomnoe stroenie metallov i splavov [Physical metallurgical science. T. 1. Nuclear structure of metals and alloys] /Pod red. R.U. Kana, P. Haazena. M.: Metallurgija. 1987. 639 s.
23. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
24. Golikov I.N., Maslenkov S.B. Dendritnaja likvacija v staljah i splavah [Dendritic segregation in stalyakh and alloys]. M.: Metallurgija. 1977. 223 s.
An increase of weight efficiency of perspective aerospace vehicles is possible by using aluminium-lithium alloys with low density. Perspective, hi-strength, hi-stiffness, alloy V-1469, based on Al Cu Li system and alloyed with Ag, Sc and Zr, has been developed in VIAM. Industrial technology of manufacturing extruded products from V-1469 alloy was developed. Pressing temperature was chosen. Effects of heat treatment on structure and mechanical properties were studied. Complex of mechanical, corrosion and resource characteristics was investigated.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Fridljander I.N. Vospominanija o sozdanii aviakosmicheskoj i atomnoj tehniki iz aljuminievyh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka. 2005. 275 s.
4. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials − for perspective aviation engineering of production of JSC OAK] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
6. Splav na osnove aljuminija i izdelie, vypolnennoe iz nego [Alloy on the basis of aluminum and the product which has been executed of it]: pat. 2237098 Ros. Federacija; opubl. 24.07.2003.
7. Fridljander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hohlatova L.B. Aljuminijlitievye splavy [Alyuminiylitiyevye alloys] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauchn.-tehn. sb. M.: VIAM. 2007. S. 163–171.
8. Klochkova Ju.Ju., Grushko O.E., Lancova L.P., Burljaeva I.P., Ovsjannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo aljuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective alyuminiylitiyevy alloy V-1469] //Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
9. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of V-1469 high-strength alloy of Al–Cu–Li–Mg system] //Trudy VIAM. 2014. №7. St. 01 (viam-works.ru).
10. Kolobnev N.I., Hohlatova L.B., Oglodkov M.S., Klochkova Ju.Ju. Vysokoprochnye splavy sistemy Al–Cu–Li s povyshennoj vjazkost'ju razrushenija dlja samoletnyh konstrukcij [High-strength alloys of Al–Cu–Li system with the increased fracture toughness for aircraft designs] //Cvetnye metally. 2013. №9. S. 66–71.
11. Shamraj V.F., Grushko O.E., Timofeev V.N., Lazarev Je.M., Klochkova Ju.Ju., Gordeev A.S. Strukturnye sostojanija materiala pressovok i listov iz splava sistemy Al–Cu–Li, legirovannogo serebrom [Structural conditions of material of pressings and sheets from the alloy of Al–Cu–Li system alloyed by silver] //Metally. 2009. №6. C. 53–59.
12. Shamray V., Grushko O., Timofeev V., Lazarev E., Klochkova J. Structural Evolution in Aluminum-Copper-Lithium-Magnesium Alloy Sheets During Processing /Proceedings of the 12-th International Conference of Aluminium Alloys. 2010. P. 2141–2146.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development of alyuminiylitiyevy alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
14. Fridljander I.N., Grushko O.E., Shamraj V.F., Klochkov G.G. Vysokoprochnyj konstrukcionnyj Al–Cu–Li–Mg splav ponizhennoj plotnosti, legirovannyj serebrom [The high-strength constructional Al–Cu–Li–Mg alloy of the lowered density alloyed by silver] //MiTOM. 2007. №6 (624). S. 3 7.
15. Troeger P., Domack M.S., Wagner J.A. Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys /NASA. Langly Research Center Hampton. Virginia. 2000.
16. Hales S.J., Hafley R.A. Structure-Property Correlations in Al–Li Alloy Integrally Stiffened Extrusions /NASA, Langly Research Center Hampton. 2001.
17. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminium-lithium alloys: processing, properties, and applications. 2013. 608 p.
18. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Aljuminievo-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and properties]. K.: Naukova dumka. 1992. 192 s.
19. Aviacionnye materialy [Aviation materials]: Spravochnik v 13-ti tomah. 7-e izd., pererab. i dop. /Pod obshh. red. E.N. Kablova. M.: VIAM. 2009. T. 4. Ch. 1. Kn. 2. 170 s.
