Articles
The work carried out studies of the microstructure and phase composition of an entropy alloy based on the Ni–Cr–Co alloying system with different ratios of base and alloying elements after vacuum induction melting and subsequent casting into a crucible at a temperature of 200 °C. It has been established that with an equimolar ratio of elements, a solid solution with a higher entropy of mixing is formed, and the introduction of additional alloying elements leads to the formation of carbides and intermetallic compounds.
2. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 15, 2023). DOI: 10.18577/2713-0193-2023-0-3-15-29.
3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, рр. 213–218. DOI: 10.1016/j.msea.2003.10.257.
4. Cantor B. Multicomponent and high entropy alloys. Entropy. 2014, vol. 16, no. 9, рр. 4749–4768.
5. Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, vol. 6, pp. 299–303. DOI: 10.1002/adem.200300567.
6. Yeh J.-W. Recent progress in high-entropy alloys. Annales de Chimie-Science des Materiaux, 2006, vol. 31, pp. 633–648. DOI: 10.3166/acsm.31.633-648.
7. Yeh J.-W., Chen Y.-L., Lin S.-J., Chen S.-K. High-entropy alloys – a new era of exploitation. Materials Science Forum, 2007, vol. 560, pp. 1–9. DOI: 10.4028/www.scientifi c.net/MSF.560.1.
8. Yeh J.-W., Chen S.-K., Gan J.-Y. et al. Formation of simple crystal structures in Cu‒Co‒Ni‒Cr‒Al‒Fe‒Ti‒V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions: A, 2004, vol. 35, pp. 2533–2536. DOI: 10.1007/s11661-006-0234-4.
9. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, vol. 122, pp. 448–511. DOI: 10.1016/j.actamat.2016.08.081.
10. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, pp. 515–534. DOI: 10.1038/s41578-019-0121-4.
11. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, vol. 11, pp. 698–706. DOI: 10.1016/j.intermet.2011.01.004.
12. Zhang Y., Zhou Y.J., Lin J.P. et al. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2018, vol. 10 (6), pp. 534–538. DOI: 10.1002/adem.200700240.
13. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
14. Trofimenko N.N., Efimochkin I.Yu., Osin I.V., Dvoretskov R.M. The research of the possibility of high entropy alloy VNbMoTaW production by mixing elementary powders with further hybrid spark plasma sintering. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 12–20. DOI: 10.18577/2071-9140-2019-0-2-12-20.
15. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 12, 2023). DOI: 10.18577/2713-0193-2022-0-2-30-42.
16. Kablov E.N., Sidorov V.V., Min P.G., Vadeev V.E., Kramer V.V. Research and development of technological parameters for vacuum melting of corrosion-resistant heat-resistant nickel alloys. Metallurg, 2021, no. 2, pp. 62–67.
17. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharje P.P. High-entropy alloys. Amsterdam: Elsevier, 2019, 374 p.
18. Tsai M.-H., Yeh J.-W. High-entropy alloys: a critical review. Materials Research Letters, 2014, vol. 2 (3), pp. 107–123. DOI: 10.1080/21663831.2014.912690.
19. Singh S., Wanderka N., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi highentropy alloy. Acta Materialia, 2011, vol. 59, pp. 182–190. DOI: 10.1016/j.actamat.2010.09.023.
20. The Materials Project. Available at: materialsproject.org (accessed: December 10, 2023).
In this work, high-resolution transmission electron microscopy was used to study features of the structure of the age-hardenable aluminum alloy AlSi10MgCu, produced by selective laser melting, after quenching and artificial aging. Some aspects of the application of Fourier transform to determine the crystal structure of precipitations are described. The identification of crystalline structure of fine particles formed in this alloy during aging has been carried out, and their orientation relations with the matrix have been established.
2. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts by FSUE VIAM. Part 1. Materials and synthesis technologies. Elektrometallurgiya, 2022, no. 1, pp. 2–12.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts by FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25.
4. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2020-0-11-11-20.
5. Rometsch P., Jia Q., Yang K.V., Wu X. Aluminum alloys for selective laser melting-towards improved performance. Additive Manufacturing for the Aerospace Industry, Elsevier, 2019, pp. 301–325.
6. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system, produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 15, 2024). DOI: 10.18577/2713-0193-2023-0-4-23-35.
7. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 14, 2024). DOI: 10.18577/2713-0193-2021-0-3-19-34.
8. Di Giovanni M.T., Mоrtsell E.A., Saito T. et al. Influence of Cu addition on the heat treatment response of A356 foundry alloy. Materials Today Communications, 2019, vol. 19, рр. 342–348.
9. Kozlov I.A., Volkov I.A., Fomina M.A., Zakharov K.E. Features of chemical oxidation of semi-finished products obtained by selective laser melting from a metal powder composition of the alloy VAS1. Trudy VIAM, 2023, no. 11 (129), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 03, 2024). DOI: 10.18577/2307-6046-2023-0-11-90-98.
10. Ponnusamy P., Rashid R.A.R., Masood S.H. et al. Mechanical properties of SLM-Printed Aluminium alloys: A Review. Materials, 2020, vol. 13, no. 19, pp. 4301–4351.
