Articles
The technological issues of manufacturing modern high-quality model compositions of the VIAM type based on domestic raw materials for the production of parts by casting on smelted models are considered. The results of experimental studies conducted at the National Research Center «Kurchatov Institute» – VIAM, to study the possibility of granulating model compositions made it possible to improve the manufacturability of their production process. The resulting granules, due to their high bulk density, made it possible to simplify both the loading of pressing equipment and packaging for subsequent storage.
2. Lost wax casting. Ed. Ya.I. Shklennik, V.A. Ozerova. Ed. 3rd. Moscow: Mashinostroyenie, 1984, 408 p.
3. Ospennikova O.G., Aslanyan I.R. Directions for the development of technology for manufacturing model compositions for blades and other gas turbine engine parts. Liteynoe proizvodstvo, 2018, no. 3, pp. 20–24.
4. Ospennikova O.G., Kablov E.N., Shunkin V.N. Development and research of a plasticizer for model compositions based on natural waxes. Aviacionnye materialy i tehnologii, 2002, no. 3, рр. 68–70.
5. Narsky A.R., Deynega G.I., Kuzmina I.G. Obtaining a fine-grained structure of castings from nickel superalloys using a cobalt aluminate modifier. Aviation materials and technologies, 2023, no. 3 (72), paper no. 01. Available at: http://www.journal.viam.ru (accessed: March 25, 2024). DOI: 10.18577/2713-0193-2023-0-3-3-14.
6. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 25, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
7. Ospennikova O.G. Thermophysical and rheological characteristics of synthetic resins for model compositions. Liteynoe proizvodstvo, 2016, no. 10, pp. 26–28.
8. Ospennikova O.G. New generation heat-resistant alloys and model compositions for investment casting. Liteynoe proizvodstvo, 2016, no. 3, pp. 17–20.
9. Guseva M.A., Aslanyan I.R. The effect of fillers on the rheology of model composition. Trudy VIAM, 2019, no. 5 (77), paper no. 11. Available at: http://www.viam-works.ru (accessed: March 25, 2024). DOI: 10.18577/2307-6046-2019-0-5-94-102.
10. Ospennikova O.G., Khayutin S.G. Structure of model compositions for lost wax casting. Materialovedenie, 2009, no. 10, pp. 46–51
11. Ospennikova O.G. Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
12. Ospennikova O.G. Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
13. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model compositions based on synthetic materials for casting gas turbine engine blades. Aviacionnye materialy i tehnologii, 2002, no. 3, pp. 64–67.
14. Echin A.B., Deynega G.I., Narsky A.R. New developments of NRC «Kurchatov Institute» – VIAM in the field of materials for casting processes of superalloys. Trudy VIAM, 2023, no. 8 (126), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 25, 2024). DOI: 10.18577/2307-6046-2023-0-8-13-24.
15. Composition for making lost wax models: pat. 2600468 C2 Rus. Federation; appl. 20.03.15; publ. 10.08.16.
Homogenization annealing of wrought aluminum alloys ingots is crucial for further processes such as hot and cold deformation due to the increasing uniformity of structure and technological plasticity. The paper presents the effects of homogenization parameters under various modes on microstructure evolution and technological plasticity of 1163 alloy (Al–Cu–Mg) ingots in the temperature range of 350–470 °C. The microstructure evolution in 1163 alloy was studied by optical microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Nechaikina T.A., Somov A.V., Ivanov A.L., Murzabaeva O.Yu. The influence of heat treatment on the structure and properties of pressed semi-finished products from the promising super-strong aluminum alloy V-1977. Metallovedenie i termicheskaya obrabotka metallov, 2023, no. 1 (811), pp. 28–33.
4. Nefedova Yu.N., Shlyapnikova T.A., Ivanov A.L., Sedelnikov V.V. Methods for reducing residual stresses during hardening of high-strength aluminum alloys. Trudy VIAM, 2023, no. 7 (125), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 28, 2024). DOI: 10.18577/2307-6046-2023-0-7-23-33.
5. Ovsyannikov B.V., Zamyatin V.M., Razinkin A.V., Mushnikov V.S. The influence of casting speed on the crystallization process and the structure of a large flat ingot of alloy 1163. Tekhnologiya legkikh splavov, 2020, no. 1, pp. 169–173.
6. Tsukrov S.L., Isyakaev K.T. On the results of hardening sheets of alloy 1163 on a continuous heat treatment line. Tekhnologiya legkikh splavov, 2020, no. 1, pp. 35–38.
7. Novikov I.I. Theory of heat treatment of metals. Moscow: Metallurgiya, 1978, 392 p.
8. Belov N.A. Phase composition of industrial and advanced aluminum alloys. Moscow: MISIS, 2010, 511 p.
9. Fridlyander I.N. Metallurgy of aluminum alloys. Moscow: Nauka, 1985, 238 p.
10. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the development of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
11. Kolobnev N.I., Ber L.B., Tsukanov S.L. Heat treatment of deformable aluminum alloys. Moscow: APRAL, 2020, 552 p.
12. Zamyatin V.M., Grachev S.V., Grinenko M.A. et al. Rational alloying and modification of aluminum alloys based on the Al‒Cu‒Mg‒Mn and Al‒Zn‒Mg‒Cu systems. Neft i gaz, 2011, no. 3, pp. 106–112.