For advanced aerospace application it is necessary to develop aluminium alloys of new generation with improved service characteristics. For the purpose of increasing mechanical properties of Al–Mg alloys it is purposeful to add small amount of scandium, but small additives of alloying elements with high solubility also can influence microstructure and properties of semi-products. This study deals with effect of small additives of silver, zink and copper in amount not exceeding maximum solubility on microstructure of ingots and cold-rolled sheets of V-1579 type alloy and it’s mechanical properties
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
5. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki aljuminijlitievyh splavov [Features and perspectives of welding of alyuminiylitiyevy alloys] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Tehnologija proizvodstva aviacionnyh metallicheskih materialov». M.: VIAM. 2002. S. 3–12.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
7. Rybin V.V., Andreev G.N., Barahtina N.N., Osokin E.P. Nekotorye aspekty sozdanija sovremennyh morskih vysokoprochnyh aljuminievyh splavov so skandiem [Some aspects of creation of modern sea high-strength aluminum alloys with scandium] //Voprosy materialovedenija. 2006. №1. S. 92–102.
8. Zaharov V.V., Rostova T.D. Uprochnenie aljuminievyh splavov pri legirovanii ih skandiem [Hardening of aluminum alloys at alloying their scandium] //MiTOM. 2013. №12 (702). S. 24–29.
9. Zaharov V.V. O sovmestnom legirovanii aljuminievyh splavov skandiem i cirkoniem [About joint alloying of aluminum alloys scandium and zirconium] //MiTOM. 2014. №6 (708). S. 3–8.
10. Ana Alil, Miljana Popović, Tamara Radetić, Milorad Zrilić, Endre Romhanji. Influence of annealing temperature on the baking response and corrosion properties of an Al–4,6 wt% Mg alloy with 0,54 wt% Cu //Journal of Alloys and Compounds. 2015. V. 625. P. 76–84.
11. Masahiro Kubota, Barry C. Muddle Effect of Trace Additions of Ag on Precipitation in Al–Mg Alloys //Materials Transactions. 2005. V. 46. №12. P. 2968–2974.
12. Elagin V.I. Legirovanie deformirovannyh aljuminievyh splavov perehodnymi metallami [Alloying of the deformed aluminum alloys transition metals]. M.: Metallurgija. 1975. 321 s.
13. Rjabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vlijanie predvaritel'nogo estestvennogo starenija na svojstva splava 1913 v iskusstvenno sostarennom sostojanii [Influence of preliminary natural aging on properties of alloy 1913 in artificially made old condition] //Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
14. Rjabov D.K., Kolobnev N.I., Samohvalov S.V., Vahromov O.V. Izmenenie mehanicheskih i korrozionnyh svojstv splava 1913 pri iskusstvennom starenii [Change of mechanical and corrosion properties of alloy 1913 at artificial aging] //Voprosy materialovedenija. 2013. №4 (76). C. 24–29.
15. Kolobnev N.I., Mahsidov V.V., Samohvalov S.V., Rjabov D.K. Vlijanie soderzhanija antirekristallizatorov na strukturu i svojstva listov iz splava 1370 sistemy Al–Mg–Si–Cu–Zn [Influence of the maintenance of antirekristallizator on structure and property of sheets from alloy of the 1370th system Al–Mg–Si–Cu–Zn] //Tehnologija legkih splavov. 2012. №1. S. 18–24.
16. Rjabov D.K., Kolobnev N.I., Kochubej A.Ja., Zavodov A.V. Izmenenie mehanicheskih svojstv listov iz splava 1913 pri vvedenii skandija [Change of mechanical properties of sheets from alloy 1913 at scandium introduction] //Aviacionnye materialy i tehnologii. 2014. №4. S. 3–8.
17. Gorelik S.S. Rekristallizacija metallov i splavov [Rekristallizatsiya of metals and alloys]. M.: Metallurgija. 1967. 405 s.
18. Filatov Ju.A. Splavy sistemy Al–Mg–Sc kak osobaja gruppa deformiruemyh aljuminievyh splavov [Al–Mg–Sc system alloys as special group of deformable aluminum alloys] //Tehnologija legkih splavov. 2014. №2. S. 34–41.
19. Ryabov D., Kolobnev N., Samohvalov S. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg–(Cu) alloy //Materials Science Forum. 2014. V. 794–796. P. 241–246.
Chemical composition and structure of a pilot near-beta Ti–Al–Mo–V–Cr–Fe–Sn–Zr–REM titanium alloy ingots have been studied, the ingots having been obtained by means of experimental threefold remelting processes with the use of ALD VAR L200 vacuum-arc furnace. A correlation between alloying elements distribution homogeneity in the ingots and melting technological parameters thereof has been revealed
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Panin P.V., Petrov A.P., Eremeev V.V., Zlydnev M.I., Cvetkov A.V. Vlijanie tehnologicheskih parametrov shtampovki na strukturoobrazovanie v stal'nyh jelementah bronezashhity [Influence of technological parameters of punching on structurization in steel elements bronezashchity] //Tehnologija mashinostroenija. 2013. №9. S. 16–22.
