Articles
The paper presents the results of the application of experimental and computational methods for studying the thermal conditions of the process of directed crystallization of heatresistant alloys, which have found wide application in the production of blades for modern aviation
gas turbine engines made of heat-resistant alloys. Methods for estimating the values of the temperature gradient, the crystallization rate, the size of the liquid-solid zone at the crystallization front, and their effect on the structure and properties of superalloys are proposed and implemented
2. Kablov E.N. Specialty: metal for aviation. On the occasion of the 100th anniversary of the birth of Academician S.T. Kishkina. Vestnik Rossiyskoy akademii nauk, 2006, vol. 76, no. 6, pp. 553–558.
3. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel heat-resistant alloys for casting blades with directional and monocrystalline structure (part I). Materialovedenie, 1997, no. 4. pp. 32–39.
4. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines. Aviation materials and technologies, 2022, no. 2 (67), paper no. 01. Available at: http://www.journal.viam.ru (accessed: January 09, 2024). DOI: 10.18577/2713-0193-2022-0-2-5-17.
5. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: January 09, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
6. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: January 09, 2024). DOI: 10.18577/2071-9140-2023-0-2-3-22.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Matuszewski K., Müller A., Ritter N., Retting R., Kurzydłowski K.J., Singer R.F. On the thermodynamics and kinetics of TCP phase precipitation in Re- and Ru-containing Ni-base superalloys. Advanced Engineering Materials, 2015, vol. 17, no. 8, pp. 1127–1133.
9. Matuszewski K., Retting R., Singer R.F. The effect of Ru on precipitation of two topologically close packed phases in Re-containing Ni base superalloys: quantitative FIB-SEM investigation and 3D image modeling. MATEC Web of Conferences, 2014, vol. 14, art. 09001. DOI: 10.1051/matecconf/20141409001.
10. Kablov E.N., Petrushin N.V., Svetlov I.L. Computer-aided design of a heat-resistant nickel alloy of the fourth generation for single-crystal gas turbine blades. Foundry heat-resistant alloys. Effect of S.T. Kishkin. Moscow: Nauka, 2006, pp. 98–115.
11. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: January 09, 2024). DOI: 10.18577/2713-0193-2023-0-3-3-14.
12. Bridgman P.W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences, 1925, vol. 60, рp. 305–383.
13. Stockbarger D.C. The production of large single crystals of lithium fluoride. Review of Scientific Instruments, 1936, vol. 7, pp. 133–136.
14. Giamei A.F., Tschinkel J.G. Liquid Metal Cooling: A New Solidification Technique. Metallurgical Transactions A, 1976, vol. 7A, pp. 1427–1434.
15. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from superalloys with directional and single-crystal structure. Trudy VIAM, 2023, no. 7 (125), paper no. 01. Available at: http://www.viam-works.ru (accessed: January 11, 2024). DOI: 10.18577/2307-6046-2023-0-7-3-14.
16. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. On the directional crystallization of heat-resistant alloys using a cooler. Liteynoe proizvodstvo, 2011, no. 5, pp. 36–39.
17. Gerasimov V.V., Morozova G.I., Tarasova I.M. On the chemical nature of «boils» in the production of single-crystalline blades from heat-resistant nickel alloys. Tekhnologiya metallov, 2000, no. 7, pp. 7–8.
18. Kolyadov E.V., Visik E.M., Shurygin V.D. Equipment for cleaning crystallizers of directional crystallization plants. Liteynoe proizvodstvo, 2023, no. 1, pp. 33–36.
19. Bondarenko Yu.A., Echin A.B., Bazhenov V.E., Koltygin A.V. Computer modeling of temperature distribution on the surface of the mold and inside the casting during high-gradient directional crystallization. Izvestiya vuzov. Tsvetnaya metallurgiya, 2017, no.4, pp. 53–61.
20. Pikunov M.V. Melting of metals. Crystallization of alloys. Hardening of castings. Moscow: MISIS, 2005, 414 p.
21. Echin A.B. The influence of temperature gradient and crystallization rate on the structure and properties of monocrystalline Re and Ru containing heat-resistant alloys in relation to high-gradient technology for casting gas turbine engine blades: thesis, Cand. Sc. (Tech). Moscow: VIAM, 2016, 135 p.
The segregation defects of ingots of intermetallic titanium alloys based on the ortho-phase (Ti2AlNb), obtained by vacuum-arc melting, are considered. Methods for eliminating similar defects of segregation origin in titanium, nickel and niobium-titanium alloys, the use of which is possible for the smelting of high-quality ingots from intermetallic titanium orthoalloysare presented. Based on the results of a study of the effect of homogenizing heat treatment on the chemical homogeneity of Ti–10V–2Fe–3Al alloy samples, it was concluded that similar work is necessary for ortho-alloy ingots
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 64–78.
4. Nochovnaya N.A., Ivanov V.I., Avilochev L.Yu. Intermetallic compound AlxTi – are promising material for high elevated temperatures (review). Part 1. The crystaline structure and properties of the intermetallic compound Al2Ti. Trudy VIAM, 2021, no. 3 (97), paper no. 03. Available at: http://viam-works.ru (accessed: December 17, 2023). DOI: 10.18577/2307-6046-2021-0-3-28-43.
5. Nochovnaya N.A., Ivanov V.I., Alekseyev E.B., Islamov R.S. Intermetallic compound Ti2AlNb – promising material for aviation and space technology. Part 1. Crystal structure and phase transformations. Aviation materials and technologies, 2023, no. 3 (72), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 17, 2023). DOI: 10.18577/2713-0193-2023-0-3-42-61.
6. Oglodkov M.S., Duyunova V.A., Nochovnaya N.A., Ivanov V.I., Avilochev L.Yu. Features of the technology manufacturing of deformed blanks from intermetallic alloys VIT1 for parts of the gas turbine engine. Trudy VIAM, 2021, no. 12 (106), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 17, 2023). DOI: 10.18577/2307-6046-2021-0-12-3-13.
7. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 17, 2023). DOI: 10.18577/2071-9140-2022-0-1-30-40.
8. Anoshkin N.F. Zonal chemical heterogeneity of ingots. Moscow: Metallurgiya, 1976, 239 p.
9. Shved F.I. Vacuum arc remelting ingot. Chelyabinsk: Tatyana Lurie Publishing House, 2009, 428 p.
10. Kondrashov E.N., Rusakov K.A., Shchetnikov N.V., Leder M.O. Segregation defects in VAR titanium alloys. I. General defects. Russian Metallurgy (Metally), 2022, no. 6, рр. 553–558. DOI: 10.1134/S0036029522060118.
11. Bibikov E.L., Ilyin A.A. Processes of crystallization and solidification: allowance. Moscow:
Alfa-M, 2013, 352 p.
12. Kurtz V., Fisher D.D. Fundamentals of solidification. Izhevsk: Institute of Computer Research, 2013, 300 p.
13. Kondrashov E.N., Tarenkova N.Yu., Maksimov A.Yu., Kornilova M.A. Study of the crystallization morphology of VT3-1 Alloy during VAR. Journal of Engineering Thermophysics, 2009, vol. 18, no. 1, pp. 80–84. DOI: 10.1134/s1810232809010111.
14. Kondrashov E.N., Rusakov K.A., Leder M.O. et al. Liquation defects in the VTI-4 alloy. Elektrometallurgiya, 2020, no. 7, pp. 28–32. DOI: 10.31044/1684-5781-2020-0-7-28-32.
15. Leder M.O., Kondrashov E.N., Rusakov K.A. et al. Liquation defects in ortho-alloys VTI-4 and VIT1. All-Rus. Sci.-tech. conf. «Modern achievements in the field of creating advanced alloys and coatings for aviation and space technology». Moscow: VIAM, 2021, pp. 159–170.
16. Auburtin P., Cockcroft S.L., Mitchell A., Schmalz A.J. Center Segregation. Freckles and De-velopment Directions for Niobium-Containing Superalloys. Superalloys 718, 625, 706 and
Various Derivatives, 1997, pp. 47–54. DOI: 10.7449/1997/SUPERALLOYS_1997_47_54.
17. Mitchell A. Melting, Casting and Forging Problems in Titanium Alloys. Materials Science & Engineering A, 1998, vol. 243, pp. 257–262. DOI: 10.1016/S0921-5093(97)00810-1.
18. Cen M.J., Liu Y., Chen X. et al. Inclusions in melting process of titanium and titanium alloys. China Foundry, 2019, vol. 16, no. 9, pp. 223–231. DOI: 10.1007/s41230-019-9046-1.
19. Mitchell A., Kawakami A., Cockcroft S. Beta fleck and segregation in titanium alloy ingots. High Temperature Materials and Processes, 2006, vol. 25, pp. 337–349. DOI: 10.1515/HTMP.2006.25.5-6.337.
20. Kelkar K., Mitchell A. Beta Fleck formation in Titanium Alloys. MATEC Web of Conferences. Nantes: EDP Sciences, 2020, vol. 321 (2), art. 10001. DOI: 10.1051/matecconf/202032110001.
