Articles
The article describes experience on application of semiproducts made of high-modulus Al–Be–Mg alloys (ABM) in experimental structures. An experimental work on production of the wing spoiler skin from ABM1 alloy for An-72 aircraft was carried out under scientific supervision of Academician I.N. Friedlander and Doctor of Science (Tech.) K.P. Yatsenko at Voskresensk experimental and technological center of VIAM in cooperation with Antonov Design Bureau. A fuselage section from ABM1 alloy was produced together with A.S. Yakovlev Design Bureau. TSNIIMV (now JSC «Composite») produced ABM1 alloy pipe weldments which are used by S.A. Lavochkin Design Bureau for production of solar battery modules of «Venera» spacecraft (from 5 to 16) and «Vega» series.
2. Fridljander I.N., Jacenko K.P., Bykov V.M., Matveev O.V., Molchanova L.V., Fokanov A.N. Berillievo-aljuminievye splavy i ih fiziko-mehanicheskie i jekspluatacionnye svojstva [Beryllium-aluminum alloys, and their physical, mechanical and performance properties] /V sb. tezisov dokladov I Vsesojuznogo soveshhanija «Metalloopticheskie jelementy iz berillija». Kiev. 1985. S. 11–12.
3. Bogdanov B.V., Proskurjakov G.V., Kolganov I.N., Fokanov A.N. O vozmozhnosti ispol'zovanija splava ABM1 v silovyh konstrukcijah izdelij [The possibility of using the alloy ABM1 in power product design] //Aviacionnaja promyshlennost'. 1988. №8. S. 12.
4. Fridlyander I.N., Sister V.G., Grushko O.E., Berstenev V.V., Sheveleva L.M., Ivanova L.A. Aluminum alloys: promising materials in the automotive industry //Metal Science and Heat Treatment. 2002. Т. 44. №9–10. P. 365–370.
5. Fridljander I.N. Berillievye splavy – perspektivnoe napravlenie ajerokosmicheskogo materialovedenija [Beryllium alloys – a promising direction of Aerospace Materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2009. №1. S. 6–10.
6. Solncev S.S., Rozenenkova V.A., Mironova N.A., Kas'kov V.S. Kompleksnaja sistema zashhity berillija ot okislenija [A comprehensive system of protection against oxidation of beryllium] //Aviacionnye materialy i tehnologii. 2010. №1. S. 12–16.
7. Rozenenkova V.A., Solncev S.S., Mironova N.A. Kompleksnaja zashhita berillievyh splavov ot okislenija i sublimacii toksichnyh parov berillija [Comprehensive protection against oxidation of beryllium alloys and beryllium sublimation toxic fumes] //Trudy VIAM. 2013. №5. St. 03 (viam-works.ru).
8. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklometallicheskie pokrytija dlja zashhity berillija pri vysokih temperaturah [Glass-metal composite coating to protect the beryllium at high temperatures] //Steklo i keramika. 2012. №4. S. 12–15.
9. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for "Buran". Materials and technologies for the ISS VIAM «Energia–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. 128 s.
10. Kas'kov V.S. Berillij – konstrukcionnyj material dlja mnogorazovoj kosmicheskoj sistemy [Beryllium – construction material for reusable space system] //Trudy VIAM. 2013. №3. St. 03 (viam-works.ru).
11. Fokanov A.N. Izgotovlenie svarnoj konstrukcii iz splava ABM1 [Manufacturing of welded alloy ABM1] //Aviacionnaja promyshlennost'. 1987. №7. S. 60–61.
12. Fokanov A.N., Kuznecova E.A., Popov V.D., Kurochko R.S. Svarivaemost' splava ABM1 so splavom 1201 [Weldability ABM1 alloy to alloy 1201] //Svarochnoe proizvodstvo. 1984. №1. S. 17–19.
13. Fokanov A.N., Pastuh M.N., Kurochko R.S. Svarivaemost' splava ABM1 so splavom AMg6 [Weldability of the alloy to alloy ABM1 AMg6] //Svarochnoe proizvodstvo. 1982. №9. S. 22–24.
14. Kas'kov V.S. Berillij i materialy na ego osnove [Beryllium and materials on its basis] //Aviacionnye materialy i tehnologii. 2012. №S. S. 222–226.
15. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
16. Kas'kov V.S., Iljushin V.N., Tebjakin A.V. Stabil'nost' prochnostnyh harakteristik splava VAB-1, poluchennogo suspenzionnym lit'em [The stability of the strength characteristics of the alloy of the PSA-1 prepared by casting a slurry] //Metallurgija mashinostroenija. 2008. №6. S. 44–47.
17. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development alyuminiylitievyh alloys and multi-heat treatment] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
18. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval' Ju.N. Aljuminij-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and Properties]. K.: Naukova dumka. 1992.
19. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminium wrought alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
20. Gorbunov P.Z., Tebjakin A.V. Kriterii ajeromobil'nosti beralmetov – materialov aviakosmicheskoj tehniki [Criteria airmobile beralmetov - aerospace materials]. M.: Poligraf servis. 2008. 84 s.
Structure and properties of pieces produced by selective laser sintering of powders of high-chromium heat-resistant alloy EP648 by Concept Laser unit were investigated. It was shown that the developed sintering conditions provide production of dense parts with average volume porosity as much as 0.07% and a high complex of mechanical properties equal (or higher) to maximum certified values for cast material.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
3. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for advanced engine JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [Priority areas for the development of production technology of high-temperature materials for aircraft engine] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
5. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
6. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh mate-rialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and production technologies for aviation engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
7. Grjaznov M.Ju., Shotin S.V., Chuvil'deev V.N. Jeffekt mezostrukturnogo uprochnenija stali 316L pri poslojnom lazernom splavlenii [Effect mesostructural hardening steel 316L in stratified laser fusion] //Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. №5(1). S. 45–50.
8. Smurov I.Ju., Jadrojcev I.A., Movchan I.A. i dr. Additivnoe proizvodstvo s pomoshh'ju lazera. Provedenie jeksperimental'nyh rabot [Additive manufacturing a laser. Experimental works] //Vestnik MGTU «Stankin». 2012. №1(18). S. 36–38.
9. Tarasova T.V., Nazarov A.P. Issledovanie processov modifikacii poverhnostnogo sloja i izgotovlenija trehmernyh mashinostroitel'nyh detalej posredstvom selektivnogo lazernogo splavlenija [Investigation of processes of modification of the surface layer and fabrication of three-dimensional engineering components by selective laser melting] //Vestnik MGTU «Stankin». 2013. №2(25). S. 17–25.
10. Trineva T.L. Tehnologicheskij process izgotovlenija litejnoj osnastki iz kompozitnogo materiala metodom selektivnogo lazernogo spekanija [Manufacturing process of casting tooling of composite material by selective laser sintering] //Processy lit'ja. 2012. №1(91). S. 31–35.
