Articles
The structure and mechanical properties of forgings from heat-resistant near-α-titanium alloy VТ41 with different iron content are examined in this paper. It has been established that the increase in the iron content leads to the increase in strength proper-ties of the material in the working temperature range and some decrease in characteris-tics of ductility and toughness. Increasing the iron content is accompanied with increased sensitivity to stress concentrators under different types of tests.
2. Kashapov O.S., Pavlova T.V., Nochovnaja N.A. Vlijanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlja lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] //Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
3. Kashapov O.S., Pavlova T.V. Issledovanie vlijanija parametrov struktury polufabrikatov iz splava VT41 na mehanicheskie svojstva [Research of influence of parameters of structure of semi-finished products from alloy ВТ41 on mechanical properties] //Vestnik MGTU im. N.Je. Baumana. 2015. №2. S. 136–143.
4. Ilyin A., Kolachev B., Volodin V., Ryndenkov D. About the purposefulness of comprasion of titanium alloys in terms of aluminium and Molybdenium equivalents /In: Titanium–99. Science and technology. 1999. P. 53–60.
5. Sposob termicheskoj obrabotki vysokoprochnyh (α+β)-titanovyh splavov [Way of thermal processing high-strength (α +β)-titanium alloys]: pat. 2465366 Ros. Federacija; opubl. 15.09.2011.
6. Sposob termomehanicheskoj obrabotki izdelij iz titanovyh splavov [Way of thermomechanical processing of products from titanium alloys]: pat. 2457273 Ros. Federacija; opubl. 05.04.2011.
7. Horev A.I. Teoreticheskie i prakticheskie osnovy povyshenija konstrukcionnoj prochnosti sov-remennyh titanovyh splavov [Theoretical and practical bases of increase of constructional durability of modern titanium alloys] //Tehnologija legkih splavov. 2007. №2. S. 144–153.
8. Horev A.I. Razrabotka konstrukcionnyh titanovyh splavov dlja izgotovlenija detalej i uzlov aviakosmicheskoj tehniki [Development of structural titanium alloys for manufacturing of details and nodes of aerospace equipment] //Svarochnoe proizvodstvo. 2009. №3. S. 13–23.
9. Kashapov O.S. Kinetika izmenenija mikrostruktury prutkovoj lopatochnoj zagotovki iz splava VT41 v zavisimosti ot temperaturno-vremennyh parametrov termicheskoj obrabotki [Kinetics of change of microstructure of bar scapular preparation from alloy ВТ41 depending on temperature and time parameters of thermal processing] //Perspektivnye materialy. 2008. №5. S. 137–140.
10. Titanium-base alloy: pat. 87 30 5197 EP; pabl. 01.06.1988.
11. Russo P.A., Yu K.O. Effect of Ni, Fe, and primary alpha on the creep of alpha-beta processed and annealed Ti–6Al–2Sn–4Zr–2Mo–0,09Si /In: Titanium–99. Science and technology. 1999. P. 596–603.
12. Russo P.A., Yu K.O. Effect of Ni, Fe, and Si on the creep of Ti–6Al–2Sn–4Zr–6Mo /In: Titanium–99. Science and technology. 1999. P. 713–720.
13. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Povyshenie prochnostnyh harakteristik zharoprochnyh psevdo-α-titanovyh splavov [Increase of strength characteristics heat resisting псевдо-α-титановых alloys] //Aviacionnye materialy i tehnologii. 2014. №S5. C. 73–80.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
15. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
16. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
17. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
18. Pavlova T.V., Kashapov O.S., Nochovnaja N.A., Beljaev M.S. Sovremennye titanovye splavy i tehnologii, primenjaemye dlja detalej i uzlov GTD [Modern titanium alloys and the technologies applied to details and GTD nodes] /V sb. tezisov dokladov nauch.-tehnich. kongressa po dvigatelestroeniju «Dvigateli–2012». M.: ASSAD. 2012. S. 347–349.
19. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
Titanium alloys are widely applied in products of aviation engineering operating during long term in all climates including sea climate conditions, where deposition of sea salt on their surface can cause hot salt corrosion at elevated temperatures (≥250°C) accompanied with titanium surface embrittlement. Taking into account the potential danger of hot salt corrosion for high-loaded parts from titanium alloys operating in sea climate conditions at temperatures ≥250°C, the opportunity of identifying of coatings able to protect such parts from the influence of salt deposits seems to be of interest. This paper shows the possibility of protection of the surface of titanium alloys by anodic oxide coating of 10–15 μm in thickness against the impact of NaCl deposits (the main component of sea salt) at temperatures under 500°C, tensile stress and alternating loads.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Horev A.I. Fundamental'nye i prikladnye raboty po titanovym splavam dlja «Burana» i perspektivnye napravlenija ih razvitija [Fundamental and applied works on titanium alloys for «Buran» and the perspective directions of their development] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 10–14.
5. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTD details] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
6. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM. 2013. №2. St. 04 (viam-works.ru).
7. Solonina O.P., Glazunov S.G. Titanovye splavy. Zharoprochnye titanovye splavy [Titanium alloys. Heat resisting titanium alloys]. M.: Metallurgija. 1976. 448 s.
8. Kolachev B.A., Livanov V.A., Buhanova A.A. Mehanicheskie svojstva titana i ego splavov [Mechanical properties of titanium and its alloys]. M.: Metallurgija. 1974, 543 s.
9. Gorynin I.V., Ushakov S.S., Hatuncev A.N., Loshakova I.L. Titanovye splavy dlja morskoj tehniki [Titanium alloys for sea equipment]. SPb.: Politehnika. 2007. 387 s.
10. Sinjavskij S.V. Soprotivlenie titanovyh splavov razlichnym vidam korrozionnogo rastreskivanija [Resistance of titanium alloys to different types of corrosion cracking] //Tehnologija legkih splavov. 2010. №4. S. 80–85.
11. Li S.Q., Lei J.F., Liu Y.-Y., Yu B.-X., Li Y.-L., Yang R. Fushi Kexue yu Fandhu Jishu. Hot-salt stress corrosion of titanium alloys of Ti811 and TC4 //Corros. Sci. And Prol. Tehnol. 2010. V. 22. №2. P. 79–84.
12. Xiong Y., Zhu S., Wang F. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature //Corros. Sci. 2008. V. 50. P. 15–22.
13. Ulrich Zwicker. Titan und Titanlegierungen. Springer-Verlag Berlin. Heidelberg. New York. 1974. 512 с.
14. Bacos M.-P., Thomas M., Raviart J.-L., Morel A., Mercier S., Josso P. Influence of an oxidation protective coating upon hot corrosion and mechanical behavior of Ti–48Al–2Cr–2Nb alloy //Intermetallics. 2011. V. 19. №8. P. 1120–1129.
15. Yingun Hua, Yuchuan Bai, Yunxia Ye, Qing Xue, Haixie Liu, Ruifang Chen, Kangmin Chen. Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing //Applied Surface Science. 2013. V. 283. №15. P. 775–780.
16. Zaharova L.V. Vlijanie kisloroda vozduha i tolshhiny solevyh otlozhenij na korrozionnoe rastreskivanie titanovyh splavov pri vysokih temperaturah v kontakte s NaCl [Influence of oxygen of air and thickness of salt deposits on corrosion cracking of titanium alloys at high temperatures in contact with NaCl] //Trudy VIAM. 2014. №10. St. 12 (viam-works.ru).
