Articles
This paper presents the results of the study of the features of microstructure formation and changes in mechanical properties after heat treatment of welded joints, obtained by electron beam welding of extrusions from high-strength alloy V-1469 of Al–Cu–Li system. Phase transformations and nature of precipitation in different zones of the welded joint depending on heat treatment were studied by differential scanning calorimetry, transmission electron microscopy and thermodynamic simulation. It has been shown that the heat treatment of welded joints (quenching + aging) significantly increases the level of strength of the material.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kolobnev N.I., Khokhlatova L.B., Lukina E.A. Trends in the development of aluminum-lithium alloys and technologies for their processing. Ed. E.N. Kablov. Moscow: VIAM, 2019, 367 p.
4. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Aluminum-lithium alloys. Structure and properties. Kyiv: Naukova Dumka, 1992, 192 p.
5. Chuistov K.V. Aging of metal alloys. Kyiv: Akademperiodika, 2003, 567 p.
6. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Aluminum-lithium alloys: metallurgy, welding, metal science. Moscow: Nauka, 2014, 296 p.
7. Betsofen S.Ya., Antipov V.V., Knyazev M.I. Alloys of the Al–Cu–Li and Al–Mg–Li systems: phase composition, texture and anisotropy of mechanical properties (review). Deformatsiya i razrusheniye materialov, 2015, no. 11, pp. 10–26.
8. Elagin V.I., Zakharov V.V. Modern Al–Li alloys and prospects for their development. Tekhnologiya legkikh splavov, 2013, no. 4, pp. 17–23.
9. Shchetinina N.D., Rudchenko A.S., Selivanov A.A. The approaches that are used for developed of optimal strain modes of aluminum-lithium alloys (review). Trudy VIAM, 2020, no. 8 (90), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 05, 2024). DOI: 10.18577/2307-6046-2020-0-8-20-34.
10. Antipov K.V., Oglodkova Yu.S., Kuryntsev S.V., Safiullin E.I. Investigation of the influence of heat treatment modes on the structure and properties of sheets of aluminum-lithium alloy V-1469. Trudy VIAM, 2022, no. 11 (117), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 05, 2024). DOI: 10.18577/2307-6046-2022-0-11-16-26.
11. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminium-lithium alloys: processing, properties, and applications. Amsterdam: Elsevier, 2014, 652 p.
12. Dorin T., Vahid A., Lamb J. Aluminium lithium alloys. Fundamentals of aluminium metallurgy. Cambridge: Woodhead Publishing, 2018, pp. 387–438. DOI: 10.1016/B978-0-08-102063-0.00011-4.
13. Starke (Jr.) E.A. Historical development and presentstatus of aluminium-lithium alloys. Aluminium-lithium alloys. Processing, properties and applications. Amsterdam: Elsevier, 2014, рр. 3–26.
14. Rioja R.J., Liu J. The Evolution of Al–Li Base Products for Aerospace and Space Applications. Metallurgical and Materials Transactions A. 2012, vol. 43, no. 9, pp. 25–37.
15. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: March 05, 2024). DOI: 10.18577/2713-0193-2023-0-3-62-77.
16. Benarieb I., Romanenko V.A., Panteleev M.D., Oglodkov M.S., Ovchinnikov V.V., Philonova E.V. Structural features and mechanical properties of joints, produced by electron beam welding of strip extrusions from aluminum-lithium alloy V-1469. Trudy VIAM, 2024, no. 4 (134), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 30, 2024). DOI: 10.18577/2307-6046-2019-0-3-44-52.
17. Malikov A., Orishich A., Golishev A.A., Karpov E. Manufacturing of high-strength laser welded joints of an industrial aluminum alloy of system Al–Cu–Li by means of post heat treatment. Journal of Manufacturing Processes, 2019, vol. 41, pp. 101–110.
18. Malikov A., Karpov E., Kuper K., Shmakov A. Influence of Quenching and Subsequent Artificial Aging on Tensile Strength of Laser-Welded Joints of Al–Cu–Li Alloy. Metals, 2023, vol. 13, no. 8, p. 1393.
19. Malikov A., Orishich A., Vitoshkin I. et al. Effect of the Structure and the Phase Composition on the Mechanical Properties of Al–Cu–Li Alloy Laser Welds. Material Science and Engineering A, 2021, vol. 809, p. 140947.
20. Malikov A., Bulina N., Sharafutdinov M., Orishich A. Study of the Structure and Phase Composition of Laser Welded Joints of Al–Cu–Li Alloy under Different Heat Treatment Conditions. The International Journal of Advanced Manufacturing Technology, 2019, vol. 104, pp. 4313–4324.
21. Malikov A., Orishich A., Bulina N. et al. Effect of Post Heat Treatment on the Phase Composition and Strength of Laser Welded Joints of an Al–Mg–Li Alloy. Materials Science and Engineering A, 2019, vol. 765, p. 138302.
22. Malikov A., Vitoshkin I., Filippova A., Kuper K. Effect of post-weld heat treatment on the microstructure, phase composition and mechanical properties of dissimilar Al–Mg–Li/Al–Cu–Li laser welded joints. Optics & Laser Technology, 2024, vol. 173, р. 110534.
23. Fomin V.M., Malikov A.G., Orishich A.M., Antipov V.V., Klochkov G.G., Skupov A.A. Heat treatment effect on structure of joint weld sheets from V-1469 alloy of Al–Cu–Li system manufactured by laser welding. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 9–18. DOI: 10.18577/2071-9140-2018-0-1-9-18.
24. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
25. Malikov A.G., Orisich A.M. Preparation of high-strength laser welded joints of aluminum alloys for aviation purposes. Fotonika, 2019, vol. 13, no. 4, pp. 356–366.
26. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys. Trudy VIAM, 2015, no. 4, paper no. 6. Available at: http://www.viam-works.ru (accessed: March 05, 2024). DOI: 10.18577/2307-6046-2015-0-4-6-6.
27. Jia M., Zheng Z., Gong Z. Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. Journal of alloys and compounds, 2014, vol. 614, pp. 131–139.
28. Nayan N., Murty Narayana S.V.S., Sharma S.C., Sreekumar K. Optimization of homogenization parameters of Al–Cu–Li alloy cast ingots using calorimetry and metallographic techniques. Materials Science Forum, 2012, vol. 710, pp. 557–562.
29. Istomin-Kastrosky V.V., Shamray V.F., Grushko O.E. et al. The influence of additions of silver, magnesium, zirconium on the aging of the B-1469 alloy of the Al–Cu–Li system. Metally, 2010, no. 5, pp. 73–78.
30. Kablov E.N., Lukina E.A., Sbitneva S.V. et al. Formation of metastable phases during the decomposition of solid solution in the process of artificial aging of Al alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 7–17.
31. Examilioti T., Li W., Kashaev L. et al. On anisotropic tensile mechanical behavior of Al–Cu–Li AA2198 alloy under different ageing conditions. Journal of materials research and technology, 2023, vol. 24, pp. 895–908.
32. Lequeu Ph., Smith K.P., Danielou A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. Journal of Materials Engineering and Performance, 2010, vol. 19 (6), pp. 841–847.
33. Yang Q., Lei L., Fan X. et al. Microstructure evolution and processing map of Al–Cu–Li–Mg–Ag alloy. Materials Chemistry and Physics, 2020, vol. 254, p. 123256.
34. Jiang N., Xiang G., Ziqiao Z. Microstructure evolution of aluminum-lithium alloy 2195 undergoing commercial production. Transactions of Nonferrous Metals Society of China, 2010, vol. 20, pp. 740–745.
35. Antipov V.V., Tkachenko E.A., Zajtsev D.V., Selivanov A.A., Ovsyannikov B.V. Тhe influence of homogenizing annealing regimes on the structural phase state and mechanical properties of aluminum-lithium alloy 1441 ingots. Trudy VIAM, 2019, no. 3 (75), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 15, 2024). DOI: 10.18577/2307-6046-2019-0-3-44-52.
36. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Influence of speed of heating at research of phase transformations in aluminum alloys DSC method. Aviacionnye materialy i tehnologii, 2011, no. 2, pp. 3–6.
The influence of the composition of the anode made of various casting magnesium alloys on its electrochemical behavior in a solution of 3,5% NaClby galvanostatic electrolysis and electrochemical impedance spectroscopy has been studied. It has been established that the use of rare earth elements (REE) as alloying elements has a beneficial effect on discharge characteristics, which allows increasing the anode efficiency and discharge capacity of the VML26 alloy of the system Mg–REE–Zr compared to the Mg–Al–Zn alloy ML5p.ch. by 15 and 7 %, respectively.
2. Leonov A.A., Trofimov N.V. Magnesium ion batteries: prospects and challenges in the field of energy. Trudy VIAM, 2024, no. 3 (133), paper no. 04. Available at: http://www.viam-works.ru (accessed: April 25, 2024). DOI: 10.18577/2307-6046-2024-0-3-41-51.
3. Morachevsky A.G., Popovich A.A. Magnesium-ion batteries – a new direction of research. Globalnaya energiya, 2019, vol. 25, no. 3, pp. 133–139.
4. Dominko R., Bitenc J., Berthelot R. et al. Magnesium batteries: Current picture and missing pieces of the puzzle. Journal of power sources, 2020, no. 478, pp. 321–339.
5. Li Q., Xiong W., Yu S.Y. et al. Effect of Gd content on the discharge and electrochemical behaviors of the magnesium alloy AZ31 as an anode for Mg-air battery. Journal of Materials Science, 2021, vol. 56, pp. 12789–12802. DOI: 10.1007/s10853-021-06135-2.
6. Li C.S., Sun Y., Gebert F., Chou S.L. Current progress on rechargeable magnesium-air battery. Advanced Energy Materials, 2017, vol. 7, р. 1700869. DOI: 10.1002/aenm.201700869.
7. Deng M., Wang L.Q., Hoche D. et al. Corrosion and discharge properties of Ca/Ge micro-alloyed Mg anodes for primary aqueous Mg batteries. Corrosion Science, 2020, vol. 177. DOI: 108958.10.1016/j.corsci.2020.108958.
8. Shi M., Li T., Shang H. et al. A critical review of inorganic cathode materials for rechargeable magnesium ion batteries. Journal of Energy Storage, 2023, no. 68, pp. 216–228.
9. Zhang T.R., Tao Z.L., Chen J. Magnesium-air batteries: from principle to application. Materials Horizons, 2014, vol. 1, pp. 196–206. DOI: 10.1039/c3mh00059a.
10. Ma B., Ouyang L., Zheng J. Magnesium-rare earth intermetallic compounds for high performance high power aqueous Magnesium-Air batteries. Journal of Magnesium and Alloys, 2023, vol. 311, pp. 347–361. DOI: 10.1016/j.jma.2023.6.010.
11. Mana Y., Jaumaux P., Xu Y. et al. Research development on electrolytes for magnesium-ion batteries. Science Bulletin, 2023, no. 68, pp. 1819–1842.
12. Kablov E.N. Aviation materials science in the 21st century. Prospects and objectives. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS–VIAM, 2002, pp. 23–47.
13. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
14. Trofimov N.V., Leonov A.A., Duyunova V.A., Uridiya Z.P. Cast magnesium alloys (review). Trudy VIAM, 2016, no. 12, paper no. 01. Available at: http://www.viam-works.ru (accessed: October 20, 2017). DOI: 10.18577/2307-6046-2016-0-12-1-1.
15. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
16. Wang L., Wang R., Feng Y. et al. Effect of Al and Pb contents on the corrosion electrochemical properties and activation of Mg–Al–Pb alloy anode. Journal of Electrochemical Society, 2017, vol. 164, pp. A438–A446.
17. Liu X., Liu S., Xue J. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries. Journal of Power Sources, 2018, vol. 396, pp. 667–674. DOI: 10.1016/j.jpowsour.2018.06.085.
18. Bingjie Ma, Liuzhang Ouyang, Jie Zheng. Magnesium-rare earth intermetallic compounds for high performance high power aqueous Magnesium-Air batteries. Journal of Magnesium and Alloys, 2023, is. 8, pp. 1011–1025. DOI: 10.1016j.jma.2023.06.010.
19. Wang N., Wang R., Peng C. et al. Discharge and Corrosion Performance of AP65 Magnesium Alloy in Simulated Seawater: Effect of Temperature. Journal of Materials Engineering and Performance, 2014, vol. 23, pp. 4374–4384.
20. Feng Y., Xiong W., Zhang J.et al. Electrochemical discharge performance of the Mg–Al–Pb–Ce–Y alloy as the anode for Mg–air batteries. Journal of Materials Chemistry A, 2016, is. 22, pp. 8658–8668.
21. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 1. Atmospheric corrosion. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-4-86-94.
22. Fomina M.A., Zakharov K.E., Yamshchikov E.I., Trofimov N.V. Selection and research of optimal paste formulation for local removal of corrosion products from magnesium alloys as well as the technology of it’s application. Aviation materials and technologies, 2023, no. 4 (73), paper no. 05. Available at: http://www.journal.viam.ru (accessed: May 05, 2024). DOI: 10.18577/2713-0193-2023-0-4-45-54.
23. Bard A.J., Faulkner L.R. Electrochemical methods. Fundamentals and applications. 2ed. Wiley, 2001, 833 p.
24. Wang N., Li W., Huang Y. et al. Wrought Mg–Al–Pb–Re alloy strips as the anodes for Mg-air batteries. Journal of power sources, 2019, vol. 436, pp. 957–968. DOI: 10.1016/j.jpowsour.2019.226855.
25. Chen X., Ning S., Le Q. et al. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries. Journal of Materials Science & Technology, 2020, vol. 38, pp. 47–55.
26. Feliu S.Jr. Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: brief review and challenges. Metals, 2020, vol. 10, no. 6, p. 775.
The technological properties of metal-powder compositions of VT6 alloy of different fractional composition are investigated. Synthesized samples were obtained by selective electron beam melting from metal-powder compositions of various fractions according to the standard parameters. The structure and surface roughness of the printed samples were studied. The widest possible range of fractions of the metal powder composition suitable for use in the process of selective laser electron beam melting without reducing the characteristics of the printed material has been determined.
2. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Study of the structure and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives. Materialovedenie, 2017, no. 3, pp. 3–10.
3. Khorev A.I. Titanium alloys for aerospace technology and the prospects for their development. Aviacionnye materialy i tehnologii, 2002, is: Promising aluminum, magnesium and titanium alloys for aerospace technology, pp. 11–32.
4. Inozemtsev A.A., Bashkatov I.G., Koryakovtsev A.S. Titanium alloys in products developed by Aviadvigatel OJSC. Modern titanium alloys and problems of their development. Moscow: VIAM, 2010, pp. 43–46.
5. Korner C. Additive manufacturing of metallic components by selective electron beam melting – a review. International Materials Reviews, 2016, vol. 61, no. 5, pp. 361–377.
6. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of alloys based on titanium and its intermetallic compounds: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
7. Murr L.E., Gaytan S.M. Electron beam melting. Comprehensive materials processing, 2014, vol. 10, pp. 135–161.
8. Wentao Y., Wenjun G., Ya Q. et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Materialia, 2017, vol. 134, pp. 324–333.
9. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference book. Moscow: VILS–MATI, 2009, 520 p.
10. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
11. Tang H.P., Qian M., Liu N. et al. Effect of powder reuse times on additive manufacturing of Ti–6AI–4V by selective electron beam melting. Journal of the minerals, metals & materials society, 2015, vol. 67 (3), pp. 555–563.
12. Guoqing C., Binggang Z., Wei L., Jicai F. Crack formation and control upon the electron beam welding of TiAl-based alloys. Intermetallics, 2011, vol. 19, pp. 1857–1863.
13. Dudikhin D.D., Saprykin A.A. Methods for producing of spherical powders for additive laser technologies. Masters Journal, 2016, no. 1, pp. 51–55.
14. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 14, 2023). DOI: 10.18577/2307-6046-2020-0-11-11-20.
15. Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds, 2012, vol. 541, pp. 177–185.
16. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
17. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
18. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
19. ASTM F2924-14. Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion. Available at: https://www.astm.org (accessed: October 12, 2023). DOI: 10.1520/F2924-14.
20. Kablov E.N., Nochovnaya N.A., Shiryaev A.A., Davydova E.A. Investigation of structural and phase transformations in metastable β-titanium alloys and effect of cooling rate from homogenization temperature on structure and properties of VT47 alloy. Part 1. Trudy VIAM, 2020, no. 6–7 (89), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2020-67-3-10.
21. Burkovskaya N.P., Bobrovsky A.P., Efimochkin I.Yu., Bolshakova A.N. Spheroidization of powder compositions based on refractory metals (review). Part 1. Trudy VIAM, 2023, no. 1 (119), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 11, 2023). DOI: 10.18577/2307-6046-2023-0-1-128-138.