4. Skvorcova S.V., Il'in A.A., Becofen S.Ja., Filatov A.A., Dzunovich D.A., Panin P.V. Anizotropija mehanicheskih svojstv i tekstura listovyh polufabrikatov iz titanovyh splavov [Anisotropy of mechanical properties and structure of sheet semi-finished products from titanium alloys] //Tehnologija legkih splavov. 2006. №1–2. S. 81–87.
5. Nochovnaja N.A., Skugorev A.V., Burhanova A.A., Izotova A.Ju. Jeffektivnost' primenenija izotermicheskoj deformacii pri izgotovlenii shtampovok iz titanovyh splavov [Efficiency of application of isothermal deformation when manufacturing punchings from titanium alloys] //Titan. 2013. №1. S. 31–34.
6. Nochovnaja N.A., Skvorcova S.V., Anishhuk D.V., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Working off of technology of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] //Titan. 2013. №4(42). S. 33–38.
7. Alekseev E.B., Nochovnaja N.A., Skvorcova S.V., Panin P.V., Umarova O.Z. Opredelenie tehnologicheskih parametrov deformacii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Determination of technological parameters of deformation of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] //Titan. 2014. №2 (44). S. 36–41.
8. Alekseev E.B., Nochovnaja N.A., Panin P.V. Issledovanie struktury i fazovogo sostava opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb v deformirovannom sostojanii [Research of structure and phase composition of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound in the deformed condition] //Titan. 2014. №4 (46). S. 12–17.
9. Alekseev E.B., Nochovnaja N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vlijanija aljuminija na fazovyj sostav i termomehanicheskij rezhim izotermicheskoj shtampovki intermetallidnogo splava VTI-4 [Research of influence of aluminum on phase structure and thermomechanical mode of isothermal punching of intermetallidny alloy VTI-4] //Tehnologija legkih splavov. 2015. №1. S. 57–61.
10. Intermetallidnyj splav na osnove titana [Intermetallidny titanium-based alloy]: pat. №2405849 Ros. Federacija; opubl. 28.10.2009.
11. Zhijun Yang, Hongchao Kou, Fengshou Zhang, Xiangyi Xue, Jinshan Li, Lian Zhou. The Effect of VAR Process Parameters on Beta Flecks Formation in Ti–10V–2Fe–3Al /Proceedings of the 12-th World Conference on Titanium «Ti–2011 Science and Technology». Beijing: Science press. 2012. V. 1. P. 601–604.
12. Titanovye splavy. Plavka i lit'e titanovyh splavov [Titanium alloys. Melting and molding of titanium alloys]. M.: Metallurgija. 1978. 384 s.
13. Kablov D.E., Panin P.V., Shirjaev A.A., Nochovnaja N.A. Opyt ispol'zovanija vakuumno-dugovoj pechi ALD VAR L200 dlja vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [Experience of use of the ALD VAR L200 vacuum arc furnace for smelting of ingots of hot strength alloys on the basis of titanium aluminides] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
14. Shirjaev A.A., Nochovnaja N.A., Antashev V.G., Alekseev E.B. Perspektivy i osobennosti primenenija sovremennyh jekonomnolegirovannyh vysokoprochnyh titanovyh splavov [Perspectives and features of application of modern ekonomnolegirovanny high-strength titanium alloys] //Tehnologija legkih splavov. 2013. №2. S. 29–35.
15. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
16. Mina X.H., Emuraa S., Sekidoa N., Nishimuraa T., Tsuchiyaa K., Tsuzaki B.K. Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti–15Mo alloy //Materials Science and Engineering A. 2010. V. 527. P. 2693–2701.
17. Markovsky P.E., Ikeda Masahiko. Balancing of Mechanical Properties of Ti–4,5Fe–7,2Cr–3,0Al Using Thermomechanical Processing and Rapid Heat Treatment //Materials Transactions. 2005. V. 46. №7. P. 1515–1524.
18. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM. 2013. №2. St. 04 (viam-works.ru).
19. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
20. Sidorov V.V., Rigin V.E., Zajcev D.V., Gorjunov A.V. Formirovanie nanostrukturirovannogo sostojanija v litejnom zharoprochnom splave pri mikrolegirovanii ego lantanom [Forming of the nanostructured condition in foundry hot strength alloy at microalloying its lanthanum] //Trudy VIAM. 2013. №1. St. 01 (viam-works.ru).