13. Tkachenko E.A., Latushkina L.V. The influence of homogenization modes on the structure and properties of ingots and pressed-stamped semi-finished products from alloy 1933. Tekhnologiya legkikh splavov, 2003, no. 4, pp. 34–38.
14. Astashkin A.I., Babanov V.V., Selivanov A.A., Tkachenko E.A. Structure and properties of massive forgings with a reduced level of residual stresses made of aluminum alloy 1933sb of balanced composition. Trudy VIAM, 2021, no. 7 (101), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 10.18577/2307-6046-2021-0-7-13-21.
15. Vakhromov R.O., Tkachenko E.A., Lukina E.A., Selivanov A.A. Influence of homogenization annealing on structure and properties of ingots from 1933 alloy of Al–Zn–Mg–Cu system. Trudy VIAM, 2015, no. 11, paper no. 01. Available at: http://www.viam-works.ru (accessed: January 28, 2024). DOI: 10.18577/2307-6046-2015-0-11-1-1.
16. Fridlyander I.N. Aluminum wrought structural alloys. Moscow: Metallurgiya, 1979, 208 p.
17. Xiao Y.L., Qing L.P., Xi F. et al. Microstructural evolution of Al–Cu–Mg–Ag alloy during homogenization. Journal of Alloys and Compounds, 2009, vol. 484, pp. 790–794.
18. Huang T., Qin Y., Chao D. et al. Study on homogenization process of large size Al‒Cu‒Mg‒Mn alloy ingot. Materials reports, 2020, vol. 24, is. Z1, pp. 325–327.
19. Lin H., Zhu K., Liu Q. et al. Microstructural characterization of the as-cast and homogenized Al‒Cu‒Mg‒Ag alloy. Materials, 2023, vol. 16, is. 1, pp. 433–441.
20. Liu Q., Li X., Li Z. et al. Effect of Cu content on microstructures of as-cast and homogenized Al‒Cu‒Mg‒Ag alloys. Key engineering materials, 2022, vol. 921, pp. 59–64.
21. Jian Wang, Yalin Lu, Dongshuai Zhou et al. Influence of homogenization on microstructural response and mechanical property of Al‒Cu‒Mn alloy. Materials (Basel), 2018, vol. 11, is. 6, pp. 914–921.
22. Antipov V.V., Tkachenko E.A., Zajtsev D.V., Selivanov A.A., Ovsyannikov B.V. Тhe influence of homogenizing annealing regimes on the structural phase state and mechanical properties of aluminum-lithium alloy 1441 ingots. Trudy VIAM, 2019, no. 3 (75), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 10.18577/2307-6046-2019-0-3-44-52.
23. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: December 18, 2023). DOI: 10.18577/2713-0193-2023-0-3-62-77.
24. Liu X.Y., Pan Q.L., Fan X. et al. Microstructural evolution of Al‒Cu‒Mg‒Ag alloy during homogenization. Journal Alloys Compounds, 2009, vol. 484, pp. 790–794.
25. Li H.Z., Ou Y.J., Liao H.J. et al. Microstructural evolution of high purity Al‒Cu‒Mg alloy during homogenization. Materials Science Forum, 2014, vol. 788, pp. 208‒214.
The article presents the results of a study of the mechanical properties and microstructure of forgings made of VT6ch alloy after heat treatment with heating in the β-area , depending on the cooling rate from the temperature of the β- area , the temperature of the second stage of heat treatment, as well as the geometric parameters of the forgings . The values of mechanical properties under tension, impact strength, fracture toughness, microstructure of forgings, as well as low-cycle fatigue and endurance limit in terms of comparing properties are given. A comparative analysis of the obtained test results was carried out.
2. Yakovlev A.L., Arislanov A.A., Putyrsky S.V., Nochovnaya N.A. Study of mechanical properties and structure of large-sized semi-finished products made of VT6ch titanium alloy. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 12–18. DOI: 10.18577/2071-9140-2020-0-4-12-18.
3. Inagaki I., Shirai Y., Takechi T., Ariyasu N. Application and Features of Titanium for the Aerospace Industry. Osaka: Nippon Steel & Sumitomo Metal, 2014, pp. 22–27.
4. Sieniawski J., Ziaja W., Kubiak K., Motyka M. Microstructure and mechanical properties of high strength two-phase titanium alloys. Titanium Alloys-Advances in Properties Control. London: InTech, 2013, pp. 69–80.
5. Bratukhin A.G., Kolachev B.A., Sadkov V.V. et al. Technology for the production of titanium aircraft structures. Moscow: Mashinostroyenie, 1995, 448 p.
