Articles
The results of investigation of the influence of the assembly gap width on the microstructure of brazing joints of pseudo-α-alloy VT20 with VPr16 solder are presented. The soldered samples after brazing and subsequent homogenization heat treatment (HHT) are analyzed. The main types of microstructures formed in the solder joint are identified and regression equations of the influence of the gap width and duration of the HHT on the main transition points of the solder joint microstructure are constructed. The dynamics of change of alloying elements (aluminum, zirconium, copper and nickel) in the solder joint and diffusion zone has been studied. The optimum microstructure is selected, which does not have a boundary in the center of the seam and boundaries of the junction of crystals.
2. Kablov E.N., Putyrsky S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of resistance to fatigue fracture of forgings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α+β)- and β-regions. Titan, 2021, no. 1 (70), pp. 26–33.
3. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
4. Makushina M.A., Kochetkov A.S., Nochovnaya N.A. Cast titanium alloys for aviation equipment (review). Trudy VIAM, 2021, no. 7 (101), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 26, 2024). DOI: 10.18577/2307-6046-2021-0-7-39-47.
5. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: February 26, 2024). DOI: 10.18577/2071-9140-2022-0-1-30-40.
6. Yongjuan J., Xishan Y., Xingqiang G. et al. The influence of Zr content on the performance of TiZrCuNi brazing filler. Materials science and engineering A, 2016, vol. 678, рp. 190–196. DOI: 10.1016/J.MSEA.2016.09.115.
7. Sviridov A.V., Afansiev-Khodykin A.N., Galushka I.A. Influence of manufacturing technologies of brazing alloy powder VPr28 on powder features (review). Aviation materials and technologies, 2022, no. 1 (69), paper no. 02. Available at: http://www.journal.viam.ru (accessed: February 26, 2024). DOI: 10.18577/2713-0193-2022-0-4-16-24.
8. Skupov A.A., Sviridov A.V., Khodakova E.A., Afanasev-Khodykin A.N. Creation of joints from intermetallic titanium alloys (review). Trudy VIAM, 2021, no. 7 (101), paper no. 04. Available at: http://www.viam-works.ru (accessed: February 26, 2024). DOI: 10.18577/2307-6046-2021-0-7-31-38.
9. Petrunin I.E., Bereznikov Yu.I., Bunkina R.R. et al. Handbook on soldering. 3rd ed. rev. and add. Moscow: Mashinostroenie-1, 2003, 480 p.
10. Petrunin I.E., Markova I.Yu., Ekatova A.S. Metallurgy soldering. Moscow: Metallurgiya, 1976, 264 p.
11. Lashko N.F., Lashko S.V. Soldering of metals. Moscow: Mashinostroenie, 1977, 328 p.
12. Khorunov V.F., Maksimova S.V. Brazing of heat-resistant alloys at the present stage. Svarochnoe proizvodstvo, 2010, no. 10, pp. 24–27.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Klopotov V.D., Potekaev A.I., Klopotov A.A. et al. Triple diagrams based on titanium aluminide. Analysis and construction. Izvestia TPU, 2013, no. 2, pp. 96–100.
15. Kornilov I.I., Budberg P.B. Chemical interaction of titanium with other elements. Uspekhi khimii, 1955, vol. 25, is.1, pp. 1474–1501.
16. Kogachi M., Minamigawa S., Kakahigashi K. Long Range Orderin L12 ternary intermetallic compound Al3Ti-X (X=Fe, Ni, Cu, Ag). Scripta metallurgica et materiala, 1992, vol. 27, pp. 407–412.
17. State diagrams of metallic systems. Ed. N.V. Ageev. Moscow: VINITI, 1966, is. 12, 352 p.
18. Grytsiv A., Chen X-Q., Witusiewicz V.T. et al. Atom order and thermodynamic properties of the ternary Laves phase Ti (TiyNixAl1–x–y)2. Zeitschrift fur Kristallographie, 2006, vol. 221, pp. 334–348.
19. Schuster J.C. Critical data evaluation of the aluminium–nickel–titanium system. Intermetallics, 2006, vol. 14, pp. 1304–1311.
20. Schuster J.C., Pan Z., Liu S., Weitzer F., Du Y. On the constitution of the ternary system Al–Ni–Ti. Intermetallics, 2007, vol. 15, pp. 1257–126.
21. Milman Yu.V., Miracle D.B., Chugunova S.I. et al. Mechanical behavior of Al3Ti intermetallic and L12 phases on its basis. Intermetallics, 2001, vol. 9, pp. 839–845.
22. Nakayama Y., Mabuchi H. Formation of Ternary L12 compounds in Al3Ti-base alloys. Intermetallics, 1993, vol. 1, pp. 41–48.
23. Antashev V.G., Nochovnaya N.A., Pavlova T.V., Ivanov V.I. Heat-resistant titanium alloys. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 3, pp. 7–8.
24. Cao J., Qi J., Song X., Feng J. Welding and Joining of Titanium Aluminides. Materials, 2014, no. 7, pp. 4930–4962.
25. Shapiro A., Rabinkin A. State of the art of titanium-based brazing filler metals. Welding journal, 2003, vol. 82, no. 10, pp. 36–43.
26. TiNiNbZr high-temperature brazing filler metal for TiAl alloy, preparation method and brazing method thereof: pat. CN 110605498A; appl. 14.05.19; publ. 24.12.19.
27. Brazing filler metal for brazing titanium-containing material, preparation method and brazing method: pat. CN 110666395A; appl. 21.10.19; publ. 10.01.20.
The climatic aging of aramid organic plastics in various natural environments is investigated. It is shown that the climatic stability of organic plastics is at the level of resistance of polymeric composite materials reinforced by carbon fibers and fiber glasses, despite the higher water absorption. Organic plastic Organit 10Т has 71 % of tensile strength properties after 18 years of climatic aging. Organic plastics can recover their properties after removal (drying) of the sorbed moisture. Organic plastics from new Rusar-NT fiber and epoxy melt binders have the biggest resistance to climatic aging.