21. Horev A.I., Nochovnaja N.A., Jakovlev A.L. Mikrolegirovanie redkozemel'nymi metallami titanovyh splavov [Microalloying rare earth metals of titanium alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 206–212.
22. El-Dhaikh Ali, Schmidt Peter, Christ Hans J. Study on Beneficial Effects of Duplex Aging on Microstructure Phenomena Determining the Fatigue life of the Metastable β-titanium Alloy Ti 38-644 /Proceedings of the 12-th World Conference on Titanium «Ti–2011 Science and Technology». Beijing: Science press. 2012. V. 1. P. 745–749.
23. Shirjaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivajushhegosja vysokotehnologichnogo psevdo-β-titanovogo splava [Features of development high-strength self-tempered hi-tech псевдо-β-титанового alloy] //Aviacionnye materialy i tehnologii. 2014. №4. S. 23–30.
With the progress of engineering, the operating temperature of articles was greatly increased; therefore, creation of casting magnesium alloys with high strength and heat-resistant characteristics is very an urgent task, to which researchers are faced. Provision of high strength and heat resistant properties of cast magnesium alloys can be achieved due to alloying with promising elements, including selection and optimization of thermal processing conditions. An integrated doping of several rare-earth metals of yttrium (Y, Nd) and cerium (Ce, La, Pr) subgroups in different proportions can be perspective. Expensive rare-earth metals such as erbium, gadolinium, samarium and others can be tested as microadditives improving heat-resistant characteristics of the alloy. In this article some peculiarities of behavior of cast magnesium alloys at elevated temperatures and the influence of doping on their properties were considered. It shows the influence of temperature and duration of soaking du
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Ju. Perspektivy primenenija magnievyh i litejnyh aljuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
4. Volkova E.F., Muhina I.Ju. Novye materialy na magnievoj osnove i vysokoresursnye tehnologii ih proizvodstva [New materials on magnesian basis and high-resource technologies of their production] //Tehnologija legkih splavov. 2007. №2. S. 28–34.
5. Muhina I.Ju., Dujunova V.A., Frolov A.V., Uridija Z.P. Vlijanie legirovanija RZM na zharoprochnost' litejnyh magnievyh splavov [Influence of alloying of RZM on thermal stability of cast magnesium alloys] //Metallurgija mashinostroenija. 2014. №5. S. 34–38.
6. Leonov A.A., Dujunova V.A., Stupak E.V., Trofimov N.V. Lit'e magnievyh splavov v razovye formy, poluchennye novymi metodami [Molding of magnesium alloys in the one-time forms received by new methods] //Trudy VIAM. 2014. №12. St. 01 (viam-works.ru).
7. Uridija Z.P., Muhina I.Ju., Dujunova V.A., Kosarina E.I. Kontrol' kachestva lit'ja iz magnievyh splavov i sposoby vosstanovlenija germetichnosti otlivok [Molding quality control from magnesium alloys and ways of recovery of tightness of otlivka] //Trudy VIAM. 2014. №12. St. 04 (viam-works.ru).
8. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost' aviacionnyh materialov v processe ispytanija na ustalost' [Treshchinostoykost of aviation materials in the course of fatigue test] //Trudy VIAM. 2013. №10. St. 06 (viam-works.ru).
9. Salli I.V. Fizicheskie osnovy formirovanija struktury splavov [Physical bases of forming of structure of alloys]. M.: Metallurgizdat. 1963. 219 s.
10. Mоtt N.F. A theory of work-hardening of metals II: flow without slip-lines, recovery and creep //Philos. Mag. 1953. V. 44. P. 742–765.
11. Splav na osnove magnija i izdelie, vypolnennoe iz nego [Magnesium-based alloy and the product which has been executed of it]: pat. 2318031 Ros. Federacija; opubl. 27.02.08.
12. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy: Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
13. Umanskij Ja.S., Kishkin S.T. i dr. Fizicheskoe metallovedenie [Physical metallurgical science]. M.: Metallurgizdat. 1955. 721 s.
14. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
15. Muhina I.Ju. Struktura i svojstva novyh litejnyh magnievyh splavov [Structure and properties of new cast magnesium alloys] //Litejnoe proizvodstvo. 2011. №12. S. 12–14.
16. Rohlin L.L. Magnievye splavy, soderzhashhie redkozemel'nye metally [The magnesium alloys containing rare earth metals]. M.: Nauka. 1980. 190 s.
17. Grube К., Davis A., Eastwood L.W. Alloying of magnesium alloys //Proc. ASTM. 1950. V. 50. P. 965–988.
18. Fljus dlja plavki magnievyh splavov [Gumboil for melting of magnesium alloys]: pat. 2283887 Ros. Federacija; opubl. 20.09.06.