21. Shang J.J., He Y.S., Yang C. et al. Freckles pattern and microstructure feature of Nb–Ti alloy produced by vacuum arc remelting. MATEC Web of Conferences. Nantes: EDP Sciences, 2020, vol. 321 (2), art. 10009. DOI: 10.1051/matecconf/202032110009.
22. Kondrashov E.N., Leder M.O., Maksimov A.Yu. Simulation on the VT3-1 Alloy Ingot Solidification during VAR. Russian Metallurgy (Metally), 2018, vol. 2018, is. 12, pp. 1114–1120. DOI: 10.1134/S003602951812008X.
23. Cui J., Li B., Liu Z. et al. Numerical investigation on the effect of axial magnetic field on metallurgical quality of ingots during vacuum arc remelting process. Journal of Materials Research and Technology, 2022, vol. 20 (3), pp. 1912–1926. DOI: 10.1016/j.jmrt.2022.07.186.
24. Kondrashov E.N., Konovalov L.V., Leder M.O., Rusakov K.A. Control of the arc gap during VAR of Ti–10V–2Fe–3Al alloy ingots based on pulses with reverse polarity. Elektrometallurgiya, 2023, no. 2, pp. 10–16. DOI: 10.31044/1684-5781-2023-0-2-10-16.
25. Tong J.-B., Zhang C.-J., Chen J.-S. et al. Effects of Homogenization Heat Treatment on the Fe Micro-Segregation in Ti-1023 Titanium Alloy. Materials, 2023, vol. 16, p. 4911. DOI: 10.3390/ma16144911.
26. Shamblen C.E. Minimizing Beta Flecks in the Ti-17 Alloy. Metallurgical and Materials Transactions B, 1997, vol. 28, pp. 899–903. DOI: 10.1007/S11663-997-0017-3.
27. Zhou X., Fu L., Ge H. et al. Enhancement of tensile properties of Ti2AlNb alloy added with Ta element. Materials Letters, 2022, vol. 329 (4), p. 133233. DOI: 10.1016/j.matlet.2022.133233.
28. Kazantseva N.V., Lepikhin S.V. Study of the Ti–Al–Nb Phase Diagram. The Physics of Metals and Metallography, 2006, vol. 102, no. 2, pp. 169–180. DOI: 10.1134/S0031918X06080084.
This paper presents results of study of the microstructure and mechanical properties of welded joints produced by electron beam welding of strip extrusions from high-strength alloy V-1469 of Al–Cu–Li system. The features of the structural and phase state of the material
in various zones of electron beam welding joint are studied by means of scanning and transmission
electron microscopy, thermal analysis and thermodynamic modeling. The influence of welding speed
on the mechanical properties and nature of fracture of welds was studied
2. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. New generation aluminum-lithium alloys and layered aluminum-fiberglass plastics based on them. Tsvetnye metally, 2016, no. 8 (884), pp. 86–91.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kolobnev N.I., Khokhlatova L.B., Lukina E.A. Trends in the development of aluminum-lithium alloys and technologies for their processing. Ed. E.N. Kablov. Moscow: VIAM, 2019, 367 p.
5. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Aluminum-lithium alloys: metallurgy, welding, metal science. Moscow: Nauka, 2014, 296 p.
6. Betsofen S.Ya., Antipov V.V., Knyazev M.I. Alloys of the Al–Cu–Li and Al–Mg–Li systems: phase composition, texture and anisotropy of mechanical properties (review). Deformatsiya i razrusheniye materialov, 2015, no. 11, pp. 10–26.
7. Elagin V.I., Zakharov V.V. Modern Al–Li alloys and prospects for their development. Tekhnologiya legkikh splavov, 2013, no. 4, pp. 17–23.
8. Ovsyannikov B.V., Komarov S.B. Development of production of deformed semi-finished
products from aluminum-lithium alloys at JSC KUMZ. Tekhnologiya legkikh splavov, 2014, no. 1, рр. 97–103.
9. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminium-lithium alloys: processing, properties, and applications. Amsterdam: Elsevier, 2014, 652 p.
10. Dorin T., Vahid A., Lamb J. Aluminium lithium alloys. Fundamentals of aluminium metallurgy. Cambridge: Woodhead Publishing, 2018, pp. 387–438. DOI: 10.1016/B978-0-08-102063-0.00011-4.
11. Starke E.A.(Jr.) Historical development and present status of aluminium-lithium alloys. Aluminium-lithium alloys. Processing, properties and applications. Oxford: Elsevier Inc., 2014, pp. 3–26.
12. Rioja R.J., Liu J. The Evolution of Al–Li Base Products for Aerospace and Space Applications. Metallurgical and Materials Transactions A, 2012, vol. 43, no. 9, pp. 25–37.
13. Antipov V.V., Tkachenko E.A., Zajtsev D.V., Selivanov A.A., Ovsyannikov B.V. Тhe influence of homogenizing annealing regimes on the structural phase state and mechanical properties of aluminum-lithium alloy 1441 ingots. Trudy VIAM, 2019, no. 3 (75), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 0.18577/2307-6046-2019-0-3-44-52.
14. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: December 18, 2023). DOI: 10.18577/2713-0193-2023-0-3-62-77.
15. Sharonov N.I., Sharapov M.G. Control of the process of formation of a welded joint during electron beam welding of aluminum alloys of increased thickness. Voprosy materialovedenia, 2018, no. 2 (94), pp. 167–174.
16. Bondarev A.A., Nesterenkov V.M. Electron beam welding of thin-sheet volumetric structures made of aluminum alloys. Avtomaticheskaya svarka, 2011, no. 6, pp. 43–47.
17. Skalsky E.G., Botvina L.R., Lyasota I.N. Features of structural and mechanical heterogeneity in welded joints of alloy 1201-T, made by electron beam welding. Avtomaticheskaya svarka, 2012, no. 7, pp. 19–23.
18. Ternovoy E.G., Bondarev A.A. Electron beam welding of thick-walled shells made of aluminum alloys AMg6 and M40. Avtomaticheskaya svarka, 2012, no. 4, pp. 8–14.
19. Troshin A.A., Shepelevich M.V. Improving the quality of welded joints made of aluminum alloys during electron beam welding. Aktualnye problemy aviatsii i kosmonavtiki, 2013, vol. 1, no. 9, pp. 119–120.
20. Erypalov L.A., Kovalev D.S. Optimization of electron beam welding technology for products made of aluminum alloys. Aktualnye problemy aviatsii i kosmonavtiki, 2012, vol. 1, no. 8, pp. 91–93.
21. Bashenko V.V., Sharonov N.I. Features of electron beam welding of pressed-stamped aluminum alloys. Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2010, no. 3 (106), pp. 139–143.
22. Cam G., Ventzke V., Dos Santos J.F. et al. Characterization of electron beam welded aluminium alloys. Science and Technology of Welding and Joining, 1999, vol. 4, no. 5, pp. 317–323.
23. Chen G., Yin Q., Zhang G., Zhang B. Underlying causes of poor mechanical properties of aluminum-lithium alloy electron beam welded joints. Journal of Manufacturing Processes, 2020, vol. 50, pp. 216–223.
24. Hosseini S.A., Abdollah-Zadeh A., Naffakh-Moosavy H., Mehri A. Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input. Journal of Manufacturing Processes, 2019, vol. 46, pp. 147–158.
25. Chen G., Yin Q., Zhang G., Zhang B. Fusion-diffusion electron beam welding of aluminum lithium alloy with Cu nano-coating. Materials and Design, 2020, vol. 188, p. 108439.
26. Bárta J., Šimeková B., Marônek M., Dománková M. Electron Beam Welding of 2099-T83 aluminium-lithium alloy thick plates. MATEC Web of Conferences, 2019, vol. 269, art. 02010.
27. Sorokin L.I. Formation of hot cracks in the heat-affected zone during welding of heat-resistant nickel alloys (review). Svarochnoe proizvodstvo, 2005, no. 8, pp. 38–43.
28. Samarina M.V., Alov A.A., Elagin V.I., Kozlovskaya V.P. Influence of the structure of welded semi-finished products from aluminum alloys on the sensitivity to heat-affected cracks. Tekhnologiya legkikh splavov, 1976, no. 11, pp. 7–11.
29. Malikov A.G., Orisic A.M. Preparation of high-strength laser welded joints of aluminum alloys for aviation purposes. Fotonika, 2019, vol. 13, no. 4, pp. 356–366.
30. Belyanin V.P., Denisov B.S., Meilakh A.I. et al. Features of the formation of the fusion zone of welds of alloy 1420. Aviatsionnaya promyshlennost, 1989, no. 9, p. 70.
31. Ivanov S.Yu., Karkhin V.A., Mikhailov V.G. et al. Modeling of the formation of liquation cracks during laser welding of Al–Mg–Si alloys. Izvestiya TulGU. Tekhnicheskiye nauki, 2015, is. 6, part 2, pp. 66–74.
32. Fridlyander I.N., Grushko O.E., Shamray V.F., Klochkov G.G. High-strength structural
Al–Cu–Li–Mg alloy of low density, alloyed with silver. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 6 (624), pp. 3–7.