Theresults of research of the properties of epoxy film adhesiveswith lowered combustibility and heat resistance up to 120 °C – VK-108 and VKV-28 are presented. VK-108 structural adhesive is intended for gluing parts and units from metal materials and polymeric composite materials, including honeycomb sandwich constructions. VKV-28 foaming adhesive is designed to connect the cellular fillers with each other and with the frame elements in honeycomb sandwich made from aluminum alloys and polymeric composite materials. Аdhesivesare self-extinguishing and meet the requirements of AP-25 (Appendix F, Рart I).
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. The role of fundamental research in the creation of materials of the new generation. XXI Mendeleevsky Congress for General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Glues and materials based on them for repairing structures of aviation equipment. Aviatsionnye materialy i tekhnologii, 2002, no. 1, pp. 61–65.
5. Grashhenkov D.V., Chursova L.V. Strategy of development of composite and functional materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 231–242.
6. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
7. Petrova A.P. The main stages of gluing technology. Klei. Germetiki. Tekhnologii, 2014, no. 2, pp. 24–30.
8. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 21, 2024). DOI: 10.18577/2071-9140-2021-0-4-70-80.
9. Aviation materials: a guide of 13 vols. Ed. E.N. Kablov. 7th ed., add. and rev. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubber, hydraulic fluidity, part 1: Adhesives, glue prepares, 276 p.
10. Petrova A.P., Malysheva G.V. Adhesives, adhesive binding and adhesive prepares: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
11. Petrova A.P., Donskoy A.A. Adhesive materials. Sealants. St. Petersburg: Professional, 2008, 589 p.
12. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
13. Petrova A.P. Foaming adhesives and their use in aircraft construction. Klei. Germetiki. Tekhnologii, 2015, no. 1, pp. 2–5.
14. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
15. Dementyeva L.A., Tyumeneva T.Yu., Sharova I.A. Adhesives with reduced flammability for aircraft. Tr. VI Int. conf. Vologda, 2011, pp. 127–128.
16. Zastrogina O.B., Shvets N.I., Serkova U.A., Veshkin E.A. Fireproof materials based on phenol-formaldehyde binders. Klei. Germetiki. Tekhnologii, 2017, no. 7, pp. 22–27.
17. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
18. Donskoy A.A., Baritko N.V. Self-extinguishing low-density sealants. Klei. Germetiki. Tekhnologii, 2006, no. 9, pp. 10–12.
19. Kurshubadze I.V., Petrova A.P. Performance of adhesive joints in marine subtropical conditions. Klei. Germetiki. Tekhnologii, 2005, no. 12, pp. 14–17.
20. Lukina N.F., Isaev A.Yu., Starodubtseva О.А., Balabanovа О.S. Approaches to creation of conducting glue from the lowered curing temperature. Trudy VIAM, 2023, no. 5 (123), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 01, 2024). DOI: 10.18577/2307-6046-2023-0-5-54-63.
21. Petrova A.P., Lukina N.F., Isaev A.Yu., Smirnov O.I. The effect of the adhesive primer EP-0234 on the properties of adhesive compounds obtained using adhesive VK-36. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 21, 2024). DOI: 10.18577/2307-6046-2022-0-6-39-48.
22. Lukina N.F., Kotova Е.V., Petrova A.P., Isaev A.Yu. Improvement of properties of fenolformaldegidny adhesives when updating by their polyvinylacetals. Trudy VIAM, 2022, no. 6 (112), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 21, 2024). DOI: 10.18577/2307-6046-2022-0-7-27-36.
Processing of polymer composite materials with minimal defect formation is an important prerequisite for their long-term operation. Materials produced by the technology of copy-piercing electrical discharge machining (EDM) under consideration are also characterized by characteristic defects. The influence of the EDM modes, the applied conductive layer and the electrode-tool material on the structure of the surface layer of structural carbon fiber reinforced plastic VKU-29 was studied. Technological parameters of EDM were obtained, ensuring the quality and efficiency of polymer composite materials, taking into account the minimal number of structural defects.
2. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
4. Kablov E.N. The role of fundamental research in the creation of materials of the new generation. XXI Mendeleevsky Congress for General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
6. Bataev A.A., Bataev V.A. Compositional materials: structure, receipt, application: textbook. Novosibirsk: NSTU, 2002, 384 p.
7. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. St. Petersburg: Profession, 2008, 560 p.
8. Ablyaz T.R., Donetskiy K.I., Shlykov E.S., Muratov K.R., Dyushenko V.S., Minibaev M.I. A comprehensive analysis of the methods of processing polymer composite materials. STIN, 2022, no. 6, рр. 5–8.
9. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https:// www.journal.viam.ru (accessed: April 02, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
10. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 02, 2024). DOI: 10.18577/2713-0193-2021-0-3-105-116.
11. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
12. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 08, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
13. Baurova N.I., Zorin V.A. The use of polymer composite materials in the production and repair of machines: textbook. Moscow: MADI, 2016, 264 p.
14. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
15. Dyshenko V.S., Donetskiy K.I., Minibaev M.I., Ablyaz T.R., Shlykov E.S., Shiryaev V.V. Methods of mechanical and electrical discharge machining of polymer composite materials (review). Trudy VIAM, 2018, no. 3 (109), paper no. 10. Available at: http://www.viam-works.ru (accessed: March 05, 2024). DOI: 10.18577/2307-6046-2022-0-3-102-120.
16. Film B.P. Mechanical processing of plastic: reference. Moscow: Mashinostroyenie, 1987, 152 p.
17. Fukuzawa Y., Katougi H., Mohri N. et al. Machining properties of ceramics with an electric discharge machine. Proceedings of the XII ISEM. Dusseldorf: VDI Verlag, 1998, pp. 445–454.