11. Lorusso M., Trevisan F., Calignano F. еt al. A 357 alloys by LPBF for Industry Applications. Materials, 2020, vol. 13, no. 7, p. 1488.
12. Mоrtsell E.A., Qian F., Marioara C.P., Li Y. Precipitation in an A356 foundry alloy with Cu additions – A Transmission Electron Microscopy Study. Materials Science and Engineering, 2019, vol. 788, pp. 485–494.
13. Wang G., Sun Q., Feng L. et al. Influence of Cu content on ageing behavior of AlSiMgCu cast alloys. Materials and Design, 2007, vol. 28, pp. 1001–1005.
14. Kolobnev N.I., Ber L.B., Tsukrov S.L. Heat treatment of deformable aluminum alloys. Moscow: APRAL, 2020, 552 p.
15. Assadiki A., Esin V.A., Martinez R. et al. Modelling precipitation hardening in an A356+0,5 wt % Cu cast aluminum alloys. Materials Science and Engineering: A, 2021, vol. 819, p. 141450.
16. Benarieb I., Dynin N.V., Kuznetsova P.E., Sbitneva S.V. Changes in the structure and mechanical properties during heat treatment of aluminum alloy AlSi10MgCu obtained by selective laser melting. Tekhnologiya legkikh splavov, 2023, no. 4, pp. 5–18.
17. Kablov E.N., Dynin N.V., Benarieb I., Zaitsev D.V., Sbitneva S.V. Changes in the structure and mechanical properties during heat treatment of aluminum alloys of the AlSi10Mg type obtained by selective laser melting. Metallovedenie i termicheskaya obrabotka metallov, 2022, no. 10 (808), pp. 20–28.
The influence of the composition of the binder component on the physica-mechanical properties of a flexible low-density heat-sound insulation fibrous material has been studied. The density, flexibility, elasticity, tensile strength, moisture, sorption moisture of experimental samples of flexible low-density heat-sound insulation fibrous materials has been studied. It is determined that experimental samples of flexible, low-density heat-sound insulation fibrous materials are not inferior in terms of properties to native and foreign analogues.
2. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Glass and Ceramics Based High-Temperature Composite Materials for use in Aviation Technology. Glass and Ceramics, 2012, vol. 69, no. 3–4, pp. 109–112.
3. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
4. Barinov D.Ya., Marakhovskij P.S., Zuev A.V. Mathematical modeling of destruction of fiberglass-based thermal-protection material. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 71–78. DOI: 10.18577/2071-9140-2020-0-4-71-78.
5. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 22, 2024). DOI: 10.18577/2713-0193-2021-0-1-119-126.
6. Osnos S.P. Application of materials based on basalt fibers in the aerospace industry. Kompozitnyj mir, 2015, no. 4 (61), pp. 72–79.
7. Babashov V.G., Bespalov A.S., Istomin A.V., Varrik N.M. Heat and sound insulating material made using plant raw materials. Novye ogneupory, 2017, no. 3, pp. 173–178.
8. Kablov E.N. Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 3–9.
9. Boynovich L.B., Domantovsky A.G., Emelyanenko A.M. et al. Anti-icing properties of superhydrophobic coatings on aluminum and stainless steel. Izvestiya Akademii nauk. Ser.: Khimicheskaya, 2013, no. 2, pp. 383–390.
10. Kondrashov E.K., Nefedov N.I., Vereninova N.P. et al. Modification of fluorocopolymer coatings by telomers to improve their hydrophobicity. Polymer Science. Ser.: D, 2016, vol. 9, no. 2, pp. 212–218.
11. Nefedov N.I., Haskov M.A., Petrova A.P., Buznik V.M. Study of the thermal properties of fluorinated paraffins and hydrophobic coatings on their base. Trudy VIAM, 2017, no. 2 (50), paper no. 11. Available at: http:// www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2017-0-2-11-11.
12. Orlov A.V., Chursova L.V., Grebeneva T.A., Panina N.N. Flame retardants for creating flame retardant and fireproof polymer composite materials. Klei. Germetiki. Tekhnologii, 2022, no. 1, pp. 23–30. DOI: 10.31044/1813-7008-2022-0-1-23-30.
13. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 23, 2024). DOI: 10.18577/2713-0193-2022-0-4-51-60.
14. Istomin A.V. Technology of obtaining flexible thermal insulation materials. Steklo i keramika, 2023, vol. 96, no. 3 (1143), pp. 48–56. DOI: 10.14489/glc.2023.03.pp.048-056.
15. Salimov I.E., Bespalov A.S., Babashov V.G., Maksimov V.G. Investigation of the influence of the chemical composition of Fenotam N210, Fenotam N210M, KMF-S, SFZh-3024 resins on their physico-chemical properties. Trudy VIAM, 2024, no. 2 (132), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2024-0-2-84-91.
The options of honeycomb filler splicing in the manufacture of aircraft interior panels are considered. Honeycomb panels have been manufactured and tested using various methods of honeycomb splicing to evaluate the variation of mechanical properties. The variation in mechanical properties as well as the effect on the mass of three-layer panels of the interior of aircraft was revealed.
2. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazi, 2015, no. 1, pp. 36–39.
3. Kablov E.N. Materials and Chemical Technologies for Aviation Equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Composition and Method for Manufacturing a Binder, Prepreg, and Honeycomb Panel: pat. 2460745 Rus. Federation; appl. 29.12.10; publ. 10.09.12.
6. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
7. Airworthiness standards for transport category aircraft: AP-25: approved. by the Resolution of the 28th session of the Council on Aviation and Airspace Use on 11.12.2008. 3rd ed. with amendments 1–6. Moscow: Aviaizdat, 2009, 267 p.
8. Floor panel wear test bench: pat. 2518603 Rus. Federation; appl. 17.01.13; publ. 10.06.14.
9. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
10. Composition for obtaining a binder for prepregs, a method for producing a binder, a prepreg and a method for producing a panel from a polymer composite material: pat. 2559495 Rus. Federation; appl. 13.01.14; publ. 10.08.15.
11. Shershak P.V., Shokin G.I., Egorov V.N. Technological features of the production of three-layer honeycomb panels for aircraft floors. Aviatsionnaya promyshlennost, 2014, no. 3, pp. 34–42.
12. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 01, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
13. Shershak P.V., Kosarev V.A., Ryabovol D.Yu. Hybrid facings in sandwich-construction of aviation floor panels. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 35–41. DOI: 10.18577/2071-9140-2018-0-3-35-41.
14. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Study of epoxy-polysulfone polymer systems as the basis for high-strength adhesives for aviation purposes. Klei. Germetiki. Tekhnologii, 2017, no. 3, pp. 7–12.
15. Lukina N.F., Dementyeva L.A., Petrova A.P., Kiriyenko T.A., Chursova L.V. Kleyevye svyazuyushchiye dlya detaley iz PKM sotovoy konstruktsii. Klei. Germetiki. Tekhnologii, 2016, no 5, pp. 12–16.
16. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: February 11, 2024). DOI: 10.18577/2713-0193-2023-0-2-94-103.
17. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM. Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: February 01, 2024). DOI: 10.18577/2307-6046-2014-0-4-6-6.
18. Honeycomb panel made of polymer composite material and method for its production: pat. 2544827 Rus. Federation; appl. 13.01.14; publ. 20.03.15.
Electroplating coatings of corrosion-resistant steels have been studied to prevent contact corrosion of aluminum alloys: methods of surface preparation have been selected, optimal modes of coating application and heat treatment have been determined. Based on the results of accelerated corrosion tests of structurally similar samples in the salt mist chamber, galvanic coatings of corrosion-resistant steels with high protective ability under conditions of occurrence of a corrosion-resistant steel/aluminum contact pair were determined.
2. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Aluminum alloys in aerospace engineering. Ed. E.N. Kablov. Moscow: Nauka, 2001, 192 p.
3. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Yu., Konovalov A.N. Constructed layered materials based on sheets of aluminum-lithium alloys and fiberglass in the structures of new generation aircraft. Vestnik mashinostroeniya, 2020, no. 12, pp. 46–52.
4. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Oglodkov M.S. Experience and prospects for the use of aluminum-lithium alloys in aviation and space technology. Metallurg, 2021, no. 1, pp. 62–70.
5. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
6. Sinyavskiy V.S., Kalinin V.D. Corrosion durability of aluminum alloys and corrosion-resistant steels in substructures of ventilated facades. Stroyprofil, 2011, no. 6, pp. 27–28.
7. Zhirnov A.D., Karimova S.A., Golovina V.M. Corrosion resistance and protection of aluminum alloys in building structures. Stroyprofil, 2010, no. 2, pp. 30–31.
8. Stogniy G.V. Prospects for studying contact corrosion of metals in modern shipbuilding and shipbuilding. Vodnyy transport, 2013, no. 2, pp. 43–51.
9. GOST 9.005–72. Unified system of protection against corrosion and aging. Metals, alloys, metallic and non-metallic inorganic coatings. Permissible and unacceptable contacts with metals and non-metals. Moscow: Standartinform, 2008, 28 p.
10. Navinsek B., Panjan P., Milosev I. PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surface and Coatings Technology, 1999, vol. 116–119, pp. 476–487.
11. The Sigal process for electrodeposition of aluminium. Anti-Corrosion Methods and Materials. MCB UP Ltd, 1985, vol. 32, no. 7, р. 13. DOI: 10.1108/eb020360.
12. Enders B., KrauB S., Wolf G.K. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition. Surface and Coatings Technology, 1994, vol. 65, pp. 203–207.
13. Jianming X., Weijianga Z., Wolf G.K. The corrosion properties of Al/Al2O3 multilayered coatings on CK45 steel deposited by IBAD. Surface and Coatings Technology, 2004, vol. 187, pp. 194–198.
14. Matys V.G., Poplavsky V.V. Resistance of aluminum and its alloy to contact corrosion in galvanic couples with steels with metallic coatings. Trudy BGTU: Khimiya i tekhnologiya neorganicheskikh veshchestv, 2015, no. 3, pp. 85–92.