33. Istomin-Kastrosky V.V., Shamray V.F., Grushko O.E., Klochkova Yu.Yu., Ryazantseva M.A.
The influence of additions of silver, magnesium, zirconium on the aging of the B-1469 alloy of the
Al–Cu–Li system. Metally, 2010, no. 5, pp. 73–78.
34. Lukin V.I., Kulik V.I., Betsofen S.Ya., Lukina E.A., Sharov A.V., Panteleyev M.D., Samorukov M.L. Friction stir welding of high-strength aluminum-lithium V-1469 alloy semiproducts. Trudy VIAM, 2017, no. 12 (60), paper no. 02. Available at: http://viam-works.ru (accessed: December 21, 2023). DOI: 10.18577/2307-6046-2017-0-12-2-2.
35. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Perspective welding technologies of aluminum-lithium alloy V-1469 applied to fuselage panels. Trudy VIAM, 2020, no. 12 (94), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 25, 2023). DOI: 10.18577/2307-6046-2020-0-12-35-46.
36. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
37. Ovchinnikov V.V., Grushko O.E., Alekseev V.V. et al. Structure and properties of welded joints of aluminum alloy V-1469 obtained by electron beam welding. Zagotovitelnye proizvodstva v mashinostroyenii, 2012, no. 5, pp. 7–11.
38. Makhin I.D., Nikolaev V.V., Petrovichev P.S. Study of the weldability of alloys V-1469 and 01570S using electron beam welding in relation to the design of a promising manned spacecraft. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 4, pp. 68–75.
39. Egorov R.V., Ovchinnikov V.V. Electron beam welding of aluminum alloys based on the Al–Cu–Li system. Zagotovitelnye proizvodstva v mashinostroyenii, 2017, vol. 15, no. 7, pp. 294–298.
40. Jia M., Zheng Z., Gong Z. Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. Journal of alloys and compounds, 2014, vol. 614, pp. 131–139.
41. Frindlyander I.N., Sandler V.S., Lukin V.I. Thermal tests of Al–Mg–Li alloys. Metallovedeniye i termicheskaya obrabotka metallov, 1991, no. 2, pp. 38–40.
42. Examilioti T., Li W., Kashaev L. et al. On anisotropic tensile mechanical behavior of Al–Cu–Li AA2198 alloy under different ageing conditions. Journal of materials research and technology, 2023, vol. 24, pp. 895–908.
43. Kablov E.N., Lukina E.A., Sbitneva S.V., Khokhlatova L.B., Zaitsev D.V. Formation of metastable phases during the decomposition of a solid solution during artificial aging Al-alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 7–17.
44. Fomina M.A., Kutyrev A.E., Klochkova Yu.Yu., Sbitneva S.V. Research of corrosion characteristics of high-strength alloy of Al–Cu–Li system depending on various modes of heat treatment. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 39–48. DOI: 10.18577/2071-9140-2016-0-S2-39-48.
45. Lequeu Ph., Smith K.P., Danielou A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. Journal of Materials Engineering and Performance, 2010, vol. 19 (6), pp. 841–847.
46. Yang Q., Lei L., Fan X. et al. Microstructure evolution and processing map of Al–Cu–Li–Mg–Ag alloy. Materials Chemistry and Physics, 2020, vol. 254, р. 123256.
47. Jiang N., Xiang G., Zi-Qiao Z. Microstructure evolution of aluminum-lithium alloy 2195 undergoing commercial production. Transactions of Nonferrous Metals Society of China, 2010, vol. 20, pp. 740–745.
48. Ovchinnikov V.V., Egorov R.V. Porosity of welds during electron beam welding of aluminum alloys alloyed with lithium. Vestnik IGEU, 2006, is. 4, pp. 1–5.
49. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Influence of speed of heating at research of phase transformations in aluminum alloys DSC method. Aviacionnye materialy i tehnologii, 2011, no. 2, pp. 3–6.
50. Kolobnev N.I., Ryabova E.N., Khokhlatova L.B., Oglodkov M.S. Features of the structure of ingots from alloys of the Al–Cu–Li system depending on the chemical composition. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie, 2016, no. 3, pp. 69–80. DOI: 10.18698/0236-3941-2016-3-69-80.
A review of research and development related to a class of smart shape memory materials based on epoxy oligomers that can change and recovery a shape in response to various external factors is presented. High-performance shape memory epoxy polymers with high strength, toughness and heat resistance open new possibilities for various applications, offering great prospects for development in many fields of science and technology in the future. The development of the world economy is impossible without the use of new technologies in the aerospace industry, the aviation industry, and the biomedical industry
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Proc. XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
3. Souri M., Lu Y.C., Erol A. et al. Characterization of unconstraint and constraint shape recoveries of an epoxy based shape memory polymer. Polymer Testing, 2015, vol. 41, pp. 231–238.
4. Leng J., Lan X., Liu Y., Du S. Shape-memory polymers and their composites: stimulus methods and applications. Progress in Materials Science, 2011, vol. 56, no. 7, pp. 1077–1135.
5. Lendlein A., Kelch S. Shape‐memory polymers. Angewandte Chemie International Edition, 2002, vol. 41, no. 12, pp. 2034–2057.
6. Xia Y., He Y., Zhang F., Leng J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Advanced materials, 2021, vol. 33, no. 6, p. 2000713.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, no. 90, pp. 225–228.
9. Fan M., Yu H., Li X. et al. Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A. Smart materials and structures, 2013, vol. 22, no. 5, p. 055034.
10. Jo M.J., Choi H., Jang H. et al. Preparation of epoxy-based shape memory polymers for deployable space structures using diglycidyl ether of ethoxylated bisphenol-A. Journal of Polymer Research, 2019, vol. 26, pp. 1–6.
11. Tkachuk A.I., Lyubimova A.S., Kuznetcova P.A. Opportunities of the development of plant-based epoxy resins (review). Trudy VIAM, 2022, no. 8 (114), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2022-0-8-49-64.
12. Liu T., Hao C., Wang L. et al. Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules, 2017, vol. 50, no. 21, pp. 8588–8597.
13. Santiago D., Guzman D., Ferrando F. et al. Bio-based epoxy shape-memory thermosets from triglycidyl phloroglucinol. Polymers, 2020, vol. 12, no. 3, pp. 542.
14. Zheng N., Fang G., Cao Z. et al. High strain epoxy shape memory polymer. Polymer Chemistry, 2015, vol. 6, no. 16, pp. 3046–3053.
15. Shape memory polymer and adhesive combination and methods of making and using the same: pat. US 8685528 B2; appl. 15.04.09; publ. 12.11.09.
16. Shape memory epoxy polymers: pat. US 8618238 B2; appl. 04.10.07; publ. 23.10.08.
17. Polymer systems with multiple shape memory effect: pat. US 8641850 B2; appl. 02.03.09; publ. 04.02.10.
18. Shape memory material on the basis of a structural adhesive: pat. EP 2553034 B2; appl. 25.03.11; publ. 06.02.13.
19. Shape memory polymer which functions as a reversible dry adhesive and methods of making and using the same: pat. US 20140069578 A1; appl. 13.09.12; publ. 13.03.14.
20. Multi-shape product: pat. US 9878487 B2; appl. 03.03.11; publ. 08.09.11.
21. Fan M., Liu J., Li X. et al. Thermal, mechanical and shape memory properties of an intrinsically toughened epoxy/anhydride system. Journal of Polymer Research, 2014, vol. 21, pp. 1–8.
22. Brändle A., Khan A. Thiol-epoxy ‘click’ polymerization: efficient construction of reactive and functional polymers. Polymer Chemistry, 2012, vol. 3, no. 12, pp. 3224–3227.
23. Yakacki C.M., Willis S., Luders C., Gall K. Deformation limits in shape memory polymers. Advanced Engineering Materials, 2008, vol. 10, no. 1–2, pp. 112–119.
24. Flores M., Tomuta A., Fernandez-Francos X. A new two-stage curing system: Thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer, 2013, vol. 54, no. 21, pp. 5473–5481.
25. Belmonte A., Guzman D., Fernandez-Francos X., De la Flor S. Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy “click” systems. Polymers, 2015, vol. 7, no. 10, pp. 2146–2164.
26. Kumar K.S.S., Khatwa A.K., Nair C.P.R. High transition temperature shape memory polymers (SMPs) by telechelic oligomer approach. Reactive and Functional Polymers, 2014, vol. 78, pp. 7–13.
27. Luetzen H., Gesing T.M., Kim B.K., Hartwig A. Novel cationically polymerized epoxy/poly
(ɛ-caprolactone) polymers showing a shape memory effect. Polymer, 2012, vol. 53, no. 26, pp. 6089–6095.
28. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2020-0-1-68-77.
29. Deev I.S., Zhelezina G.F., Lonsky S.L., Kurshev E.V. Features of forming of the microstructure of the polymeric matrix in organoplasty on the basis of the multicomponent epoxy binding. Trudy VIAM, 2019, no. 5 (77), paper no. 03. URL: http://www.viam-works.ru (accessed: February 08, 2024). DOI: 10.18577/2307-6046-2014-0-7-6-6.
