Articles
This work shows the effect of annealing in various modes on the hardness, tensile mechanical properties and microstructure of Al–Fe–Ni–Zr system alloy ingots. Alloys of this alloying system are characterized by stable high heat resistance and can be used in the manufacture of parts operating at elevated temperatures. Among the tested temperature and time parameters of annealing, the greatest hardening is provided by two-stage annealing according to the following regime: stage 1 – 320 °С, 30 h; stage 2 – 400 °С, 4 h.
2. Leenaers A., Koonen E., Parthoens Y. et al. Post-irradiation examination of AlFeNi cladded U3Si2 fuel plates irradiated under severe conditions. Journal of Nuclear Materials, 2008, vol. 375, рр. 243–251. DOI: 10.1016/j.jnucmat.2008.01.013.
3. Kim J.M., Yun H.S., Shin J.S. et al. Mold filling ability and hot cracking susceptibility of Al–Fe–Ni alloys for high conductivity applications. Jоurnal Teknologi, 2015, no. 75 (7), pp. 71–77. DOI: 10.11113/jt.v75.5176.
4. Zhang L., Wang J., Du Y. et al. Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and Calphad. Acta Materialia, 2009, vol. 57, pp. 5324–5341. DOI: 10.1016/j.actamat.2009.07.031.
5. Canté M.V., Brito C., Spinelli J.E., Garcia A. Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–1,0Fe–1,0Ni alloy. Materials & Design, 2013, vol. 51, pp. 342–346. DOI: 10.1016/j.matdes.2013.04.023.
6. Bian Z., Liu Y., Dai S. et al. Regulating microstructures and mechanical properties of Al–Fe–Ni alloys. Progress in Natural Science: Materials International, 2020, vol. 30, pp. 54–62. DOI: 10.1016/j.pnsc.2019.12.006.
7. Bian Z., Dai S., Wu L. et al. Thermal stability of Al–Fe–Ni alloy at high temperatures. Journal of Materials Research and Technology, 2019, vol. 8, pp. 2538–2548. DOI: 10.1016/j.jmrt.2019.01.028.
8. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2021-0-2-24-34.
9. Kablov E.N., Dynin N.V., Benarieb I., Zaitsev D.V., Sbitneva S.V. Changes in the structure and mechanical properties during heat treatment of aluminum alloys of the AlSi10Mg type, obtained by selective laser alloying. Metallovedenie i termicheskaya obrabotka metallov, 2022, no. 10, pp. 20–28. DOI: 10.30906/mitom.2022.10.20-28.
10. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25. DOI: 10.31044/1684-5781-2022-0-4-15-25.
11. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2023-0-3-62-77.
12. Belov N.A., Alabin A.N., Eskin D.G., Istomin-Kastrovskii V.V. Optimization of hardening of Al–Zr–Sc cast alloys. Journal of Materials Science, 2006, no. 41, pp. 5890–5899. DOI: 10.1007/s10853-006-0265-7.
13. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system, produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2023-0-4-23-35.
14. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review) Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 13, 2023). DOI: 10.18577/2713-0193-2021-0-3-19-34.
15. Belov N.A., Naumova E.A., Akopyan T.K. Aluminum-based eutectic alloys: new alloying systems. Moscow: Ore and Metals, 2016, 256 p.
16. Mikhaylovskaya A.V., Mochugovskiy A.G., Levchenko V.S. et al. Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy. Materials Characterization, 2018, vol. 139, pp. 30–37. DOI: 0.1016/j.matchar.2018.02.030.
17. Teleshov V.V., Zakharov V.V., Zapolskaya V.V. Development of aluminum alloys for heat-resistant wires with increased strength and high electrical conductivity. Tekhnologiya legkikh splavov, 2018, no. 1, pp. 15–26.
18. Belov N.A., Korotkova N.O., Dostaeva A.M., Alabin A.N. The influence of deformation-thermal treatment on the electrical resistance and strengthening of Al–0,2%Zr and Al–0,4%Zr. Non-ferrous metals, 2015, no. 10, pp. 13–18. DOI: 10.17580/tsm.2015.10.02.