6. Kablov E.N. Trends and guidelines for innovative development of Russia: collection of scientific information materials. 3rd ed., revised and additional. Moscow: VIAM, 2015, 720 p.
7. Kablov E.N. What will the future be made of? New generation materials, technologies for their creation and processing are the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
8. Peters M., Kumpfert J., Ward C.H., Leyens C. Titanium Alloys for Aerospace Applications. Advanced Engineering Materials, 2003, no. 5, pp. 419–427. DOI: 10.1002/adem.2003-06-26.
9. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
10. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference book. Moscow: VILS–MATI, 2009, 520 p.
11. Glazunov S.G., Yasinsky K.K. Titanium alloys for aviation equipment and other industries. Tekhnologiya legkikh splavov, 1993, no. 7–8, pp. 47–54.
12. Horev A.I. Fundamental and applied works on structural titanium alloys and perspective directions of their development. Trudy VIAM, 2013, no. 2, paper no. 04. Available at: http://www.viam-works.ru (accessed: April 15, 2024).
13. Glazunov S.G., Moiseev V.N. Structural titanium alloys. Moscow: Metallurgiya, 1974, 368 p.
14. Anoshkin N.F., Bochvar G.A., Livanov V.A. Titanium alloys. Metallography of titanium alloys. Moscow: Metallurgiya, 1980, 464 p.
15. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of alloys based on titanium and its intermetallic compounds: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
16. Kablov E.N., Putyrsky S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of resistance to fatigue fracture of forgings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α+β)- and β-regions. Titan, 2021, no. 1 (70), pp. 473–479. DOI: 10.1007/s11041-015-9907-1.
17. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: March 13, 2024). DOI: 10.18577/2713-0193-2023-0-2-23-35.
18. Nochovnaya N.A., Shiryaev A.A. Features of the structural and phase composition, mechanical properties of metastable β-titanium alloy VT47 alloyed with silicon. Aviation materials and technologies, 2023, no. 1 (70), paper no. 04. Available at: http://www.journal.viam.ru (accessed: March 14, 2024). DOI: 10.18577/2713-0193-2023-0-1-51-60.
19. Mylnikov V.V., Kondrashkin O.B., Shetulov D.I. Cyclic strength and durability of structural materials. N. Novgorod: NNGASU, 2018, p. 177.
20. Sauer C., Luetjering G. Thermo-mechanical processing of high strength-titanium alloys and effects on microstructure and properties. Journal of Materials Processing Technology, 2001, no. 117 (3), pp. 311–317. DOI: 10.1016/S0924-0136(01)00788-9.
Climatic stability of hybrid layered metal polymer materials of the «aluminum–organoplastics» class in different climatic and laboratory conditions (warm humid climate, sea climate, salt spray chamber, etc.) is investigated. It is established that properties of materials Alor D16/41 (sheet) and Alor D16/41H (sheet) exposed in warm humid climate does not show reducing the elastic-strength properties of the samples. When exposed to narrow samples with a width of 10 mm with unprotected ends the level of preservation of tensile strength is 82–94 % from the initial value.
2. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
3. Mashinskaya G.P., Zhelezina G.F., Senatorova O.G. Laminated Fibrous Metal – Polymer Composites. Metal Matrix Composites. Soviet Advanced Composites Technology Series. Eds. J.N. Fridleander, I.H. Marshall. 1995, vol. 3, pp. 487–570.
4. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Y., Konovalov A.N. Fiber Metal Laminates Based on Aluminum–Lithium Alloy Sheets in New-generation Aircraft. Russian Engineering Research, 2021, vol. 41, no. 3, pp. 215–221.
5. Antipov V.V., Serebrennikova N.Yu., Shestov V.V., Sidelnikov V.V. Laminated hybrid materials on basis of Al–Li alloy sheets. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 212–224. DOI: 10.18577/2071-9140-2017-0-S-212-224.
6. Podzhivotov N.Y., Kablov E.N., Antipov V.V. et al. Laminated Metal-Polymeric Materials in Structural Elements of Aircraft. Inorganic Materials: Applied Research, 2017, vol. 8, no. 2, pp. 211–221.
7. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
8. Zhelezina G.F., Kolobkov A.S., Kulagina G.S., Kan A.Ch. Damping properties of hybrid layered metal-polymer materials based on aluminum, titanium alloys and organoplastics layers. Trudy VIAM, 2021, no. 2 (96), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 23, 2023). DOI: 10.18577/2307-6046-2021-0-2-10-19.
9. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
10. Mashinskaya G.P., Zhelezina G.F. Alor. Great Russian Encyclopedia. Moscow: Great Russian Encyclopedia, 2015, p. 518.
11. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grashchenkov D.V. Sorption and diffusion of moisture in layered metal-polymer composite materials of the «SIAL» type. Materialovedenie, 2011, no. 12, pp. 38–44.