15. Vyacheslavov P.M. Electrolytic deposition of alloys. Leningrad: Mashinostroenie, 1977, 34 p.
16. Averkin V.A. Electrolytic deposition of alloys. Moscow: Mashgiz, 1961, 120 p.
17. Kudryavtsev N.T. Electrolytic coatings with metals. Moscow: Khimiya, 1979, 352 p.
18. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
19. Laptev A.B., Zakirova L.I., Degovets M.L. Properties of protective galvanic coatings for replacement of cadmium on steel fixing parts (review). Part 2. Hydrogen embrittlement and frictional characteristics. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 35–40. DOI: 10.18577/2071-9140-2020-0-4-35-40.
20. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
21. Vinogradov S.S., Nikiforov A.A., Zakirova L.I. Cadmium replacement. Stage 2 – final. Galvanic thermal coating of zinc–tin system – real alternative to cadmium plating. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 59–66. DOI: 10.18577/2071-9140-2019-0-3-59-66.
22. Method for preparing the surface of articles made of easily oxidized metals: pat. 368762 Japan; appl. 26.08.70; publ. 26.01.73.
23. State Standard 9.305–84. Unified system of protection against corrosion and aging. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings. Moscow: Publ. House of Standards, 2003, 105 p.
24. Method for preparing the surface of stainless steel articles before galvanic nickel plating: pat. 2201478 Rus. Federation; appl. 18.02.00; publ. 27.03.03.
25. Davlatyan T.A., Konarev A.A., Kruglov V.S. et al. Electrodeposition of copper on composite tapes «silver-stainless steel». Coatings and surface treatment: Abstracts of reports. 10th Int. Conf. Moscow, 2013, pp. 30–31.
26. Method of surface preparation of stainless steel products before galvanic copper plating: patent. 2549037 Rus. Federation; appl. 03.07.13; publ. 20.04.15.
27. State Standard 9.402–2004. Unified system of corrosion and aging protection. Paint and varnish coatings. Preparation of metal surfaces for painting. Moscow: Standartinform, 2006, 43 p.
28. State Standard 9.302–88. Unified system of corrosion and aging protection (USCAP). Metallic and non-metallic inorganic coatings. Control methods. Moscow: Publ. House of Standards, 2001, 40 p.
29. State Standard 9.308–85. Unified System of Protection against Corrosion and Aging (USPA). Metallic and non-metallic inorganic coatings. Methods of accelerated corrosion testing. Moscow: Publ. House of Standards, 1990, 21 p.
The paper is dedicated to a review of scientific advances in the application of thermal diffusion coatings to protect materials from aggressive environments. Diffusion saturation allows the formation of the desired phase structure in the surface layers of parts by doping with aluminum, boron, chromium, or silicon. Thermal diffusion protective coatings can serve as a replacement for traditionally applied coatings to protect against atmospheric corrosion of steel parts, improve the hardness, wear resistance, and heat resistance of nickel-alloy parts or protect stainless steels from exposure to corrosive media.
2. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
3. Kablov E.N., Khmeleva K.M., Zavarzin S.V., Kozlov I.A., Lonskii S.L. The effect of heat treatment on the characteristics of aluminium-zinc coatings obtained by the cold spray method. Aviation materials and technologies, 2022, no. 1 (66), paper no. 07. Available at: http://www.journal.viam.ru (ассеssed: August 05, 2024). DOI: 10.18577/2713-0193-2022-0-1-78-91.
4. Zhabin A.N., Nyafkin A.N., Serpova V.M., Krasnov E.I. Methods of physical vapor deposition for the manufacture of metal matrix composites (review). Trudy VIAM, 2020, no. 11 (93), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 05, 2024). DOI: 10.18577/2307-6046-2020-0-11-68-75.
5. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
6. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
7. Кablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
8. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
9. Wang P., He W., Mauer G. et al. Monte Carlo simulation of column growth in plasma spray physical vapor deposition process. Surface and Coatings Technology, 2018, vol. 335, pp. 188–197.
10. Öchsner A., Murch G.E., Delgado J.M.P.Q. Microstructure and properties of CBN diffusion coating on high-speed steel. Defect and Diffusion Forum, 2011, vol. 312–315, pp. 542–547.
11. Zhang H., Pan Y., He Y.Z. Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6FeNiCoCrAlTiSi multicomponent ferrous alloy coating. Surface and Coatings Technology, 2011, vol. 205, pp. 4068–4072.
12. Qi K., Yang Y., Hu G.F. et al. Thermal expansion control of composite coatings on 42CrMo by laser cladding. Surface and Coatings Technology, 2020, vol. 397, p. 125983.
13. Kuo Y.L., Chang K.H. Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys. Surface and Coatings Technology, 2015, vol. 283, pp. 194–200.
14. García J.R., Fernández J.E., Cuetos J.M., Costales F.G. Fatigue effect of WC coatings thermal sprayed by HVOF and laser treated, on medium carbon steel. Engineering Failure Analysis, 2011, vol. 18, pp. 1750–1760.
15. Yu O., Goncharov I.V., Sapegina R.R. et al. Tantalum chemical vapour deposition on steel and tungsten substrates in the TaBr5-cd-He system. Surface and Coatings Technology, 2019, vol. 377, p. 124893.