11. Techel A. et al. Laser Additive Manufacturing of Turbine Components, Precisely and Repeatable. Fraunhofer Institute for Material and Beam Technology (IWS), http://www.lia.org/blog/category/laser-insights-2/laser-additive-manufacturing/
12. Louvis E. et аl. Selective laser melting of aluminium components //Journal of Materials Processing Technology. 2011. V. 211 №2. P. 275–284.
13. Kablov E.N., Petrushin N.V. Komp'juternyj metod konstruirovanija litejnyh zharoprochnyh nikelevyh splavov [Computer method for the construction of the casting heat-resistant nickel alloys] /V kn.: Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina /Pod red. E.N. Kablova. M.: Nauka. 2006. S. 56–78.
14. Gorjunov A.V., Rigin V.E. Sovremennaja tehnologija poluchenija litejnyh zharoprochnyh nikelevyh splavov [Modern technology of production of heat-resistant nickel alloys casting] //Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
15. Ospennikova O.G., Evgenov A.G., Nerush S.V., Afanas'ev-Hodykin A.N. Issledovanie melkodipsernyh poroshkov pripoev na nikelevoj osnove primenitel'no k polucheniju vysokotehnologichnogo polufabrikata v vide samoklejushhejsja lenty na organicheskom svjazujushhem [The study melkodipsernyh solder powder on the basis of nickel in relation to the preparation of high-tech semi-finished products in the form of self-adhesive tape on the organic binder] //Vestnik UGATU. 2012. №5 (50). S. 137–144.
16. Kablov E.N., Evgenov A.G., Ryl'nikov V.S., Afanas'ev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlja diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Investigation of fine solder powder to diffusion vacuum brazing obtained by the melt atomization] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 79–87.
17. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlja lazernoj LMD naplavki [Investigation fine metal powder superalloy based on nickel for laser welding LMD] //Voprosy materialovedenija. 2013. №4(76). S. 98–107.
18. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitel'no k lazernoj LMD-naplavke [Preparation and testing of a fine metal powder high-chromium nickel-based alloy with respect to the laser LMD-surfacing] //Trudy VIAM. 2014. №5. St. 04 (viam-works.ru).
19. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki JeP648-VI primenitel'no k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [The study of the fine metal powder superalloy EP648 brand-VI with respect to the laser LMD-surfacing, as well as evaluation of the quality of the powder material deposition on nickel-based on the HPT rotor blades] //Trudy VIAM. 2014. №3. St. 01 (viam-works.ru).
Modern principles and approaches to development of processing procedures for manu-facture of wrought billets of disks and blades from heat-resistant nickel, titanium and other alloys for the purpose to achieve an optimum combination of operational and processing characteristics were described in the paper. Isothermal forging of disks in a special oxida-tion-resistant stamping tool without the use of a vacuum camera was considered.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. № 4. S. 2–7.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Integrated innovative technology isothermal forging in air superplasticity drive from superzharoprochnyh alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
4. Sposob izgotovlenija shtampovok diskov iz slitkov vysokogradientnoj kristallizacii iz nikelevyh splavov [A method of manufacturing forgings from ingots high-gradient drives the crystallization of nickel alloys]: pat. 2389822 Ros. Federacija; opubl. 29.04.2009.
5. Morozova G.I. Zakonomernost' formirovanija himicheskogo sostava γ′/γ-matricy mnogokomponentnyh nikelevyh splavov [Pattern formation of the chemical composition of γ'/γ-matrix multi-nickel alloys] //DAN. 1991. T. 320. №6. S. 1413–1416.
6. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [A method of manufacturing a heat-resistant nickel alloy wrought]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
7. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokozharoprochnye deformiruemye nikelevye splavy dlja perspektivnyh gazoturbinnyh dvigatelej i gazoturbinnyh ustanovok [Highly heat resistant wrought nickel alloys for advanced gas turbine engines and gas turbines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 98–103.
8. Solncev S.S., Rozenenkova V.A. Zashhitnye tehnologicheskie pokrytija na osnove stekla dlja termicheskoj obrabotki stalej i splavov [Protective technological coatings based on heat treatment of glass and steel alloys] //Steklo i keramika. 2006. №11. S. 29–33.
9. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh mate-rialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and production technologies for aviation engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
10. Figlin S.Z., Bojcov V.V., Kalpin Ju.G., Kaplin Ju.I. Izotermicheskoe deformirovanie metallov [Isothermal deformation of metals]. M.: Mashinostroenie. 1978. 239 s.
11. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Novyj zharoprochnyj nikelevyj splav dlja diskov gazoturbinnyh dvigatelej (GTD) i gazoturbinnyh ustanovok (GTU) [New heat-resistant nickel alloy disks of gas turbine engines (GTE) and gas turbines (GT)] //Materialovedenie. 2010. №7. S. 24–28.
12. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Proizvodstvo diskov GTD iz zharoprochnyh splavov na izotermicheskih pressah [Production of GTE disks of superalloys isothermal presses] //Aviacionnye materialy i tehnologii. 2013. №1. S. 13–16.
13. Skugarev A.V., Burhanova A.A., Nochovnaja N.A., Izotova A.Ju. Jeffektivnost' primenenija izotermicheskoj deformacii pri izgotovlenii shtampovok iz titanovyh splavov [Efficacy of isothermal deformation in the manufacture of titanium alloy forgings] //Titan. 2013. №1(39). S. 31–34.
14. Razuvaev E.I., Lebedev D.Ju., Bubnov M.V. Formirovanie ul'tramelkozernistoj i nanorazmernoj struktury v metallah i splavah metodami deformacii [Formation of ultrafine and nano-sized structures in metals and alloys by deformation] //Aviacionnye materialy i tehnologii. 2010. №3. S. 3–8.
15. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Jeffektivnaja tehnologija izgotovlenija diskov GTD iz zharoprochnyh nikelevyh splavov [Effective manufacturing technology drives a turbine engine from heat-resistant nickel alloys] //Kuznechno-shtampovochnoe proizvodstvo. 2013. №10. S. 13–17.
16. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat-resistant nickel alloys for turbine engines parts] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
17. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features alloying and heat treatment of heat-resistant nickel alloys for disks of gas turbine engines of the new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
18. Razuvaev E.I., Kapitanenko D.V. Vlijanie termomehanicheskoj obrabotki na strukturu i svojstva austenitnyh stalej [Effect of thermomechanical treatment on the structure and properties of austenitic steels] //Trudy VIAM. 2013. №5. St. 01 (viam-works.ru).
VKS-180-ID steel is recommended for production of high-loaded parts, landing gears, airframe and engine. Metallurgical characteristics of high-strength maraging steel VKS-180-ID melt in a vacuum induction furnace (VI) with the subsequent remelting in a vacuum arc furnace (VA) using the chosen system of REM-based micro-alloying and addition of nickel oxide were studied. The technology allows production of steels with a low content of gases and impurities (carbon ≤0.005%; oxygen ≤0.004%; nitrogen ≤0.003%) providing a high level of mechanical properties both in longitudinal and in transverse directions (tensile strength, impact strength, ductility).