12. Duyunova V.A., Kutyrev A.E., Serebrennikova N.Yu., Vdovin A.I., Somov A.V. Examination of the impact of aggressive environmental factors on the development of corrosion damage on samples of laminated glass-reinforced plastic of SIAL class. Aviation materials and technologies, 2021, no. 4 (65), paper no. 09. Available at: http://www.journal.viam.ru (accessed: December 08, 2023). DOI: 10.18577/2713-0193-2021-0-4-81-90.
13. Antipov V.V., Kurs M.G., Girsh R.I., Serebrennikova N.Yu. Climatic field tests of SIAL type metal-polymer composition materials in marine climate. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 56–64. DOI: 10.18577/2071-9140-2019-0-4-56-64.
14. Voitovich V.A. Methods for preparing the surface of products made of metals and alloys. Klei. Germetiki. Tekhnologii, 2005, no. 9, pp. 19–23.
15. Duyunova V.A., Kozlov I.A., Oglodkov M.S., Kozlova A.A. Modern trends in the anodic oxidation of aluminum-lithium and aluminum alloys (review). Trudy VIAM, 2019, no. 8 (80), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 23, 2023). DOI: 10.18577/2307-6046-2019-0-8-79-89.
16. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. I. Aging mechanisms. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 19–27.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. III. Significant aging factors. Deformatsiya i razrusheniye materialov, 2011, no. 1. pp. 34–40.
18. Gladkikh A.V., Kurs I.S., Kurs M.G. Analysis of the data of full-scale climatic tests combined with the application of operational factors of nonmetallic materials (review). Trudy VIAM, 2018, no. 10 (70), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 21, 2023). DOI: 10.18577/2307-6046-2018-0-10-74-82.
19. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: September 18, 2023). DOI: 10.18577/2713-0193-2022-0-1-65-77.
20. Antipov V.V., Chesnokov D.V., Kozlov I.A., Volkov I.A., Petrova A.P. Surface preparation aluminum alloy V-1469 before use in the composition of layered hybrid material. Trudy VIAM, 2018, no. 4 (64), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 23, 2023). DOI: 10.18577/2307-6046-2018-0-4-59-65.
21. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
22. Kuznetsova V.A., Semenova L.V., Shapovalov G.G. Development trends in the field of anticorrosive polymeric systems for corrosion protection of fixing connections of contact couples of combined structures (review). Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 25–31. DOI: 10.18577/2071-9140-2017-0-1-25-31.
23. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
In this study, an analysis of the influence of curing temperature conditions on the physical and mechanical properties of two-component spheroplastics VPZ-7M is carried out. Based on previously studied curing modes of resins included in spheroplastics, the most suitable curing modes were selected. A model of the curing reaction of a polymer filler is considered based on experimental data obtained by differential scanning calorimetry. The microstructure of the samples of spheroplastic was studied. The obtained results allow making a choice of the curing conditions to achieve the required material characteristics.
2. Kablov E.N. Main results and directions of development of materials for advanced aircraft. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
3. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
4. Mikhailin Yu.A. Heat-resistant polymers and polymer materials. St. Petersburg: Profession, 2006, 624 p.
5. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-2-94-103.
6. Trostyanskaya E.B., Golovkin G.S., Dmitrenko V.P. Promising PCMs and advanced technologies for the production of aircraft structural elements from them. Aviatsionnaya promyshlennost, 1987, no. 2, pp. 37–42.
7. Kablov E.N. Materials for aerospace technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
8. Bulanov I.M., Vorobey V.V. Technology of rocket and aerospace structures made of composite materials. Moscow: MSTU im. N.E. Bauman, 1998, 516 p.
9. Kapustyanskaya M.A., Gurevich Ya.M., Mishurov K.S. Polymer filler for accelerated molding technology. Plasticheskiye massy, 2023, no. 11–12, pp. 50–53. DOI: 10.35164/0554-2901-2023-11-12-50-53.
10. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
11. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders for aerospace engineering. Review. Voprosy materialovedeniya, 2016, no. 4 (88), pp. 50‒62.
12. Chursova L.V., Panina N.N., Grebeneva T.A., Kutergina I.Yu. Epoxy resins, hardeners, modifiers and binders based on them. St. Petersburg: Profession, 2020, 576 p.
13. Veshkin E.A., Satdinov R.A., Barannikov A.A. Modern materials for the aircraft cabin. Trudy VIAM, 2021, no. 9 (103), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 01, 2024). DOI: 10.18577/2307-6046-2021-0-9-33-42.
14. Kovalenko A.V., Sidelnikov N.K., Sokolov I.I., Tundaykin K.O. Spheroplastic with adjustable viscosity for filling sections of honeycomb structures. Trudy VIAM, 2019, no. 11 (83), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 01, 2024). DOI: 10.18577/2307-6046-2019-0-11-37-43.
15. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
16. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
17. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
18. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
19. Polyamide hardeners CHIMEX Limited LTD. Available at: http://chimexltd.com/catalog/otverditeli-uskoriteli-otverzhdeniya/poliamidnye-otverditeli/ (accessed: March 01, 2024).