30. Rimdusit S., Lohwerathama M., Hemvichian K. et al. Shape memory polymers from benzoxazine-modified epoxy. Smart materials and structures, 2013, vol. 22, no. 7, p. 075033.
31. Xie F., Huang L., Leng J., Liu Y. Thermoset shape memory polymers and their composites. Journal of Intelligent Material Systems and Structures, 2016, vol. 27, no. 18, pp. 2433–2455.
32. Basit A., L’Hostis G., Pac M.J., Durand B. Thermally activated composite with two-way and multi-shape memory effects. Materials, 2013, vol. 6, no. 9, pp. 4031–4045.
33. Fejős M., Karger-Kocsis J., Grishchuk S. Effects of fibre content and textile structure on dynamic-mechanical and shape-memory properties of ELO/flax biocomposites. Journal of Reinforced Plastics and Composites, 2013, vol. 32, no. 24, pp. 1879–1886.
34. Lu H., Liang F., Gou J., Leng J. et al. Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites. Smart Materials and Structures, 2014, vol. 23, no. 8, p. 085034.
35. Luo H., Zhou X., Xu Y. et al. Multi-stimuli triggered self-healing of the conductive shape memory polymer composites. Pigment & Resin Technology, 2018, vol. 47, no. 1, pp. 1– 6.
36. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
37. Petrova A.P., Donskoy A.A. Adhesive materials. Sealants. St. Petersburg: Professional, 2008, 589 p.
38. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 25, 2023). DOI: 10.18577/2307-6046-2021-0-3-58-67.
The formation of several types of nanoformations with a size of 4–80 nm in fluorine rubbers, depending on the history, was detected using XRD. The process of changing the structure of their nanoorganization with the manifestation of phase transitions is also influenced by the chemical structure of junctions in macromolecules, which determines, in particular, the complex and unequal nature of changes in their dynamic viscosity. Titanium dioxide not only facilitates the formation of new types of nano-formations in fluoro-rubbers, but also the polymorphic transition of vinylidene fluoride links from the trans-gosh-trans-gosh conformation to the «flat zigzag» conformation
2. Kablov E.N. New generation materials are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologiya, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Study of epoxy-polysulfone polymer systems as the basis for high-strength aviation adhesives. Klei. Germetiki. Tekhnologii, 2017, no. 3, pp. 7–12.
4. Chaykun A.M., Bobrova I.I., Gerasimov D.M., Sergeyev A.V. Elastomers for sealing harness materials: properties, methods of receiving and feature of manufacturing. Trudy VIAM, 2023, no. 7 (125), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2023). DOI: 10.18577/2307-6046-2023-0-7-56-68.
5. Losev A.V. Properties and features of protective coatings based on polyvinylidene fluoride and its copolymers (review). Trudy VIAM, 2023, no. 4 (122), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 12, 2023). DOI: 10.18577/2307-6046-2023-0-4-81-89.
6. Petrova G.N., Perfilova D.N., Starostina I.V., Sapego Yu.A. Research of ways of combination polyurethane thermoplastics with fluoropolymers. Trudy VIAM, 2019, no. 7 (79), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 12, 2023). DOI: 10.18577/2307-6046-2019-0-7-12-25.
7. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
8. Ivanov M.S., Veshkin E.A., Satdinov R.A., Donskikh I.N. New domestic coated textile material for flexible air conditioning ducts of flight vehicles. Trudy VIAM, 2019, no. 4 (76), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 12, 2023). DOI: 10.18577/2307-6046-2019-0-4-57-66.
9. Arzhakov M.S. Relaxation phenomena in polymers. Montreal: Accent Graphics Communication, 2018, 136 p.
10. Kozlov G.V., Zaikov G.E. Structure of the Polymer Amorphous State. Leiden: Brill Academic Publishers, 2004, 465 р.
11. Bartenev G.M., Zelenev Yu.V. Physics and mechanics of polymers. Moscow: Vysshaya shkola, 1983, 391 p.
12. Volynsky A.L., Bakeev N.F. Structural self-organization of amorphous polymers. Moscow: FIZMATLIT, 2005, 232 p.
13. Malkin A.Ya., Semakov A.V., Kulichikhin V.G. Structure formation during the flow of polymer and colloidal systems (review). Vysokomolekulyarnye soyedineniya, Ser.: A, 2010, vol. 52, pp. 1879–1902.
14. Sokolova L.V. Features of high-temperature transitions in polymers. Plasticheskiye massy, 2006, no. 5, pp. 13–25.
15. Sokolova L.V. Flexibility of macromolecules and structure formation in amorphous polymers. Vysokomolekulyarnye soyedineniya, Ser.: A, 2017, vol. 59, no. 4, pp. 318–330. DOI: 10.7868/S2308112017040113.
16. Sokolova L.V. Study of the structure of natural and synthetic cis-1,4-polyisoprenes using IR spectroscopy. Vysokomolekulyarnye soyedineniya, Ser.: B, 1994, vol. 36, no. 10, pp. 1737–1748.
17. Sokolova L.V., Losev A.V., Pronin D.S., Politova E.D. The influence of nanosized modifications of titanium dioxide on the nanoorganization of elastomers. Kristallografiya, 2022, vol. 67, no. 2, pp. 479–487.
18. Kuzmicheva G.M. Nanosized systems with titanium (IV) oxides. Receipt. Characterization. Properties. Tonkie khimicheskiye tekhnologii, 2015, vol. 10, no. 6, pp. 5–36.
19. Kuzmicheva G.M., Yulovskaya V.D., Domoroshchina E.N. et al. Influence of nanosized modifications of titanium dioxide with anatase and η-TiO2 structures on the structural characteristics and properties of nanocomposites based on 1,2-polybutadiene. Kauchuk i rezina, 2013, no. 5, pp. 6–11.
20. Matyushenko D.V. Study of structural transformations stimulated by heating and shock compression in titanium dioxide nanopowders: thesis abstract, Cand. Sc. (Phys.&Math.). Chernogolovka: IPCP RAS, 2011, 23 p.
21. Umansky Ya., Skakov Yu., Ivanov A. Crystallography, radiography and electron microscopy. Moscow: Metallurgiya, 1982, 632 p.
22. Manalastas-Cantos К., Konarev P.V., Hajizadeh N.R., KikhneyA.G., Petoukhov M.V. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. Journal of Applied Crystallography, 2021, vol. 54, no. 2, p. 343. DOI: 10.1107/S1600576720013412.
23. Svergun D.I., Konarev P.V., Volkov V.V., Koch M.H.J., Sager W.F.C., Smeets J., Blokhuis E.M. A small angle x-ray scattering study of the droplet-cylinder transition in oil-rich sodium
bis(2-ethylhexyl) sulfosuccinate microemulsions. The Journal of Chemical Physics, 2000, vol. 113, no. 11, pp. 1651–1665. DOI: 10.1063/1.481954.
24. Dennis J.E., Gay D.M., Welsh R.E. An adaptive nonlinear least-squares algorithm. ACM Transactions on Mathematical Software, 1981, vol. 7, no. 3, p. 369. DOI: 10.1145/355958.355966.
25. Wasserman A.M., Kovarsky A.L. Spin labels and probes in the physical chemistry of polymers. Moscow: Nauka, 1986, 244 p.
26. Budil D.E., Lee S., Saxena S., Freed J.H. Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg–Marquardt algorithm. Journal of Magnetic Resonance, Ser.: A, 1996, vol. 120, p. 155. DOI: /10.1006/jmra.1996.0113.
27. Timofeev V.P., Misharin A.Yu., Tkachev Ya.V. Modeling of ESR spectra of the TEMPO radical in water-lipid systems in different frequency ranges. Biofizika, 2011, vol. 56, vol. 3, p. 420.
28. Nudelman Z.N. Fluororubbers: basics, processing, application. Moscow: PIF RIAS, 2007, 384 p.
29. Novitskaya S.P., Nudelman Z.N., Dontsov A.A. Fluoroelastomers. Moscow: Chemistry, 1988, 240 p.
30. Moore A.L. Fluoroelastomers Handbook: The definitive user’s guide and databook. Norwich, NY: William Andrew, 2005, 366 p.
31. Kargin V.A., Slonimsky G.L. Brief essays on the physical chemistry of polymers. Moscow: Khimiya, 1967, 231 p.
32. Sokolova L.V., Evreinov Yu.V. The influence of high-temperature transitions on the deformability of a number of flexible-chain polymers. Vysokomolekulyarnyye soyedineniya, Ser.: A, 1993, vol. 35, no. 5, p. 244.
33. Galil-Ogly F.A., Novikov A.S., Nudelman Z.N. Fluorine rubbers and rubbers based on them. Moscow: Khimiya, 1966, 235 p.
34. Krakht L.N., Igumenova T.I., Chichvarin A.V. On the mechanism of interaction of a mixture of fullerenes with macromolecules of polymers of various structures. Sovremennye problemy nauki i obrazovaniya, 2012, no. 6, pp. 179–185.