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih perera-botki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. № 4. S. 2–7.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
6. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [Priority areas for the development of production technology of high-temperature materials for aircraft engine] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
7. Salahova R.K. Korrozionnaja stojkost' stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [The corrosion resistance of steel 30KhGSA with «trivalent» chrome plated in natural and artificial environments] //Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
8. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and production technologies for aviation engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
9. Lomberg B.S., Pokrovskij A.A., Topilin V.V., Shherbakov A.I. Vlijanie sposoba pereplava na kachestvo martensitostarejushhej vysokoprochnoj stali [Influence of remelting method on the quality of high-strength steel martensitostareyuschey] //Stal'. 1973. №8 S. 725.
10. Shherbakov A.I., Lomberg B.S., Oborenkova A.S. Nekotorye zakonomernosti kristallizacii pri JeLP i VDP [Some regularities of crystallization at ELP and VDR] //Special'naja jelektrometallurgija. 1978. № 22. S. 22–40.
11. Shalin R.E., Shherbakov A.I., Lomberg B.S., Kachanov E.B. Jelektronno-luchevoj pereplav – progressivnyj metod poluchenija vysokokachestvennyh stalej i zharoprochnyh splavov [Electron beam melting – progressive method of obtaining high-quality steels and superalloys] /V sb. Aviacionnye materialy. M.: VIAM. 1978. №3. S. 46–59.
12. Revjakina O.K. Sklonnost' k teplovomu ohrupchivaniju nerzhavejushhih martensitostarejushhih stalej [Propensity to thermal embrittlement of stainless steels martensitostareyuschih] //MiTOM. 1981. №4. S. 36–39.
13. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant steel of modern aviation]. M.: MAI. 2006. S. 112–121, 130–143.
14. Savvina N.A., Kosarina E.I., Miroshin K.G., Stepanov A.V. Teoreticheskij raschet i prakticheskie sposoby opredelenija verojatnosti obnaruzhenija defektov v aviacionnyh materialah [Theoretical calculations and practical ways to determine the probability of detection of defects in aircraft materials] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2005. №1. S. 16–22.
15. Krivonogov G.S., Kablov E.N. Granicy zeren i ih rol' v ohrupchivanii vysokoprochnyh korrozionnostojkih stalej [Grain boundaries and their role in the embrittlement of high strength corrosion resistant steels] //Metally. 2002. №1. S. 35–45.
16. Krivonogov G.S., Kablov E.N. Matematicheskaja model' strukturnoj diagrammy malouglerodistyh korrozionnostojkih stalej i ee primenenie pri razrabotke novyh materialov [A mathematical model of the structural diagram of low carbon stainless steels and its application in the development of new materials] //Metally. 2001. №5. S. 42–48.
17. Djubanov V.G., Lomberg B.S., Gerasimov T.N., Bol'shov L.A., Shherbakov A.I. Issledovanie vozmozhnosti obezuglerozhivanija stali, raskislennoj titanom i aljuminiem v vakuume [Study of possible decarburization steel deoxidized with titanium and aluminum in vacuo] /V sb. trudov konf. «Sovremennye problemy jelektrometallurgii stali». Cheljabinsk. 1971. S. 53–56.
18. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [The calculated values of the strength characteristics of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Tonysheva O.A., Voznesenskaja N.M., Eliseev Je.A., Shal'kevich A.B. Novaja vysokoprochnaja jekonomnolegirovannaja azotsoderzhashhaja stal' povyshennoj nadezhnosti [New high sparingly nitrogen-containing steel of high reliability] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
20. Vylezhnev V.P., Kokovjakina S.A., Simonov Ju.N., Suhih A.A. Povyshenie harakteristik nadezhnosti martensitostarejushhej stali 03N18K9M5T putem sozdanija struktury tipa «nanotripleks» [Improving the reliability characteristics martensitostareyuschey steel 03N18K9M5T by creating structures such as «nanotripleks»] //MiTOM. 2010. №11. S. 36–39.
21. Markova E.S., Pokrovskaja N.G., Shal'kevich A.B., Gromov V.I. Martensitostarejushhie stali ‒ novye perspektivnye materialy dlja valov GTD [Martensitostareyuschie steel – new promising materials for turbine engine shafts] //Aviacionnye materialy i teh-nologii. 2012. №S. S. 81–84.
22. Pokrovskaja N.G., Markova E.S., Shal'kevich A.B. Vysokoprochnye konstrukcionnye martensitostarejushhie stali v aviastroenii [High-strength structural steel in aircraft martensitostareyuschie] //Aviacionnaja promyshlennost'. 2014. №1. S. 24–28.
23. Markova E.S., Jakusheva N.A., Pokrovskaja N.G., Shal'kevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostarejushhej stali VKS-180 [Technological features of steel production martensitostareyuschey VKS-180] //Trudy VIAM. 2013. №7. St. 01 (viam-works.ru).
An impact of a negative electrical potential (voltage) of the substrate on deposition rate of multicomponent Ni-based coatings produced by the cathodic arc physical vacuum deposition from the surface of cathodes made of nickel-based alloys with additives of chromium, aluminum, tantalum, rhenium, yttrium, hafnium on the surface of specimens of various cast heat-resistant nickel alloys was investigated. It was shown that the maximum etching rate could be achieved in case of applying of 350 V potential to a substrate. The threshold values of spray voltage for all compositions of heat-resistant materials tested in this study were determined. An influence of the chemical composition of the plasma formed in vacuum from the cathode surface on the sputtering threshold was stated depending on the content of chromium and high-melting point elements in the cathode.
2. Dorodnov A.M., Petrosov V.A. O fizicheskih principah i tipah vakuumnyh tehnologicheskih plazmennyh ustrojstv [On the physical principles and types of vacuum plasma technology devices] //Zhurnal tehnicheskoj fiziki. 1981. T. 51. №3. S. 504–524.
3. Grigorov A.I., Dorodnov A.M., Kiselev N.D. Nekotorye fizicheskie osnovy ustanovki PUSK 77-1 dlja nanesenija iznosostojkih pokrytij [Some physical basics of installing START 77-1 for hardfacing] //Tehnologija avtomobilestroenija. 1978. №6. S. 10–15.
4. Padalka V.G., Tolok V.T. Metody plazmennoj tehnologii vysokih jenergij [Methods of plasma technology of high-energy] //Atomnaja jenergija. 1978. T. 44. №5. S. 476–478.
5. Ustanovka IJeT-842 («Bulat») [Installing IET-842 («Bulat»)] //Jelektrotehnicheskaja promyshlennost'. Ser. Jelektrotermija. 1980. №3 (211). S. 15–16.
6. Kimblin S.U. Jerozija jelektrodov i ionizacionnye processy v prijelektrodnyh oblastjah vakuumnyh dug i pri atmosfernom davlenii [Erosion electrodes and ionization processes in the electrode regions of vacuum arcs and at atmospheric pressure] /V kn. Jeksperimental'nye issledovanija plazmotronov. Per. s angl. Novosibirsk: Nauka. 1977. S. 226–253.