16. Wang W., Wang D., Han F.S. Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment. Materials Letters, 2019, vol. 248, pp. 60–64.
17. Kurt B., Özdoğan L., Güney B. et al. Characterization and wear behavior of TiBC coatings formed by thermo-reactive diffusion technique on AISI D6 steel. Surface and Coatings Technology, 2020, vol. 385, p. 125332.
18. Fan X.S., Yang Z.G., Xia Z.X. et al. The microstructure evolution of VC coatings on AISI H13 and 9Cr18 steel by thermo-reactive deposition process. Journal of Alloys and Compounds, 2010, vol. 505, pp. L15–L18.
19. Kong D.J., Wang J.C., Guo H.Y. XPS and EDS analysis of VC coatings prepared by TD process. Rare Metal Materials and Engineering, 2016, vol. 45, pp. 297–302.
20. Sun C.Y., Xue Q., Zhang J. et al. Growth behavior and mechanical properties of Cr–V composite surface layer on AISI D3 steel by thermal reactive deposition. Vacuum, 2018, vol. 148, pp. 158–167.
21. Tong L., Dengzun Y., Chungen Z. Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process. Chinese Journal of Aeronautics, 2010, vol. 23, pp. 381–385.
22. Qiao M., Zhou C. Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys. Corrosion Science, 2012, vol. 63, pp. 239–245.
23. He H., Liu Z., Wang W., Zhou C. Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys. Corrosion Science, 2015, vol. 100, pp. 466–473.
24. Mohammadi K., Haghi A.K. A study on characterization of pack-cemented aluminide coating on metals. Journal of Materials Processing Technology, 2008, vol. 201, pp. 669–672.
25. Xiang Z.D., Datta P.K. Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels. Acta Materialia, 2006, vol. 54, pp. 4453–4463.
26. Fähsing D., Oskay C., Meibner T.M., Galetz M.C. Corrosion testing of diffusion-coated steel in molten salt for concentrated solar power tower systems. Surface and Coatings Technology, 2018, vol. 354, pp. 46–55.
27. Vourlias G., Pistofidis N., Chaliampalias D. et al. Zinc deposition with pack cementation on low carbon steel substrates. Journal of Alloys and Compounds, 2006, vol. 416, pp. 125–130.
28. Xue Q., Sun C., Yu J.Y. et al. Microstructure evolution of a Zn–Al coating co-deposited on low-carbon steel by pack cementation. Journal of Alloys and Compounds, 2017, vol. 699, pp. 1012–1021.
29. Cheng J., Yi S., Park J.S. Simultaneous coating of Si and B on Nb–Si–B alloys by a halide activated pack cementation method and oxidation behaviors of the alloys with coatings at 1100 °C. Journal of Alloys and Compounds, 2015, vol. 644, pp. 975–981.
30. Pourasad J., Ehsani N. In-situ synthesis of SiC–ZrB2 coating by a novel pack cementation technique to protect graphite against oxidation. Journal of Alloys and Compounds, 2017, vol. 690, pp. 692–698.
31. Zhao Y.G., Zhou W., Qin Q.D. et al. Effect of pre-oxidation on the properties of aluminide coating layers formed on Ti alloys. Journal of Alloys and Compounds, 2005, vol. 391, pp. 136–140.
32. Chaliampalias D., Papazoglou M., Tsipas S. et al. The effect of Al and Cr additions on pack cementation zinc coatings. Applied Surface Science, 2010, vol. 256, pp. 3618–3623.
33. Qiao Y.Q., Guo X.P. Formation of Cr-modified silicide coatings on a Ti–Nb–Si based ultrahigh-temperature alloy by pack cementation process. Applied Surface Science, 2010, vol. 256, pp. 7462–7471.
34. Stathokostopoulos D., Chaliampalias D., Stefanaki E.C. et al. Structure, morphology and electrical properties of Mg2Si layers deposited by pack cementation. Applied Surface Science, 2013, vol. 285, pp. 417–424.
35. Thermochemical Surface Engineering of Steels. Eds. E.J. Mittemeijer, M.A.J. Somers. Cambridge: Elsevier, Woodhead Publishing, 2014, 792 p.
36. Handbook of Hard Coatings: Deposition Technologies, Properties and Applications. Ed. R.F. Bunshah. New York: Noyes Publ., Park Ridge, 2001, 560 p.
37. Budinski K.G. Overview of Surface Engineering and Wear. Ohaio: ASTM International Publishing, 1996, 21 p.
38. Surface Hardening of Steels: Understanding the Basics. Ed. J.R. Davis. Ohaio: ASM International, 2002, 364 p.
39. Surface Engineering for Corrosion and Wear Resistance. Ed. J.R. Davis. Ohaio: ASM International, 2001, 288 p.
40. Natrup F., Graf W. Sherardizing: corrosion protection of steels by zinc diffusion coatings. Thermochemical Surface Engineering of Steels. Kopenhagen: DTU Library, 2015, pp. 737–750.