19. Murphy A.L, Payne R.I. M. High-strength light alloys //J. Inst. Metals. 1946. V. 75. №3. P. 105–127.
20. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
21. Leontis T.E., Feisel D.H. Use rare-earth metals in alloying //J. Metals. 1957. V. 9. №10. P. 1245–1252.
22. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
23. Pashak J.F., Leontis Т.Е. Magnesium alloys containing rare earth metals //Trans. Metallurg. Soc. AIME. 1960. V. 218. №1. P. 102–107.
In this work functional polymer coatings which can be used as hydrophobic pro-cessing for increase of protective properties the aluminum alloys working in fuels at in-fluence of condensate are investigated. Data on resistance in the salt spray chamber and fuel of functional polymer coatings on aluminum alloy are obtained. The most effective hydrophobic agents for receiving polymer coatings are functional fluorinated oligomers. As express method the measurement method to regional corners of wetting was used by water. On the basis of the carried-out researches structures of functional polymer coatings which can be used in fuel systems of products of aviation equipment for additional pro-tection of aluminum alloys are developed.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
5. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformirue-mye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogo-stupenchatyh rezhimov termicheskoj obrabotki [Development of alyuminiylitiyevy alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
8. Karimova S.A., Kutyrev A.E., Pavlovskaja T.G., Zaharov K.E. Nizkotemperaturnoe uplotne-nie anodno-oksidnyh pokrytij na detaljah iz aljuminievyh splavov [Low-temperature consolidation of anode oxide coatings on details from aluminum alloys] //Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17.
9. Aver'janov E.E. Spravochnik po anodirovaniju [Directory on anodizing]. M.: Mashinostroenie. 1988. 132 s.
10. Bojnovich L.B., Emel'janenko A.M. Gidrofobnye materialy i pokrytija: principy sozda-nija, svojstva i primenenie [Waterproof materials and coverings: principles of creation, property and application] //Uspehi himii. 2008. T. 77. №7. S. 619–638.
11. Sostav dlja poluchenija supergidrofobnogo pokrytija [Structure for receiving superhydrophobic coating]: pat. 2400510 Ros. Federacija; opubl. 27.09.2010. Bjul. №27.
12. Shhukin E.D., Percov A.V., Amelina E.A. Kolloidnaja himija [Colloid chemistry]. M.: Izd-vo MGU. 1982. 82 s.
13. Emel'janenko A.M., Bojnovich L.B. Analiz smachivanija, kak jeffektivnyj metod izuchenija harakteristik pokrytij, poverhnostej i proishodjashhih na nih processov [The wetting analysis, as effective method of studying of characteristics of coverings, surfaces and processes occurring on them] //Zavodskaja laboratorija. 2010. №9. S. 27–36.
14. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korro-zii aljuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (KST)] //Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
15. Karimova S.A., Pavlovskaja T.G., Petrova A.P. Podgotovka poverhnosti aljuminievyh splavov s primeneniem anodnogo oksidirovanija [Surface preparation of aluminum alloys using anodic oxidation] //Klei. Germetiki. Tehnologii. 2014. №4. S. 34–38.
16. Vernik S. Himicheskaja i jelektrohimicheskaja obrabotka aljuminija i ego splavov [Chemical and electrochemical treatment of aluminum and its alloys]: Per. s angl. M.: Sudpromizdat. 1960. 218 s.
17. Emel'janenko A.M., Bojnovich L.B. Primenenie dinamicheskoj porogovoj obrabotki videoizobrazhenij dlja opredelenija poverhnostnogo natjazhenija zhidkostej i kraevyh uglov smachivanija [Application of dynamic threshold processing of video images for determination of surface tension of liquids and regional corners of wetting] //Pribory i tehnika jeksperimenta. 2002. №1. S. 52–57.
18. Topliva. Smazochnye materialy. Tehnicheskie zhidkosti. Assortiment i primenenie [Fuels. Lubricants. Technical liquids. Range and application] /Pod red. V.M. Shkol'nikova. M.: «Tehinform». 1999. 62 s.
19. Mansfild F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coating //Journal of Applied Electrochemistry. 1995. V. 25. P. 187–202.
The paper shows the possibility of the determination of germanium in alloys nitinol of the Ni–Ti–Fe–Co–Si–Ge using extraction-photometric method. For the separation of germanium from hindering its defining elements and from the alloy base and others used the extraction of germanium by tetrachlorides from the salt – acid solution. The extractant used carbon tetrachloride. After stripping water germanium determined phenylfluorone as a complex phenilfluoronatum of germanium yellow-orange color in a weakly acid medium (0,3 N on HCl). The technique determination of germanium in the concentration range 0,01–1% by weight. alloys of Ni–Ti–Fe–Co–Si–Ge.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies of receiving bar preparations from foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for the perspective engine of JSC NPO Saturn] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP4. C. 13–19.
5. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh zagotovok) iz sovremennyh litejnyh vysokozharoprochnyh splavov [Production cast bar (blend preparations) from modern foundry high-hot strength alloys] /V sb. trudov nauchn.-tehn. konf. «Problemy i perspektivy razvitija metallurgii i mashinostroenija s ispol'zovaniem zavershennyh fundamental'nyh issledovanij i NIOKR». Ekaterinburg: Nauka-servis. 2011. T. 1. S. 31–38.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
8. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials − for perspective aviation engineering of production of JSC OAK] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
9. Sidorov V.V., Timofeeva O.B., Kalicev V.A., Gorjunov A.V. Vlijanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashhenija v intermetallidnom splave VKNA-25-VI [Influence of microalloying of RZM on properties and structural phase changes in intermetallidny alloy VKNA-25-VI] //Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
10. Kauffman G.B. The story of National: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 2. 1997. P. 1021.
11. Miyazaki S., Kim H.Y., Hosoda H. Development and characterization of Ni-free Ti – base shape memory and superelastic alloys //Mater. Sci. Eng. 2006. V. 18. P. 438–440.
Currently, technology without the autoclave manufacturing fiber reinforced plastics with use as braiding and woven volume preform, it is mastered by number of the foreign companies, and finds application in space mechanical engineering. Such materials are characterized by considerable resistance to stratifying, high fatigue indicators, high strength in zone of concentrators of tension. Use volume preform allows to simplify problem of connections in combined designs, to provide possibility of automation of production
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technologies of polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
5. Doneckij K.I., Hrul'kov A.V., Kogan D.I., Belinis P.G., Luk'janenko Ju.V. Primenenie obꞌꞌemno-armirujushhih preform pri izgotovlenii izdelij iz PKM [Application volume reinforcing preform when manufacturing products from PKM] //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
6. Composition of and method for making high performance resins for infusion and transfer molding processes: pat. 6359107 US; pabl. 19.03.2002.
7. Postnova M.V., Postnov V.I. Opyt razvitija bezavtoklavnyh metodov formovanija PKM [Experience of development of bezavtoklavny methods of formation of PKM] //Trudy VIAM. 2014. №4. St. 06 (viam-works.ru).
8. Roberts G.D., Pereira J.M., Revilock D.M., Binienda W.K., Xie Ming. Ballistic Impact of Braided Composites With a Soft Projectile //J. Aerospace Eng. 2005. V. 18. №1. P. 3–7.
9. Okano M., Sugimoto K., Saito H. et al. Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube /Proceedings of the Institution of Mechanical Engineers. Part L. 2005. V. 219. №1. P. 59.
10. Erber А., Birkefeld K., Drechsler K. The influence of braiding configuration on damage tolerance of drive shafts /In: SAMPE EUROPE 30-th international Jubilee Conference and Forum. Paris. 2010. P. 364–371.
11. Braided reinforcement for aircraft fuselage frames and method of producing the same: рat. 8210086B2 US; pabl. 03.07.2012.
12. Doneckij K.I., Kogan D.I, Hrul'kov A.V. Ispol'zovanie tehnologij pletenija pri proizvodstve jelementov konstrukcij iz PKM [Use of technologies of weaving by production of elements of designs from PKM] //Trudy VIAM. 2013. №10. St. 04 (viam-works.ru).
13. Vlasenko F.S., Raskutin A.E., Doneckij K.I. Primenenie pletenyh preform dlja polimernyh kompozicionnyh materialov v grazhdanskih otrasljah promyshlennosti (obzor) [Application wattled preform for polymeric composite materials in civil industries of the industry (review)] //Trudy VIAM. 2015. №1. St. 05 (viam-works.ru).
14. Mohamed M.H., Bogdanovich А.Е. Comparetive analysis of different 3D weaving processes, machines and products /In: ICCM 17, 3D Textiles & Composites. Edinburgh. 2009.
15. McClain M., Goering J. Overview of Recent Developments in 3D Structures /In: ICCM 17, 3D Textiles & Composites. Edinburgh. 2009.
16. Potluri P., Sharif T., Jetavat D., Aktas A., Choudhry R., Hogg P. Bench-marking of 3D Preforming Strategies. University of Manchester. 2012.