7. Shott L. Jelektricheskie zondy [Electrical probes]. Per. s angl. M.: Mip. 1971. S. 459–505.
8. Lunev V.M., Ovcharenko V.D., Horoshih V.M. Issledovanie nekotoryh harakteristik plazmy vakuumnoj metallicheskoj dugi. Chast' I [Study of some characteristics of the plasma vacuum arc metal] //Zhurnal tehnicheskoj fiziki. 1977. T. 47. №7. S. 1486–1490.
9. Aksenov I.I., Padalka V.G., Horoshih V.M. Issledovanie plazmy stacionarnogo vakuumnogo dugovogo razrjada. Chast' II. Vlijanie integral'noj temperatury katoda [Investigation of stationary plasma vacuum arc discharge. Part II. Effect of integrated cathode temperature] //Teplofizika vysokih temperatur. 1983. T. 21. №4. S. 646–651.
10. Lunev V.M., Padalka V.G., Horoshih V.M. Issledovanie nekotoryh harakteristik plazmy vakuumnoj metallicheskoj dugi [Study of some characteristics of the plasma vacuum arc metal]. Chast' II //Zhurnal tehnicheskoj fiziki. 1977. T. 47. №7. C. 1491–1495.
11. Aksenov I.I., Padalka V.G., Horoshih V.M. Issledovanie plazmy stacionarnogo vakuumnogo dugovogo razrjada. Chast' I. Formirovanie potokov plazmy [Investigation of stationary plasma vacuum arc discharge. Part I. Formation of plasma flows] //Teplofizika vysokih temperatur. 1983. T. 21. №2. S. 219–223.
12. Petrushin N.B., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat-resistant nickel alloys, low density] //Litejnoe proizvodstvo. 2012. №6. S. 5–11.
13. Gerasimov V.V., Visik E.M., Bakerin S.V. Izgotovlenie protjazhennyh lityh zagotovok iz splava VKNA-1V napravlennoj kristallizaciej [Manufacturing extended cast billets alloy VKNA-1B directional solidification] //Litejnoe proizvodstvo. 2011. №10. S. 36–39.
14. Povarova K.B., Bazyleva O.A., Drozdov A.A., Alad'ev N.A., Samsonov M.A. Issledovanie malociklovoj ustalosti pri komnatnoj temperature splava na osnove intermetallida Ni3Al tipa VKNA-25 [Investigation of low cycle fatigue at room temperature alloy based on the intermetallic compound Ni3Al type VKNA-25] //Metally. 2012. №6. S. 70–81.
15. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Kos'min A.A. Zharostojkie ionno-plazmennye pokrytija dlja lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat-resistant ion-plasma coatings for turbine blades of nickel alloys doped with rhenium] //MiTOM. 2008. №6. S. 31–36.
16. Kuznecov V.P., Lesnikov V.P., Konakova I.P., Petrushin N.V., Mubojadzhjan S.A. Struktura i fazovyj sostav monokristallicheskogo splava VZhM-4 s gazocirkuljacionnym zashhitnym pokrytiem [The structure and phase composition of the single crystal alloy VZHM-4 with a gas circulation protective coating] //MiTOM. 2011. №3. S. 28–32.
17. Morozova G.I., Timofeeva O.B., Petrushin N.V. Osobennosti struktury i fazovogo sostava vysokorenievogo nikelevogo zharoprochnogo splava [Features of the structure and phase composition vysokorenievogo nickel superalloy] //MiTOM. 2009. №2. S. 10–16.
18. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
19. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-resistant and heat-resistant coatings for high-pressure turbine blades promising GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
20. Matveev P.V., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Zashhitnye zharostojkie pokrytija dlja splavov na osnove intermetallidov nikelja [Protective coatings for heat-resistant alloys based on nickel intermetallic] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
21. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising gtes //Russian metallurgy (Metally). 2012. №1. P. 1–7.
22. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys //МиТОМ. 1995. №2. С. 15–18.
23. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protective coatings for gas turbine engine blades] //Metally. 2007. №5. S. 23–34.
24. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kristallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [The role of directional solidification in the resource-saving technology of production of gas-turbine] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
25. Mubojadzhjan S.A., Lucenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povyshenija sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovanija poverhnosti [Possibility of increasing the service characteristics of the compressor blades of GTE ion surface modification] //Trudy VIAM. 2013. №1. St. 02 (viam-works.ru).
26. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Preparation of ceramic thermal barrier coatings for turbine blades working GTE magnetron sputtering] //Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
27. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protective coatings for gas turbine engine blades] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
28. Budinovskij S.A., Matveev P.V., Smirnov A.A. Issledovanie zharostojkosti litejnyh zharoprochnyh nikelevyh splavov v oblasti temperatur 1000–1200°C [Investigation of the heat resistance of the casting heat-resistant nickel alloys in the temperature range 1000–1200°C] //Aviacionnaja promyshlennost'. 2014. №2. S. 48–52.
29. Smirnov A.A., Budinovskij S.A. Analiz jevoljucii normal'nyh naprjazhenij v sisteme «splav–pokrytie» v oblasti temperatur do 1200°C [Analysis of the evolution of normal stresses in the system «alloy-coating» at temperatures up to 1200°C] //Aviacionnye materialy i tehnologii. 2014. №2. S. 8–14.
A possibility of photometric determination of cobalt content in titanium-based alloys within the concentration range of 6–12% mass. was studied. Ethylene diamine (EDA) was used as reactant. The studies were focused on factors of stability in time and selectivity of the reaction of Co with EDA and its influence on light absorption of EDA in combination with some elements contained in the alloys, which form colored EDA (Ni, Cu, Cr) or colorless (Zn, Mo, V, Sn) soluble complexes. It was established that the color of a complex with EDA was stable within several hours. Reaction sensitivity is 0.1 microgram of Co in 1 milliliter of solution. The light absorption of cobalt has its maximum at λ=360 nm. In order to prevent precipitation of titanium, potassium pyrophosphate was applied, since it forms with titanium soluble complexes, which do not affect changes in optical density of Co+EDA complex. This work resulted in the development of a technique for a direct photometric determination of hig
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. K 80-letiju VIAM [On the 80th anniversary of VIAM] //Zavodskaja laboratorija. Diagnostika materialov. 2012. T. 78. №5. S. 79–82.
4. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
5. Antashev V.G., Nochovnaja N.A., Shirjaev A.A., Izotova A.Ju. Perspektivy razrabotki novyh titanovyh splavov [Prospects for the development of new titanium alloys] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №S2. S. 60–67.
6. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways to optimize the performance properties of intermetallic alloys based on titanium] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
7. Nochovnaja N.A., Alekseev E.B., Jasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby poluchenija slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobija [Specificity of fusion and methods for producing ingots of titanium intermetallic alloys with higher niobium content] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №S2. S. 53–59.