2. Mashinskaya G.P., Perov B.V. Principles of developing organic fibre-reinforced plastics for aircraft engineering. Polymer Matrix Composites: Soviet Advanced Composites Technology. London: Chapman & Hall, 1995, pp. 305–425.
3. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. I. Aging mechanisms. Deformation and destruction of materials, 2010, no. 11, pp. 19–27.
4. Garanina S.D., Shul G.S., Lebedev L.B. et al. Effect of water on the properties of organic plastics. Mechanics of Composite Materials, 1985, vol. 20, pp. 454–457.
5. Startsev O.V., Krotov A.S., Mashinskaya G.P. Climatic ageing of organic fiber reinforced plastics: water effect. International Journal of Polymeric Materials, 1997, vol. 37, pp. 161–171.
6. Kurzemnieks A.K. Structural deformation properties of organic fibers based on para-polyamides. Mechanics of Composite Materials, 1979, vol. 15, pp. 7–10.
7. Vijayan K. Effect of environmental exposure on the aramid fibre Kevlar. Metals Materials and Processes, 2000, vol. 12, pp. 259–268.
8. Startseva L.T. Climatic ageing of organic fiber reinforced plastics. Mechanics of Composite Materials, 1984, vol. 29, pp. 620–626.
9. Bulmanis V.N., Popov N.S., Starzhenetskaya T.A. et al. Effect of alternating thermocycling and humidity on the strength of wound glass-fiber and organic-fiber plastics. Mechanics of Composite Materials, 1989, vol. 24, pp. 782–789.
10. Bulmanis V.N., Startsev O.V. Prediction of changes in the strength of polymer fiber composites as a result of climatic influences. Yakutsk, 1988, 32 p.
11. Baker D.J. Ten-year ground exposure of composite materials used on the Bell model 206L helicopter flight service program: NASA Technical Paper 3468; ARL Technical Report 480. Hampton, VA, 1994, 54 p.
12. Dexter H.B. Long-term environmental effects and flight service evaluation of composite materials: NASA TM-89067. Hampton, VA, 1987, 188 p.
13. Haque A., Copeland C.W., Zadoo D.P., Jeelani S. Hygrothermal influence on the flexural properties of kevlar-graphite/epoxy hybrid composites. Journal of Reinforced Plastics and Composites, 1990, vol. 9, pp. 602–613.
14. Ramesh C., Arumugam V., Stanley J., Kumar V. Effects of hydrolytic aging on glass/epoxy, kevlar/epoxy, and hybrid (glass/kevlar/epoxy) composites. International Journal of Engineering Research & Technology (IJERT), 2013, vol. 2, pp. 1589–1596.
15. Zhelezina G.F., Voinov S.I., Pletin P.I., Veshkin E.A., Satdinov R.A. Development and production of structural organoplastics for aviation technology. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 4, pp. 411–416.
16. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
17. Zhelezina G.F., Tikhonov I.V., Chernykh T.E., Bova V.G., Voinov S.I. Third generation aramid fibers Rusar NT for reinforcing organotextolites for aviation purposes. Plasticheskiye massy, 2019, no. 3–4, pp. 43–47.
18. Chaykun A.M., Venediktova M.A., Smirnov D.N., Gerasimov D.M. Features of the influence of atmospheric factors on the main technical characteristics of sealing materials of various types of aviation purposes. Trudy VIAM, 2019, no. 2 (74), paper no. 06. Available at: http://viam-works.ru (accessed: December 15, 2023). DOI: 10.18577/2307-6046-2019-0-2-58-67.
19. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Kurnosov A.O. Research of climatic factors influence of cold, temperate (moderate) and tropical climates on properties of construction fibreglass. Trudy VIAM, 2019, no. 3 (75), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 15, 2023). DOI: 10.18577/2307-6046-2019-0-3-105-114.
20. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: December 15, 2023). DOI: 10.18577/2071-9140-2021-0-4-70-80.
21. Veligodskiy I.M., Koval T.V., Kurnosov A.O., Marakhovskiy P.S. Study of resistance of glass fiber reinforced plastic to natural weathering in different climatic conditions. Trudy VIAM, 2022, no. 11 (117), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2022-0-11-134-148.
22. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 14, pp. 16–21.
23. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Vasilyeva E.D., Vasilyeva A.A., Kychkin A.K. On the question of methods for studying the effects of moisture on polymer composite materials. Materialovedenie. Energetika, 2022, vol. 28, no. 1, pp. 21–31. DOI: 10.18721/JEST.28102.
25. Zhang S., Karbhari V.M., Reynaud D. NOL-ring based evaluation of freeze and freeze-thaw exposure effects on FRP composite colomn wrap systems. Composites. Part B, 2001, vol. 32, pp. 589–598.
26. Muralidharan M., Sathishkumar T.P., Rajini N. et al. Evaluation of tensile strength retention and service life prediction of hydrothermal aged balanced orthotropic carbon/glass and kevlar/glass fabric reinforced polymer hybrid composites. Journal of Applied Polymer Science, 2022, vol. 139, no. 6, p. 51602.
27. Agarwal S., Pai Y., Pai D., Mahesha G.T. Assessment of ageing effect on the mechanical and damping characteristics of thin quasi-isotropic hybrid carbon-Kevlar/epoxy intraply composites. Cogent Engineering, 2023, vol. 10, art. 223511.
General information is provided on the most commonly used and promising erosion-resistant and corrosion-resistant ion-plasma coatings for the protection of gas turbine engine parts. A brief analysis of the main methods of applying protective coatings to parts of the gas turbine engine compressor is carried out. The strengths and weaknesses of the coatings used are shown, as well as some properties such as erosion and corrosion resistance and operating temperature. The main development trends in the field of erosion-corrosion-resistant ion-plasma coatings are considered. The issues of the peculiarities of applying protective coatings to large-sized parts of the gas turbine engine compressor are discussed.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Zakirova L.I., Afanasyev-Khodykin A.N., Movenko D.A., Laptev A.B. Features of the formation of the Sn–Zn–Fe diffusion layer at the boundary of galvanothermal coating of systems zinc–tin and 30HGSA steel with high protective capability. Aviation materials and technologies, 2022, no. 4 (69), paper no. 06. Available at: http://www.journal.viam.ru (accessed: March 10, 2024). DOI: 10.18577/2713-0193-2022-0-4-61-71.
4. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
5. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
6. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed structural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
7. Batraev I.S., Rybin D.K., Ivanyuk K.V., Ulianitsky V.Yu., Shtertser A.A. Wear resistant detonation coatings based on tungsten carbide for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 08. Available at: http://www.journal.viam.ru (ассеssed: March 10, 2024). DOI: 10.18577/2713-0193-2022-0-1-92-109.
8. Drexler J.M., Shinoda K., Ortiz A.L. et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2010, vol. 58, pp. 6835–6844.
9. Pessoa R.S., Fraga M.A., Santos L. et al. Plasma-assisted techniques for growing hard nanostructured coatings. An overview. Anti-Abrasive Nanocoatings. Ed. M. Aliofkhazraei. Cambridge: Woodhead Publishing, 2015, pp. 455–479.
10. Kim K.H., Sung-Ryong C., Soon-Young Y. Superhard Ti–Si–N coatings by a hybrid system of arc ion plating and sputtering techniques. Surface and Coatings Technology, 2002, vоl. 161, pp. 243–248.
11. Carlsson J.-O., Martin P.M., Martin P. Chemical Vapor Deposition. Handbook of deposition technologies for films and coatings. Science, Applications and Technology. Oxford: Elsevier Inc., 2010, p. 406.
12. Depla D., Mahieu S., Greene J. Sputter deposition processes. Handbook of Deposition Technologies for Films and Coatings. Science application and technology. Oxford: Elsevier Inc., 2010, pp. 253–296.
13. Mehran Q.M., Fazal M.A., Razak B.A., Rubaiee S.A. Critical Review on Physical Vapor Deposition Coatings Applied on Deferent Engine Components. Critical Reviews in Solid State and Material Sciences, 2018, vol. 43, no. 2, рр. 158–175.
14. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for gas turbine engine compressor blades. Russian metallurgy (Metally), 2017, vol. 2017, pp. 494–504.
15. Bonu V., Jeevitha M., Kumar V.P. et al. Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates. Surface and Coating Technology, 2020, vol. 387, p. 125531. DOI: 10.1016/j/surfcoat.2020.125531.
16. Sun Z., He G., Meng Q. et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application. Chinese Journal of Aeronautics, 2019, vol. 33 (6), pp. 1–12.
17. Alexandrov D.A., Gorlov D.S., Budinovskii S.A. Application of a complex of ion-plasma technologies to protect the compressor blades of a helicopter gas-turbine engine from erosion wear and fretting. Trudy VIAM, 2021, no. 2 (96), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 10, 2024). DOI: 10.18577/2307-6046-2021-0-2-71-80.
18. Sagalovych А., Popov V., Kononyhin A. et al. Vacuum plasma erosion resistant 2D nanocomposite coating Avinit for compressor blades of gas turbine engines of aircraft engines. Mechanical Advantage Technologies, 2023, vol. 7, no. 1, pp. 7–15. DOI: 10.20535/2521-1943.2023.7.1.264788.
19. Smyslov A.M., Dyblenko Yu.M., Prokopchuk K.A. Assessing the influence of the angle of attack and fractional grain size of sand on the erosion resistance of the surface of titanium alloys with ion-plasma protective coatings. Voprosy nauki i obrazovaniya, 2012, no. 18 (143), pp. 4–10.
20. Di W., Zhen Y. Solid Particle Erosion. Advances in Turbomachinery. London: IntechOpen, 2023, pp. 1–19. DOI: 10.5772/intechopen.109383.
21. Reedy M.W., Eden T.J., Potter J.K., Wolfe U.E. Erosion performance and characterization of nanolayer (Ti, Cr)N hard coatings for gas turbine engine compressor blade applications. Surface and Coatings Technology, 2011, vol. 206 (2), pp. 464–472.
22. Balitskii A.I., Kvasnytska Y.H., Ivaskeviych L.M. et al. Hydrogen and corrosion resistance of nickel superalloys for gas turbines, engines cooled blades. Energies, 2023, vol. 16, p. 1154.
23. Plotnikov N.V., Gontyurev V.A., Selivanov K.S. et al. Features of the microstructure and properties of the combined coating SDP-1 + VSDP-20 applied in a single vacuum volume. Available at: http://www.nppuast.com (accessed: March 10, 2024). DOI: 10/53454/9785986206257_167.
24. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Konnova V.I. Increasing the erosion and corrosion resistance of steel blades of a gas turbine engine compressor using a nanolayer coating. Problemy chernoy metallurgii i materialovedeniya, 2013, no. 4, pp. 1–7.
25. Physical vapour deposition process for depositing erosion resistant coatings on a substrate: pat. CA2600097; appl. 31.08.07; publ. 28.02.09.
26. Aleksandrov D.A., Doronin O.N., Zhuravleva P.L., Benklyan A.S. The research of erosion-corrosion-resistant coatings for protection of titanium impellers for helicopter gas-turbine engine. Trudy VIAM, 2023, no. 8 (126), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 10, 2024). DOI: 10.18577/2307-6046-2023-0-9-90-100.
27. Budinovskiy S.A., Lyapin A.A., Gorlov D.S., Benklyan A.S., Tatarnikov S.V. Multilayer antifretting coating on large-sized manufactures. Aviation materials and technologies, 2022, no. 3 (68), paper no. 09. Available at: http://www.journal.viam.ru (accessed: March 10, 2024). DOI: 10.18577/2713-0193-2022-0-3-98-107.