17. Tkanaja lenta slozhnoj geometricheskoj konfiguracii dlja obꞌꞌemnyh armirovannyh kompozicionnyh izdelij [Woven tape of difficult geometrical configuration for the volume reinforced composition products]: pat. 2459894 Ros. Federacija; opubl. 27.08.2012.
18. Lomov S.V., Ivanov D.S., Perie G., Verpoest I. Modelling 3D-fabrics and 3D-reinforced Composites /In: Challenges and Solutions. World Conference on 3D-fabrics. Manchester. 2008.
Some basic physical, mechanical and rheological properties of the developed adhesive epoxy melt-based binders are presented. Distinctive features of adhesive prepregs based on adhesive binders and fiberglass or carbon fillers are listed and results of their application are given. The fields of application, advantage and efficiency of composite materials based on adhesive prepregs are shown. Possible applications of these materials in structures of aerospace equipment are described as well.
2. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] /V kn.: Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: Jubilejnyj nauch.-tehnich. sb. M.: MISiS–VIAM. 2002. S. 315–326.
3. Kablov E.N., Minakov V.T., Anihovskaja L.I. Klei i materialy na ih osnove dlja remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Remontnye tehnologii v aviastroenii». M.: VIAM. 2002. №1. S. 61–65.
4. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
5. Dement'eva L.A., Serezhenkov A.A., Bocharova L.I., Anihovskaja L.I., Lukina N.F. Kompozicionnye materialy kleevye na osnove stekljannyh i uglerodnyh napolnitelej [Composite materials glue on the basis of glass and carbon fillers] //Klei. Germetiki. Tehnologii. 2009. №1. S. 24–27.
6. Dement'eva L.A., Lukina N.F., Serezhenkov A.A., Kucevich K.E. Osnovnye svojstva i naznachenie PKM na osnove kleevyh prepregov [The main properties and PKM assignment on the basis of glue prepregs] /V sb. tezisov dokladov XIX Mezhduna-rodnoj nauch.-tehnich. konf. «Konstrukcii i tehnologija poluchenija izdelij iz neme-tallicheskih materialov». Obninsk. 2010. S. 11–12.
7. Dement'eva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] //Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
8. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svjazujushhih [Research of rheological properties of the glue binding] //Klei. Germetiki. Tehnologii. 2015. №12 (v pechati).
9. Lukina N.F., Dement’eva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel’nikov V.V., Kutsevich K.E. Adhesive prepregs and composite materials on their basis //Russian Journal of General Chemistry. 2011. V. 81. №5. P. 1022–1024.
10. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi – perspektivnye materialy dlja detalej i agregatov iz PKM [Glue prepregs – perspective materials for details and units from PKM] //Kompozity 21 vek. 2014. №2. S. 12–14.
11. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]. SPb.: Professional. 2008. 592 s.
12. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Svojstva i naznachenie kompozicionnyh materialov na osnove kleevyh prepregov [Properties and assignment of composite materials on the basis of glue prepregs] //Trudy VIAM. 2014. №8. St. 06 (viam-works.ru).
13. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh aljumostekloplastikov na osnove aljuminij-litievogo splava 1441 s ponizhennoj plotnost'ju [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with lowered density] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 174–183.
14. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Glue prepregs and layered materials on their basis] //Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
15. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye aljumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i Tu Delft [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and Tu Delft] //Cvetnye metally. 2013. №9 (849). S. 50–53.
16. Lukina N.F., Dement'eva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V., Kucevich K.E. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
17. Hrychev Ju.I., Shkodina E.P., Magin N.A., Dement'eva L.A., Hajretdinov R.H., Kucevich K.E. Razrabotka tehnologicheskogo processa izgotovlenija radioprozrachnogo obtekatelja iz kleevyh prepregov tipa KMKS-2m.120 [Development of technological process of manufacturing of radio transparent fairing from glue prepregs of the KMKS-2M.120 type] //Klei. Germetiki. Tehnologii. 2013. №2. S. 27–30.
Results of the rubber-like elastic strain increase and recovery research for BOC-2 (copolymer with rarely crosslinked structure) and CO-120 (polymer with linear structure) organic glasses marks during «instant» and «forced» unloading at operating temperatures. The strain recover features that experimental determined at unloading the organic glasses at near the softening temperature demonstrate the need their accounting in the design of future aircraft glassing.
2. Jakovlev N.O. Issledovanie i opisanie relaksacionnogo povedenija polimernyh materialov (obzor) [Research and description of relaxation behavior of polymeric materials (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. C. 50–54.
3. Sostav dlja poluchenija organicheskogo stekla [Structure for receiving organic glass]: pat. №2340630 Ros. Federacija; opubl. 01.08.2007.
4. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svjazujushhie. Nastojashhee i budushhee [The thermoflexible binding. Present and future] //Trudy VIAM. 2013. №11. St. 07 (viam-works.ru).
5. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
6. Petrov A.A., Klimova S.F., Mekalina I.V., Sentjurin E.G., Bogatov V.A. Novye akrilatnye organicheskie stekla chastichno sshitoj struktury [New acrylate organic glasses of partially sewed structure] //Uspehi v himii i himicheskoj tehnologii. 2012. T. 26. №4. S. 70–72.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
8. Mekalina I.V., Sentjurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] //Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
9. Sostav dlja poluchenija organicheskogo stekla [Structure for receiving organic glass]: pat. №2277105 Ros. Federacija; opubl. 13.05.2005.
10. Petrov A.A., Mekalina I.V., Sentjurin E.G., Bogatov V.A. Issledovanie osobennostej izgotovlenija detalej osteklenija iz chastichno sshityh organicheskih stekol [Research of features of manufacturing of details of glazing from partially sewed organic glasses] //Aviacionnye materialy i tehnologii. 2013. №2. S. 32–34.
11. Gorelov Ju.P., Chmyhova T.G., Shalaginova I.A. Novye organicheskie stekla dlja aviastroenija [New organic glasses for aircraft industry] //Plasticheskie massy. 2009. №12. C. 20–22.
12. Mekalina I.V., Bogatov V.A., Trigub T.S., Sentjurin E.G. Aviacionnye organicheskie stekla [Aviation organic glasses] //Trudy VIAM. 2013. №11. St. 04 (viam-works.ru).
13. Jakovlev N.O., Mekalina I.V., Sentjurin E.G. Osobennosti uprugo-vysokojelasticheskogo deformirovanija organicheskih stekol linejnoj i redko sshitoj struktur [Features of elastic and high-elastic deformation of organic glasses of the linear and seldom sewed structures] //Materialovedenie. 2015. №3. S. 16–22.
14. Jakovlev N.O. Vlijanie vysokojelasticheskoj deformacii na naprjazhenno-deformirovannoe sostojanie aviacionnyh organicheskih stekol [Influence of high-elastic deformation on intense the deformed condition of aviation organic glasses]: Avtoref. dis. k.t.n. M. 2013. 24 s.
15. Haritonov G.M., Hitrova O.I., Jakovlev N.O., Erasov V.S. Zakonomernosti povedenija VJe deformacij v aviacionnyh steklah iz linejnyh i poperechnosshityh polimerov pri znakoperemennyh nagruzhenijah [Patterns of behavior of VE of deformations in aviation glasses from linear and poperechnosshity polymers at sign-variable loadings] //Aviacionnaja promyshlennost'. 2011. №3. S. 28–32.
16. Jakovlev N.O. Relaksacionnoe povedenie organicheskogo stekla na osnove polimetilmetakrilata [Relaxation behavior of organic glass on basis polimetilmetakrilata] //Zavodskaja laboratorija. Diagnostika materialov. 2015. №5. T. 81. S. 57–60.
17. Haritonov G.M., Hitrova O.I., Erasov V.S., Sentjurin E.G., Trigub T.S. i dr. Vlijanie jekspluatacionnyh uslovij nagruzhenija na uprugoplasticheskie harakteristiki aviacionnogo organicheskogo osteklenija [Influence of operational conditions of loading on elasto-plastic characteristics of aviation organic glazing] //Aviacionnaja promyshlennost'. 2006. №2. S. 43–48.
18. Jakovlev N.O. Ocenka granic oblasti relaksacionnogo povedenija organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polimetilmetakrilata] //Plasticheskie massy. 2015. №1–2. S. 36–39.
19. Jakovlev N.O., Erasov V.S., Sentjurin E.G., Haritonov G.M. Relaksacija ostatochnyh naprjazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stojanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] //Aviacionnye materialy i tehnologii. 2012. №2 (23). S. 66–69.
20. Jakovlev N.O., Erasov V.S., Sentjurin E.G., Haritonov G.M. Kompleks metodik ocenki fiziko-mehanicheskih harakteristik organicheskih stekol s uchetom vlijanija vysokojelasticheskoj deformacii [Complex of techniques of assessment of physicomechanical characteristics of organic glasses taking into account high-elastic deformation influence] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №10. S. 6–11.
21. Arzhakov M.S. Obobshhennoe opisanie mehanicheskih i relaksacionnyh svojstv polimernogo stekla [The generalized description of mechanical and relaxation properties of polymeric glass]: Avtoref. dis. d.h.n. M. 2004. 48 c.