8. Nochovnaja N.A., Skvorcova S.V., Anishhuk D.S., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii poluchenija opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Development of the technology for producing test superalloy based intermetallic Ti2AlNb] //Titan. 2013. №4. S. 24–29.
9. Nochovnaja N.A., Antashev V.G., Shirjaev A.A., Alekseev E.B. Issledovanie vlijanija rezhimov izotermicheskogo deformirovanija i termicheskoj obrabotki na strukturu i mehanicheskie svojstva opytnogo zharoprochnogo Ti-splava [The study on the effect of isothermal deformation and heat treatment on the structure and mechanical properties of Ti-experienced heat-resistant alloy] //Tehnologija legkih splavov. 2012. №4. S. 92–98.
10. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied research in structural titanium alloys and future directions of their development] //Trudy VIAM. 2013. №2. St. 04 (viam-works.ru).
11. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Status, problems and prospects of creating heat-resistant titanium alloys for GTD parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
12. Nochovnaja N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Sovremennye zharoprochnye splavy na osnove gamma-aljuminida titana: perspektivy razrabotki i primenenija [Modern heat-resistant alloys based on gamma titanium aluminide: development and application prospects] //MiTOM. 2014. №7. S. 23–27.
13. Kablov D.E., Panin P.V., Shirjaev A.A., Nochovnaja N.A. Opyt ispol'zovanija vakuumno-dugovoj pechi ALD VAR L200 dlja vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [Experience in the use of vacuum-arc furnace ALD VAR L200 for melting ingots of high-temperature alloys based on titanium aluminides] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
14. Nochovnaja N.A., Panin P.V. Analiz ostatochnyh makronaprjazhenij v svarnyh soedinenijah titanovyh splavov raznyh klassov [Analysis of residual macroscopic stresses in welded joints of titanium alloys of different classes] //Trudy VIAM. 2014. №5. St. 02 (viam-works.ru).
15. Panin P.V., Shirjaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitel'no legirovannogo vodorodom [Construction of the temperature-concentration phase diagram of the titanium alloy BT6 additionally doped with hydrogen] //Tehnologija mashinostroenija. 2014. №3. S. 5–9.
16. Il'in A.A., Skvorcova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vlijanie parametrov termicheskoj i termomehanicheskoj obrabotki na teksturoobrazovanie v listovyh polufabrikatah iz titanovyh splavov [Influence of parameters of thermal and thermomechanical processing on texture formation in leaf semi-finished products from titanium alloys] //Tehnologija mashinostroenija. 2012. №8. S. 8–12.
17. Kovtunov A.I., Mjamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoaljuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Investigation of processing and mechanical properties titanoalyuminievyh layered composite material obtained by the liquid phase method] //Aviacionnye materialy i tehnologii. 2013. №1. S. 9–13.
18. OST 90136–96. Splavy nikelevye zharoprochnye. Metody opredelenija kobal'ta [Alloys of nickel superalloys. Methods for determination of cobalt].
19. Kanaev N.A. Uskorennoe opredelenie redkozemel'nyh metallov v splavah [Fast determination of rare earth metals in alloys]. M.: Metallurgija. 1971. 220 s.
20. Flashka G.F., Shvarcenbah G.M. Kompleksonometricheskoe titrovanie [Complexometric titrations]. M.: Himija. 1970. 360 s.
21. Jurist I.M. Polijetilenpoliamin kak maskirujushhij reagent pri kompleksonometricheskom opredelenii svinca [Polyethylenepolyamine as a masking reagent in complexometric determination of lead] //Zavodskaja laboratorija. 1968. T. 34. №5. S. 539–540.
An influence of climatic factors and working fluids on properties of CFRP VKU-35 manufactured by RTM technology was studied. It was shown that CFRP VKU-35 has a high stability of properties under an influence of environmental factors (at least 75% of the initial value) and in this respect is not worse than the typical structural CFRP KMU-11tr manufactured by autoclave molding.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Gunjaev G.M., Krivonos V.V., Rumjancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukcijah letatel'nyh apparatov [Polymer composite materials in aircraft structure] //Konversija v mashinostroenii. 2004. №4(65). S. 65–69.
4. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Guljaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnyh tkanej importnogo proizvodstva i rossijskih rastvornyh svjazujushhih [Carbon composites based on carbon fabrics imported and Russian mortar binders] //Voprosy materialovedenija. 2014. №1(77). S. 116–125.
6. Kogan D.I., Chursova L.V., Petrova A.P. Tehnologija izgotovlenija PKM sposobom propitki plenochnym svjazujushhim [Manufacturing technology PKM impregnation method bonding film] //Klei. Germetiki. Tehnologii. 2011. №6. S. 25–29.
7. Dushin M.I., Hrul'kov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovanija detalej iz polimernyh kompozicionnyh materialov [The choice of process parameters autoclave molding parts from polymeric composite materials] //Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
8. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozicionnye materialy, poluchennye putem propitki plenochnym svjazujushhim [Polymer composite materials obtained by impregnating the film binder] //Vse materialy. Jenciklopedicheskij spravochnik. Kompozicionnye materialy. 2011. №11. S. 2–6.
9. Chursova L.V., Dushin M.I., Hrul'kov A.V., Muhametov R.R. Osobennosti tehnologii izgotovlenija detalej iz kompozicionnyh materialov metodom propitki pod davleniem [Features of technology manufacturing parts made of composite materials by pressure impregnation] /V sb. tezisov dokladov mezhotraslevoj nauch.-tehnich. konf. «Kompozicionnye materialy v aviakosmicheskom materialovedenii». M.: VIAM. 2009. S. 17.
10. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avto-klavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development autoclave and non-autoclave molding technology PKM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
11. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technology of polymer composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
12. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Melt binders promising methods of manufacture of a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
13. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing methods of structural fiber PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
14. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binders for polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
15. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [The study of polymeric structural materials under the influence of climatic factors and stress in laboratory and field conditions] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
16. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials aviation applications. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
17. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials aviation applications. I. Mechanisms of aging] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
18. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and defectiveness of polymer composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
19. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Investigation of the influence of climatic factors and mechanical loading on the structure and mechanical properties of the PKM] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41-45.
The research was focused on modification of the polyimide binding material SP-97s. The character of transformations in the binder, which contents modifying additives of different types, was studied on the stage of material forming. The optimum amount of modifiers was determined and effectiveness of each of them with the purpose to decrease curing temperature of binder down to 170°C was estimated taking into account the properties of fiberglass plastics. The composition of modifying binder was established, polyimide fiberglass plastic STP-97K was developed and its properties were studied. It was demonstrated that lowering of the curing temperature does not cause a significant change of properties of the material in different operational conditions.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Barbot'ko S.L. Pozharobezopasnost' aviacionnyh materialov [Fire safety of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
4. Davydova I.F., Kablov E.N., Kavun N.S. Termostojkie negorjuchie poliimidnye steklotekstolity dlja izdelij aviacionnoj i raketnoj tehniki [Heat-resistant polyimide incombustible Fiberglass products for the aviation and rocketry] //Vse materialy. Jenciklopedicheskij spravochnik. 2009. №7. S. 2–11.