28. Method of applying a protective coating to blisk blades made of titanium alloy: pat. 2692356 Rus Federation; appl. 20.06.18; publ. 24.06.19.
Acoustic conical mirror for high sensitivity ultrasonic inspection of titanium alloy complex shape forging was offered and developed. Its geometrical parameters were calculated using mathematical modelling. The correction coefficients which are needed for compensation of the curved input surface influence were calculated. The high accuracy of the calculation was confirmed. The use of an acoustic mirror allowed increasing the sensitivity of inspection by more than 12 dB (4 times).
2. Kablov E.N. VIAM materials and technologies for Aviadvigatel. Permskiye aviatsionnyye dvigateli, 2014, no. 31, pp. 43–47.
3. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2023-0-2-23-35.
6. Gorbovets M.A., Hodinev I.A., Karashaev M.M., Ryzhkov P.V. Low cycle dwell fatigue testing of heat resistant metallic materials (review). Trudy VIAM, 2022, no. 5 (111), paper no. 11. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2022-0-5-123-137.
7. Airworthiness standards for aircraft engines: AP-33: approved by Resolution of the 32nd session of the Council on Aviation and Airspace Use on 17.02.2012. 3rd ed. with amendments 33-1 and 33-2. Moscow: Aviaizdat, 2012, pp. 7–11.
8. Gorbovets M.A., Slavin A.V. Proof of material compliance with the requirements to part No. 33 of JARs. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 89–94. DOI: 10.18577/2071-9140-2018-0-3-89-94.
9. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2021-0-2-115-122.
10. AC 33.14-1 - Damage Tolerance for High Energy Turbine Engine Rotors. Washington, DC: Department of Transportation, Federal Aviation Administration, 2001, 128 р.
11. Nikolaev E.V., Slavin A.V., Startsev V.O., Laptev A.B. Modern approaches to assessing the impact of external factors on materials and complex technical systems (to the 120th anniversary of G.V. Akimov). Trudy VIAM, 2021, no. 9 (103), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2021-0-9-117-130.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. AMS2628. Ultrasonic Immersion Inspection Titanium and Titanium alloy Billet Premium Grade. New York, NY: SAE, 2019, 26 р.
14. DOT/FAA/AR-05/29. Inspection Development for Nickel Billet–Engine Titanium Consortium Phase II. Washington, DC: Department of Transportation Federal Aviation Administration, 2005, рр. 3–21.
15. Karpelson A. Bi-curved Ultrasonic Transducers. The e-Journal of Nondestructive Testing, 2006, vol. 11, no. 5. Available at: https://www.ndt.net/article/v11n05/karpelson/karpelson.htm (accessed: November 13, 2023).
16. AMS2636 Rev. A. Ultrasonic Immersion Inspection Titanium and Titanium Alloy Forgings Premium Grade. New York, NY: SAE, 2016, 16 р.
The possibilities of using direct pole figures (DPF) are analyzed for researching structural formation processes during heating of cold worked metals and also at hot deformation. It is shown that acceleration and automation of DPF plotting allows to significantly increase the efficiency and reduce the duration of research. It is shown that the application of DPF is productive not only for studying the process of transition of metallic materials to deformation texture but also inverse processes. This method is tested for aviation metal alloys.
2. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis: textbook for universities; 4th ed. add. and proc. Moscow: MISIS, 2002, 360 p.
3. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, рр. 907–916.
4. Kablov E.N., Antipov V.V., Yakovlev N.O., Kulikov V.V., Avtaeva Ya.V., Avtaev V.V., Medvedev P.N. Effect of the temperature and anisotropy of sheets from Al–Cu–Mg–Li system on the mechanical properties in the range of small plastic strains. Industrial Laboratory. Materials Diagnostics, 2022, vol. 88, no. 11, рр. 55–65.
5. Kablov E.N., Nechaikina T.A., Somov A.V., Ivanov A.L., Murzabaeva O.Yu. The influence of heat treatment on the structure and properties of pressed semi-finished products from the promising super-strong aluminum alloy V-1977. Metallovedenie i termicheskaya obrabotka metallov, 2023, no. 1 (811), pp. 28–33.
6. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: March 04, 2024). DOI: 10.18577/2713-0193-2023-0-3-62-77.
7. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 04, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-411.
8. Sbitneva S.V., Lukina E.А., Benarieb I. Some structural features of aluminum alloys obtained by selective laser melting (review). Trudy VIAM, 2023, no. 1 (119), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 04, 2024). DOI: 10.18577/2307-6046-2023-0-1-69-83.
9. Lukina E.A., Naprienko S.A., Gorbovets M.A., Zaitsev D.V., Oglodkova Yu.S. Changes in the structural and phase state of cold-formed semi-finished products from Al–Li- alloys after various low-temperature effects. Trudy VIAM, 2023, no. 1 (119), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 04, 2024). DOI: 10.18577/2307-6046-2023-0-1-39-49.
10. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
11. Kochubey A.Ya., Medvedev P.N., Klochkov G.G., Avtaev V.V. Patterns of texture formation during flat upsetting of an alloy of the Al–Cu–Li system. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 78–87.
12. Kochubey A.Ya., Zhuravleva P.L. X-rays diffractometry application at plotting of structure conditions diagrams of deformable alloys of aviation assignment. Trudy VIAM, 2022, no. 2 (108), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 04, 2024). DOI: 10.18577/2307-6046-2022-0-2-142-152.
13. Kochubey A.Ya., Zhuravleva P.L. Diagrams of textural states of heat-resistant nickel and magnesium alloys during hot axisymmetric upsetting. Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 1–2, art. 03. Available at: http://materialsnews.ru (accessed: March 04, 2024).
14. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, radiography and electron microscopy. Moscow: Metallurgy, 1982, 632 p.
15. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Theory of texture formation in metals and alloys. Moscow: Nauka, 1979, 344 p.
16. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Aluminum-lithium alloys. 75 years. Aviation materials. Selected works of «VIAM» 1932–2007. Moscow: VIAM, 2007, pp. 309−314.
17. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformation behavior of high-strength aluminum alloys in conditions of hot deformation. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
18. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aluminum deformable alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 167–182.
19. Vainblat Yu.M. Diagrams of structural states and maps of structures of aluminum alloys. Izvestiya AN SSSR. Metally, 1982, no. 2, pp. 82–89.
20. Treninkov I.A., Zavodov A.V., Petrushin N.V. Research of crystal structure and microstructure of the ZhS32-VI nickel-base superalloy synthesized by selective laser fusion method, after high-temperature mechanical tests. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 57–65. DOI: 10.18577/2071-9140-2019-0-1-57-65.
The research presents the results of experimental determination of friction coefficient and linear wear at rubbing of graphite and boron nitride in the friction pair with materials of different types (steel 95X18, bronze BrAZh9-4, fluoroplastic F-4, polyamide PA-6, graphite MPG-7and hard alloy VK-8) under conditions of low speeds. It was found that the friction of polymers in pairing with layered solid lubricants is determined by tribotechnical properties of the polymer. The friction coefficient of layered solid-lubricating materials paired with metallic materials is determined by the quality of the forming adhesive ordered lubricating layer on the metal surface.
2. Sevostyanov N.V., Burkovskaya N.P. Modern aspects tribotechnical materials science of heavy-loaded dry friction units the development (review). Trudy VIAM, 2022, no. 10 (116), paper no. 07. Available at: http://www.viam-works.ru (accessed: January16, 2024). DOI: 10.18577/2307-6046-2022-0-10-76-89.
3. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
4. Kobzev D.E., Baronin G.S., Dmitriev V.M. et al. Intensification of solid-phase plunger extrusion of nanomodified high-density polyethylene by ultrasonic influence. Materialovedenie, 2012, no. 4, pp. 37–40.
5. Shanfu Lu, Ruijie Xiu, Xin Xu et al. Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2014, vol. 464, pp. 1–7. DOI: 10.1016/j.memsci.2014.03.053.
6. Ghalmi Z., Farzaneh M. Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy. Applied Surface Science, 2014, vol. 314, pp. 564–569. DOI: 10.1016/j.apsusc.2014.05.194.
7. Burkovskaya N.P., Sevostyanov N.V., Bolsunovskaya T.A., Efimochkin I.Yu. Improvement of materials for sliding bearings of internal combustion engines (review). Trudy VIAM, 2020, no. 1, paper no. 08. Available at: http://www.viam-works.ru (accessed: January 16, 2024). DOI: 10.18577/2307-6046-2020-0-1-78-91.
8. Ilyushchenko A.F., Leshok A.V., Dyachkova L.N. et al. Features of the influence of pencil graphite and elemental graphite on the tribological properties of copper-based friction material operating under boundary friction conditions. Powder Metallurgy. Minsk: Publ. House «Belarusian Science», 2019, pp. 65–58.
9. Kalchev D.N., Zavgorodnyaya L.V. Composites based on graphite and calcium carbonate in energy-saving electric heating systems. Innovatsionnaya nauka, 2023, no. 3–1, pp. 45–48.
10. Ryashentsev D.S., Belenkov E.A. New polymorphic varieties of boron nitride with graphene-like structures. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 2021, no. 13 (3), pp. 349–354. DOI: 10.17725/rensit.2021.13.349.
11. Zhivushkin A.A., Kozlova E.A., Chubukov I.A., Marova A.Yu. Features of the use of the composite material «Aluminum – boron nitride» in aircraft engines. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (NIU), 2009, no. 3 (19), pp. 235–240.
12. Negrov D.A., Eremin E.N., Korusenko P.M., Nesov S.N. The influence of ultrasonic activation on the structure formation of polytetrafluoroethylene modified with boron nitride. Omsk Scientific Bulletin. Ser.: Aviation, missile and power engineering, 2017, vol. 1, no. 2, pp. 57–63.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
15. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
16. Burkovskaya N.P., Sevostyanov N.V. Cermets for plain bearings (review). Trudy VIAM, 2023, no. 3 (121), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 16, 2024). DOI: 10.18577/2307-6046-2023-0-3-84-94.
17. Kombalov V.S. Methods and means of testing friction and wear of structural and lubricating materials: a reference book. Ed. K.V. Frolov, E.A. Marchenko. Moscow: Mashinostroenie, 2008, 384 p.
18. Kuksenova L.I., Lapteva V.G., Kolmakov A.G., Rybakova L.M. Friction and wear test methods. Moscow: Intermet Engineering, 2001, 152 p.
19. Brown E.D., Buyanovsky I.A., Voronin N.A. et al. Modern tribology: results and prospects. Ed. K.V. Frolov. Moscow: LKI Publ. house, 2014, 480 p.
20. Lancaster J.K., Play D., Godet M. et al. Third body formation and the wear of PTFE fibre-based dry bearings. Journal of Lubrication Technology, 1980, vol. 102, no. 2, pp. 236–246.
21. Makinson K.R., Tabor D. The friction and transfer of polytetrafluoroethylene. Proceedings of the Royal Society of London. Series A.: Mathematical and Physical Sciences, 1964, vol. 281, no. 1384, pp. 49–61.
22. Bely V.A., Sviridenok A.I., Petrakovets N.I. Friction and wear of polymer-based materials. Minsk: Nauka i tekhnika, 1976, 431 p.
23. Friction, wear and lubrication: a reference book in 2 books. Ed. I.V. Kragelsky, V.V. Alisin. Moscow: Mashinostroenie, 1978, book 1, 400 p.
A step-by-step analysis of the ultraviolet spectrum was carried out. It is shown that UV-B and UV-C light are present on the Earth's surface in small doses. UV-A light on the Earth's surface has significant doses leading to photolysis and destruction of heteroorganic polymers. In order to conduct research by simulating light aging, it is necessary to simulate solar radiation in the range from 290 nm (UV-B) with a set of LED radiation sources that fully correspond to the spectral composition and power of Sunlight on the Earth's surface.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2022-0-2-32-51.
4. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2021-0-1-114-122.
5. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climatic factors (review). Part 2. Main trends. Trudy VIAM, 2021, no. 2 (96), paper no. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2021-0-2-99-108.
6. Vitale V., Petkov B.H., Goutail F. Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009. Antarctic Science, 2011, vol. 23 (04), pp. 389–398. DOI: 10.1017/S0954102011000228.
7. Hoisington R.D., Whiteside M., Herndon J.M. Unequivocal Detection of Solar Ultraviolet Radiation 250–300 nm (UV-C) at Earth’s Surface. European Journal of Applied Sciences, 2023, vol. 11 (2), pp. 455–472.
8. Herndon J.M., Hoisington R.D., Whiteside M. Deadly Ultraviolet UV-C and UV-B Penetration to Earth’s Surface: Human and Environmental Health Implications. Journal of Geography, Environment and Earth Science International, 2018, vol. 14 (2), pp. 1–11.
9. Chesnokova T.Yu., Voronina Yu.V., Chentsov A.V. et al. Calculation of solar radiation fluxes in the UV range with different absorption cross sections of ozone and nitrogen dioxide. Matematicheskaya fizika i kompyuternoe modelirovanie, 2017, vol. 20, no. 5, pp. 76–88.
10. Cárcer I.A., Dantoni H.L., Barboza-Flores M. KCl: Eu2+ as a solar UV-C radiation dosimeter. Optically stimulated luminescence and thermoluminescence analyses. Journal of Rare Earths, 2009, vol. 27 (4), pp. 579–583.
11. D'Antoni H. Extreme environments in the forests of Ushuaia, Argentina. Geophysical Research Letters, 2007, vol. 34 (22), pp. 95–120.
12. D'Antoni H.L., Rothschild L.J., Skiles J. Reply to comment by Stephan D. Flint et al. on «Extreme environments in the forests of Ushuaia, Argentina». Geophysical Research Letters, 2008, vol. 35 (13), pp. 574–581.
13. Ceballos G., Ehrlich P.R., Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, 2017, vol. 114 (30), pp. 6089–6096.
14. Living Planet Report 2020: Bending the Curve of Biodiversity Loss. Gland: WWF, 2020, 25 p.
15. Dirzo R. Defaunation in the Anthropocene. Science, 2014, vol. 345 (6195), pp. 401–406.
16. Herndon J.M., Williams D.D., Whiteside M. Previously unrecognized primary factors in the demise of endangered torrey pines: A microcosm of global forest die-offs. Journal of Geography, Environmental and Earth Science International, 2018, vol. 16 (4), pp. 1–14.
17. Zong Y. Simple spectral stray light correction method for array spectroradiometers. Applied optics, 2006, vol. 45 (6), pp. 1111–1119.
18. Ravanat J.-L., Douki T. UV and ionizing radiations induced DNA damage, differences and similarities. Radiation Physics and Chemistry, 2016, vol. 128, pp. 92–102.
19. Meftah M., Damé L., Bolsée D. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations? Astronomy Astrophysics, 2018, vol. 611, pp. 33–38. DOI: 10.1051/0004-6361/201731316.
20. Herndon J.M., Whiteside M. Aerosolized coal fly ash particles, the main cause of stratospheric ozone depletion, not chlorofluorocarbon gases. European Journal of Applied Sciences, 2022, vol. 10 (3), pp. 586–603.
21. Whiteside M., Herndon J.M. Destruction of stratospheric ozone: Role of aerosolized coal fly ash iron. European Journal of Applied Sciences, 2022, vol. 10 (4), pp. 143–153.
22. Newman P.A., Oman L.D., Douglass A.R. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmosphere Chemical Physic, 2009, no. 9, pp. 2113–2128.
23. Whiteside M., Herndon J.M. Humic like substances (HULIS): Contribution to global warming and stratospheric ozone depletion. European Journal of Applied Sciences, 2023, vol. 11 (2), pp. 325–346.
24. Herndon J.M. Obtaining evidence of coal fly ash content in weather modification (geoengineering) through analyses of postaerosol spraying rainwater and solid substances. Indian Journal Science, Research and Technology, 2016, vol. 4(1), аrt. 30-6.
25. Vechkanov E.M., Vnukov V.V. Thermodynamics and kinetics of biological processes: textbook for universities. Rostov-on-Don: Copy-Center, 2011, 53 p.
26. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials: textbook. Moscow: National Research Center «Kurchatov Institute» – VIAM, 2023, 520 p.
27. Istamov F., Dadomatov X., Boboev T. Influence of tensile load on the kinetics of photodestruction of polymethyl methacrylate. Doklady Akademii nauk Respubliki Tadzhikistan, 2002, vol. 45, no. 10, pp. 76–80.
28. Berlin A.A., Korolev G.V., Kefeli T.Ya., Severgin Yu.M. Acrylic oligomers and materials based on them. Moscow: Nauka, 1983, 320 p.
29. UV-curing electrical insulating composition: pat. SU 1483495 A1; appl. 21.07.87; publ. 30.05.89.
30. Semyannikov V.A. Study of light scattering of the process of formation of microheterogeneous structure of network polymers based on oligoester acrylates: thesis, Cand. Sc. (Chem.). Yaroslavl: Yaroslavl Polytech Institute, 1988, 134 p.
31. Vasiliev D.K. Changes in UV spectra during photoinitiated polymerization of methacrylates: thesis, Cand. Sc. (Chem.). Yaroslavl: Yaroslavl Polytech Institute, 1990, 125 p.
32. Tofa M., Djafar Z., Piarah W.H. A New Hybrid of Photovoltaic-thermoelectric Generator with Hot Mirror as Spectrum Splitter. Journal of Physical Science, 2018, vol. 29 (Supp. 2), pp. 63–75. DOI: 10.21315/jps2018.29.s2.6.