20. Osipchik V.S., Olikhova Yu.V., Nguyen L.H., Lushcheykin G.A., Aristov V.M. Determination of the glass transition temperature of an epoxy-siloxane composition by thermal analysis methods. Plasticheskiye massy, 2017, no. 7–8, pp. 34‒37.
The results of tests for isothermal heat resistance at a temperature of 1150 °C of samples from the ZhS32 alloy with ion-plasma double-layer condensation-diffusion coatings made of nickel alloys VSDP-3, SDP-2, SDP-42 and aluminum alloy VSDP-16 are presented. It is shown that, depending on the initial thickness of the coating, the protection of the ZhS32 alloy is provided at test bases from 100 to 400 hours. The average rate of specific gravity reduction for 9 types of coatings has been determined. The possibility of predicting the service life of coatings using this characteristic is shown.
2. Muboyadzhyan S.A. Protective coatings for parts of the hot path of gas turbine engines. Vse materialy. Entsiklopedicheskiy spravochnik, 2011, no. 3, pp. 26–30.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for compressor blades of gas turbine engines. Elektrometallurgiya, 2016, no. 10, рр. 23–38.
5. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
6. Dobrynin D.A., Pavlova T.V., Afanasyev-Khodykin A.N., Alekseeva M.S. The use of electrolytic-plasma treatment for repair of GTE blades. Trudy VIAM, 2019, no. 8 (80), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 17, 2024). DOI: 10.18577//2307-6046-2019-0-8-18-26.
7. Way of protection of blades of gas turbines: pat. 2404286 Rus. Federation; appl. 22.10.09; publ. 20.11.10.
8. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 17, 2024). DOI: 10.18577/2713-0193-2022-0-3-108-119.
9. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 71–81.
10. Muboyadzhyan S.A., Kablov E.N. Ion etching and surface modification of critical machine parts in vacuum-arc plasma. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyenie, 2011, no. SP2, pp. 149–163.
11. Doronin O.N., Gorlov D.S., Azarovsky E.N., Kochetkov A.S. Study of the structure and properties of a heat-resistant coating at high-temperature deformation of samples from titanium intermetallic alloy. Aviation materials and technology, 2021, no. 1 (62), paper no. 06. Available at: http://www.journal.viam.ru (accessed: April 17, 2024). DOI: 10.18577/2713-0193-2021-0-1-61-70.
12. Aleksandrov D.A. The research of wear-resistant coatings based on multicomponent titanium nitrides. Trudy VIAM, 2020, no. 4–5 (88), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 17, 2024). DOI: 10.18577/2307-6046-2020-0-45-62-69.
13. Method of protecting gas turbine blades: pat. 2404286 Rus. Federation; appl. 22.10.09; publ. 20.11.10.
14. Method for applying protective coatings and a device for its implementation: pat. 2625698 Rus. Federation; appl. 29.08.16; publ. 18.07.17.
15. Budinovskiy S.A., Lyapin A.A., Gorlov D.S., Benklyan A.S., Tatarnikov S.V. Multilayer antifretting coating on large-sized manufactures. Aviation materials and technologies, 2022, no. 3 (68), paper no. 09. Available at: http://www.journal.viam.ru (accessed: April 17, 2024). DOI: 10.18577/2713-0193-2022-0-3-98-107.
16. Budinovskiy S.A., Gorlov D.S., Benklyan A.S. Deposition of protective ion-plasma coatings on largescale parts on MAP type installations. Aviation materials and technologies, 2024, no. 1 (74), paper no. 08. Available at: http://www.journal.viam.ru (accessed: November 23, 2024). DOI: 10.18577/2713-0193-2024-0-1-101-110.
17. Muboyadzhyan S.A., Galoyan A.G. Surface protection of internal cavity of single-crystal turbine blades of GTE from modern carbon-free hot strength alloys. Aviacionnye materialy i tehnologii, 2008, no. 3, pp. 12–17.
18. Kablov E.N. Science as a branch of the economy. Nauka i zhizn, 2009, no. 10, pp. 6–10.
19. Kablov E.N., Muboyadzhyan S.A. Thermal protective coatings with a ceramic layer of reduced thermal conductivity based on zirconium oxide for high-pressure turbine blades of advanced gas turbine engines. Modern achievements in the field of creating advanced non-metallic composite materials and coatings for aviation and space technology. Moscow: VIAM, 2015, p. 3.
20. Smirnov A.A., Budinovsky S.A. Investigation of the effect of the barrier layer on heat-resistant protective coating for turbine blades from ZhS32 alloy. Trudy VIAM, 2017, no. 1 (49), paper no. 02. Available at: http://www.viam-works.ru (accessed: April 17, 2024). DOI: 10.18577/2307-6046-2017-0-1-2-2.