35. Boyer R.F. Order in the Amorphous State of Polymers. Plenum Press, NY, 1987, p. 477.
36. Olkhov Yu.A., Allayarov S.R., Nikolsky V.G. Study of gamma-irradiated copolymer of vinylidene fluoride and chlorotrifluoroethylene using radiothermoluminescence and thermomechanical spectroscopy methods. Khimiya vysokikh energiy, 2016, vol. 50, no. 3, pp. 177–183.
37. Kochervinsky V.V. The influence of radiation on the ferroelectric characteristics of polyvinylidene fluoride. Vysokomolekulyarnye soyedineniya, Ser.: A, 1993, vol. 35, no. 12, p. 1978.
38. Hussein A.D., Sabry R.S., Dakhil O.A.A. Fabrication of stretchable PVDF piezoelectric NanoGenerator. Journal of College of Education, 2019, vol. 1, no. 1, p. 17.
39. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 2017, vol. 7, no. 25, p. 15382. DOI: 10.1039/c7ra01267e.
40. Polymer nanocomposites. Eds. Yu-Wing Mai, Zhon-Zhen Yu. Moscow: Technosphere, 2011, 687 p.
41. Gamlitsky Yu.A. Nanomechanics of the phenomenon of strengthening of filled elastomers. Kauchuk i rezina, 2017, vol. 76, no. 5, pp. 308–317.
The article presents the results of the analysis of the design-force diagrams of the main rotor blades of the domestic helicopter equipment and the main stages of the technological process of their repair. According to the results of the analysis the input parameters for the development of the technology of repair of helicopter rotor blades from polymer composite materials in field conditions are revealed and presented. In the process of narration the directions of repair technologies development and main innovations of SIC «Kurchatov Institute» – VIAM are shown.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2071-9140-2023-0-1-61-81.
5. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
6. Helicopter NH-90 in service with the German Armed Forces. Available at: https://topwar.ru (accessed: November 14, 2023).
7. Doroshenko N.I. Application of PCM in the design of helicopter rotor blades. All-Rus. sci.-tech. conf. «Polymer composite materials for the aerospace industry». Moscow: VIAM, 2019, pp. 23–41.
8. Grebenikov A.G., Dyachenko Yu.V., Kollerov V.V. et al. Structural and technological features of helicopter load-bearing surfaces made of polymer composite materials. Otkrytye informatsionnye i kompyuternye integrirovannye tekhnologii, 2019, no. 84, pp. 4–49.
9. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–33.
10. Bogdanov Yu.S., Mikheev R.A., Skulkov D.D. Helicopter design: a textbook for aviation technical schools. Moscow: Mashinostroyenie, 1990, 272 p.
11. Zavalov O.A., Basharov E.A. Guidelines for laboratory work «Design of main and tail rotor blades». Available at: http://elibrary.mai.ru/MegaPro/Download/ToView/15843?idb=New
MAI2014 (accessed: November 14, 2023).
12. Slyusar B.N., Fleck M.B., Goldberg E.S. et al. Helicopter technology. Technology for the production of helicopter blades and aircraft structures from polymer composite materials. Rostov-on-Don: YuNTs RAS, 2013, 230 p.
13. Zavalov O.A. Design of rotors and tail rotors of helicopters: textbook. A guide to coursework and diploma design. Moscow: MAI, 2019, 72 p.
14. Mikheyev S.V., Bourtsev B.N., Danilkina V.L. et al. Kamov Composite Blades. 31st European Rotorcraft Forum. Florence, 2015, pр. 1650–1672.
15. Topolev V.V. Design and operation of the Mi-171 helicopter: textbook, allowance. Tyumen:
NP «Personnel Training Center», 2008, 158 p.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
18. Mi-8 helicopter. Technical Operation Instructions. Available at: https://tehclub.site/
storage/products/07-20/vertolet-mi-8-instruktsiya-po-tekhnicheskoy-ekspluatatsii.pdf (accessed: December 04, 2023).
19. Aviation unit and aviation intermediate maintenance manual. CH-47D helicopter. Available at: http://www.chinook-helicopter.com/Publications/CH-47D_Technical_Publications/23_Series/TM_
55-1520-240-23-1.pdf (accessed: December 04, 2023).
20. Helicopter maintenance by Joe Schafer. Available at: https://linguisticstudentindonesia.
files.wordpress.com/2020/08/helicopter-maintenance.pdf (accessed: December 04, 2023).
21. Bell 212. Maintenance manual. Available at: https://www.bellcustomer.com/Bulletins/
Download?FileName=212-Inspection_and_Airworthiness_Limitations.pdf&CategoryID=139 (accessed: December 04, 2023).
22. Bell 429. Maintenance planning information. Available at: https://www.bellcustomer.com/Bulletins/
Download?FileName=429-Airworthiness_Limitations_and_Scheduled_Maintenance.pdf&Category
ID=-1&categoryname=Airworthiness%20Limitations%20and%20Scheduled%20Maintenance (accessed: December 04, 2023).
23. Joachim T. Repair and Substantiation of the NH90 Sandwich Composite Bottom Shell. Available at: https://www.sto.nato.int/publications/pages/results.aspx?k=Repair%20and%20Substantiation%20of%20the%20NH90%20Sandwich%20Composite%20Bottom%20Shell&s=Search%20All%20STO%20Reports (accessed: December 04, 2023). DOI: 10.14339/STO-MP-AVT-266-05-PDF.
24. Mazza J.J., Storage K.M. Bonded Repair in the United States Air Force and Work to Expand Future Capability. Available at: https://www.sto.nato.int/publicаtions/pages/results.aspx?k=Bonded
%20Repair%20in%20the%20United%20States%20Air%20Force%20and%20Work%20to%20Expand%20Future%20Capability&s=Search%20All%20STO%20Reports (accessed: December 04, 2023). DOI: 10.14339/STO-MP-AVT-266-04-PDF.
25. Xie Z., Li X., Wang S. Parametrical study on stepped-lap repair of composite laminates. Available at: http://www.i-asem.org/publication_conf/structures16/11.ICAAS16/M4J.2.AS703_
1256F1.pdf (accessed: December 04, 2023).
26. Xie Z., Wang S., Li X. Composite Tapered Scarf Joint Repair: Analytical Model and Experimental Validation. Amsterdam: Atlantis Press, 2016, pp. 720–726.
27. Orsatelli J.-P., Paroissien E., Lachaud F., Schwartz S. Bonded flush repairs for aerospace composite structures: A review on modelling strategies and application torepairs optimization, reliability and durability. Composite Structures, 2023, vol. 304, рart 2, аrt. 116338. DOI: ff10.1016/j.compstruct.2022.116338.
28. Campilho R., Pinto A., Moura M. et al. Taper angle optimization of scarf repairs in carbon-epoxy laminates. Available at: https://www.semanticscholar.org/paper/Taper-angle-optimization-of-scarf-repairs-in-Campilho-Pinto/c2222dcdaa9b3ac70d9bd79dd24e6b820e424ce3 (accessed: December 04, 2023).
29. Collombet F., Davila Y., Avila S. et al. Proof of a composite repair concept for aeronautical structures: a simplified method. Mechanics & Industry, 2019, no. 20 (8), pp. 812. DOI: 10.1051/meca/2020056.
30. Marrón A. Scarf joint modeling and analysis of composite materials. Available at: https://core.ac.uk/download/pdf/36698412.pdf (accessed: December 04, 2023).
31. Mollenhauer D., Storage K., Czabaj M. et al. United States Air Force Investigation and Evaluation of Composite Scarf Repairs. Available at: https://www.sto.nato.int/publications/pages/
reults.aspx?k=United%20States%20Air%20Force%20Investigation%20and%20Evaluation%20of%20Composite%20Scarf%20Repairs&s=Search%20All%20STO%20Reports (accessed: December 04, 2023). DOI: 10.14339/STO-MP-AVT-266-14-PDF.
32. Ghafafian C., Popiela B., Trappe V. Failure Mechanisms of GFRP Scarf Joints under Tensile Load. Materials, 2021, vol. 14 (7), pp. 1806. DOI: 10.3390/ma14071806.
33. Sun C., Zhao W., Zhou J. et al. Mechanical behaviour of composite laminates repaired with a stitched scarf patch. Composite Structures, 2021, vol. 255, pp. 112928. DOI: 10.1016/j.compstruct.2020.112928.
34. Gungner M., Ramström M. Robust repair methods of primary structures in composite. Available at: https://www.diva-portal.org/smash/get/diva2:632489/FULLTEXT01.pdf (accessed: December 04, 2023).
35. Xie Z., Li X., Yan Q. Scarf Repair of Composite Laminates. MATEC Web of Conferences. Available at: https://www.researchgate.net/publication/304575167_Scarf_Repair_of_Composite_
Laminates (accessed: December 04, 2023). DOI: 10.1051/matecconf/20166105019.