33. Magdalena V., Linyu G., Feng J. LED-based solar simulator to study photochemistry over a wide temperature range in the large simulation chamber AIDA. Atmospheric measurement technology, 2022, vol. 15, pp. 1795–1810.
The paper presents a comparative study of methods for determining the mass fraction of hexamine in samples of the «catalyst FU» using manual and instrumental approaches. The work describes the principles and stages of each method and analyzes their advantages and disadvantages. Statistics of the results of determining the composition of the product by three methods are presented. Based on the results obtained, a method for determining the mass fraction of urotropin has been proposed, which makes it possible to increase the accuracy and efficiency of the analysis.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37−42.
4. Chernin I.Z., Smekhov F.M., Zherdev Yu.V. Epoxy polymers and compositions. Moscow: Khimiya, 1982, 232 p.
5. Khorova E.A., Myshlyavtsev A.V., Strizhak E.A., Tretyakova N.A. Examination of hydrogenated butadiene-nitrile rubbers by methods of differential scanning calorimetry and dynamic mechanical analysis. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 11–16. DOI: 10.18577/2071-9140-2019-0-1-11-16.
6. Кhorova E.A., Tretyakova N.A., Vakulov N.V. Research of resistance of rubbers to the exposure of mold fungi. Aviation materials and technologies, 2021, no. 3 (64), paper no. 12. Available at: http://www.journal.viam.ru (accessed: December 12, 2023). DOI: 10.18577/2713-0193-2021-0-3-128-132.
7. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
8. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
9. Andrianov R.A., Ponomarev Yu.E. Foams based on phenol-formaldehyde polymers. Rostov: Publ. house Rostov State Univ., 1987, 80 p.
10. Vorobyov V.A. Polymer technology. Moscow: Vysshaya shkola, 1980, 303 p.
11. Guben-Weil. Methods of organic chemistry: in 2 vols. Moscow: Khimiya, 1967, vol. 2: Methods of analysis, 1032 p.
12. Siggia S., Hannah J.G. Quantitative organic analysis by functional groups. Moscow: Khimiya, 1983, 672 p.
13. Sauer E.A., Ershov A.B. Modern analyzers for determining nitrogen using the Kjeldahl method. Analitika i kontrol, 2019, no. 2, pp. 168–192. DOI: 10.15826/analitika.2019.23.2.002.
14. Isakova N.A., Fikhtengolts V.S., Belova G.A., Pankratova E.D. Technical analysis and control of synthetic rubber production. Leningrad: Khimiya, 1976, 168 p.
15. State Standard 32979–2014. Solid mineral fuel. Instrumental method for the determination of carbon, hydrogen and nitrogen. Moscow: Standartinform, 2015, 11 p.
16. Fundamentals of analytical chemistry: in 2 vols. Ed. Yu.A. Zolotov. Moscow: Vysshaya shkola, 1996, vol. 1: General questions. Separation methods, 383 p.
17. Ponomarenko S.A., Shimkin A.A. Chromatographic methods of analysis: possibilities of application in the aviation industry (review). Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 4, pp. 5–13.
Magnetic hard materials (Pr1–xDyx)13,12–13,3(Fe1–yCoy)76,29–78,98B7,86–10,5 (x=0,40–0,58, y=0,20–0,24) for navigation devices are investigated depending on the composition and temperature of sintering. Measurements were carried out on a vibrating magnetometer on spherical samples at a temperature of 20±5 °C in magnetic fields up to 1800 kA/m. The demagnetization curves of sintered materials were measured by magnetization and induction with different cobalt and dysprosium contents. Special attention is paid to the rectangularity of the demagnetization curve depending on the composition and temperature of sintering.
2. Сhirkin D.S., Roslovets P.V., Tatarinov F.V., Novikov L.Z. Reducing the drift of a dynamically tuned gyroscope from launch to launch. Inzhenerny zhurnal: nauka i innovatsii, 2017, no. 1, pp. 1–12. DOI: 10.18698/2308-6033-2017-01-1579.
3. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental assessment of permissible mechanical influences on a dynamically adjustable gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroenie, 2018, no. 4, pp. 69–79. DOI: 10.18698/0236-3933-2018-4-69-79.
4. Peshekhonov V.G. Prospects for the development of gyroscopy. Giroskopiya i navigatsiya, 2020, vol. 28, no. 2, pp. 3–10. DOI: 10.1785/0869-7035-0028.
5. Vershovsky A.K., Litmanovich Yu.A., Pazgalev A.S., Peshekhonov V.G. Nuclear magnetic resonance gyroscope. Giroskopiya i navigatsiya, 2018, vol. 26, no. 1, pp. 55–80. DOI: 10.17285/0869-7035.2018.26.1.055-080.
6. Umarkhodzhaev R.M., Pavlov Yu.V., Vasilyeva A.N. History of the development of a gyroscope based on nuclear magnetic resonance in Russia in 1960–2000. Giroskopiya i navigatsiya, 2018, vol. 26, no. 1, pp. 3–27. DOI: 10.17285/0869-7035.2018.26.1.003-027.
7. Korolev M.N. Research of technical characteristics of modern types of angular velocity sensors. Proc. 12th Int. scientific-technical conf. «Instrument Engineering-2019». Moscow, 2019, pp. 21–23.
8. Pomerantsev N.M., Skrotsky G.V. Physical foundations of quantum gyroscopy. Uspekhi fizicheskikh nauk, 1970, vol. 100, is. 3, pp. 361–394.
9. Popov A.G., Maikov V.G. Permanent magnets with radial texture from alloys based on rare earth metals. Symposium «Study of the problems of creating magnetic systems of new electric machines and the use of high-energy hard magnetic materials in them in order to improve parameters and designs». Moscow, 1991, pp. 147–157.