The properties of coatings EP-140 and VE-69 were studied for the stability after conducting accelerated laboratory climatic tests and fungal resistance tests. Micromycetes isolated in three climatic zones were used: temperate climate, warm temperate climate and dry subtropical climate. It is noted that the adhesive properties of coatings VE-69 and EP-140 do not change after accelerated climatic tests and exposure to micromycetes from three climatic zones. Changes in decorative properties were revealed. Changes in indicators such as gloss and color were noted.
2. Buznik V.M., Kablov E.N. Materials for the development of the Arctic and cold territories. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 21.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
5. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 04, 2024). DOI: 10.18577/2071-9140-2021-0-4-70-80.
6. Startsev O.V., Medvedev I.M., Kurs M.G. Hardness as the indicator of corrosion of aluminum alloys in sea conditions. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 16–19.
7. Batraev I.S., Rybin D.K., Ivanyuk K.V., Ulianitsky V.Yu., Shtertser A.A. Wear resistant detonation coatings based on tungsten carbide for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 04, 2024). DOI: 10.18577/2713-0193-2022-0-1-92-109.
8. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (accessed: April 04, 2024). DOI: 10.18577/2713-0193-2022-0-1-110-119.
9. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: April 04, 2024). DOI: 10.18577/2713-0193-2022-0-1-120-128.
10. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 04, 2024). DOI: 10.18577/2713-0193-2022-0-2-120-130.
11. Rojas T.I., Aira M.J., Batista A. et al. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana, 2012, vol. 51, is. 1, pp. 44–51.
12. Popikhina E.A., Trepova E.S. Microdestructors of building materials. Reports Fourth Congress of Russian Mycologists «Modern Mycology in Russia»: in 7 vols. Moscow: National Academy of Mycology, 2017, vol. 6, pp. 424–426.
13. Ogarkova G.R., Bukovskaya N.E., Samusenok L.V., Ogarkov B.N. Biodamage of porous building materials by associations of specific microorganisms. Reports Third Congress of Russian Mycologists «Modern Mycology in Russia»: in 3 vols. Moscow: National Academy of Mycology, 2012, vol. 3, pp. 224–225.
14. Balyuta A.A., Vazhinskaya I.S. Resistance of modern building materials to mold damage. Reports Third Congress of Russian Mycologists «Modern Mycology in Russia»: in 3 vols. Moscow: National Academy of Mycology, 2012, vol. 3, p. 210.
15. Kataev A.D., Kurakov A.V. Microbial colonization and destruction of biodegradable synthetic materials based on polyhydroxybutyrate and polyhydroxyvalerate in soils. Reports Third Congress of Russian Mycologists «Modern Mycology in Russia»: in 3 vols. Moscow: National Academy of Mycology, 2012, vol. 3, рр. 218–219.
16. Goncharova I.A., Sabadakha E.N., Trigubovich A.M., Chernaya N.V. Mycological analysis of industrial materials contaminated with microscopic fungi. Trudy BGTU. Ser.: 2, 2020, no. 2, pp. 163–168.
17. Smolyanitskaya O.L. Micromycetes as potential agents of biodamage to cultural property and a strategy for protecting against them in the State Hermitage: thesis abstracts, Cand. Sc. (Bio.). St. Petersburg, 2007, 26 p.
18. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., Shein E.A. Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review). Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
19. Goryaeva A.G., Velikova T.D., Dobrusina S.A. Mycobiota of air and paper composites with polymer coatings in the Russian National Library. Mikologiya i fitopatologiya, 2010, no. 44 (1), pp. 10–18.
20. Antipov V.V., Krivushina A.A., Startsev V.O., Kogan A.M. Study of the paint coatings properties after impact of micromycetes in a moderate and moderate warm climate. Trudy VIAM, 2023, no. 6 (124), paper no. 11. Available at: http://www.viam-works.ru (accessed: April 04, 2024). DOI: 10.18577/2307-6046-2023-0-6-130-141.
21. Krivushina A.A., Bobyreva T.V., Yakovenko T.V., Nikolaev E.V. Methods of microorganisms-destructors storage in FSUE «VIAM» collection (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 89–94. DOI: 10.18577 / 2071-9140-2019-0-3-89-94.
22. Lugauskas A.Yu., Mikulskienė A.I., Shlauzhenė D.Yu. Catalog of micromycetes – biodestructors of polymer materials. Moscow: Nauka, 1987, pp. 258–259.
23. Saparrat M.C.N., Arambarri A.M., Balatti P.A. Growth response and extracellular enzyme activity of Ulocladium botrytis LPSC 813 cultured on carboxy-methylcellulose under a pH range. Biology and Fertility of soils, 2007, vol. 44, pp. 383–386. DOI: 10.1007/s00374-007-0217-7.
24. Lu Y., Qiu J., Wang S. et al. Species diversity and toxigenic potential of Fusarium incarnatum-equiseti species complex isolates from rice and soybean in China. Plant Disease, 2021, vol. 105, no. 9, pp. 2628–2636. DOI: 10.1094/PDIS-09-20-1907-RE.