36. Tomblin J., Salah L., Yang C. Effects of repair procedures applied to composite airframe structures. Available at: https://depts.washington.edu/amtas/events/jams_06/Salah_Repair.pdf (accessed: December 04, 2023).
37. Budhe S., Banea M.D., De Barros S. Bonded repair of composite structures in aerospace application: a review on environmental issues. Applied Adhesion Science, 2018, vol. 6, art. 3. DOI: 10.1186/s40563-018-0104-5.
38. Halliwell S. Repair of fibre reinforced polymer structures. Available at: https://compositesuk.co.uk/wp-content/uploads/2021/12/repairoffrpstructures.pdf (accessed: December 04, 2023).
39. Ashfort C., Ilcewicz L. Certification of Bonded Aircraft Structure and Repairs. Available at: https://www.sto.nato.int/publications/pages/results.aspx?k=Cynthia%20Ashfort&s=Search%20All%20STO%20Reports (accessed: December 04, 2023).
40. Helicopter components, sections and systems. Available at: https://www.faa.gov/sites/faa.gov/files/
regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/hfh_ch04.pdf (accessed: December 04, 2023).
41. Seneviratne W., Tomblin J., Saathoff C. Evaluation of aged bonded rotor blades. Available at: https://www.wichita.edu/industry_and_defense/NIAR/Documents/jams-presentations-2021/Evaluation
-of-Aged-Bonded-Rotor-Blades-Seneviratne.pdf (accessed: December 04, 2023).
42. Ilcewicz L., Cheng L. FAA composite guidance and relevant resource. Available at: https://www.aviation.govt.nz/assets/aircraft/composite-seminar/faa-composite-guidance.pdf (accessed: December 04, 2023).
43. Salah L. CACRC depot bonded repair round robin investigation. Available at: https://www.wichita.edu/industry_and_defense/NIAR/Documents/CACRCDepotBondedLSalah.pdf
(accessed: December 04, 2023).
44. Composite Repair of Military Aircraft Structures. Neuilly sur Seine: AGARD, 1995, 24 р.
45. Sałaciński M., Kowalski R., Szmidt M., Augustyn S. A New Approach to Modelling and Testing the Fatigue Strength of Helicopter Rotor Blades during Repair Process. Fatigue of Aircraft Structures, 2019, vol. 11, pp. 56–67. DOI: 10.2478/fas-2019-0006.
46. Lewis A. Making composite repairs to the 787. Available at: https://skybrary.aero/sites/
default/files/bookshelf/3851.pdf (accessed: December 04, 2023).
47. Fualdes C. Experience and lessons learned of a composite aircraft. Available at: https://icas.org/media/pdf/ICAS%20Congress%20General%20Lectures/2016/2016%20Composite%20Aircraft%20Fualdes.pdf (accessed: December 04, 2023).
48. Barannikov A.A., Рostnov V.I., Veshkin E.A., Starostina I.V. Link between the energy characteristics of the surface of fiberglass of the VPS-53К brand and the strength of the adhesive joint based on it. Trudy VIAM, 2020, no. 10 (92), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2023). DOI: 10.18577/2307-6046-2020-0-10-40-50.
49. Pieczonka L., Staszewski W.J. et al. Nondestructive testing of composite patch repairs. 11th
European Conference on Non-Destructive Testing. Prague, 2014. DOI: 10.13140/2.1.1691.8723.
50. Antipov V.V., Boichuk A.S., Chertishchev V.Yu., Yakovleva S.I., Barannikov A.A. Identification of operational damage from blades of rotors and tail rotors made of PCM in operating conditions. Trudy VIAM, 2023, no. 7 (125), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 14, 2023). DOI: 10.18577/2307-6046-2023-0-7-93-103.
A comprehensive assessment of the retention of the strength properties of fiberglass VPS-68 for tension, compression, bending, interlayer shear was carried out at test temperatures of –60, +20, +80 and +105 °C in the initial state and after climatic influences in a tropical climate chamber for 1 and 3 months, thermal aging for 500 and 1000 hours, exposure to mycological environments and technical fluids. To confirm viability, samples of VPS-68 fiberglass were tested in tension and compression
2. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb struc-tures aircraft technology. Trudy VIAM, 2022, no. 5 (111), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 20, 2023). DOI: 10.18577/2307-6046-2022-0-4-41-52.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
5. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids, part 1: Adhesives, adhesive prepregs, 276 p.
6. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review).
Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
7. Vavilova M.I., Kavun N.S. The properties of glass filler for constructions of fiberglass. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
8. Volnov O.I., Dudukin D.O. Fiberglass. History of development, production technology, shaping of parts and modern application. Trudy NGTU im. R.Ye. Alekseyeva, 2014, no. 5 (107),
pp. 400–404.
9. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: October 20, 2023). DOI: DOI: 10.18577/2713-0193-2023-0-4-66-77.
10. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: allowance. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
11. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecular mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
12. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
13. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 18, 2023). DOI: 10.18577/2307-6046-2021-0-3-58-67.
14. Lukina N.Ph., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. New developments in the field of adhesive aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
15. Khrychev Yu.I., Shkodinova E.P., Dementieva L.A. Development of a technological process for manufacturing a radio-transparent radome from adhesive prepregs of the KMKS-2m.120 type. Collection report conf. «Adhesive materials for aviation purposes». Moscow: VIAM, 2013, pp. 43–47.
Light-absorbing coatings are widely used for the construction of optical instruments and for converting sunlight into thermal energy. This article presents various production methods of light-absorbing coatings. Coatings obtained from both liquid and gas phases are reviewed. Their optical properties are particularly discussed. A comparison of advantages and drawbacks of light-absorbing coatings obtained by different methods, including their corrosion behavior and mechanical properties is conducted
2. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Takadoum J. Black coatings: a review. European Physical Journal: Applied Physics, 2010, vol. 3, p. 52.
4. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2022-0-2-120-130.
5. Brown R.J.C., Brewer P.J., Milton M.J.T. The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces. Journal of Materials Chemistry, 2002, vol. 12, no. 9, pp. 2749–2754.
6. Meier S.R. Comparisons of the optical, surface, and constituent properties of morphologically variant black materials. Optical Systems Degradation, Contamination, and Stray Light: Effects, Measurements, and Control: the SPIE 49th Annual Meeting. Denver: SPIE, 2004, vol. 5526, pp. 164–175.
7. Cui G., Li. N., Li. D. et al. The physical and electrochemical properties of electroless deposited nickel–phosphorus black coatings. Surface and Coatings Technology, 2006, vol. 200, no. 24, pp. 6808–6814.
8. Saxena V., Rani R.U., Sharma A.K. Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application. Surface and Coatings Technology, 2006, vol. 201, no. 3–4, pp. 855–862.
9. Patel S.N., Inal O.T. Optimization and microstructural analysis of black-zinc-coated aluminum solar collector coatings. Thin Solid Films, 1984, vol. 113, no. 1, pp. 47–57.
10. Monteiro F.J., Oliviera F., Reis R., Paiva O. The morphology and optical characteristics of black solar selective coatings. Plating and Surface Finishing, 1992, vol. 79, no. 1, pp. 46–52.
11. Li G., Niu L., Lian J., Jiang Z. A black phosphate coating for C1008 steel. Surface and Coatings Technology, 2004, vol. 176, no. 2, pp. 215–221.
12. Barrera E., Palomar M., Batina N., Gonzálezc I. Formation mechanisms and characterization of black and white cobalt electrodeposition onto stainless steel. Journal of The Electrochemical Society, 2000, vol. 147, no. 5, pp. 1787–1796.
13. Gabe D.R., Gould S.E. Black molybdate conversion coatings. Surface and Coatings Technology, 1988, vol. 35, no. 1–2, pp. 79–91.
14. Jahan F., Smith B.E. Electrical properties of electrodeposited molybdenum black coatings. Solar energy materials, 1990, vol. 20, no. 3, pp. 215–224.
15. Wackelgard E. Characterization of black nickel solar absorber coatings electroplated in a nickel chlorine aqueous solution. Solar Energy Materials and Solar Cells, 1998, vol. 56, no. 1,
pp. 35–44.
16. Lira-Cantu M., Sabio A.M., Brustenga A., Gomez-Romero P. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar energy materials and solar cells, 2005, vol. 87, no. 1–4, pp. 685–694.
17. Mehra N.C., Sharma S.K. Role of substrate preparation in the optical performance of solar selective black nickel coatings. Journal of materials science letters, 1989, vol. 8, no. 6, pp. 707–708.
18. Cathro K.J. Formation of nickel-black selective surfaces by a conversion coating process. Solar Energy Materials, 1981, vol. 5, no. 3, pp. 317–335.
19. Ibrahim M.A.M. Black nickel electrodeposition from a modified Watts bath. Journal of Applied Electrochemistry, 2006, vol. 36, pp. 295–301.
20. Koltun M., Gukhman G., Gavrilina A. Stable selective coating «black nickel» for solar collector surfaces. Solar Energy Materials and Solar Cells, 1994, vol. 33, no. 1, pp. 41–44.