19. Mochugovskiy A.G., Mikhaylovskaya A.V., Tabachkova N.Y., Portnoy V.K. The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy. Materials Science and Engineering: A, 2019, vol. 744, pp. 195–205. DOI: 10.1016/j.msea.2018.11.135.
20. Sidelnikov S.B., Dovzhenko N.N., Trifonenkov L.P. et al. Study of the structure of the metal and assessment of the properties of prototypes from an alloy of the Al–Zr system for the production of electrical conductors using casting and pressure processing methods. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2012, no. 1, pp. 51–55.
21. Bernhardt V.A., Drozdova T.N., Orelkina T.A. et al. Study of the influence of alloying elements on the strength and heat resistance of aluminum alloys for electrical purposes. Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologii, 2016, no. 9 (6), pp. 872–879. DOI: 10.17516/1999-494X-2016-9-6-872-879.
22. Mochugovskiy A.G., Tabachkova N.Yu., Ghayoumabadi M.E. et al. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys. Journal of Materials Science & Technology, 2021, vol. 87, pp. 196–206. DOI: 10.1016/j.jmst.2021.01.055.
23. Zakharov V.V., Fisenko I.A. On saving scandium when alloying aluminum alloys with it. Tekhnologiya legkikh splavov, 2013, no. 4, pp. 52–60.
24. Bernhardt V.A., Drozdova T.N., Orelkina T.A. et al. Development of annealing modes for wire rod made of Al–Zr system alloys to achieve a given set of properties. Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologii, 2014, no. 7 (5), pp. 587–595.
25. Belov N.A., Alabin A.N., Prokhorov A.Y. The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets. Russian Journal of Non-Ferrous Metals, 2009, no. 50, pp. 357–362. DOI: 10.3103/S1067821209040099.
The paper presents the results of determining the mechanical properties, comparative research of the microstructure and phase composition of medium-sized forgings made of heat-resistant magnesium alloy of the Mg–Zn–Zr–REE system in non-heat-treated and aged states. It was founded that the anisotropy of the main mechanical properties of forgings does not exceed 7–12,5 % in the longitudinal, transverse and altitude directions in all studied states. The highest and most stable level of properties is characteristic of the non-heat-treatedt state in the longitudinal direction. A special feature is the reduction of strength properties during aging by 5–8 %.
2. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
3. Kablov E.N. Main results and directions of development of materials for advanced aviation technology. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
4. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Agnew S.R. Wrought magnesium: A 21st century outlook. JOM: the journal of the Minerals, Metals & Materials Society, 2004, vol. 56 (5), pр. 20–21.
6. Akinina M.V., Mostyaev I.V., Volkova E.F., Alikhanyan A.A. Comparative studies of the structure, features of the phase composition and mechanical properties of deformed semi-finished products from VMD16 magnesium alloy. Aviation materials and technologies, 2022, no. 4 (69), paper no. 04. Available at: http://www.journal.viam.ru (accessed: September 17, 2023). DOI: 10.18577/2713-0193-2022-0-4-36-50.
7. Akinina M.V., Mostyaev I.V., Volkova E.F., Alikhanyan A.A. Investigation of the influence of alloying elements on the temperature threshold of ignition and fire resistance of a VMD16 wrought magnesium alloy. Aviation materials and technologies, 2022, no. 3 (68), paper no. 06. Available at: http://www.journal.viam.ru (accessed: September 18, 2023). DOI: 10.18577/2713-0193-2022-0-3-60-74.
8. Song J., She J., Chen D., Pan F. Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium Alloys, 2020, vol. 8, pр. 1–41.
9. Hagihara K., Yokotani N., Umakoshi Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics, 2010, vol. 18, pр. 267–276.