The possibility of photometric determination of rhenium content in alloys based on titanium reagent thiourea is hereby investigated. The developed method is based on a translation of the sample in a solution mixture of hydrofluoric and nitric acids. The molybdenum which prevents the reaction of formation of colored rhenium complex with thiourea binds to calcium oxide. The rhenium content is determined by the calibration curve. The developed method does not require the use of toxic reagents, is more selective and accurate in comparison with previously existing methods. Analysis time is reduced by 2–3 times to 60 minutes. As a result of this work a photometric method for the determination of rhenium from 0,05 to 1% by weight with thiourea in complexly titanium alloys is developed. The error in determining the rhenium content is 5% (rel.).
2. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTD details] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
3. Nochovnaja N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Sovremennye zharoprochnye splavy na osnove gamma-aljuminida titana: perspektivy razrabotki i primenenija [Modern hot strength alloys on the basis of titanium gamma aluminide: development and application perspectives] //MiTOM. 2014. №7. S. 23–27.
4. Kablov D.E., Panin P.V., Shirjaev A.A., Nochovnaja N.A. Opyt ispol'zovanija vakuumno-dugovoj pechi ALD VAR L200 dlja vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [Experience of use of the ALD VAR L200 vacuum arc furnace for smelting of ingots of hot strength alloys on the basis of titanium aluminides] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
5. Nochovnaja N.A., Panin P.V. Analiz ostatochnyh makronaprjazhenij v svarnyh soedinenijah titanovyh splavov raznyh klassov [The analysis of residual macrotension in welded compounds of titanium alloys of different classes] //Trudy VIAM. 2014. №5. St. 02 (viam-works.ru).
6. Panin P.V., Shirjaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitel'no legirovannogo vodorodom [Creation of the temperature and concentration chart of phase composition of the BT6 titanium alloy which has been in addition alloyed by hydrogen] //Tehnologija mashinostroenija. 2014. №3. S. 5–9.
7. Il'in A.A., Skvorcova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vlijanie parametrov termicheskoj i termomehanicheskoj obrabotki na teksturoobrazovanie v listovyh polufabrikatah iz titanovyh splavov [Influence of parameters of thermal and thermomechanical processing on teksturoobrazovaniye in sheet semi-finished products from titanium alloys] //Tehnologija mashinostroenija. 2012. №8. S. 8–12.
8. Kovtunov A.I., Mjamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoaljuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Research of technological and mechanical properties of the layered titanoalyuminiyevy composite materials received in the liquid-phase way] //Aviacionnye materialy i tehnologii. 2013. №1. S. 9–12.
9. Kasikov A.G., Petrova A.M. Recikling renija iz othodov zharoprochnyh i special'nyh splavov [Reniye Retsikling from waste of heat resisting and special alloys] //Tehnologija metallov. 2010. №2. S. 2–12.
10. Rhenium reduction program: using less of a rare mineral /http://citizenship.geblogs.com/rheniumreduction-program-using-less-of-a-rare-mineral.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
12. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
13. Kablov E.N. K 80-letiju VIAMa [To 80 anniversary VIAMA] //Zavodskaja laboratorija. Diagnostika materialov. 2012. T. 78. №5. S. 79–82.
14. Antashev V.G., Nochovnaja N.A., Shirjaev A.A., Izotova A.Ju. Perspektivy razrabotki novyh titanovyh splavov [Perspectives of development of new titanium alloys] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №S2. S. 60–67.
15. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
16. Nochovnaja N.A., Alekseev E.B., Jasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby poluchenija slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobija [Specifics of melting and ways of receiving ingots of intermetallidny titanium alloys with the raised content of niobium] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №S2. C. 53–59.
17. Nochovnaja N.A., Skvorcova S.V., Anishhuk D.S., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Working off of technology of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] //Titan. 2013. №4. S. 24–29.
18. Nochovnaja N.A., Antashev V.G., Shirjaev A.A., Alekseev E.B. Issledovanie vlijanija rezhimov izotermicheskogo deformirovanija i termicheskoj obrabotki na strukturu i mehanicheskie svojstva opytnogo zharoprochnogo Ti-splava [Research of influence of modes of isothermal deformation and thermal processing on structure and mechanical properties of pilot heat resisting Ti-alloy] //Tehnologija legkih splavov. 2012. №4. S. 92–98.
19. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
Prospects for application of titanium alloys for creation of new class of laminated metal-polymers are shown. Comparison of properties of composite materials based on titanium with composite materials based on aluminum and glass plastic is given. The results of research in the field of hybrid materials allow speaking about the effectiveness of use of laminated metal-polymers in modern structures. Special attention is focused on high specific properties of hybrid materials based on titanium alloys. Such laminated composite materials combine high strength and fracture toughness.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaja aktivnost' ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity ugleplastikov and protection of metal load bearing structures in contact with the ugleplastiky] //Korrozija: materialy, zashhita. 2011. №12. S. 1–7.
4. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacion-noj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye aljumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU DELFT [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and TU DELFT] //Cvetnye metally. 2013. №9 (849). S. 50–53.
6. Antipov V.V., Senatorova O.G., Lukina N.F., Sidel'nikov V.V., Shestov V.V. Sloistye metallopo-limernye kompozicionnye materialy [Layered metalpolymeric composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
7. Nochovnaja N.A., Panin P.V., Alekseev E.B., Bokov K.A. Jekonomnolegirovannye titanovye splavy dlja sloistyh metallopolimernyh kompozicionnyh materialov [Ekonomnolegirovannye titanium alloys for layered metalpolymeric composite materials] //Trudy VIAM. 2014. №11. St. 02 (viam-works.ru).
8. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] //Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
9. Lukina N.F., Dement'eva L.A., Anihovskaja L.I. Kleevye prepregi dlja sloistyh aljumostekloplas-tikov klassa SIAL [Glue prepregs for layered alyumostekloplastikov class SIAL] //Trudy VIAM. 2014. №1. St. 05 (viam-works.ru).
10. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh aljumostekloplastikov na osnove aljuminijlitievogo splava 1441 s ponizhennoj plotnost'ju [New class layered alyumostekloplastikov on the basis of alyuminiylitiyevy alloy 1441 with lowered density] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 174–183.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
12. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
13. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Glue prepregs and layered materials on their basis] //Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
14. Postnov V.I., Senatorova O.G., Karimova S.A., Pavlovskaja T.G., Zhelezina G.F., Kazakov I.A., Abramov P.A., Postnova M.V., Kotov O.E. Osobennosti formovanija krupnogabaritnyh listov metallopolimernyh KM, ih struktura i svojstva [Features of formation of large-size sheets of metalpolymeric KM, their structure and properties] //Aviacionnye materialy i tehnologii. 2009. №4. S. 23–32.
15. Senatorova O.G, Antipov V.V., Lukina N.F., Sidel'nikov V.V., Shestov V.V., Mit-rakov O.V., Popov V.I., Ershov A.S. Vysokoprochnye treshhinostojkie legkie sloistye aljumostekloplastiki klassa SIAL – perspektivnyj material dlja aviacionnyh konstrukcij [High-strength treshchinostoyky lungs layered alyumostekloplastiki class SIAL – perspective material for aviation designs] //Tehnologija legkih splavov. 2009. №2. S. 28–31.