21. Peterson R.E., Ramsey J.W. Thin film coatings in solar-thermal power systems. Journal of Vacuum Science and Technology, 1975, vol. 12, no. 1, pp. 174–181.
22. Karuppiah N., John S., Natarajan S., Sivan V. Characterization of electrodeposited Nickel-Cobalt selective black coatings-scanning electron microscopic studies. Bulletin of Electrochemistry, 2002, vol. 18, no. 7, pp. 295–298.
23. Kerr C., Barker D., Walsh F.C. Electroless Deposition of Metals. Transactions of the IMF, 2001, vol. 79, pp. 41–46.
24. Dennis J.K., Such T.E. Nickel and chromium plating. Elsevier, 1993, 449 р.
25. Tulsi S.S. Properties of electroless nickel. Transactions of the IMF, 1986, vol. 64, no. 1,
рр. 73–76.
26. Court S.W., Barker B.D., Walsh F.C. Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates. Transactions of the IMF, 2000, vol. 78, no. 4, pp. 157–162.
27. Gavrilov G.G. Chemical (electroless) nickel-plating. Portcullis Press, 1979, 500 р.
28. Johnson C.E. Black electroless nickel surface morphologies with extremely high light absorption capacity. Metal Finishing, 1980, vol. 78, no. 7, pp. 21–24.
29. Sharma A.K., Bhojraj H., Kaila V.K., Narayanamurthy H. Anodizing and inorganic black coloring of aluminum alloys for space applications. Metal Finishing, 1997, vol. 95, no. 12, pp. 14–20.
30. Aravinda C.L., Bera P., Jayaram V. et al. Characterization of electrochemically deposited Cu–Ni black coatings. Materials Research Bulletin, 2002, vol. 37, no. 3, pp. 397–405.
31. Aravinda C.L., Mayanas S.M., Bera P. et al. XPS and XAES investigations of electrochemically deposited Cu–Ni solar selected black coatings on molybdenum substrate. Journal of materials science letters, 2002, vol. 21, pp. 205–208.
32. Executive Summary: Black Nickel Coating. Available at: http://cs.wpi.edu/~
dfinkel/Sponsor/CM1.doc (accessed: February 15, 2024).
33. Black nickel coating for spacecraft. Available at: http://adsabs.harvard.edu/abs/1989mala.
iafcS....C (accessed: February 15, 2024).
34. Surviliene S., Orlovskaja L., Biallozor S. Black chromium electrodeposition on electrodes modified with formic acid and the corrosion resistance of the coating. Surface and Coatings Technology, 1999, vol. 122, no. 2–3, pp. 235–241.
35. Nikolova M., Harizanov O., Steftchev P. et al. Black chromate conversion coatings on electrodeposited zinc. Surface and Coatings Technology, 1988, vol. 34, no. 4, pp. 501–514.
36. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2022-0-1-93-104.
37. Aguilar M., Barrera E., Palomar-Pardave M. et al. Characterization of black and white chromium electrodeposition films: surface and optical properties. Journal of non-crystalline solids, 2003, vol. 329, no. 1–3, pp. 31–38.
38. Smith G.B., Zajac G., Ignatiev A., Rabalais J.W. Surface composition of solar selective black chrome films as determined by SIMS. Surface Science, 1982, vol. 114, no. 2–3, pp. 614–626.
39. Anandan C., Grips V.K.W., Rajam K.S. et al. Investigation of surface composition of electrodeposited black chrome coatings by X-ray photoelectron spectroscopy. Applied surface science, 2002, vol. 191, no. 1–4, pp. 254–260.
40. Karthikeyan S., Jeeva P.A., Raja K. et al. An eco-friendly process on the improvement of hardness and corrosion resistance characteristics of trivalent hard chromium electrodeposition. Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 13085–13089.
41. Fomina M.A., Volkov I.A., Vdovin A.I., Yamshchikov E.I. Study of protective capacity anodic oxide coating with environmental friendly improved filling technology. Aviation materials and technologies, 2023, no. 4 (73), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2023-0-4-101-110.
42. Hamid Z.A. Electrodeposition of black chromium from environmentally electrolyte based
on trivalent chromium salt. Surface and Coatings Technology, 2009, vol. 203, no. 22,
pp. 3442–3449.
43. Takadoum J. Nanomatériaux, traitement et fonctionnalisation des surfaces. New Castle: Hermes, 2008, 420 р.
44. Chappé J.M., Vaz F., Cunha L. et al. Development of dark Ti (C, O, N) coatings prepared by reactive sputtering. Surface and Coatings Technology, 2008, vol. 203, no. 5–7, pp. 804–807.
45. Bull S.J. Tribology of carbon coatings: DLC, diamond and beyond. Diamond and related materials, 1995, vol. 4, no. 5–6, pp. 827–836.
46. Grill A. Plasma-deposited diamondlike carbon and related materials. IBM Journal of Research and Development, 1999, vol. 43, no. 1.2, pp. 147–162.
47. Le H.T., Zaidi H., Paulmier D., Voumard P. Transformation of sp3 to sp2 sites of diamond like carbon coatings during friction in vacuum and under water vapour environment. Thin Solid Films, 1996, vol. 290, pp. 126–130.
48. Liu Y., Erdemir A., Meletis E.I. A study of the wear mechanism of diamond-like carbon films. Surface and Coatings Technology, 1996, vol. 82, no. 1–2, pp. 48–56.
49. Kablov E.N., Solovyanchik L.V., Kondrashov S.V. et al. Electrically conductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers. Rossiyskie nanotekhnologii, 2016, vol. 11, no. 11–12, pp. 91–97.
50. Kablov E.N., Pykhtin A.A., Sorokin A.E., Larionov S.A. The influence of the method of functionalization of carbon nanotubes on the technological and operational properties of filaments for FDM printing based on ABS plastic. Rossiyskiye nanotekhnologii, 2022, vol. 17, no. 6, pp. 745–752.
51. Sevalnev G.S., Yakusheva N.A., Korobova E.N., Dulnev K.V. Study of the diffusion satura-tion kinetics of high-chromium carbon steels of the martensitic class after various types of chemical-heat treatment. Aviation materials and technologies, 2022, no. 3 (68), paper no. 01. Available at: http://www.journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2022-0-3-3-14.
52. Takadoum J., Rauch J.Y., Cattenot J.M., Martin N. Comparative study of mechanical and tribological properties of CNx and DLC films deposited by PECVD technique. Surface and Coatings Technology, 2003, vol. 174, pp. 427–433.
53. Andritschky M., Atfeh M., Pischow K. Multilayered decorative aC:H/CrC coating on stainless steel. Surface and Coatings Technology, 2009, vol. 203, no. 8, pp. 952–956.
54. Yang Z.P., Ci L., Bur J.A. et al. Experimental observation of an extremely
The article presents the results of studies of the effect of corrosion inhibitors of various chemical compositions on the time of crosslinking, the thermal effect and the structural formation of a polysulfide sealant in which they are included. The data on the dependence of the crosslinking rate of a polysulfide sealant with corrosion inhibitors on temperature and relative humidity are presented; the phase transitions and the change in the heat capacity of the sealant samples are determined; the microstructure of the sealant is investigated and its effect on the protective properties of the composition is described
2. Kablov E.N., Semenova L.V., Eskov A.A., Lebedeva T.A. Complex systems of paint and varnish coatings for the protection of metal polymer composite materials, as well as their contact connections from the effects of aggressive factors. Lakokrasochnye materialy i ikh primenenie, 2016, no. 6, рр. 32−35.
3. Rakova T.M., Kozlova A.A., Nefedov N.I., Laptev A.B. The study of influence organic and inorganic corrosion inhibitors on the stress-corrosion cracking high-strength steels. Trudy VIAM, 2017, no. 6 (54), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2017-0-6-12-12.
4. Rakhmankulov D.L., Bugai D.E., Gabitov A.I., Golubev M.V., Laptev A.B., Kalimullin A.A. Corrosion inhibitors: in 2 vols. Ufa: Reaktiv, 1997, vol. 1: Fundamentals of theory and practice of application, pp. 117–128.
5. Rosenfeld I.L. Corrosion inhibitors. Moscow: Khimiya, 1977, 552 p.
6. Makushchenko I.S., Kozlov I.A., Smirnov D.N., Vdovin A.I., Karachevtsev F.N. Study of the protective properties of polysulfide sealant containing corrosion inhibitors. Klei. Germetiki. Tekhnologii, 2023, no. 11, pp. 7–14. DOI: 10.31044/1813-7008-2023-0-11-7-14.
7. Rosenfeld I.L., Rubinshtein F.I. Anti-corrosion primers and inhibited paint and varnish coatings. Moscow: Khimiya, 1980, pp. 95–112.
8. Eliseev O.A., Bryk Ya.A., Smirnov D.N. Polysulfide sealants modification by corrosion inhibitors. Aviacionnye materialy i tehnologii, 2016, no. S2 (44), pp. 15–21. DOI: 10.18577/2071-9140-2016-0-S2-15-21.