5. Mihajlin Ju.A. Termoustojchivye polimery i polimernye materialy [Thermostable polymers and polymeric materials]. SPb.: Professija. 2006. 256 s.
6. Kondratenko A.N., Golubkova T.A. Polimernye kompozicionnye materialy v izdelijah zarubezhnoj raketno-kosmicheskoj tehniki (obzor) [Polymer composite materials in products abroad rocket and space technology (review)] //Konstrukcii iz kompozicionnyh materialov. 2009. №2. S. 24–34.
7. Guljaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravlenija razvitija termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Direction of the heat-resistant carbon-fiber-based polyimide and heterocyclic polymers] //Trudy VIAM. 2014. №1. St. 04 (viam-works.ru).
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PCM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Kablov E.N. K 80-letiju VIAM [On the 80th anniversary of VIAM] //Zavodskaja laboratorija. Diagnostika materialov. 2012. T. 78. №5. S. 79–81.
10. Svetlichnyj V.M., Kudrjavcev V.V. Polimery i problema sozdanija sovremennyh konstrukcionnyh materialov [Polymers and the problem of creation of modern construction materials] //Vysokomolekuljarnye soedinenija. Ser. B. 2003. T. 45. №6. S. 35–39.
11. Davydova I.F., Kavun N.S. Stekloplastiki – mnogofunkcional'nye kompozicionnye ma-terialy [GRP – multifunctional composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
12. Davydova I.F., Kavun N.S. Stekloplastiki v konstrukcijah aviacionnoj i raketnoj tehniki [GRP in the construction of aircraft and missile technology] //Steklo i keramika. 2012. №4. S. 1–7.
13. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
14. Poliimidnoe svjazujushhee dlja armirovannyh plastikov, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Polyimide binder for reinforced plastics, the prepreg and it is based on a product made of it]: pat. №2394857 Ros. Federacija; opubl. 07.05.2009.
15. Mihajlin Ju.A. Konstrukcionnye polimernye kompozicionnye materialy [Structural polymer composite materials]. M.: Izd-vo «NOT». 2008. 615 s.
16. Davydova I.F., Kavun N.S. Issledovanie stojkosti poliimidnogo steklotekstolita STP-97K k agressivnym sredam [Investigation of resistance polyimide fiberglass STP-97K to aggressive environments] //Vse materialy. Jenciklopedicheskij spravochnik. 2011. №9. S. 42–44.
17. Davydova I.F., Kavun N.S. Ognestojkie stekloplastiki v konstrukcijah motogondol dvigatelej samoletov [Fire-resistant fiberglass structures aircraft engine nacelles] //Vse materialy. Jenciklopedicheskij spravochnik. 2011. №7. S. 16–20.
18. Vavilova M.I., Kavun N.S. Svojstva i osobennosti armirujushhih stekljannyh napolnitelej, ispol'zuemyh dlja izgotovlenija konstrukcionnyh stekloplastikov [Properties and characteristics of reinforcing glass fillers used for the manufacture of structural fiberglass] //Aviacionnye materialy i tehnologii. 2014. №3. S. 33–37.
Currently, the use of natural fibers in production of up-to-date polymer composite materials (PCM) becomes much more important. Replacement of conventional glass and carbon fillers with natural ones reduces both production cost and the effect of polymer composite materials production on the environment. Furthermore, application of natural fibers for manufacturing of polymer composite materials boosts development of agricultural industries traditional for Russia.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Gunjaev G.M., Krivonos V.V., Rumjancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukcijah letatel'nyh apparatov [Polymer composite materials in aircraft structure] //Konversija v mashinostroenii. 2004. №4 (65). S. 65–69.
5. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Doneckij K.I., Hrul'kov A.V., Kogan D.I., Belinis P.G., Luk'janenko Ju.V. Primenenie ob#emno-armirujushhih preform pri izgotovlenii izdelij iz PKM [Use volumetric reinforcing preforms in the manufacture of FRP articles] //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
7. Grigor'ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI [Peculiarities of RMB by RFI] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
8. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Ispol'zovanie tehnologij pletenija pri proizvodstve jelementov konstrukcij iz PCM [use of technology in the production of weaving elements of PCM constructions] //Trudy VIAM. 2013. №10. St. 04 (viam-works.ru).
9. Dushin M.I., Hrul'kov A.V., Raskutin A.E. K voprosu udalenija izlishkov svjazujushhego pri avtoklavnom formovanii izdelij iz polimernyh kompozicionnyh materialov [On the question of the removal of excess binder in autoclave molding products from polymeric composite materials] //Trudy VIAM. 2013. №1. St. 03 (viam-works.ru).
10. Dushin M.I., Kogan D.I., Hrul'kov A.V., Gusev Ju.A. Prichiny obrazovanija poristosti v izdelijah iz polimernyh kompozicionnyh materialov [Causes of porosity in products from polymeric composite materials] //Kompozity i nanostruktury. 2013. №3 (19). S. 60–71.
11. Dushin M.I., Chursova L.V., Hrul'kov A.V., Kogan D.I. Osobennosti izgotovlenija polimernyh kompozicionnyh materialov metodom vakuumnoj infuzii [Features of the production of polymeric composite materials by vacuum infusion] //Voprosy materialovedenija. 2013. №3 (75). S. 33–40.
12. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PCM [Research and development autoclave and non-autoclave molding technology PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
13. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technology of polymer composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
14. Kobets L.P., Deev I.S. Carbon fibres: structure and mechanical properties //Composites Science and Technology. 1998. Т. 57. №12. С. 1571–1580.
15. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fibers for high temperature ceramic composites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
16. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and defectiveness of polymer composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
17. Kogan D.I., Chursova L.V., Petrova A.P. Tehnologija izgotovlenija PKM sposobom propitki plenochnym svjazujushhim [Manufacturing technology RMB impregnation method bonding film] //Klei. Germetiki. Tehnologii. 2011. №6. S. 25–29.
18. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PCM novogo pokolenija [Melt binders promising methods of manufacture of a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
19. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PCM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
20. Kiselev M.V. Modelirovanie stroenija l'njanogo chesanogo volokna i processa droblenija l'njanyh kompleksov: monografija [Modeling the structure combed flax fiber and flax complexes crushing process: a monograph]. Kostroma: Izd-vo KGTU. 2009. 110 s.
21. Bos H. The potential of flax fibres as reinforcement for composite materials /In: Technische Universiteit Eindhoven. Eindhoven: 2004. P. 192.
22. Ugrjumov S.A. Sovershenstvovanie tehnologii proizvodstva kompozicionnyh materialov na osnove drevesnyh napolnitelej i kostry l'na [Improving the technology of composite materials based on wood fillers and fires flax]: Avtoref. dis. d.t.n. M. 2009. 39 s.