16. Fridljander I.N., Senatorova O.G., Lukina N.F., Antipov V.V. Sloistye aljumo-polimernye materialy SIAL [SIAL layered alyumo-polymeric materials] /V kn.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 188–192.
17. Zhu J. et al. Influence of boron addition on microstructure and mechanical properties ofdental cast titanium alloys //Mat. Sci. & Eng. A. 2003. V. 339 (1–2). P. 53–62.
18. Niinomi M. Recent trends in titanium research and development in Japan //Proc. 12th World Conf. on Titanium. 2011. V. I. P. 30–37.
19. Goncharov V.A., Fedotov M.Ju., Shienok A.M. Modelirovanie polimernyh kompozicionnyh materialov [Modeling of polymeric composite materials] /V sb. trudov konf. «Novye materialy i tehnologii glubokoj pererabotki syr'ja – osnova innovacionnogo razvitija jekonomiki Rossii». M.: VIAM. 2010. S. 8.
20. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
21. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
The phase composition of the diffusion layer of high-strength heat-resistant precipitation-hardening steel VKS10-U-Sh, microalloyed with rare-earth metals (REM) after a comprehensive chemical and heat treatment, comprising the steps of vacuum carburizing, strengthening heat treatment (tempering, quenching, maraging and ion-plasma nitriding) has been investigated. The methods of physical-chemical phase analysis (PCPA), electron back scatter diffraction (EBSD) and scanning electron microscopy (SEM) have been used. The data obtained by different methods have allowed finding out which alloying elements form the phase composition of steel and which carbides and nitrides give it the necessary properties.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jele-menty – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
3. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost' azotirovannyh stalej i splavov [Structure and wear resistance nitrated staly and alloys]. M.: MGTU im. N.Je. Baumana. 2012. 518 s.
4. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Fahurtdinov R.S., Alekseeva M.S., Hrennikova I.A., Borejko N.L., Smirnov A.E., Krasovskij D.S. Vlijanie ionno-plazmennogo azotirovanija i vakuumnoj cementacii na iznosostojkost' stalej VKS-7 i VKS-10 [Influence of ion plasma nitriding and vacuum cementation on wear resistance staly VKS-7 and VKS-10] //Nauka i obrazovanie. 2013. №6. S. 391–400.
5. Voznesenskaja N.M., Kablov E.N., Petrakov A.F., Shal'kevich A.B. Vysokoprochnye kor-rozionnostojkie stali austenitno-martensitnogo klassa [High-strength corrosion-resistant steel of the austenitno-martensitic class] //MiTOM. 2002. №7. S. 34–37.
6. Mubojadzhjan S.A., Lucenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povyshenija sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovanija poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTD by method of ionic modifying of surface] //Trudy VIAM. 2013. №1. St. 02 (viam-works.ru).
7. Shherbakov A.I., Krylov S.A., Kalicev V.A., Ignatov V.A. Razrabotka tehnologii vyplavki vysokoprochnoj martensitostarejushhej stali VKS-180-ID (01N18K9M5T), mikrolegirovannoj RZM [Development of smelting technology of high-strength maraging steel VKS-180-ID (01Н18К9М5Т), microalloyed RZM] //Trudy VIAM. 2015. №2. St. 04 (viam-works.ru).
8. Razuvaev E.I., Kapitanenko D.V. Vlijanie termomehanicheskoj obrabotki na strukturu i svojstva austenitnyh stalej [Influence of thermomechanical processing on structure and property austenitny staly] //Trudy VIAM. 2013. №5. St. 01 (viam-works.ru).
9. Gromov V.I., Kurpjakova N.A., Sedov O.V., Korobova E.N. Vakuumnaja i ionno-plazmennaja himiko-termicheskaja obrabotka otvetstvennyh detalej gazoturbinnyh dvigatelej [Vacuum and ion-plasma chemical and thermal processing of responsible details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 147–156.
10. Tonysheva O.A., Voznesenskaja N.M., Shal'kevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali perehodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] //Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
11. Gromov V.I., Utkina A.N., Kurpjakova N.A. Dispersionnoe tverdenie cementirovannogo sloja teplostojkih stalej martensitnogo klassa pri termicheskoj obrabotke [Dispersion hardening of tsementirovanny layer heatresistant staly the martensitic class at thermal processing] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 137–142.
12. Tonysheva O.A., Voznesenskaja I.M., Eliseev Je.A., Shal'kevich A.B. Novaja vysokoprochnaja jekonomnolegirovannaja azotosoderzhashhaja stal' povyshennoj nadezhnosti [New high-strength ekonomnolegirovanny nitrogen-bearing steel of increased reliability] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
13. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Fahurtdinov R.S., Smirnov A.E., Gromov V.I., Stupnikov V.V. Issledovanie iznosostojkosti stalej VKS-7 i VKS-10 posle vakuumnoj cementacii i vakuumnoj nitrocementacii [Research of wear resistance staly VKS-7 and VKS-10 after vacuum cementation and vacuum nitrocementation] //Nauka i obrazovanie. 2013. №5. 345 s.
14. Tarasenko L.V., Titov V.I., Utkina A.N. Svojstva i fazovyj sostav vysokouglerodistoj stali dlja zubchatyh koles aviacionnoj tehniki [Properties and phase composition of high-carbon steel for toothed wheels of aviation engineering] //Metallurgija mashinostroenija. 2012. №3. S. 10–14.
15. Kablov E.N., Krivonogov G.S. Legirovanie i fazovaja nestabil'nost' vysokoprochnyh korrozionnostojkih stalej [Alloying and phase instability high-strength corrosion-resistant staly] //Metally. 2002. №2. S. 65–73.
16. Lahtin Ju.M., Kogan Ja.D. Azotirovanie stali [Steel nitriding]. M.: Mashinostroenie. 1976. 15 s.
17. Semenov M.Ju., Smirnov A.E., Lashnev M.M., Stupnikov V.V. Matematicheskaja model' vakuumnoj nitrocementacii teplostojkoj stali VKS-10 [Mathematical model of vacuum nitrocementation of VKS-10 heat-resistant steel] //Nauka i obrazovanie. 2013. №8. S. 76.
18. Golubcova R.B. Fazovyj analiz nikelevyh splavov [Phase analysis of nickel alloys]. M.: Nauka. 1969. C. 5–33.
19. Renata Chylinska, Malgorzata Garbiak, Bogdan Piekarski Electrolytic Phase Extraction in Stabilised Austenitic Cast Steel //Material Science (MEDŽIAGOTYRA). 2005. V. 11. №4. P. 348–351.
20. Hye-Youn Lee, Masahiko Demura, Ya Xub, Dang-Moon Weea, Toshiyuki Hirano Selective dissolution of the γ phase in a binary Ni(γ)/Ni3Al(γ/) two-phase alloy //Corrosion Science. 2010. V. 52. P. 3820–3825.
21. Lashko N.F., Zaslavskaja L.V., Kozlova M.N., Morozova G.I., Sorokina K.P., Jakovleva E.F. Fiziko-himicheskij analiz stalej i splavov [Physical and chemical analysis staly and alloys]. 2-e izd. M.: Metallurgija. 1978. 28 c.