10. Gao J.J., Fu J., Zhang N., Chen Y.A. Structural features and mechanical properties of Mg–Y–Zn–Sn alloys with varied LPSO phases. Journal of Alloys and Compounds, 2018, vol. 768, pр. 1029–1038.
11. Negishi Y., Nishimura T., Iwasawa S. et al. Aging and tensile properties of Mg–Gd–Nd–Zr and Mg–Dy–Nd–Zr alloys. Journal of Japan Institute of Light Metals, 1994, vol. 44 (10), pр. 555–561.
12. Hagihara K., Okamoto T., Yamasaki M. et al. Electron backscatter diffraction pattern analysis of the deformation band formed in the Mg-based long-period stacking ordered phase. Scripta Materialia, 2016, vol. 117, pр. 32–36.
13. Yamasaki M., Hagihara K., Inoue S. et al. Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientaion axis analysis. Acta Materialia, 2013, vol. 61, pр. 2065–2076.
14. Kawamura Y., Yamasaki M. Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure. Materials Transactions, 2007, vol. 48 (11), pр. 2986–2992.
15. Volkova E.F., Rokhlin L.L., Ovsyannikov B.V. Modern deformable magnesium alloys: state and prospects for use in high-tech industries: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2021, 392 p.
16. Zheng K.Y., Dong J., Zeng X.Q., Ding W.J. Effect of precipitation aging on the fracture behavior of Mg‒11Gd‒2Nd‒0.4Zr cast alloy. Materials Science and Engineering, 2008, vol. 489 (1–2), pр. 44–54.
17. Wang H.Y., Rong J., Yu Z.Y. et al. Tensile properties, texture evolutions and deformation anisotropy of asextruded Mg‒6Zn‒1Zr magnesium alloy at room and elevated temperatures. Materials Science and Engineering. A, 2017, vol. 697, article 149e157.
18. Hagihara K., Kinoshita A., Sugino Y. et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Materialia, 2010, vol. 58, pр. 6282–6293.
19. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: September 18, 2023). DOI: 10.18577/2713-0193-2022-0-1-129-142.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Zamaraeva Yu.V., Loginov Yu.N., Proydakova L.A. Properties of a hot-pressed profile made of MA14 magnesium alloy, obtained under production conditions. Sfera glubokoy pererabotki alyuminiya, 2023, no. 2, pp. 28–31.
The article presents the results of patent and technical research in the field of developed technologies for smelting magnesium alloys using modifiers with refining ability of both Russian and foreign scientists and global companies. Research is focused on finding technologies production of modifiers in the form of tablets/bars/pieces; introducing powders into the melt of metals by mechanical mixing or in compacted form under a flux; increasing the environmental friendliness of the modification process with the joint introduction of salts and/or purging with inert gases; the use of external influences (ultrasound, vibrations, electromagnetic field) together with the input of a modifier.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 26, 2023). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Mukhina I.Yu., Uridiya Z.P., Trofimov N.V. Сorrosion-resistant casting magnesium alloys. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 15–23. DOI: 10.18577/2071-9140-2017-0-2-15-23.
6. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
7. Chukhrov M.V. Modification of magnesium alloys. Moscow: Metallurgiya, 1972, 176 p.
8. Emli E.F. Fundamentals of technology for the production and processing of magnesium alloys. Moscow: Metallurgy, 1972, 488 p.
9. Mukhina I.Yu. Fundamentals of technology for melting magnesium alloys in protective environments. Liteynoe proizvodstvo, 2021, no. 1, pp. 2–8.
10. Duyunova V.A., Leonov A.A., Molodtsov S.V. VIAM's contribution to the development of light alloys and the corrosion control of rocket and space technology products. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 20, 2023). DOI: 10.18577/2307-6046-2020-0-2-22-30.
11. Method for modifying aluminum-silicon alloys: pat. RU2623966C2 Rus. Federation; appl. 23.12.15; publ. 29.06.17.
12. Method for modifying magnesium alloys of the Mg–Al–Zn–Mn system: pat. RU2623965C2 Rus. Federation; appl. 23.12.15; publ. 27.06.17.