9. Sorokin O.Yu. On the issue of the mechanism of interaction between carbon materials and Si melt (review). Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
10. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
11. Seleznev D.V., Kozhevnikova Yu.M., Belobrova I.A., Ishuzhin R.R., Tashlanov V.V. Method for determining the enthalpy of endo- and exothermic effects in compo-site phase-change materials based on DSC-research. Aviation materials and technologies, 2022, no. 1 (69), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2022-0-4-123-131.
12. Chalykh A.E. Diffusion in polymer systems. Moscow: Khimiya, 1987, 312 p.
13. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A. Ways of increasing corrosion resistance of superalloys (review). Trudy VIAM, 2018, no. 4 (64), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2018-0-4-3-8.
14. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: November 24, 2023). DOI: 10.18577/2713-0193-2022-0-1-120-128.
15. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
16. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
17. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming
parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2022-0-1-93-104.
18. State Standard R 56755‒2015. Plastics. Differential scanning calorimetry (DSC). Part 5. Determination of characteristic temperatures and time from reaction curves, determination of enthalpy and degree of conversion. Moscow: Standartinform, 2016, 15 p.
19. PPG Aerospase. P/S 870 Class C Corrosion Inhibitive Sealant. Available at: https://www.ppgaerospase.com/Products/Sealants/Corrosion-Inhibitive/P-S-870-Class-C-Corrosion-Inhibitive-Sealant (accessed: December 04, 2023).
20. Sitnikova V.E., Ponomareva A.A., Uspenskaya M.V. Methods of thermal analysis: workshop. St. Petersburg: ITMO University, 2021, 152 p.
21. Valeev R.R. Highly filled sealing compositions based on polysulfide oligomers: thesis abstract, Cand. Sc. (Tech.), Kazan, 2004, 16 p.
22. Kayushnikov S.N., Prokopchuk N.R., Use E.P., Alfimov I.V. Study of the influence of zinc-containing technological additives on the technical properties of rubber. Vestnik tekhnologicheskogo universiteta, 2017, vol. 20, no. 6, pp. 36‒40.
23. Fiaud C. Theory and Practice of Vapour Phase Inhibitors. A Working Party Report on Corrosion Inhibitors. London: The Institute of Materials, 1994, pp. 1–11.
24. Kozlova A.A., Kondrateva O.V., Kuznetsova V.A. The main problems of using domestically produced moisture-proof electrical insulating materials for automated selective application on printed assemblies (review). Aviation materials and technologies, 2022, no. 4 (69), paper no. 07. Available at: http://www.journal.viam.ru (accessed: November 30, 2023). DOI: 10.18577/2713-0193-2022-0-4-72-83.
The analysis of test results on stability to gas-abrasive erosion for systems of paint coatings based on the erosion-resistant disperse-reinforced enamel EP-5236 applied on aluminum alloy D16-T and fibreglass VPS-20 at impact angles α = 90° and 15° was carried out. Firmness of coatings was evaluated on changes of weight characteristics of samples. Resistance of paint coatings to gas-droplet erosion on samples from alloy D16-T and also from fibreglass VPS-20 was investigated. It is shown that using of erosion-resistant system of paint coatings based on disperse-reinforced enamel EP-5236 increases resistance to gas-abrasive and gasdroplet erosion
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report XX Mendeleev Congress on General and Applied Chemistry: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, vol. 1: Fundamental problems of chemical science, pp. 25–26.
3. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 07, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
4. Kuznetsova V.A., Shapovalov G.G. Tendencies of development of the erosion-resistant coatings (review). Trudy VIAM, 2018, no. 11 (71), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 07, 2024). DOI: 10.18577/2307-6046-2018-0-11-74-85.
5. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
6. Erosion. Ed. K. Preece; trans. from Engl. Moscow: Mir, 1982, 464 p.
7. Perelman R.G. Erosion strength of aircraft engine parts and power plants. Moscow: Mashinostroyenie, 1980, 246 p.
8. Khrushchov M.M., Babichev M.A. Abrasive wear. Moscow: Nauka, 1970, 252 p.
9. Urvantsov L.A. Erosion and protection of metals. Moscow: Mashinostroyenie, 1966, 235 p.
10. Springer J. Erosion under the influence of liquid drops. Moscow: Mashinostroyenie, 1981, 200 p.
11. Nepomnyashchiy E.F. Contact interaction of solids and calculation of friction and wear forces. Moscow: Nauka, 1971, 270 p.
12. Zhelezina G.F., Solovieva N.A., Kulagina G.S., Shuldeshova P.M. Study of the possibility of increasing the impact resistance of thin-sheeted carbon fiber-reinforced plastics due to clading with aramid organoplastics. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: February 07, 2024). DOI: 10.18577/2713-0193-2021-0-4-35-42.
13. Kondrashov E.K., Lebedeva T.A. Erosion-resistant coatings for the protection of polymer composite materials. Aviacionnye materialy i tehnologii, 2003, is.: Paints and varnishes and coatings, pp. 57–58.
14. Kondrashov E.K., Naidenov N.D. Erosion resistant paint coverings of aviation purpose. Part 1. Erosion resistant paint coatings based on epoxy and polyurethane films forming (review). Trudy VIAM, 2020, no. 2 (86), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 07, 2024). DOI: 10.18577/2307-6046-2020-0-2-81-90.
15. Kondrashov E.K., Naidenov N.D. Erosion-resistant paint and varnish coatings for aviation purposes. Part 2. Elastomeric erosion resistant radio-transparent coatings (review). Trudy VIAM, 2020, no. 3 (87), paper no. 10. Available at: http://www.viam-works.ru (accessed: January 29, 2024). DOI: 10.18577/2307-6046-2020-0-3-94-101.
16. Kuznetsova V.A. Erosion-resistant composition based on the three-phase system «epoxy oligomer–rubber–reinforcing filler»: thesis abstract, Cand. Sc. (Tech.). Moscow, 1999, 24 p.
17. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: February 07, 2024). DOI: 10.18577/2713-0193-2022-0-2-120-130.
18. Kozlova A.A., Kondrashov E.K. Influence of molecular weight and elemental composition of isocyanates on the properties of fluoropolyurethane enamels. Aviation materials and technologies, 2023, no. 4 (73), paper no. 09. Available at: http://www.journal.viam.ru (accessed: February 07, 2024). DOI: 10.18577/2713-0193-2023-0-4-92-100.
19. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
20. Berlin A.A., Basin V.E. Basics of polymer adhesion. Moscow: Khimiya, 1969, 318 p.
21. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
22. Silaeva A.A., Kuznetsova V.A., Kurshev E.V., Timoshina E.A. Influence of the dimensions of the reinforcing filler on the technological and functional properties of paints and varnishes. Materialovedenie, 2022, no. 2, pp. 32–38.
23. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: February 07, 2024). DOI: 10.18577/2713-0193-2022-0-1-120-128.
24. Goldberg M.M., Koryukin A.V., Kondrashov E.K. Coatings for polymer materials. Moscow: Khimiya, 1980, 287 p.
25. Vladimirsky V.N., Denker I.I., Chebotarevsky V.V. Installation for determining the erosion resistance of polymer coatings. Lakokrasochnye materialy i ikh primenenie, 1973, no. 1, pp. 54–56.
26. Kashcheev V.N. Abrasive wear of solids. Moscow: Nauka, 1970, 248 p.
27. Nepomnyashchiy E.F. Contact interaction of solids and calculation of friction and wear forces. Moscow: Nauka, 1971, 240 p.
28. Chernoyarov S.A., Ivanov A.V., Borkova A.N., Pomakhaeva L.I., Pomakhaev V.P., Kovalev I.E. Installation of a centrifugal self-balancing type TsS-871 and methods of testing materials for resistance to droplet impact erosion. Aviacionnye materialy i tehnologii, 2003, no. 3, pp. 68–72.
29. Kondrashov E.K. Paints and varnishes and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, 255 p.
30. Chernoyarov S.A., Ivanov A.V., Borkova A.N., Pomakhaeva L.I., Pomakhaev V.P., Ani-khovskaya L.I., Kuznetsova V.A. Study of resistance to drop impact erosion of fiberglass laminate with polymer protective coatings. Aviacionnye materialy i tehnologii, 2003, no. 3, pp. 73–75.
31. Erasov V.S., Kotova E.A. Erosion resistance of aviation materials to influence of solid (dust) particles. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 30–36.
32. Kramchenkov E.M. Study of erosive wear of materials: thesis abstract, Cand. Sci. (Tech.). Moscow, 1996, 26 p.
33. Borkova A.N. Erosion resistance of aviation materials upon impact with solid (dust) particles: thesis abstract, Cand. Sci. (Tech.). Moscow, 2006, 27 p.
34. Alekseev V.K., Bodryshev V.V., Nozhnitsky Yu.A. Some features of destruction and wear of materials during interaction with solid and liquid particles. Trenie i iznos, 1981, vol. 1. no. 2, рр. 239–246.
35. Kleis I.R. Fundamentals of material selection when working under conditions of gas abrasive wear. Trenie i iznos, 1980, vol. 1, no. 2, pp. 263–274.
36. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.