23. Zhivetin V.V., Ginzburg L.N. Maslichnyj len i ego kompleksnoe razvitie [Oilseed flax and its complex development]. M.: CNIILKA. 2000. 92 s.
Causes of porosity formation in the products made of polymer composite materials prepared by the autoclave and out-of-autoclave methods are discussed in the paper and recommendations for porosity reduction are given.
2. Brautman L. Razrushenie i ustalost' [Destruction and fatigue]. M.: Mir. 1978. 153 s.
3. ASTM D/Void Content of Reinforced Plastic.
4. Tavares S.S., Michaud V., Manson J.A.E. Through thickness air permeability of prepregs during cure //Composites. A. 2009. V. 40. P. 1587–1596.
5. Thomas S., Nutt S.R. In situ estimation of though-thickness resin flow using ultrasound //Compos. Sci. Technol. 2008. V. 68. P. 3093–3098.
6. Tavares S.S., Michaud V., Manson J.A.E. Assessment of semi-impregnated fabrics in honeycomb sandwich structures //Composites. A. 2010. V. 41. P. 8–15.
7. Jackson K., Crabtree M. Autoclave guality composites tooling for composite from vacuum bag only processing /In: 47-th International SAMPLE symposium. 2002. P. 800–807.
8. Repecka L., Boyd J. Vacuum-bag-only-curable prepregs that produce void-free parts /In: 47-th International SAMPLE symposium. 2002. P. 1862–1875.
9. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Prospects for the use of carbonaceous nanoparticles in binders for polymer composites] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
11. Kablov E.N., Starcev O.V., Deev I.S., Nikishin E.F. Svojstva polimernyh kompozicionnyh materialov posle vozdejstvija otkrytogo kosmosa na okolozemnyh orbitah [Properties of polymer composition-tional materials after exposure to the open space in Earth orbits] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №11. S. 2–16.
12. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Grashhenkov D.V., Chursova L.V. Strategija razvitija kompozicionnyh i funkcional'nyh materialov [The development strategy of composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
14. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avto-klavnyh i bezavtoklavnyh tehnologij formovanija PCM [Research and development autoclave and non-autoclave molding technology PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
15. Dushin M.I., Hrul'kov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovanija detalej iz polimernyh kompozicionnyh materialov [The choice of process parameters autoclave molding parts from polymeric composite materials] //Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
16. Jepoksidnoe svjazujushee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Svyazuyushee epoxy prepreg at its base and a product made therefrom]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
17. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PCM novogo pokolenija [Melt binders promising methods of manufacture of a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PCM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PCM metodom propitki pod davleniem [Especially the manufacture of PCM by pressure impregnation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
20. Dushin M.I., Hrul'kov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Bezavtoklavnogo molding CFRP-based prepregs obtained by mortar technology] //Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
21. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture //Composites Science and Technology. 2010. V. 70. P. 2304–2309.
22. Kardos J.L., Dudukovic M.P., Dave R. Void growth and resin transport during processing of thermosetting-matrix composites //Adv. Polym. Sci. 1986. V. 80. P. 102–123.
23. Olivier P., Cottu J.P., Ferret B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates //Composites. 1995. V. 26 (7). P. 509–515.
24. Costa M.L., Almedia S.F.M., Rezende M.C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates //Compos. Sci. Technol. 2001. V. 61. P. 2101–2108.
25. Campbell F.C., Mallow A.R. Porosity in carbon fiber composites, an overview of causes //J. Adv. Mater. 1994. P. 18–23.
26. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental evaluation of a diffusion model for the growth and collapse of gas bubbles //Compos. Manuf. 1994. №5(3). P. 149–158.
27. Scriven L.E. On the dynamics of phase growth //Chen. End Sci. 1959. №10 (1/2). P. 1–13.
28. Subramanian R.S., Weinberg M.C. The role of convective transport in the dissolution or growth of a gas bubble //J. Chem. Phys. 1980. V. 72(12). P. 6811–6813.
29. Liu L., Zhang B., Wu Z., Wang D. Effects of cure pressure induced voids on the mechanical strength of carbon/epoxy laminates //J. Mater. Sci. Technol. 2005. V. 21(1). P. 87–91.
30. Boey F.Y.C., Lye S.W. Void reduction in autoclave processing of thermoset composites part 1: high pressure effects on void reduction //Composites. 1992. V. 23(4). P. 261–265.
31. Hayward J.S., Harris B. Effect of process variables on the quality of RTM mouldings //Sampe J. 1990. V. 26(3). P. 39–46.
32. Hayward J.S., Harris B. Effect of vacuum assistance in resin transfer moulding //Compos. Manuf.1990. №1(33). P. 161–166.
33. Lundstrom T.S., Gebart B.R., Lundemo C.Y. Void formation in RTM /In: The 49-th annual conference. Composite Institute of the Society of the Plastics Industry. 1992. Session 16-F.
34. Patel N., Lee L.J. Effect of fiber mat architecture on void formation and removal in liquid composite molding //Polym. Compos. 1995. V. 16(5). P. 386–399.
35. Greszczuk L.B. Effect of voids on strength properties of filamentary composites /In: Proceedings of 22-nd annual meeting of the reinforced plastics. Division of the Society of the Plastics Industry. 1967. P. 20(A-1)–20(A-10).
36. Rudobashta S.P. Massoperenos v sistemah s tverdoj fazoj [Mass transfer systems with a solid phase]. M.: Himija. 1980. 248 s.
37. Patel N., Rohatgi V., Lee L.J. Modeling of void formation and removal in liquid composite molding. Part II. Model development //Polym. Compos. 1996. V. 17(1). P. 104–114.
38. Chen Y.T., Davis H.T., Macosko C.W. Wetting of fiber mats for composite manufacturing. Part I. Visualization experiments AlChE //Polym. Compos. 1995. V. 41(10). P. 2261–2273.
39. Rohatgi V., Patel N., Lee L.J. Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat //Polym. Compos. 1996. V. 17(2). P. 161–170.
40. Patel N., Rohatgi V., Lee L.J. Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass //Mat. Polym. Eng. Sci. 1995. V. 35(10). P. 837–851.
41. Kotov V., Pashhenko E. Kompleks dlja razrabotki i optimizacii tehnologij propitki kompozitnyh konstrukcij [Complex for the development and optimization of composite structures technology impregnation] //Ajerokosmicheskij kur'er. 2010. №3–4. S. 75.
42. Vojuckij S.S. Fiziko-himicheskie osnovy propityvanija impregnirovanija voloknistyh materialov dispersijami polimerov [Physico-chemical basis impregnation impregnation of fibrous materials polymer dispersions]. M.: Himija. 1969. 334 s.