22. Lashko N.F., Zaslavskaja L.V., Kozlova M.N., Morozova G.I., Sorokina K.P., Hahlova N.V., Jakovleva E.F. Fiziko-himicheskie metody fazovogo analiza stalej i splavov [Physical and chemical methods of the phase analysis staly and alloys]. M.: Metallurgija. 1970. S. 9–19.
23. Morozova G.I. K istorii sozdanija metoda fiziko-himicheskogo fazovogo analiza [To history of creation of method of the physical and chemical phase analysis] //MiTOM. 2006. №8. S. 19–21.
24. Metod difrakcii otrazhennyh jelektronov v materialovedenii [Method of diffraction of the reflected electrons in materials science] /Pod red. A. Shvarca, M. Kumara, B. Adamsa, D. Filda. M.: Tehnosfera. 2014. 21 s.
25. Danilenko V.N., Mironov S.Ju., Beljakov A.N., Zhiljaev A.P. Primenenie EBSD analiza v fizicheskom materialovedenii (obzor) [Application of EBSD of the analysis in physical materials science (review)] //Zavodskaja laboratorija. Diagnostika materialov. 2012. T. 78. №2. S. 28–46.
26. Lashko N.F., Zaslavskaja L.V., Kozlova M.N., Morozova G.I., Sorokina K.P., Jakovleva E.F. Fiziko-himicheskij analiz stalej i splavov [Physical and chemical analysis staly and alloys]. 2-e. izd. M.: Metallurgija. 1978. C. 113–117.
This article presents the research of microstructure of magnesium-zirconium and ML10 alloys. It is hard to alloy magnesium with elements for which the fusing temperature is higher than that of magnesium’s. The impurity doping of magnesium alloy with zirconium is processed through the magnesium-zirconium alloy, for which the fusing temperature is lower than the fusing temperature for zirconium. The impurity doping of light materials with zirconium is problematic not only because of the high fusing temperature of zirconium, but also because of its active liaison with other elements such as hydrogen, oxygen, nitrogen, aluminum, ferrum, silicon, carbon and other elements. The quality of alloy has been examined and the reasons of lower drawing of zirconium in the process of making ML10 magnesium alloy had been defined: it is linked with the fact that there are non-soluble intermetallides in the alloy such as zirconium and hafnium with silicon, ferrum and aluminum, and zirconium with oxygen
2. Kablov E.N. Osnovnye itogi i napravlenija razvitija materialov dlja perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 20–26.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] //Nauka v Rossii. 2012. №3. S. 36–44.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
8. Korchagina V.A. Radi kachestva magnievyh otlivok [For the sake of quality of magnesian otlivka] //Inzhenernaja gazeta. 2006. №33–34. S. 5.
9. Sadkov V.V., Laponov Ju.L., Ageev A.P. i dr. Perspektivy i uslovija primenenija magnievyh splavov v samoletah OAO «Tupolev» [Perspectives and conditions of application of magnesium alloys in JSC Tupolev airplanes] //Metallurgija mashinostroenija. 2007. №4. S. 19–23.
10. Antipov V.V., Vahromov R.O., Dujunova V.A., Nochovnaja N.A. Materialy s vysokoj udel'noj prochnost'ju na osnove aljuminija, magnija, titana i tehnologii ih pererabotki [Materials with high specific strength on the basis of aluminum, magnesium, titanium and technology of their processing] //Boepripasy i spechimija. 2013. №3. S. 51–55.
11. Muhina I.Ju., Uridija Z.P. Magnij – osnova sverhlegkih materialov [Magnesium – basis of extralight materials] //Metallurgija mashinostroenija. 2005. №6. S. 29–31.
12. Dujunova V.A. Metody zashhity magnievyh splavov v otechestvennom litejnom proizvodstve s 1930-h gg. do nastojashhego vremeni [Methods of protection of magnesium alloys in domestic foundry production since the 1930th so far] //Litejshhik Rossii. 2010. №10. S. 35–37.
13. Dujunova V.A., Muhina I.Ju., Uridija Z.P. Novye protivoprigarnye prisadochnye materialy dlja litejnyh form magnievyh otlivok [New protivoprigarny prisadochny materials for casting molds of magnesian otlivka] //Litejnoe proizvodstvo. 2009. №9. S. 18–21.
14. Muhina I.Ju., Dujunova V.A., Uridija Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] //Litejnoe proizvodstvo. 2013. №5. S. 2–5.
15. Dujunova V.A., Goncharenko N.S., Muhina I.Ju., Uridija Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridljandera. Sovremennye issledovanija magnievyh i litejnyh aljuminievyh splavov v VIAM [Scientific heritage of academician I.N. Fridlyandera. Modern researches of magnesium and cast aluminum alloys in VIAM] //Cvetnye metally. 2013. №9. S. 71–78.
16. Frolov A.V., Muhina I.Ju., Dujunova V.A., Uridija Z.P. Vlijanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] //Metallurgija mashinostroenija. 2014. №2. S. 26–29.
17. Muhina I.Ju. Litejnye splavy i tehprocessy pri proizvodstve magnievyh otlivok [Cast alloys and technical processes by production of magnesian otlivka] //Litejnoe proizvodstvo. 2003. №4. S. 18–19.
18. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M. B. Altman)] //Trudy VIAM. 2014. №4. St. 02 (viam-works.ru).
19. Al'tman M.B. i dr. Magnievye splavy. Spravochnik [Magnesium alloys. Directory]. M.: Metallurgija. 1978. T. 2. 147 s.
20. Uridija Z.P., Muhina I.Ju., Dujunova V.A., Kosarina E.I. Kontrol' kachestva lit'ja iz magnievyh splavov i sposoby vosstanovlenija germetichnosti otlivok [Molding quality control from magnesium alloys and ways of recovery of tightness of otlivka] //Trudy VIAM. 2014. №12. St. 04 (viam-works.ru).
21. Leonov A.A., Dujunova V.A., Stupak E.V., Trofimov N.V. Lit'e magnievyh splavov v razovye formy, poluchennye novymi metodami [Molding of magnesium alloys in the one-time forms received by new methods] //Trudy VIAM. 2014. №12. St. 01 (viam-works.ru).
22. Shishkareva L.M., Kuz'mina N.A. Obzor metodik opredelenija kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of techniques of determination of quality of structure of single-crystal otlivka of hot strength alloys] //Trudy VIAM. 2014. №1. St. 06 (viam-works.ru).
23. Postnov V.I., Burhan O.L., Rahmatullin A.Je., Kachura S.M. Nerazrushajushhie metody kontrolja soderzhanija svjazujushhih v prepregah i PKM (obzor) [Nondestructive control methods of the contents binding in prepregs and PKM (review)] //Trudy VIAM. 2013. №12. St. 06 (viam-works.ru).
24. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlja mnogorazovogo kosmicheskogo korablja «Buran» [Non-destructive testing of preparations and details from carbon-carbon composite material for the reusable «Buran» spacecraft] //Trudy VIAM. 2013. №4. St. 06 (viam-works.ru).