18. Mohri N., Fukuzawa Y., Tani T. et al. Assisting electrode method for machining insulating ceramics. Annals CIRP, 1996, no. 45 (1), pp. 201–204.
19. Mohri N., Fukusima Y., Fukuzawa Y. et al. Layer generation process on work-piece in electrical discharge machining. Annals CIRP, 2003, no. 52 (1), pp. 161–164.
20. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
The paper presents the results of the influence of various combinations of electrically conductive modifiers on the electrical conductivity of model compositions based on an epoxy oligomer cured with an amine type hardener. The effect of fillers on the electrical conductivity of model compositions is investigated by the method of determining the specific volumetric electrical resistance at constant voltage. The analysis of the obtained results was performed, which allowed us to establish the relationship between the composition of the model compositions and their electrical conductivity.
2. Kablov E.N. Materials and technologies of the VIAM for the «Aviator». Perm Aviation engines, 2014, no. 31, pp. 43–47.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: October 02, 2023). DOI: 10.18577/2713-0193-2022-0-1-120-128.
5. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2071-9140-2023-0-1-61-81.
6. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
7. Kondrashov E.K., Kuznetsova V.A., Lebedeva T.A., Semenova L.V. The main directions of increasing operational, technological and environmental characteristics of paints and varnishes for aviation equipment. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
8. Blyite E.R., Blur D. Electric properties of polymers. Trans. from Engl. Moscow: Fizatlit, 2008, 376 p.
9. Chudina O.V., Alexandrov V.A. Structural and electrical materials in transport engineering: textbook. Moscow: MADI, 2017, 228 p.
10. Yakovlev A.D., Yakovlev S.A. Functional varnishes. St. Petersburg: Chemistry, 2016, 272 p.
11. Semenova L.V., Kozlova A.A. Paint coating for protection of polymer composites. Trudy VIAM, 2013, no. 4, paper no. 08. Available at: http://www.viam-works.ru (accessed: October 02, 2023).
12. Shevchenko V.G. Fundamentals of physics of polymer composite materials. Moscow: Profession, 2010, 99 p.
13. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: September 17, 2023). DOI: 10.18577/2713-0193-2021-0-1-71.
14. Drinberg A.S. Coloring of composite materials. Lakokrasochnye materialy i ikh primenenie, 2017, no. 3, pp. 22–31.
15. State Standard 20214–74. Plastics are electrical conductive. The method for determining the specific volumetric electrical resistance at constant voltage. Moscow: Standinform, 2018, 9 p.
16. Electric conductive paint: pat. 2042694 Ros. Federation; appl. 01.11.94; publ. 27.08.95.
The effect of alloying elements (Tb, Ce, Sm) on the properties of sintered magnets Pr(Nd)–Dy(M)–Fe–Co–B(М: Tb, Ce, Sm) as well as sintering temperature, grinding time and various heat treatment modes on the main magnetic characteristics and phase composition of magnets is investigated. It is shown that heat treatment does not significantly affect the magnetic properties. It was found that the admixture of samarium negatively affects the magnetic characteristics of materials. It has been established that the most effective materials are based on praseodymium (without admixture of neodymium).
2. Matveev V.V., Raspopov V.Ya. Fundamentals of constructing strapdown inertial navigation systems. St. Petersburg: Concern «Central Research Institute «Electropribor», 2009, 280 p.
3. Mahony R., Kumar V., Corke P. Multirotor Aerial Vehicle Dynamics, Stability and Control: Towards a Full Estimation. Springer, 2012, pp. 20–32.
4. Lavoie F. Di Li, Landry R. Development of an inertial navigation system based on MEMS sensors. Giroskopiya i navigatsiya, 2009, no. 1 (64), pp. 75–85.
5. Chirkin D.S., Roslovets P.V., Tatarinov F.V., Novikov L.Z. Reducing the drift of a dynamically tuned gyroscope from launch to launch. Inzhenernyy zhurnal: nauka i innovatsii, 2017, no. 1, pp. 1–14. DOI: 10.18698/2308-6033-2017-01-1579.
6. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental assessment of permissible mechanical influences on a dynamically adjustable gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroyenie, 2018, no. 4, pp. 69–79.
7. Moscovskaya T.E. Definition of density of bodies hydrostatic weighing: methodical recommendations. Irkutsk: Irkutsk state univ., 2003, pp. 1–9.
8. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), paper no. 06. Available at: http://www.viam-works.ru (accessed: January 25, 2023). DOI: 10.18577/2307-6046-2022-0-10-66-75.
9. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
10. Lapteva K.A., Tolmachev I.I. Calculation of the demagnetizing factor during longitudinal magnetization in magnetic particle flaw detection. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, vol. 321, no. 2, pp. 140–144.
11. Sato M., Ishii Y. Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. Journal of Applied Physics, 1989, vol. 66, nо. 2, pp. 983–985.
12. Chen Du-Xing, Brug J.A., Goldfarb R.B. Demagnetizing factor for cylinder. IEEE Transactions on Magnetics, 1991, vol. 27, nо. 4, pp. 3601–3619.
13. Sinnema S., Franse J.J.J., Radwanski R.J. et al. Magnetic measurements on R2Fe14B and R2Co14B compounds in high fields. Le Journal de Physique Colloques, 1985, vol. 46, pp. C6-301–C6-304.
14. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63, no. 4, pp. 819–898.
15. Szytula A., Ivanov V., Vinokurova L. Magnetic properties of the RT2X2, RTX2 and RTX compounds in high magnetic field. Acta Physica Polonica A, 1994, vol. 85, pp. 293–296.
16. Koichi Niihara, Toetu Shishido, Selshi Yajima. The crystal data of ternary rare earth borides RCo2B2. Bulletin of the Chemical Society of Japan, 1979, vol. 46, pp. 1137–1140.