43. Vacuum resin impregnation process: pat. 4942013 US; pabl. 17.07.1990.
44. Double bag vacuum in fusion process: pat. 7413694 US; pabl. 07.12.2000.
45. Method and device for producing fiber – reinforced components am injection method: pat. 68353 WO; pabl. 20.09.2001.
46. Sposob izgotovlenija voloknistyh kompozitov vakuumnoj infuziej i ustrojstvo dlja osushhestvlenija sposoba [A method of manufacturing fiber composites vacuum infusion and apparatus for wasp-out the process]: pat. 2480335 Ros. Federacija; opubl. 2006.
Possibility of production of continuous cords from short oxide fibers by direct formation of aqueous pulp was investigated. The laboratory unit for production of cords equipped with forming assembly, heat chamber and winding assembly was designed and installed. The experiment showed the possibility in principle to produce cords from short oxide fibers.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
5. Kobets L.P., Deev I.S. Carbon fibres: structure and mechanical properties //Composites Science and Technology. 1998. Т. 57. №12. С. 1571–1580.
6. Grashhenkov D.V., Balinova Ju.A., Tinjakova E.V. Keramicheskie volokna oksida aljuminija i materialy na ih osnove [Ceramic alumina fibers and materials based on them] //Steklo i keramika. 2012. №4. S. 32–36.
7. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature insulating and heat-proof materials for fiber-based refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
8. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high temperature oxide fibers for thermal protection, thermal insulation and composite materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №4. S. 24–29.
9. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [A method for producing high-fiber alumina-based]: pat. 2212388 Ros. Federacija; opubl. 20.09.2003. Bjul. №34. 6 s.
10. Balinova Ju.A. Nepreryvnye polikristallicheskie volokna oksida aljuminija dlja kompozicionnyh materialov [Continuous polycrystalline alumina fibers for composite materials]: Avtoref. dis. k.t.n. M.: VIAM. 2012. 19 s.
11. Shhetanov B.V., Shheglova T.M., Balinova Ju.A. Izgotovlenie, struktura i svojstva polikristallicheskih volokon oksida aljuminija [Manufacturing, Structure and properties of polycrystalline alumina fibers] /V sb. materialov 29-j Mezhdunarodnoj konf. «Kompozicionnye materialy v tehnologii». Jalta. 2009. S. 148–150.
12. Varrik N.M., Ivahnenko Ju.A., Maksimov V.G. Oksid-oksidnye kompozicionnye materialy dlja gazoturbinnyh dvigatelej (obzor) [Oxide-oxide composite materials for gas turbine engines (review)] //Trudy VIAM. 2014. №8. St. 03 (viam-works.ru)
13. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous fibers of polycrystalline α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
14. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formiro-vanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with an alumina content of 99% in the presence of additives Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (viam-works.ru).
15. Basalt fibre rope: pat. 102465389 CN; pabl. 23.05.2012.
16. Refractory fiber rope packing: pat. 4581882 US; pabl. 15.04.1986.
17. Shnur [Cord]: pat.2233356 Ros. Federacija; opubl. 27.04.2004.
18. Heat resistant fibrous products containing ceramic fibers and method of making the same: pat. 3090103 US; pabl.21.05.1963.
19. Shheglova T.M., Zimichev A.M., Varrik N.M. Issledovanie obrazcov shnura iz volokon Fiberfrax [The study samples of cord fibers Fiberfrax] //Trudy VIAM. 2014. №9. St. 05 (viam-works.ru).
20. www.unifrax.com.
21. Sposob poluchenija kombinirovannoj niti na osnove korotkih volokon i ustrojstvo dlja ego osushhestvlenija [A method for producing a combination yarn based short fibers and an apparatus for its implementation]: pat. 2419692 Ros. Federacija; opubl. 27.05.2011 Bjul. №15.
22. Papilin N.M., Kapitanov A.F., Volkov V.A., Gladyshev A.Ju., Babashov V.G., Varrik N.M. Obosnovanie receptury voloknistoj suspenzii [Justification formulation of the fiber suspension] //Himicheskie volokna. 2009. №5. S. 31–33.
A methodology has been developed to define parameters of the topological structure of the polymer network in cross-linked polyethylene by the stress relaxation method. The obtained experimental data were used to calculate parameters of the polymer network of cross-linked polyethylene. Parameters of the topological structure of peroxide cross-linked polyethylene obtained by stress relaxation and equilibrium swelling methods were compared.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Sirotkin O.S., Andrjunina M.A., Bejder Je.Ja. Novye konstrukcionnye i funkcional'nye PCM na osnove termoplastov i tehnologii ih formovanija [New structural and functional PTP-based thermoplastics and their molding technology] //Aviacionnaja promyshlennost'. 2011. №4. S. 12–18.
6. Petrova G.N., Bejder Je.Ja. Konstrukcionnye materialy na osnove armirovannyh termoplastov [Structural materials on the basis of reinforced thermoplastics] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 31–44.
7. Nozdrina L.V., Korotkova V.I., Bejder Je.Ja. Termoplastichnye polimery dlja konstrukcionnyh kompozicionnyh materialov [Thermoplastic resins for structural composites] //Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 9–21.
8. Ustinov V.A., Bejder Je.Ja. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [The use of composite materials with a thermoplastic matrix] //Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 24–37.
9. Petrova G.N., Bejder Je.Ja. Lit'evye termoplastichnye materialy aviakosmicheskogo naznachenija [Molded thermoplastic materials aerospace destination] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 17–30.
10. Kikel' V.A. Tehnologii sshivanija polijetilena i sravnenie s polipropilenom [Crosslinking technology and comparison of polyethylene and polypropylene] //Cantehnika, otoplenie, kondicionirovanie. 2003. №11. S. 1–4.
11. Medvedev V.P., Solov'eva Ju.V. Opredelenie parametrov, harakterizujushhih vulkanizacionnuju setku i stepen' sshivanija metodom ravnovesnogo nabuhanija [Determination of the parameters characterizing the vulcanization grid and the degree of crosslinking method of equilibrium swelling]. Volgograd: VGTU. 2009. 12 s.
12. Medvedev V.P., Ukrainskaja S.I., Solov'eva Ju.V. Opredelenie stepeni relaksacii i ravnovesnogo modulja vysokojelastichnosti sshityh jelastomerov [Determining the degree of relaxation and equilibrium modulus of high elasticity crosslinked elastomers]. Volgograd: VGTU. 2010. 12 s.
13. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Carbon and fiberglass new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PCM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
15. Zheleznjak V.G., Chursova L.V., Grigor'ev M.M., Kosarina E.I. Issledovanie povyshenija soprotivljaemosti udarnym nagruzkam policianurata s modifikatorom na osnove linejnyh termostojkih polimerov [Investigation increase resistance to impact loads polycyanurates modifier based on the linear heat-resistant polymers] //Aviacionnye materialy i tehnologii. 2013. №2. S. 26–28.
16. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PCM novogo pokolenija [Melt binders promising methods of manufacture of a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
17. Dolmatovskij M.G., Sokolov I.I. Osobennosti razrushenija sotovyh panelej so sferoplastikami [Features destruction of honeycomb panels with spheroplastic] //Aviacionnye materialy i tehnologii. 2008. №4. S. 19–24.