41. Pistofidis N., Vourlias G., Chaliampalias D. et al. On the mechanism of formation of zinc pack coatings. Journal of Alloys and Compounds, 2006, vol. 407, pp. 221–225.
42. Kania H., Sipa J. Microstructure Characterization and Corrosion Resistance of Zinc Coating Obtained on High-Strength Grade 10.9 Bolts Using a New Thermal Diffusion Process. Materials, 2019, vol. 12, p. 1400.
43. Kania H., Sipa J. Thermal diffusion zinc coating technology with reactive atmosphere recirculation. Part 1: General description of technology and structure of coatings. Ochrona Przed Korozja, 2018, vol. 11, pp. 338–345.
44. Kania H., Sipa J. Zinc coating deposition with new thermal diffusion process on low carbon steel substrates. Wiadomosci Hutnicze, 2019, vol. 1, pp. 2–8.
45. Kania H., Sipa J., Skupińska A. Thermal diffusion zinc coating technology with reactive atmosphere recirculation. Part 2: Corrosion resistance of coatings. Ochrona Przed Korozja, 2018, vol. 12, pp. 375–382.
46. Lin Z., Xu L., Li X. et al. Corrosion resistance of composite coating used for fastener protection. Anti-Corrosion Methods and Materials, 2019, vol. 66, pp. 595–602.
47. Schubert E., Klassen M., Zerner I. et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. Journal of Materials Processing Technology, 2001, vol. 115, pp. 2–8.
The influence of loading frequency on the fatigue life characteristics of a heat-resistant titanium alloy has been studied. Low cycle fatigue (LCF) tests were performed under «severe» loading conditions at temperatures of 20 and 400 °C. High cycle fatigue tests (HCF) were performed under «mild» loading conditions at room temperature. It has been established that the effect of loading frequency on the LCF is the most significant at elevated temperatures. The main difference at a fixed level of loading of the HCF is observed in the interval from 107 cycles. With an increase in the frequency of loading, the durability increases.
2. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
3. Gorbovets M.A., Khodinev I.A., Ryzhkov P.V. Equipment for testing carrying out the strain-controlled low-cycle fatigue. Trudy VIAM, 2018, no. 9 (69), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 03, 2023). DOI: 10.18577/2307-6046-2018-0-9-51-60.
4. Belyaev M.S., Terentyev V.F., Bakradze M.M., Gorbovets M.A., Goldberg M.A. Low-cycle fatigue of heat-resistant alloy VZh175 under elastic-plastic deformation. Deformatsiya i razrusheniye materialov, 2014, no. 7, pp. 27–33.
5. Nazmy M.Y. High temperature low cycle fatigue of IN 738 and application of strain range partitioning. Metallurgical Transactions A, 1983, vol. 14, pp. 449–461.
6. Lee Y.-L., Barley M.E., Kang H.-T. Metal fatigue analysis handbook: practical problem-solving techniques for computer-aided engineering. Elsevier Inc., 2012, pp. 222–223.
7. Inozemtsev A.A., Bashkatov I.G., Koryakovtsev A.S. Titanium alloys in products developed by Aviadvigatel JSC. Modern titanium alloys and problems of their development. Ed. E.N. Kablov. Moscow: VIAM, 2010, pp. 43–46.
8. Prohodceva L.V., Erasov V.S., Lavrova O.Yu., Lavrov A.V. Influence of form of cycle on fatigue properties and microstructure of breaks of VT3-1 titanium alloy. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 54–58.
9. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 21, 2023). DOI: 10.18577/2713-0193-2022-0-1-129-142.
10. Erasov V.S., Oreshko E.I. Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies. Trudy VIAM, 2016, no. 8, paper no. 11. Available at: http://www.viam-works.ru (accessed: December 21, 2023). DOI: 10.18577/2307-6046-2016-0-8-11-11.
11. Sun C., Li Y., Huang R. et al. Crack initiation mechanism and fatigue life of titanium alloy Ti–6Al–2Sn–2Zr–3Mo-X: Effects of stress ratio and loading frequency. Materials Science and Engineering: A, 2020, vol. 798, p. 140265. DOI: 10.1016/j.msea.2020.140265.
12. Krasovskii A.Y., Petrov Y.N., Nadezhdin G.N. Fatigue damage to a pseudo-α-titanium alloy in the 10–33-Hz frequency range. Strength of Materials, 1982, vol. 14, pp. 1320–1323. DOI: 10.1007/BF00770126.
13. Eylon D., Bartel T.L., Rosenblum M.E. High Temperature Low Cycle Fatigue in Beta Processed Ti‒5Al‒5Sn‒2Zr‒2Mo‒0.25S. American society for metals and the metallurgical society of AIME, 1980, vol. 11A, pp. 1361–1367. DOI: 10.1007/BF02653490.
14. Matokhnyuk L.E., Voinalovich A.V., Khlyapov A.A., Bulgakova S.G., Artyushina V.P. Fatigue limit of the titanium alloy VT23 in tests with high loading frequency. Metal Science and Heat Treatment, 1988, vol. 30, pp. 786–789.