10. Piskorskiy V.P., Valeev R.A., Korolev D.V., Stolyankov Yu.V., Morgunov R.B. Technologies of magneto-optical information recording in thin films of rare-earth magnetically soft alloys. Part II. Ultrafast all optical switching of magnetization. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: January 26, 2024). DOI: 10.18577/2307-6046-2020-0-2-10-21.
11. Wang Y., Yu B., Feng M. et al. Magnetic properties оf Nd–Fe–Co–B permanent magnetic alloys. Journal of Applied Physics, 1987, vol. 61, pp. 3448–3450.
12. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
13. Foner S. Versatile and sensitive vibrating-sample magnetometer. The review of scientific instruments, 1959, vol. 30, no. 7, pp. 548–557.
14. Lapteva K.A., Tolmachev I.I. Calculation of the demagnetizing factor during longitudinal magnetization in magnetic particle flaw detection. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, vol. 321, no. 2, pp. 140–144.
15. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), paper no. 06. Available at: http://www.viam-works.ru (accessed: January 26, 2024). DOI: 10.18577/2307-6046-2022-0-10-66-75.
16. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
17. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63 nо. 4, pp. 819–898.
18. Morgunov R., Lu Y., Lavanant M. et al. Magnetic aftereffects in CoFeB/Ta/CoFeB spin valves of large area. Physical review B, 2017, vol. 96, p. 054421. DOI: 10.1103/PhysRevB.96.054421.
19. Buzenkov A.V., Valeev R.A., Piskorsky V.P., Morgunov R.B. The effect of the content of yttrium on the properties of the sintered Magnets Nd–Dy–Y–Fe–Co–B. Trudy VIAM, 2022, no. 4 (110), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 26, 2024). DOI: 10.18577/2307-6046-2022-0-4-108-117.
20. Pedziwiatr A.T., Chen H.Y., Wallace W.E. Magnetism of the TbzFe14‒xCoxB system. Journal of Magnetism and Magnetic Materials, 1987, vol. 67, pp. 311–315.
21. Fujii H., Wallace W.E., Boltich E.B. Concerning magnetic characteristics of
(R2‒xR*x)Fe12Co2B (R=Pr and Nd, R*=Tb and Dy). Journal of Magnetism and Magnetic Materials, 1986, vol. 61, pp. 251–256.
22. Givord D., Li H.S., Cadogan J.M. et al. Analysis of high-field magnetization measurements on R2Fe14B single crystals (R=Tb, Dy, Ho, Er and Tm). Journal of Applied Physics, 1988, vol. 63, pp. 3713–3715.
23. Pedziviatr A.T., Wallace W.E. Spin reorientations in R2Fe14‒xCoxB systems (R=Pr, Nd and Er). Journal of Magnetism and Magnetic Materials, 1987, vol. 65, pp. 139–144.
24. Akbar S., Ahmad Z., Awan M.S. et al. Development of Fe–Cr–Co permanents magnets by single step thermos-magnetic treatment. Key Engineering Materials, 2012, vol. 510–511, pp. 507–512.
25. Sergeev V.V., Bulygina T.I. Hard magnetic materials. Moscow: Energiya, 1980, 224 p.
26. Haavisto M., Tuominen S., Santa-Nokki T. et al. Magnetic behavior of sintered NdFeB magnets on a long-term timescale. Advances in Materials Science and Engineering, 2014, vol. 2024, art. ID 760584. DOI: 10.1155/2014/760584.
27. Rakotoarison H.R., Yonnet J.P., Delinchant B. Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization. IEEE Transactions on Magnetics, 2007, vol. 43, no. 4, pp. 1261–1264.
28. Tian J., Pan D., Zhou H. et al. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets. Journal of Alloys and Compounds, 2009, vol. 476, pp. 98–101.
29. Ido H., Wallace W.E., Suzuki T. et al. Magnetic and crystallographic properties of NdCo4M (M=B, Al, and Ga). Journal of Applied Physics, 1990, vol. 67, pp. 4635–4637.
30. Hasaka M., Nakashima H., Oki K. Crystal structures of the RCo5 and R2Co17 types observed in polystyrene latexes. Transactions of the Japan Institute of Metals, 1984, vol. 25, nо. 2, pp. 73–79.
31. Liu J., Corte-Real M., George C. et al. Magnetic hardening studies in sintered Sm(Co, Cu, Fe, Zr)z 2:17 high temperature magnets. Journal of Applied Physics, 2000, vol. 87, no. 9, pp. 6722–6724.
Light-metal alloys
Afansiyev-Khodykin A.N., Galushka I.A., Sviridov A.V., Naprienko S.A.Investigation of the influence of technological parameters of heat treatment on microstructure of brazing joints of VT20 alloy with VPr16 solder
Composite materials
Zhelezina G.F., Kulagina G.S., Kan A.Ch., Startsev V.O.Resistance of aramid organic plastics to the effects of natural environment factors
Protective and functional
coatings
Aleksandrov D.А., Benklyan A.S.Erosion-resistant and corrosion-resistant coatings to protect compressor parts of gas turbine engines
Material tests
Krasnov I.S., Dalin M.A., Zarodova A.A., Yakovleva S.I., Verhodanova A.A.Automated ultrasonic inspection of titanium alloy gas turbine disс forgings using conical acoustic mirror
Kochubey A.Ya., Medvedev P.N., Zhuravleva P.L.Application of X-ray diffractometry for researching structural formation processes during the hot pressure working and heat treatment of deformed metals and alloys
Sevostyanov N.V., Budanova E.S.Patterns of friction of graphite and boron nitride with materials of different types at low speeds
Laptev A.B., Pavlov M.R., Zeleneva T.O.Light sources for simulating the aging of polymer materials under the influence of solar
radiation
Prokopova L.A., Golovina E.Yu., Ponomarenko S.A.Methods for determining the mass fraction of hexamine in the catalyst FU
Buzenkov A.V., Burkanov M.V., Valeev R.A., Piskorsky V.P.Properties of sintered magnets Pr–Dy–Fe–Co–B depending on the composition and technological parameters of manufacture