25. OST1 90427–94. Kachestvo produkcii. Nerazrushajushhij kontrol' lityh detalej i polufabrikatov aviacionnoj tehniki iz aljuminievyh i magnievyh splavov radiograficheskim metodom. Obshhie polozhenija [Quality of products. Non-destructive testing of cast details and semi-finished products of aviation engineering from aluminum and magnesium alloys radiographic method. General provisions].
26. PI1.2.226–2008. Nerazrushajushhij kontrol' (NK) metallicheskih izdelij rentgenovskimi metodami [Non-destructive testing (Tax Code) of metal products by x-ray methods].
27. OST1 90121–90. Magnievye litejnye splavy. Rezhimy termicheskoj obrabotki [Magnesium cast alloys. Modes of thermal processing].
28. OST1 90248–77. Otlivki fasonnye iz magnievyh splavov. Obshhie tehnicheskie trebovanija [Casting shaped from magnesium alloys. General technical requirements].
This article describes and analyzes raw materials and production methods of aluminum-boron ligatures such as: direct alloying aluminum with pure boron or borides; aluminothermic reduction of boron compounds, oxygen-containing and oxygen-free; receiving ladle clean boride followed by dissolving them in aluminum (SHS, electroplated carbothermic reduction, etc.).
2. Kablov E.N. Osnovnye itogi i napravlenija razvitija materialov dlja perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 20–26.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformi-ruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
5. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Ju. Perspektivy primenenija magnievyh i litejnyh aljuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
6. Kablov E.N. Kontrol' kachestva materialov – garantija bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2001. №1. S. 3–8.
7. Napalkov V.I., Mahov S.V. Legirovanie i modificirovanie aljuminija i magnija [Alloying and aluminum and magnesium modifying]. M.: MISiS. 2002. 376 s.
8. Sposob prigotovlenija ligatury aljuminij–tugoplavkij metal [Way of preparation of ligature aluminum-refractory metal]: pat. 2232827 Ros. Fe-deracija; opubl. 03.02.2003.
9. Mironov V.M., Byshkvarko G.S., Kitari G.G. Proizvodstvo ligatur dlja aljuminievyh i magnievyh splavov [Production of ligatures for aluminum and magnesium alloys]. Tula: Glavnaja redakcija cvetnoj metallurgii. 1963. 84 s.
10. Ligatura [Ligature]: pat. 2026935 Ros. Federacija; opubl. 06.04.1995.
11. Jacenko S.P., Skachkov V.M., Varchenja P.A. Poluchenie ligatur na osnove aljuminija metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving ligatures on the basis of aluminum method of high-temperature exchange reactions in rasplavakh salts] //Rasplavy. 2010. №2. S. 89–94.
12. Jacenko S.P., Ovsjannikov B.V., Ardashev M.A. Cementacionnoe poluchenie «master-splava» iz ftoridno-hloridnyh rasplavov [Tsementatsionnoye receiving «master-alloy» from fluoride hloridnykh rasplavov] //Rasplavy. 2006. №5. S. 29–36.
13. Ljakishev N.P., Pliner Ju.L., Ignatenko G.F. Aljuminotermija [Aluminothermy]. M.: Metallurgija. 1978. 424 s.
14. Belov N.A., Alabin A.N. Sravnitel'nyj analiz legirujushhih dobavok primenitel'no k izgotovleniju termostojkih provodov na osnove aljuminija [The comparative analysis of alloying additives with reference to manufacturing of heat-resistant wires on the basis of aluminum] //MiTOM. 2011. №9. S. 54–58.
15. Sposob izgotovlenija ligatur na osnove aljuminija [Way of manufacturing of ligatures on the basis of aluminum]: pat. 2190682 Ros. Federacija; opubl. 17.05.2001.
16. Osincev O. Diagrammy sostojanija dvojnyh i trojnyh sistem. Fazovye ravnovesija v splavah [Charts of condition of double and threefold systems. Phase balance in alloys]. M.: Mashinostroenie. 2009. 352 s.
17. Napalkov V.I., Cherepok G.V., Mahov S.V. Nepreryvnoe lit'e aljuminievyh splavov [Continuous casting of aluminum alloys]. M.: Intermet Inzhinirng. 2005. 512 s.
18. Truhov A.P., Maljarov A.I. Litejnye splavy i plavka [Cast alloys and melting]. M.: Akademija. 2004. 377 s.
Data from scientific publications regarding methods of production of zirconia fiber are provided in the article. Zirconia fiber has good prospects for use as high-temperature thermal insulation due to the highest refractoriness among oxide ceramics, high durability and chemical resistance, especially alkalin. Now there are various techniques for producing zirconia fiber, each of them has both merits and demerits. The review includes the description of the main methods according to the data available in information sources.
2. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armiruju-shhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A., Semenova E.V. Volokna dioksida cirkonija dlja novogo pokolenija materialov aviacii i kosmosa [Zirconium dioxide fibers for new generation of materials of aircraft and space] /V sb. materialov XXV Mezhdunarodnoj konf. «Kompozicionnye materialy v promyshlennosti». Jalta. 2005. S. 320–323.
5. Zimichev A.M., Solov'eva E.P. Volokno dioksida cirkonija dlja vysokotemperaturnogo primenenija [Zirconium dioxide fiber for high-temperature application] //Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61.
6. Coated zirconia ceramic fibers partially stabilized with yttria: pat. 0885860 EU; pabl. 23.12.1998.
7. Kamiya K., Takahashi K., Maeda T., Nasu H. Sol-gel-derived CaO- and CeO2-stabilized ZrO2 fibers – conversion process of gel to oxide and tensile strength //Journal of the European Ceramic Society. 1991. V. 7. P. 295–305.
8. Stabilized tetragonal zirconia fibers and textiles: pat. 3860529 USA; pabl. 14.01.1975.
9. Process for the preparation of zircon coated zirconia fibers of zircon coated zirconia fibers: pat. 3861947 USA; pabl. 21.01.1975.
10. www.zircarzirconia.com.
11. www.shangze.info.
12. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
13. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.2003.
14. Shhetanov B.V., Kablov E.N., Shheglova T.M. Mehanizm formirovanija stabilizirovan-noj struktury v vysokotermostojkih polikristallicheskih voloknah sistemy Al2O3–SiO2, poluchaemyh po zol'-gel' tehnologii [The mechanism of forming of the stabilized structure in the high-heat-resistant polycrystalline fibers of Al2O3–SiO2 system received on sol-gel of technology] /V sb. materialov XXIV Mezhdunarodnoj konf. «Kompozicionnye materialy v promyshlennosti». Jalta. 2004. S. 324–326.
15. Marshall D.B., Lange F.F., Morgan P.D. High-strength zirconia fibers //Journal of the American Ceramic Society. 1987. V. 70. №8. P. 187–188.
16. Zirconium oxide fibers and process for their preparation: pat. 4937212 USA; pabl. 26.01.1990.
17. Pullar R.C., Taylor M.D., Bhattaccharya A.K. The manufacture of partially-stabilised and fully-stabilised zirconia fibers blow spun from an from an alkoxide derived aqueous sol-gel precursor //Journal of the European Ceramic Society. 2001. V. 21. P. 19–27.
18. Abe Y., Kudo T., Tomioka H., Gunji T., Nagao Y., Misono T. Preparation of continuous zirconia fibers from polyzirconoxane synthesized by the facile one-pot reaction //Journal of Material Science. 1998. V. 33. P. 1863–1870.