25. Pidoplichko N.M. Fungi-parasites of cultivated plants: Key: in 3 vols. Kyiv: Naukova Dumka, 1977, vol. 2, pp. 140–142.
26. Manamgoda D.S., Cai L., McKenzie E.H.C. et al. A phylogenetic and taxonomic re-evaluation of the Bipolaris – Cochliobolus – Curvularia Complex. Fungal Diversity, 2012, vol. 56, pp. 131–144. DOI: 10.1007/s13225-012-0189-2.
Comparative tests of fiberglass VPS-48/7781 and carbon fiber plastic VKU-39 for aging were carried out in the moderately warm climate of Gelendzhik and the humid tropics of Vanning. A decrease in the strength of fiberglass during bending and shear was discovered. The decrease in mechanical properties measured at 120 °C was greater than at room temperature. The compressive strength of VKU-39 carbon fiber plastic is stable after 3 years of exposure in both climatic zones. For fiberglass VPS-48/7781, the decrease in compressive strength was 11% after 3 years of aging in Gelendzhik and 26% after 3 years in Vanning.
2. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329.
3. Irving P., Soutis C. Polymer Composites in the Aerospace Industry. 2nd ed. Cambridje: Woodhead Publishing Limited, 2019, 688 p.
4. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: May 30, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
5. Kychkin A.K., Gavrilieva A.A., Kychkin A.A., Lukachevskaya I.G., Lebedev M.P. The initial stage of climatic aging of basalt-reinforced and glass-reinforced plastics in extremely cold climates: regularities. Polymers, 2024, vol. 16, art. 866.
6. Odegard G.M., Bandyopadhyay A. Physical aging of epoxy polymers and their composites. Journal of Polymer Science, Part B: Polymer Physics, 2011, vol. 49, no. 24, pp. 1695–1716.
7. Wu J., Zhang C. Modified Constitutive Models and Mechanical Properties of GFRP after High-Temperature Cooling. Buildings, 2024, vol. 14, no. 2, art. 439.
8. Starkov A.I., Isaev A.Yu., Kutsevich K.E. Comprehensive assessment of the impact of operational and climatic tests on the change of strength properties of polymer composite materials based on adhesive prepregs. Рart 1. Сarbon fiber-reinforced plastic VKU-59. Trudy VIAM, 2024, no. 3 (133), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2024-0-3-91-100.
9. Pickett J.E., Sargent J.R. Sample temperatures during outdoor and laboratory weathering exposures. Polymer Degradation and Stability, 2009, vol. 94, pp. 189–195.
10. Burch D., Martin J., VanLandingham M. Computer analysis of a polymer coating exposed to field weather conditions. Journal of Coatings, 2002, vol. 74, no. 1, pp. 75–86.
11. Сальников В.Г. Исследование влагопоглощения авиационных углепластиков в условиях теплого влажного климата. Monitoring Systems of Environment, 2021, no. 2, pp. 46–53.
12. Heinrick M., Crawford B., Milani A.S. Degradation of Fibreglass Composites under Natural Weathering Conditions. MOJ Polymer Science, 2017, vol. 1, no. 1, pp. 18–24.
13. Behera A., Vishwakarma A., Thawre M.M., Ballal A. Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate. Composites Communications, 2020, vol. 17, pp. 51–55.
14. Liu X., Su Q., Zhu J., Song X. The Aging Behavior and Life Prediction of CFRP Rods under a Hygrothermal Environment. Polymers, 2023, vol. 15, no. 11, art. 2490.
15. Cheng W., Cao Y. Strength degradation of GFRP cross-ply laminates in hydrothermal conditions. APL Materials, 2024, vol. 12, no. 3, art. 031113.
16. Attukur Nandagopal R., Gin Boay C., Narasimalu S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material. Composite Structures, 2020, vol. 236, аrt. 111876.
17. Uthaman A., Xian G., Thomas S. et al. Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers, 2020, vol. 12, no. 3, art. 614.
18. Bone J.E., Sims G.D., Maxwell A.S. et al. On the relationship between moisture uptake and mechanical property changes in a carbon fibre/epoxy composite. Journal of Composite Materials, 2022, vol. 56, no. 14, pp. 2189–2199.
19. Tao L., Min W., Qi L. et al. The hygrothermal aging process and mechanism of CFRP papered by prepreg that may be stored at room temperature. Polymer Degradation and Stability, 2020, vol. 182, art. 109395.
20. Zhu R., Li X., Wu C. et al. Effect of Hydrothermal Environment on Mechanical Properties and Electrical Response Behavior of Continuous Carbon Fiber/Epoxy Composite Plates. Polymers, 2022, vol. 14, no. 19, art. 4072.
21. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2015, vol. 13: Climate and microbiological resistance of non-metallic materials, 270 p.
22. Kirillov V.N., Efimov V.A., Barbotko S.L., Nikolaev E.V. Methodological features of conducting and processing the results of climatic tests of polymer composite materials. Plasticheskie massy, 2013, no. 1, pp. 37–41.