17. Aby S.N., Hadjipanayis G.C. Magnetic properties of amorphous and crystallized RT4B alloys. Journal of Applied Physics, 1987, vol. 61, no. 8, pp. 3757–3759.
18. Drzazga Z., Winiarska A., Stein F. Magnetic properties of RCo4‒x Fex B compounds (R=Gd, Dy). Journal of the Less-Common Metals, 1989, vol. 153, pp. L21–L24.
19. Gros F., Hartman-Boutron D.F., Meyer C. et al. Mossbauer study of compounds RCo4‒xFexB and RFe4B. Journal de Physique, 1988, vol. 49, no. 12, pp. C8-547–C8-548.
20. Nguyen Minh Hong. Ferromagnetism in CeCo3B2. Communications in Physics, 2007, vol. 17, no. 4, pp. 241–245.
21. De Cunha J.B.M., Viccaro P.J., Vasquez A. A Mossbauer study of the spin-reorientation in the pseudobinary intermetallic compounds (Er10xGdx)Fe3. Hyperfine Interactions, 1983, vol. 15/16, pp. 697–700.
22. de Grood C.H., Buschow K.H.J., de Boer F.R. Re-entrant ferromagnetism in the ThFe3‒xAlx system. Journal of Magnetism and Magnetic Materials, 1996, vol. 157/158, pp. 641–642.
23. Primavesi G.J., Taylor K.N.R., Harris L.R. Structural and magnetic studies of the pseudo-binary compounds (Gd1‒xNdx) Co2. Journal de Physique, 1971, vol. 32, pp. C1-661–C1-662.
24. Ren W.J., Zhang Z.D., Markosyan A.S. et al. The beneficial effect of the boron substitution on the magnetostrictostrictive compound Tb0,7Pr0,3Fe2. Journal of Physics D: Applied Physics, 2001, vol. 54, pp. 3024–3027.
25. Umkhaeva Z.S. Structural and magnetic phase transformations and hyperfine interactions on the 57Fe nucleus in high-pressure phases of alloys of quasi-binary systems RΙ1‒xRΙΙxM2 and R(Fe1‒xMx)2 (R-REM), M-3d-metal: thesis, Cand. Sc. (Tech.). Grozny, 2013, 339 p.
26. Perigo E.A., Takiishi H., Motta C.C., Faria R.N. On the squareness factor behavior of RE-FeB (RE=Nd or Pr) magnets above room temperature. IEEE Transaction Magnetic, 2009, vol. 45, nо. 3, pp. 4431–4434.
27. Takiishi H., Lima L.F.C.P., Costa I., Faria R.N. The influence of process parameters and alloy structure on the magnetic properties of NdDyFeB HD sintered magnets. Journal of Materials Processing Technology, 2004, vol. 152, pp. 1–8.
28. Faria R.N., Davies B.E., Brown D.N., Harris I.R. Microstructural and magnetic studies of cast and annealed Nd and PrFeCoBZr alloys and HDDR materials. Journal of Alloys and Compounds, 2000, vol. 296, pp. 223–228.
29. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
30. Buzenkov A.V., Valeev R.A., Piskorsky V.P., Morgunov R.B. The effect of the content of yttrium on the properties of the sintered Magnets Nd–Dy–Y–Fe–Co–B. Trudy VIAM, 2022, no. 4 (110), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 23, 2023). DOI: 10.18577/2307-6046-2022-0-4-108-117.
31. Piskorskiy V.P., Valeev R.A., Korolev D.V., Stolyankov Yu.V., Morgunov R.B. Technologies of magneto-optical information recording in thin films of rare-earth magnetically soft alloys. Part II. Ultrafast all optical switching of magnetization. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: January 26, 2023). DOI: 10.18577/2307-6046-2020-0-2-10-21.
The paper presents an algorithm for determining the length and position of a fatigue crack, based on the use of a three-dimensional convolutional neural network when testing for fatigue crack growth rate. An algorithm for calibrating a video recording system using reference marks in the form of matrix bar codes is proposed. The results of using the algorithm were compared with standard tests. Thus, the kinetic diagram of destruction obtained using a neural network model is characterized by a larger volume of observations, as well as a smaller value of the variance of the approximation error of the measurement results.
2. Erasov V.S., Oreshko E.I., Lutsenko A.N. Damageability of materials in tension testing. Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
3. Kablov E.N., Grinevich A.V., Slavin A.V., Kabanov I.V., Gromov V.I., Ampilogov A.Yu., Yakovlev N.O., Polyakov A.N., Yakusheva N.A. Calculated strength characteristics of steels VKS-9M and 300M. Zavodskaya laboratoriya. Diagnostika materialov, 2022, vol. 88, no. 3, pp. 51–60. DOI: 10.26896/1028-6861-2022-88-3-51-60.
4. Kablov E.N., Putyrsky S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of resistance to fatigue fracture of forgings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α + β)- and β-regions. Titan, 2021, no. 1 (70), pp. 26–33.
5. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
6. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
7. Chen C., Seo H., Jun C.H., Zhao Y. A potential crack region method to detect crack using image processing of multiple thresholding. Signal, Image and Video Processing, 2022, vol. 16, no. 6, pp. 1673–1681.
8. Abdel-Qader I., Abudayyeh O., Kelly M.E. Analysis of edge-detection techniques for crack identification in bridges. Journal of Computing in Civil Engineering. 2003, vol. 17 (4), рр. 255–263.
9. Gao H.L., Shen S.S., Yun Y. Fatigue crack length real time measurement method based on camera automatically tracking and positioning. Applied Mechanics and Materials, 2012, vol. 130, pp. 3111–3118.
10. Sun H., Liu Q., Fang L. Research on fatigue crack growth detection of M (T) specimen based on image processing technology. Journal of Failure Analysis and Prevention, 2018, vol. 18, рр. 1010–1016.