19. Preparation method of polycrystal zirconia fiber and zirconia/alumina composite fiber: pat. 102465357 China; pabl. 23.05.2012.
20. Zhang H.B., Edirisinghe M.J. Electrospinning zirconia fiber from a suspension //Journal of the American Ceramic Society. 2006. V. 89. №6. P. 1870–1875.
21. Qin D., Gu A., Liang G., Yuan L. A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin //RSC Advances. 2012. №2. P. 1364–1372.
22. Korenkov V.V., Rodaev V.V., Shuklinov A.V., Stoljarov R.A., Zhigachev A.O., Tjurin A.I., Lovcov A.R., Razlivalova S.S. Sintez i svojstva mnogofunkcional'nyh keramicheskih nanovolokon, poluchennyh metodom jelektrospinninga [Synthesis and properties of the multifunction ceramic nanofibres received by method of electrospinning] //Vestnik TGU. 2013. T. 18. №6. S. 3156–3159.
23. Ksapabutr B., Panapoy M. Fabrication of ceramic nanofibers using atrane precursor /In: Nanofibers. Intech. 2010. P. 367–382.
24. Shida K., Ohara Y., Matsuda M., Suyama Y. Preparation of yttria-stabilized zirconia fibers from a zirconia sol and their properties //Journal of the Ceramic Society of Japan. 2012. V. 120. №11. P. 478–482.
A brief description of the manufacturing process of rubber compounds based on silicone rubber SKTV-1 and vulcanizates samples of the rubber compounds for research is provided. The description of the conducted researches of physic-mechanical properties and flammability of vulcanizates of rubber compounds on the basis of the silicone SKTV-1 rubber containing different quantity of flame retardants is given. By results of research vulcanizates properties the choice of flame retardants was made for receiving fire-resistant rubber on the basis of silicone rubber of the SKTV-1. Results of experimental research of samples of vulcanizates on the basis of the new organic silicon block copolymer possessing increased heat resistance are given.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
4. Bol'shoj spravochnik rezinshhika [Big directory of rezinshchik]. V 2 ch. M.: OOO «Tehinform». 2012. 1385 s.
5. Shetc M. Siloksanovyj kauchuk [Siloxane rubber]. SPb.: Himija. 1975. 192 s.
6. Gorenie, destrukcija i stabilizacija polimerov [Burning, destruktsiya and stabilization of polymers] /Pod red. G.E. Zaikova. SPb.: Nauchnye osnovy i tehnologii. 2008. 422 s.
7. Tehnologija reziny: recepturostroenie i ispytanija [Technology of rubber: retsepturostroyeniye and tests]: Per. s angl. /Pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii. 2010. 617 s.
8. Gorjuchest' i dymoobrazujushhaja sposobnost' polimernyh materialov aviacionnogo naznachenija [Combustibility and smoke-generating ability of polymeric materials of aviation assignment] /Pod red. R.E. Shalina, B.I. Panshina. M.: VIAM. 1986. 104 s.
9. Kodolov V.I. Zamedliteli gorenija polimernyh materialov [Decelerators of burning of polymeric materials]. M.: Himija. 1980. 269 s.
10. Barbot'ko S.L., Shurkova E.N., Vol'nyj O.S., Skrylev N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlja vneshnego kontura aviacionnoj tehniki [Assessment of fire safety of polymeric composite materials for external circuit of aviation engineering] //Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
11. Barbot'ko S.L., Shurkova E.N. O pozharnoj bezopasnosti materialov, ispol'zuemyh dlja izgotovlenija vneshnego kontura samoletov [About fire safety of the materials used for manufacturing of external circuit of airplanes] //Pozharovzryvobezopasnost'. 2011. T. 20. №10. S. 19–24.
12. Petrova G.N., Bejder Je.Ja., Perfilova D.N., Rumjanceva T.V. Pozharobezopasnye lit'evye termoplasty i termojelastoplasty [Fireproof lityevy thermoplastics and thermoelastoplastics] //Trudy VIAM. 2013. №11. St. 02 (viam-works.ru).
13. Petrova G.N., Rumjanceva T.V., Bejder Je.Ja. Vlijanie modificirujushhih dobavok na po-zharobezopasnye svojstva i tehnologichnost' polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] //Trudy VIAM. 2013. №6. St. 06 (viam-works.ru).
14. Clough R.L. Aging Effects on Fire-Retardant Additives in Polymers //Journal of Polymer Science: Polymer Chemistry Edition. 1983. V. 21. P. 767–780.
15. Shurkova E.N., Vol'nyj O.S., Izotova T.F., Barbot'ko S.L. Issledovanie vozmozhno-sti snizhenija teplovydelenija pri gorenii kompozicionnogo materiala putem izmenenija ego struktury [Research of possibility of decrease in heat release when burning composite material by change of its structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
16. Barbot'ko S.L. Pozharobezopasnost' aviacionnyh materialov [Fire safety of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
17. Barbot'ko S.L. Puti obespechenija pozharnoj bezopasnosti aviacionnyh materialov [Ways of ensuring fire safety of aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 121–126.
18. Naumov I.S., Petrova A.P., Chajkun A.M. Reziny uplotnitel'nogo naznachenija i snizhenie ih gorjuchesti [Rubbers of sealing assignment and decrease in their combustibility] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №5. S. 28–35.
19. Mitina E.L., Naumov I.S. Samozatuhajushhij material na osnove kombinacii hloroprenovogo i butadienovogo kauchukov [Self-fading material on the basis of combination of chloroprene and butadiyenovy rubbers] //Klei. Germetiki. Tehnologii. 2012. №6. S. 9–12.
20. Mitina E.L., Barbot'ko S.L. Vlijanie antipirenov na gorjuchest' dekorativnyh rezin na osnove kombinacii butadien-stirol'nogo i butadienovogo kauchukov [Influence of antipyrines on combustibility of decorative rubbers on the basis of combination of styrenr-butadiene and butadiyenovy rubbers] //Klei. Germetiki. Tehnologii. 2012. №3. S. 17–21.
21. Naumov I.S., Chajkun A.M., Eliseev O.A. Rossijskie i mezhdunarodnye standarty na metody ispytanij rezin, syryh rezinovyh smesej i vysokomolekuljarnyh kauchukov [The Russian and international standards on test methods of rubbers, crude rubber mixes and high-molecular rubbers] //Vse materialy. Jenciklopedicheskij spravochnik. 2014. №11. S. 4–13.
22. Aviacionnye pravila. Gl. 25. Normy letnoj godnosti samoletov transportnoj kategorii [Aviation rules. Hl. 25. Standards of the flight validity of airplanes of transport category]. 3-e izd. M.: OAO Aviaizdat. 2009. 274 s.
23. OST 1 90094–79. Polimernye materialy. Metod opredelenija gorjuchesti dekorativno-otdelochnyh i konstrukcionnyh polimernyh materialov [Polymeric materials. Method of determination of combustibility of decorative and finishing and constructional polymeric materials].
24. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie jelastomernyh materialov dlja primenenija vo vseklimaticheskih uslovijah [Development and modifying of elastomeric materials for application in vseklimatichesky conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
25. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] //Trudy VIAM. 2013. №12. St. 04 (viam-works.ru).