23. Evdokimov A.A. Polymer compositional material made using vacuum infusion technology with molding at temperatures up to 40 ° C: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2022, 116 p.
24. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 30, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
25. Mukhametov R.R., Petrova A.P. Thermoreactive binders for polymer composite materials: textbook. Moscow: VIAM, 2021, 528 p.
26. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
27. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016, no. 5 (41), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2016-0-5-11-11.
28. Mishurov K.S., Mishkin S.I. Environmental effect on properties of CFRP (Carbon Fiber Reinforced Plastic) VKU-39. Trudy VIAM, 2016, no. 12 (48), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2016-0-12-8-8.
29. Nikolaev E.V. The preservation of the official characteristics of polymer composite materials for the motorized motor motion engines under the influence of climatic and operational factors: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2016, 123 p.
30. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solventfree binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2021-0-5-114-126.
31. Veligodskiy I.M., Koval T.V., Gulyaev I.N. Influence of climatic conditions on CFRP VKU-39 after three year outdoor exposition in eight climatic zones. Trudy VIAM, 2023, no. 8 (126), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2023-0-8-113-128.
32. Veligodskiy I.M., Koval T.V., Kurnosov A.O., Marakhovskiy P.S. Study of resistance of glass fiber reinforced plastic to natural weathering in different climatic conditions. Trudy VIAM, 2022, no. 11 (117), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2022-0-11-134-148.
33. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 23, 2024). DOI: 10.18577/2307-6046-2020-0-8-64-76.
34. Startsev V.O., Valevin E.O., Pavlov M.R., Skirt A.A. The study of the climatic resistance of thiocol and sulovsan sealants. Klei. Germetiki. Tekhnologii, 2024, no. 1, pp. 24–31.
35. Sidorina A.I. The mechanical properties of polymer composite materials based on Russian high -strength carbon fillers and new generation polymer matrices. Khimicheskie volokna, 2018, no. 2, pp. 16–19.
36. Kurs M.G., Vetrova E.Yu. The corrosion aggressiveness of the atmosphere and the climatic resistance of metal materials in various regions of the Russian Federation. III All-Rus. Sci-techn. Conf. «Climate–2018. Issues of predicting corrosion, aging and biopersion of materials». Moscow: VIAM, 2018, pp. 128–143.
37. Zhang X., Liu M., Lu F. et al. Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments. Corrosion Science and Technology, 2018, vol. 17, no. 1, pp. 6–11.
38. Zhang T., Zhang T., He Y. et al. Long-term atmospheric aging and corrosion of epoxy primer-coated aluminum alloy in coastal environments. Coatings, 2021, vol. 11, no. 2, art. 237.
39. State Standard R ISO 4287–2014. Geometric characteristics of products (GPS). Surface structure. Profile method. Terms, definitions and parameters of surface structure. Moscow: Standinform, 2019, 20 p.
40. Kaplonek W., Nadolny K. Review of the advanced microscopy techniques used for diagnostics of grinding wheels with ceramic bond. Journal of Machine Engineering, 2012, vol. 12, pp. 81–98.
41. Startsev O.V., Lebedev M.P., Vapirov Y.M., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
42. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 30, 2024). DOI: 10.18577/2713-0193-2023-0-2-94-103.
43. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
Heat-resistant alloys and steels
Forostovich T.L., Narsky A.R., Bityutskaya O.N., Mokeev N.A. Granulation of model compositions produced by National Research Center «Kurchatov Institute» – VIAM for castings on smelted models
Light-metal alloys
Astashkin A.I., Zaitsev D.V., Selivanov A.A., Tkachenko E.A. The influence of homogenization annealing оn the structural phase evolution and technological plasticity of aluminum alloy 1163 ingots
Krokhinа V.A., Arislanov A.A., Putyrskiy S.V. Investigation of the mechanical properties and structure of forgings made of VT6ch alloy after heat treatment with heating in the β-area
Composite materials
Zhelezina G.F., Kulagina G.S., Kan A.Ch., Startsev V.O. Research of the climate stability of hybrid layered metal polymer materials based on aluminium and aramid organoplastics
Artyomov N.S., Kapustianskaia M.A., Kovalenko A.V., Sidelnikov N.K., Kurnosov A.O. Research of the influence of curing temperature conditions on the physical and mechanical properties of two-component cold curing spheroplastic VPZ-7M
Protective and functional
coatings
Antipov V.V., Budinovskiy S.A., Benklyan A.S., Tatarnikov S.V. Predicting the service life of protective ion-plasma coatings based on the results of heat resistance tests
Material tests
Krivushina A.A., Kogan A.M., Startsev V.O. Preservation of the properties of paint coatings after exposure to climatic factors and micromycetes-destructors
Startsev O.V., Skirta A.A., Startsev V.O., Valevin E.O., Dvirnaya E.V. Comparison of the properties of carbon fiber reinforced plastics and glass fiber reinforced plastics based on the VSE-1212 binder after exposure to different climatic zones