15. Kuzmenko V.A., Matokhnyuk L.E., Pisarenko G.G. Fatigue tests at high frequencies. Kyiv, 1979, 335 p.
16. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
17. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: December 10, 2023). DOI: 10.18577/2713-0193-2021-0-1-80-94.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Wang Q., Ren J.Q., Xin C. et al. Low cycle fatigue behavior of near-alpha titanium alloys used in deep-driving submersible: Ti–6Al–3Nb–2Zr–1Mo vs. Ti–6Al–4V ELI. Journal of Alloys and Compounds, 2023, vol. 934, p. 167856.
20. Bai C., Lan L., Xin R. et al. Microstructure evolution and cyclic deformation behavior of Ti–6Al–4V alloy via electron beam melting during low cycle fatigue. International Journal of Fatigue, 2022, vol. 159, p. 106784. DOI: 10.1016/j.ijfatigue.2022.106784.
21. Polak J. Cyclic plasticity and low cycle fatigue life of metals. Amsterdam: Elsevier, 1991. С. 123.
22. Sharkeev Y., Eroshenko A., Mairambekova A. Features of the fracture of the Ti–45 wt.% Nb alloy in ultrafine-grained state at gigacycle fatigue. Procedia Structural Integrity, 2023, vol. 47, pp. 849–854. DOI: 10.1016/j.prostr.2023.07.034.
The article considers the dependences of the formation of the indicator pattern on the calculated magnetization mode of the object of control and the concentration of magnetic powder. The features of the choice of the magnetization method are described. The magnetic characteristics on which the calculated current depends are determined. Formulas for calculating the set current are given to ensure the required value of the magnetic field on the surface of the controlled part. An illustrative experiment was conducted showing the importance of observing the required concentration of magnetic powder.
2. Kablov E.N., Startsev V.O. The influence of internal stresses on the aging of polymer composite materials: a review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576. DOI: 10/1007/s11029-021-09979-6.
3. Kablov E.N. Materials for all times. Nauka i zhizn, 2010, no. 10, pp. 12–19.
4. Demidov A.A., Krupnina O.A., Mikhaylova N.A., Kosarina E.I. Investigation of polymer composite material samples by x-ray computed tomography and processing of tomograms with the image of the volume fraction of porosity. Trudy VIAM, 2021, no. 5 (99), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2021-0-5-105-113.
5. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. Automated non-destructive inspection of three-layer honeycomb structures’ samples by ultrasonic through-transmission technique. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 74–80. DOI: 10.18577/2071-9140-2020-0-2-74-80.
6. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Revisiting the ecotoxicity and efficiency of different classes of industrial nonionic surfaces used for cleaning metal surfaces in the process of capillary control of details of the aviation technology (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 16, 2024). DOI: 10.18577/2713-0193-2021-0-4-98-106.
7. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://www.journal.viam.ru (accessed: May 16, 2024). DOI: 10.18577/2713-0193-2021-0-2-115-122.
8. Shelikhov G.S. Magnetic particle inspection of parts and assemblies. Moscow: Expert, 1995, 224 p.
9. State Standard R 56512–2015. Non-destructive testing. Magnetic particle method. Typical technological processes. Moscow: Standartinform, 2016, 56 p.
10. Klyuev V.V., Sosnin F.R., Filinov V.N. et al. Non-destructive testing and diagnostics: handbook. Ed. V.V. Klyuev. Moscow: Mashinostroyenie, 1995, 488 p.
11. State Standard R ISO 9934-1–2011. Non-destructive testing. Magnetic particle method. Part 1. Basic requirements. Moscow: Standartinform, 2019, 16 p.
12. State Standard 21105–87. Non-destructive testing. Magnetic particle method. Moscow: Publishing House of Standards, 2003, 14 p.
13. Beda P.I., Vybornov B.I., Glazkov Yu.A. et al. Non-destructive testing of metals and products: reference book. Ed. G.S. Samoylovich. Moscow: Mashinostroenie, 1976, 456 p.
14. Aleksandrov A.G., Glazkov Yu.A. Technological maps for magnetic particle testing of aircraft parts: methodological recommendations for compilation. Lyubertsy: 13th State Research Institute of the Ministry of Defense of the Russian Federation, 1995, is. VVS 6878, 76 p.
15. Lednev I.S. Inquiry of the properties of detection media for magnetic particle inspection. Trudy VIAM, 2022, no. 2 (108), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2022-0-2-122-132.
The results of research of the influence of the collision speed of the striker with the surface of CFRP on the damage square (interlayer delamination) and residual strength of CFRP are shown. The researches were carried out on the samples of CFRP based on unidirectional and equal-strength (twill weave) reinforcing fillers and epoxy matrix with addition of the thermoplastic dispersed filler, made by method of autoclave molding. The speed of collision was changed by changing the height of falling of the striker of the vertical coper. The area of damage was evaluated by method of ultrasonic control.
2. Molchanov B.I., Gudimov M.M. Properties of carbon fiber reinforced plastics and their areas of application. Aviatsionnaya promyshlennost, 1997, no. 3–4, pp. 58–60.
3. Kablov E.N. Marketing of materials science, aircraft construction and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
4. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vol. St. Petersburg, 2019, vol. 4, p. 24.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Shepel V.N. Creation of products from polymer composites. Moscow: Publisher Shepel Vladislav Nikolaevich, 2020, 388 p.
8. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
9. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2020-0-67-38-44.
10. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 16, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
11. Beklemysheva K.A., Petrov I.B. Modeling the destruction of hybrid composites under the action of a low-speed impact. Matematicheskoe modelirovanie, 2018, vol. 30, no. 11, pp. 27–43.
12. Boychuk A.S., Dikov I.A., Generalov A.S. Estimation of impact damages area in FRP by various ultrasonic techniques. Trudy VIAM, 2022, no. 7 (113), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2022-0-7-125-133.
13. Kudryavtsev O.A., Olivenko N.A., Sapozhnikov S.B., Ignatova A.V. Assessment of damage and residual strength of a layered composite after a low-speed impact using indicator coatings. Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 839–852. DOI: 10.22364/mkm.57.5.03.
14. Staroverov O.A., Babushkin A.V., Gorbunov S.M. Assessment of the degree of damage to carbon fiber composite materials under impact action. Vestnik PNIPU. Ser.: Mekhanika, 2019, no. 1, pp. 162–172. DOI: 10.15593/perm.mech/2019.1.14.
15. Sergachev I.V., Antonov F.K., Safonov A.A., Ushakov A.E. Evaluation of residual strength of composite structure elements after low-speed impact. Problemy mashinostroyeniya i nadezhnosti mashin, 2013, no. 1, pp. 36–44.
16. Zhelezina G.F., Solovieva N.A., Kulagina G.S., Shuldeshova P.M. Study of the possibility of increasing the impact resistance of thin-sheeted carbon fiber-reinforced plastics due to clading with aramid organoplastics. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 16, 2024). DOI: 10.18577/2713-0193-2021-0-4-35-42.
17. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Drop-weight impact testing of polymer composite material. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 60–64.
18. ASTM D7137/D7137M-12. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM International, 2012, рр. 1–16.
19. Boeing Specification Support Standard BSS 7260: Advanced composite compression test. Boeing Corp., 1988, 48 р.
20. AITM1.0010-94. Airbus Industry Test Method/Fiber Reinforced Plastics. Determination of compression strength after impact. Blagnac, 1994, is. 2, 26 р.
21. ASTM D7136/D7136M-15. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, 2015, рр. 1–16.
22. SACMA Recommended methods S.R.M. 2R-94. Suppliers of Advanced Composites Materials Association, 1994, рр. 1–7.
23. DIN 65561. Fiber reinforced plastics; testing of multidirectional laminates; determination of the compression strength after impact test. Aerospace, 1991, рр. 1–6.
24. ASD-STAN PREN 6038 EN. Aerospace Series. Fiber Reinforced Plastics Test Method Determination of the Compression Strength After Impact-Edition P1. Aerospace, 1995, 12 р.
25. Ogasawara T., Mikomi T., Takamoto K. et al. Experimental evaluation of filled-hole compressive strengths of thin-ply carbon fiber/epoxy composite laminates. Composites Science and Technology, 2023, vol. 237, art. 109996.
26. Dubinsky S.V., Feigenbaum Yu.M., Senik V.Ya. Development of methods for statistical analysis of experimental data on the detectability of impact damage to a composite structure during visual inspection. Moscow: TsAGI, 2017, 21 p.
27. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
28. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
29. Mishkin S.I., Zhakova L.S., Klimenko O.N., Vasilchuk E.A. Research of influence of the contents resin in CFRP on their mechanical properties. Trudy VIAM, 2023, no. 2 (120), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 16, 2024) DOI: 10.18577/2307-6046-2023-0-2-77-86.
Heat-resistant alloys and steels
Vlasov I.I. Sevalnev G.S., Klimov V.S., Rogalev A.M. Study of the structure and phase composition of an entropy alloy based on the Ni–Cr–Co alloying system after vacuum
induction melting
Light-metal alloys
Sbitneva S.V., Zaytsev D.V., Benarieb I. Features of the structure of age-hardenable aluminum alloy AlSi10MgCu produced by selective laser melting
Composite materials
Antipov V.V., Salimov I.E., Bespalov A.S., Babashov V.G. Study of the influence of the composition of the binder on the density, physica-mechanical and hydrophobic properties of heat-sound insulation material
Kalenov V.V., Savitsky R.S., Barannikov A.A. Study of the mechanical properties of three-layer panels with different types of honeycomb filler splicing
Protective and functional
coatings
Zakirova L.I., Sibileva S.V., Demin S.A., Duyunova V.A. Investigation of electroplating of corrosion-resistant steels to prevent contact corrosion
Knyazev A.V., Demin S.A., Fomina M.A., Batrakov E.N. Thermal diffusion coatings and their applications
Material tests
Hodinev I.A., Baranova E.V. Fatigue life of a heat-resistant titanium alloy at various loading frequencies
Lednev I.S., Khodakova E.A. Calculation of the magnetization modes of aircraft parts
Vasilchuk E.A., Gylyaev I.N., Yakovlev N.O., Mishkin S.I. Influence of collision speed on the residual durability of CFRP