26. Naumov I.S., Barbot'ko S.L., Petrova A.P., Malysheva G.V. Vlijanie antipirenov na svojstva uplotnitel'noj reziny na osnove jetilen-propilen-dienovogo kauchuka (JePDK) [Influence of antipyrines on properties of sealing rubber on basis ethylene-propylene-diene rubber (EPDR)] //Vse materialy. Jenciklopedicheskij spravochnik. 2014. №5. S. 31–34.
The research of mechanical loss factor (tgδ) of vibration damping materials of different composition: extensional damping material, materials with metallic and composite constraining layers and ones with different thickness and chemical nature adhesive layers is hereby provided. It has been shown that chemical nature and thickness of adhesive layer alters its damping properties and existence of constraining layer leads to increasing of mechanical loss factor.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
5. Vibropogloshhajushhij material [Vibropogloshchayushchy material]: pat. 2148497 Ros. Federacija; opubl. 10.05.2000.
6. Teploizolirujushhij i vibropogloshhajushhij listovoj material [Heat-insulating and vibropogloshchayushchy sheet material]: pat. 2456178 Ros. Federa-cija; opubl. 20.07.2012.
7. Germetizirujushhaja mastika i vibropogloshhajushhij polimernyj material na ee osnove [Pressurizing mastic and vibropogloshchayushchy polymeric material on its basis]: pat. 2421497 Ros. Federacija; opubl. 27.12.2011.
8. Vibroshumopogloshhajushhij zvukoizolirujushhij material [Vibroshumopogloshchayushchy soundproofing material]: pat. 2340640 Ros. Federacija; opubl. 10.12.2008.
9. Konstrukcionnyj sloistyj izolirujushhij material [Constructional layered isolating material]: pat. 2159185 Ros. Federacija; opubl. 20.11.2000.
10. Vibropogloshhajushhij material [Vibropogloshchayushchy material]: pat. 2035256 Ros. Federacija; opubl. 20.05.1995.
11. Ustrojstvo dlja gashenija vibracij truboprovodov [The device for clearing of vibrations of pipelines]: pat. 2234024 Ros. Federacija; opubl. 10.08.2004.
12. Vibropogloshhajushhee ustrojstvo [Vibropogloshchayushchey device]: pat. 2117336 Ros. Federacija; opubl. 10.08.1998.
13. Ustrojstvo kreplenija aviacionnyh dvigatelej [Device of fastening of aircraft engines]: poleznaja model' 18091 Ros. Federacija; opubl. 20.05.2001.
14. Vibropogloshhajushhij material [Vibropogloshchayushchy material]: pat. 2235106 Ros. Federacija; opubl. 27.08.2004.
15. Teploizolirujushhij i vibropogloshhajushhij listovoj material [Heat-insulating and vibropogloshchayushchy sheet material]: poleznaja model' 102567 Ros. Federacija; opubl.10.03.2011.
16. Rongong J.A., Goruppa A.A., Buravalla V.R. Plasma deposition of constrained layer damping coatings //Journal of Mechanical Engineering Science. Part C. 2004. V. 218. P. 669–679.
17. Sperling L.H. Sound and Vibration Damping with Polymers: Basic Viscoelastic Definitions and Concepts /In: American Chemical Society Symposium Series. Washington D.C. 1990. P. 5–23.
18. Nikiforov A.S., Burdin S.V. Kombinirovannoe vibropogloshhajushhee pokrytie i ego primenenie [The combined vibropogloshchayushchy covering and its application] /V sb. materialov seminara «Vibropogloshhajushhie materialy i pokrytija i ih primenenie». L. 1974. S. 15–19.
19. Gallimore C.A. Passive viscoelastic constrained layer damping application for a small aircraft landing gear system /In: Thesis submitted to the faculty of the Virginia Polytechnic Insitute and State University in partial fulfillment of the requirements for the degree of Master of Science in mechanical Engineering. Blackburg. VA. 2008. P. 1–102.
20. Jones D.I.G. Shock and Vibration Handbook. NY: McGrow-Hill. 5-th edition. Chapter 37. 2011. (электронная версия).
21. Kraev I.D., Obrazcova E.P., Jurkov G.Ju. Vlijanie morfologii magnitnogo napolnitelja na radiopogloshhajushhie harakteristiki kompozicionnyh materialov [Influence of morphology of magnetic filler on radio absorbing characteristics of composite materials] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 10–14.
22. Shul'deshov E.M., Lepeshkin V.V., Platonov M.M., Romanov A.M. Metod opredelenija akusticheskih harakteristik zvukopogloshhajushhih materialov v rasshirennom do 15 kGc diapazone chastot [Method of definition of acoustic characteristics of sound-proof materials in the range of frequencies expanded to 15 kHz] //Aviacionnye materialy i tehnologii (v pechati).
23. Lukina N.F., Dement'eva L.A., Petrova A.P., Tjumeneva T.Ju. Svojstva kleev i klejashhih materialov dlja izdelij aviacionnoj tehniki [Properties of glues and gluing materials for products of aviation engineering] //Klei. Germetiki. Tehnologii. 2009. №1. S. 14–24.
24. Tjumeneva T.Ju., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotehnicheskogo naznachenija i samoklejashhihsja materialov [Development of VIAM Federal State Unitary Enterprise in the field of glues of industrial rubber assignment and being self-glued materials] //Trudy VIAM. 2014. №7. St. 04 (viam-works.ru).
25. Askadskij A.A., Luchkina L.V., Nikiforova G.G. Vibropogloshhajushhie gradientnye polimernye materialy [Vibropogloshchayushchiye gradient polymeric materials] //Plasticheskie massy. 2007. №4. S. 30–33.
26. Rao M.D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes //J. Sound and Vibration. 2003. №262. Р. 457–474.
27. Gandhi F., Austruy J. Constrained-layer damping with gradient polymers for effectiveness over broad temperature ranges //The American Institute of Aeronautics and Astronautics Journal. 2007. V. 45. №8. P. 1885–1893.
28. Fotsing E.R., Sola M., Ross A., Ruiz E. Lightweight damping of composite sandwich beams: Experimental analysis //Journal of Composite Materials. 2012 (http://jcm.sagepub.com).
29. Systems and methods for reducing noise in aircraft fuselages and other structures: pat. 8042768 US; publ. 25.10.2010.
30. Improved composite materials: pat. 0268945 US; publ. 03.11.2011.
31. Structural composite material with improved acoustic and vibrational damping properties: pat. 8450225 US; publ. 28.05.2013.
32. Multilayer and composition gradient structures with improved damping properties: pat. 0164907 US; publ. 28.06.2012.
33. Polymer composites possessing improved vibration damping: pat. 0313307 US; publ. 13.12.2012.
34. Composite components and heat-curing resins and elastomers: pat. 0034833 (US), publ. 09.02.2012.
35. Nagasankar S., Balasivanandha P., Velmurugan R. Influence of the Different Fiber lay-ups on the Damping Characteristics of the Polymer Matrix //Journal of Applied Sciences. 2012. V. 12 (10). P. 1071–1074.