11. Monakhov A.D., Gulyaev M.M., Gladysheva N.E., Kopteltseva O.Yu., Avtaev V.V., Yakovlev N.O., Gulina I.V. Application of the digital image correlation method for constructing deformation diagrams in true coordinates. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya, 2023, vol. 29, no. 3, pp. 79–88. DOI: 10.17073/0021-3438-2023-3-79-88.
12. Strohmann T., Starostin-Penner D., Breitbarth E., Requena G. Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks. Fatigue Fracture of Engineering Materials Structures, 2021, vol. 44, pp. 1336–1348.
13. Orell O., Jokinen J., Kanerva M. Use of DIC in the characterization of mode II crack propagation in adhesive fatigue testing. International Journal of Adhesion and Adhesives. 2023, vol. 122, рр. 1–10.
14. Rupil J., Roux S., Hild F., Vincent L. Fatigue microcrack detection with digital image correlation. The Journal of Strain Analysis for Engineering Design, 2011, vol. 46 (6), pp. 492–509.
15. Avtaev V.V., Yakovlev N.O. Study of static crack resistance and fracture resistance of thin-sheet aluminum alloy using digital image correlation. Deformatsiya i razrusheniye materialov, 2020, nо. 2, pp. 29–35.
16. Lopez-Crespo P., Shterenlikht A., Patterson E.A. et al. The stress intensity of mixed mode cracks determined by digital image correlation. Journal Strain Analysis, 2008, vol. 43, no. 8, pp. 769–780.
17. Du Y., Diaz F.A., Burguete R.L., Patterson E.A. Evaluation using digital image correlation of stress intensity factors in an aerospace panel. Experimental Mechanics, 2011, vol. 51, pp. 45–57.
18. Indolia S., Goswami A.K., Mishra S.P., Asopa P. Conceptual understanding of convolutional neural network a deep learning approach. Procedia Computer Science, 2018, vol. 132, pp. 679–688.
19. Butakov V.V., Lugovoy A.A., Varrik N.M., Babashov V.G. Assessment of thermal conductivity of a layered highly porous thermal insulation material. Aviation materials and technologies, 2022, no. 3 (68), paper no. 11. Available at: http://www.journal.viam.ru (accessed: February 29, 2024). DOI: 10.18577/2713-0193-2022-0-1-129-142.
20. Oreshko E.I., Erasov V.S., Sibayev I.G., Lutsenko A.N., Shershak P.V. Machine learning algorithms (review). Part 2. Machine learning metrics. Decision trees and ensembles of decision trees. An algorithm for neural network to forecast properties of ferrite-martensite steel. Aviation materials and technologies, 2022, no. 4 (69), paper no. 12. Available at: http://www.journal.viam.ru (accessed: February 29, 2024). DOI: 10.18577/2713-0193-2022-0-4-132-146.
21. LeCun Y., Boser B., Denker J.S. et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1989, vol. 1 (4), pp. 541–551.
22. Yingtao Y., Zhendong G., Xin S. et al. Crack Length Measurement Using Convolutional Neural Networks and Image Processing. Sensors, 2021, vol. 21 (17), pp. 1–16.
23. Ali R., Chuah J.H., Talip M.S.A. et al. Structural crack detection using deep convolutional neural networks. Automation in Construction, 2022, vol. 133, p. 103989.
24. Kaiming H., Xiangyu Z., Shaoqing R., Jian S. Deep Residual Learning for Image Recognition. Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.
25. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations. San Diego, 2015, pp. 1–9.
26. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Munich, 2015, pp. 234–241.
27. Calculated values of characteristics of aviation metal structural materials: aviation reference book in 4 issues. Moscow: UAC; TsAGI, 2012, is. 4, 118 p.
An anomalously high rate of chloride deposition observed in Gelendzhik in February 2023 during the annual corrosion tests was investigated. An estimation of the threshold value of the chloride deposition rate on samplers corresponding to the rate of chloride deposition directly on the surface of metal samples is given. The correction of calculation of the average annual rate of chloride deposition ([Cl]) under anomalously high salinity of the atmosphere is proposed. Based on the average annual climatic parameters and [Cl] by dose-response functions the forecast of first-year corrosion losses of metals is made.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
3. Knotkova D., Kreislova K., Dean S.W. ISOCORRAG International Atmospheric Exposure Program: Summary of Results. West Conshohocken: ASTM International, 2010, 112 p.
4. Morcillo M. Atmospheric corrosion in Ibero-America. The MICAT project. Atmospheric corrosion. Eds. W.W. Kirk, H.H. Lawson. Philadelphia: American Society for Testing and Materials, 1995. ASTM STP 1239, рр. 257–275. DOI: 10.1520/STP14924S.
5. Chico B., de la Fuente D., Díaz I. et al. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials, 2017, no. 10 (6), p. 601. DOI: 10.3390/ma10060601.
6. Morcillo M., Chico B., Otero E., Mariaca L. Effect of marine aerosol on atmospheric corrosion. Materials Performance, 1999, no. 38, pp. 72–77.
7. Alcántara J., Chico B., Díaz I. et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corrosion Science, 2015, no. 97, pp. 74–88. DOI: 10.1016/j.corsci.2015.04.015.
8. Castañeda A., Corvo F., Fernández D., Valdés C. Outdoor-indoor atmospheric corrosion in a coastal wind farm located in a tropical island. Engineering Journal, 2017, no. 21 (2), pp. 43–62. DOI: 10.4186/ej.2017.21.2.43.
9. Morcillo M., Chico B., Alcantara J. et al. Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered Materials and Corrosion, 2015, no. 66 (9), pp. 882–892. DOI: 10.1002/maco.201407940.
10. Franzen L.G. Transport, deposition and distribution of marine aerosols over southern Sweden during dry westerly storms. AMBIO, 1990, no. 19 (4), pp. 180–188.
11. State Standard 9.107–2023. Unified system of protection against corrosion and aging. Corrosive aggressiveness of the atmosphere. Basic provisions. Moscow: RST, 2023, pp. 6–8.
12. Panchenko Yu.M., Marshakov A.I., Igonin T.N. et al. Corrosion resistance of zinc and zinc-aluminum-magnesium coatings in atmosphere on the territory of Russia. Materials, 2023, no. 16, pp. 2–17. DOI: 10.3390/ma16155214.
13. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
14. ISO 9225–2012. Corrosion of metals and alloys – Corrosivity of atmospheres – Measurement of environmental parameters affecting corrosivity of atmospheres. Geneva: International Standards Organization, 2012, 12 р.
15. Panchenko Yu., Marshakov A., Nikolaeva L., Igonin T. Corrosion resistance of structural metals depending on the sample orientation and initial exposure conditions in coastal and rural atmospheres. Part 1. Corrosivity toward structural metals at coastal and rural test sites under various exposure conditions. Corrosion Engineering, Science and Technology, 2023, no. 58 (7), pp. 645–658. DOI: 10.1080/1478422X.2023.2245642.
16. Panchenko Yu.M., Marshakov A.I., Nenasheva T.A., Igonin T.N., Kutyrev A.E., Fomina M.A., Vdovin A.I. Corrosion resistance of structural metals depending on the orientation of samples at various distances from the seashore. Korroziya: zashchita materialov i metody issledovaniy, 2024, no. 2, pp. 29–44. DOI: 10.61852/2949-3412-2024-2-2-29-44.
17. Diaz I., Cano H., de la Fuente D. et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity. Corrosion Science, 2013, no. 76, pp. 348–360. DOI: 10.1016/j.corsci.2013.06.053.
18. Abramova M.G., Panchenko Yu.M., Vetrova E.Yu., Nenasheva T.A. Corrosive aggressiveness of the atmosphere in various climatic regions of the Russian Federation. Korroziya: materialy, zashchita, 2020, no. 3, pp. 12–22. DOI: 10.31044/1813-7016-2020-0-3-12-22.
19. Vera R., Rosales B.M., Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere. Corrosion Science, 2003, no. 45, pp. 321–337.
20. Alcаntara J., de la Fuente D., Chico B. et al. Marine atmospheric corrosion of carbon steel: A review. Materials, 2017, no. 10, p. 406. DOI: 10.3390/ma10040406.
21. Zezza F., Macrì F. Marine aerosol and stone decay. Science of Total Environment, 1995, no. 167, pp. 23–143. DOI: 10.1016/0048-9697(95)04575-L.
22. Whitby K.T. The physical characteristics of sulfate aerosols. Atmospheric Environment, 1978, no. 12, рр. 135–159. DOI: 10.1016/0004-6981(78)90196-8.
23. Li S., Hihara L.H. Aerosol salt particle deposition of metals exposed to marine environments: A study related to marine atmospheric corrosion. Journal of electrochemical society, 2014, no. 161, pp. 268–275. DOI: 10.1149/2.071405jes.
24. Varchenko E.А., Vetrova E.Yu. Research of the biological and corrosion resistance of samples of aluminum alloy after natural tests in the Gelenjik bay. Part 1. Trudy VIAM, 2020, no. 6–7 (89), paper no. 10. Available at: http://www.viam-works.ru (accessed: March 06, 2024). DOI: 10.18577/2307-6046-2020-0-67-91-100.
25. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
26. Jaen J.A., Iglesias J., Hernandez C. Analysis of Short-Term Steel Corrosion Products Formed in Tropical Marine Environments of Panama. International Journal of Corrosion, 2012, vol. 2012, art. ID 162729. DOI: 10.1155/2012/162729.
Light-metal alloys
Benarieb I., Panteleev M.D., Oglodkov M.S., Sbitneva S.V., Pakhomkin S.I. The effect of heat treatment on the structure and mechanical properties of joints, produced by electron beam welding of extrusions from aluminium-lithium alloy V-1469
Leonov А.А., Zavarzin S.V., Trofimov N.V. On some features of the influence of the composition of the magnesium anode on its electrochemical behavior in relation to magnesium-ion batteries
Senenko S.A., Bogachev I.A., Shoshev F.L. Effect of the fractional composition of the metal-powder composition of the VT6 alloy on the surface roughness, structure and mechanical properties of the printed material obtained by selective electron beam melting
Polymer materials
Isaev A.Yu., Rubcova E.V., Lukina N.F. Properties and purpose of film adhesives (constructional and foaming) with lowered combustibility
Composite materials
Donetskiy K.I., Ablyaz T.R., Shlykov E.S., Osinnikov I.V., Blokhin V.B., Muratov K.R. Study of the influence of the electrical discharge machining process on the structure of polymer composite material VKU-29
Protective and functional
coatings
Zverevich Yu.K., Krechetov D.D., Zhelez-nyak V.G. Investigation of the effect of modifiers on the electrical conductivity of the model composition based on an epoxy oligomer
Material tests
Buzenkov A.V., Burkanov M.V., Valeev R.A., Piskorsky V.P. Influence of alloying elements and production technology on the properties of sintered magnets Pr(Nd)–Dy(M)–Fe–Co–B (M: Tb, Ce, Sm)
Monakhov A.D., Yakovlev N.O. Application of the deep learning method in studying crack resistance characteristics
Panchenko Yu.M., Marshakov A.I., Nenasheva T.A., Kutyrev A.E., Fomina M.A., Vdovin A.I. Predictions of first-year corrosion losses of structural metals depending on the orientation of samples at different distances from the seashore