The article is devoted to the actual problem of development and implementation in the aviation enterprises the complex of alternative to existing and complementing them methods and means of nondestructive express-control of properties of polymeric composite materials (PCM) in the manufacture of prepregs, structures and components of the FRP at key stages of their production to improve their reliability and increase lifetime. It is paid much attention to the problem of modern automation technology and laboratory express-control of properties of the PCM. Automation of control process at all stages will allow to manage timely the process parameters as during the semi-finished products manufacture, so at the stage of forming structures of the PCM. Control procedures of the dynamic properties of PCM at key stages throughout the production chain of manufacturing structures of the PCM are summarized. The basic principles for the development of controls are given. The theoretical foundations o
2. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
4. Rumjancev S.V., Kulish E.E., Borisov O.I. Istochniki nizkojenergeticheskogo izluchenija v nerazrushajushhem kontrole [Sources of low-energy emission in non-destructive testing]. M.: Atomizdat. 1976. 128 s.
5. Nikitin K.E., Postnov V.I., Kachura S.M., Rahmatullin A.Je., Burhan O.L. Komp'juternaja ustanovka ISS 1003M dlja nepreryvnogo monitoringa soderzhanija svjazujushhego v prepregah v processe propitki [The ISS 1003М computer installation for continuous monitoring of the contents binding in prepregs in the course of impregnation] //Aviacionnye materialy i tehnologii 2009. №4. S. 21–23.
6. Postnov V.I., Burhan O.L., Petuhov V.I. Avtomatizirovannyj metod izmerenija i upravlenija tehnologicheskimi parametrami formovanija izdelij iz PKM [The automated method of measurement and management of technological parameters of formation of products from PKM] /V sb. statej «Innovacii v mashinostroenii». Penza. 2007. S. 202–204.
7. Postnov V.I., Nikitin K.E., Burhan O.L., Petuhov V.I., Orzaev V.G. Issledovanie ul'trazvukovym metodom strukturnyh izmenenij v PKM v processe formovanija polimernyh kompozicionnyh materialov [Research by ultrasonic method of structural changes in PKM in the course of formation of polymeric composite materials] //Aviacionnye materialy i tehnologii. 2009. №3. S. 25–29.
8. Nikitin K.E., Burhan O.L., Postnov V.I., Petuhov V.I. Laboratornaja ustanovka dlja issledovanija i otrabotki rezhimov formovanija IPF2003 polimernyh kompozicionnyh materialov ul'trazvukovym metodom [Laboratory installation for research and working off of modes of formation ИПФ2003 of polymeric composite materials by ultrasonic method] //Zavodskaja laboratorija. 2008. №4. S. 38–40.
9. Postnov V.I., Burhan O.L., Rahmatullin A.Je., Kachura S.M., Nikitin E.K. Metodika nerazrushajushhego kontrolja temperatury steklovanija v izdelijah iz PKM [Technique of non-destructive testing of glass transition temperature in products from PKM] /V sb. trudov III Mezhdunarodnoj nauch.-praktich. konf. «Sistemy upravlenija zhiznennym ciklom izdelij aviacionnoj tehniki». Ul'janovsk. 2012. S. 181.
Procedure of copper quantitative analysis in the fuel after its corrosion attack against structural materials has been developed to improve the methods of aviation fuel quality assessment. Preparation of fuel for the analysis is carried out by mineralization process. The fuel sample is dissolved in concentrated nitric acid in the presence of hydrogen peroxide until the water-fuel phase boundary is disappeared. Copper concentration is measured by atomic absorption spectrometry with the use of acetylene-air flame on the absorption of copper resonance analytical line (324.8 nm). On the basis of the developed procedure VIAM standard STO 1-595-7-461–2015 «Quantitative analysis of copper in the fuel» was published.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. C. 2–14.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
4. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
5. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabo-tajushhih v uslovijah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
6. Shkol'nikova V.M. Topliva. Smazochnye materialy. Tehnicheskie zhidkosti. Assortiment i primenenie [Lubricants. Technical liquids. Range and application]. M.: Tehinform. 1999. S. 62–75.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
8. Barsukov V.I. Plamenno-jemissionnye i atomno-absorbcionnye metody analiza i instrumental'nye sposoby povyshenija ih chuvstvitel'nosti [Flame and emission and nuclear and absorbing methods of the analysis and tool ways of increase of their sensitivity]. M.: Mashinostroenie. 2004. 172 s.
9. Butina N.P., Zamjatina Je.R., Zorina L.P. Primenenie atomno-absorbcionnoj spektroskopii dlja opredelenija medi, cinka, magnija i kal'cija v maslah i prisadkah [Application of nuclear and absorbing spectroscopy for definition of copper, zinc, magnesium and calcium in oils and additives] //Neftepererabotka i neftehimija. 1997. №6. S. 21–23.
10. Privalenko A.N., Balak G.M., Bagramova Je.K. Opredelenie soderzhanija metallov v neftjanyh toplivah metodom atomno-absorbcionnoj spektrometrii [Definition of the content of metals in oil fuels method of nuclear and absorbing spectrometry] /V sb.: Tezisy dokladov Mezhdu-narodnoj nauch.-tehnich. konf. M.: 25 GOSNII Himmotologii. 2014. C. 298–306.
11. Butina N.P., Zorina L.P. Atomno-absorbcionnoe opredelenie jelementov v tehnologicheskih otlozhenijah s ispol'zovaniem vozdushno-acetilenovogo plameni [Nuclear and absorbing definition of elements in technological deposits with use of acetylene-air flame] //Neftepererabotka i neftehimija. 1998. №1. C. 24–26.
12. Bricke M.Je. Atomno-absorbcionnyj spektrohimicheskij analiz (Metody analiticheskoj himii) [Nuclear and absorbing spectrochemical analysis (Methods of analytical chemistry)]. M.: Himija. 1982. 224 s.
13. Prajs V. Analiticheskaja atomno-absorbcionnaja spektroskopija [Analytical nuclear and absorbing spectroscopy]. M.: Mir. 1976. 358 c.
14. Zagvozdkina T.N., Karachevcev F.N., Dvoreckov R.M. Primenenie model'nyh rastvorov v atomno-absorbcionnom analize [Application of model solutions in the nuclear and absorbing analysis] //Trudy VIAM. 2015. №3. St. 10 (viam-works.ru).
15. Dvoreckov R.M., Karachevcev F.N., Isachenko Ja.A., Zagvozdkina T.N. Opredelenie os-novnyh i legirujushhih jelementov v termostabil'nyh magnitnyh materialah sistemy RZJe–Fe–Co–B metodom AJeS-ISP [Definition of the main and doping elements in thermostable magnetic materials of RZE-Fe-Co-B system nuclear power plant-ISP method] //Trudy VIAM. 2014. №11. St. 10 (viam-works.ru).
16. Havezov I., Calev D. Atomno-absorbcionnyj analiz [Nuclear and absorbing analysis]. M.: Himija. 1983. 144 s.
17. Scott J., Killer F.C.A. The application of microchemical techniques in the Petrochemical and allied industry /Proceedings of the Society for Analytical Chemistry. 1970. V. 7. P. 4–20.
18. Means E.A., Ratcliffe D. Determination of wear metals in lubricating oils by atomic absorption spectroscopy //At. Absorption Newsletter. 1965. V. 4. P. 174–179.
19. Sharlo G. Metody analiticheskoj himii [Methods of analytical chemistry]. L.: Himija. 1965. 977 s.