13. Method for modifying magnesium alloys: pat. RU2241775C1 Rus. Federation; appl. 26.11.03; publ. 10.12.04.
14. Method for modifying magnesium alloys of the Mg–Al–Zn–Mn system: pat. RU2030470C1 Rus. Federation; appl. 12.05.92; publ. 10.03.95.
15. Method for modifying magnesium alloys: pat. RU2617078C1 Rus. Federation; appl. 13.10.15; publ. 19.04.17.
16. Method for modifying magnesium alloys: pat. RU2610579C1 Rus. Federation; appl. 29.09.15; publ. 13.02.2017.
17. Complex modifier for aluminum-silicon hypereutectic alloys: pat. RU2287604C1 Rus. Federation; appl. 29.07.05; publ. 20.11.06.
18. Shungite as a modifier for aluminum-silicon alloys: pat. RU2609109C1 Rus. Federation; appl. 18.08.15; publ. 30.01.17.
19. Method for producing modified aluminum alloys: pat. RU2567779С1 Rus. Federation; appl. 15.07.14; publ. 10.11.15.
20. Method for grinding grains of magnesium alloys with different aluminum contents: pat. CN114293054A; appl. 05.12.11; publ. 11.04.22.
21. New application of magnesium-aluminum spinel: pat. CN108531760A; appl. 17.04.18; publ. 14.09.18.
22. Magnesium alloy modifier and method for its production: pat. CN102676898C; appl. 18.05.12; publ. 19.09.12.
23. Modifier for magnesium-aluminum alloy and method for its production: pat. CN115505804А; appl. 28.09.22; publ. 23.12.22.
24. Method for producing high-strength aluminum and magnesium alloys: pat. CN108624788A; appl. 17.03.17; publ. 09.10.18.
The low level of electrically conductive properties is one of the limiting factors for their use of thermoplastic materials for the production of instrument housings, radio-controlled equipment, structural elements of aircraft and ground equipment operating in conditions of dry air and interaction with other dielectrics. It is shown that by changing the type of the carbon filler, extra adding a modifier with carbon nanotubes and a plasticizer, it is possible to influence the electro-physical and mechanical characteristics of injection molded polymer compositions to achieve the required level of properties.
2. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: November 10, 2023). DOI: 10.18577/2071-9140-2022-0-1-41-50.
3. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
4. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: November 10, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
5. Meincke O., Kaempfer D., Weickmann H. et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 2004, vol. 45, pp. 739–748.
6. Kanbur Y., Küçükyavuz Z. Electrical and mechanical properties of polypropylene/carbon black composites. Journal of Reinforced Plastics and Composites, 2009, vol. 28, no. 18, pp. 2251–2260.
7. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites science and technology, 2009, vol. 69, no. 10, pp. 1486–1498.
8. Kondrashov S.V., Solovyanchik L.V., Minaeva L.A., Shorstov S.Yu. Thermoplastic polyamide composition with electrically conductive properties. Trudy VIAM, 2023, no. 4 (122), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2023-0-4-40-48.
9. Deng H., Lin L., Ji M. et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, vol. 39, no. 4, pp. 627–655.
10. Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites: Preparation, properties and applications. Eds. T. McNally, P. Pötschke. Woodhead Publishing, 2011, pp. 587–620.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
13. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
14. Kablov E.N. What is innovation. Nauka i zhizn, 2011, no. 5, pp. 2–6.
15. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
The properties of carbon fiber based on polyetheretherketone with different melt flow rate (from 52 to 1590 g/10 min) synthesized at the Federal State Unitary Enterprise «All-Russian Scientific-Research Institute of Aviation Materials» of National Research Center «Kurchatov Institute» have been studied. The dependences of the values of the deformation and strength characteristics of carbon fiber on the MFR of the polymer binder have been revealed. The maximum values of the MFR of polyetheretherketone for production of carbon fiber with physical and mechanical properties that are not inferior to the characteristics of sheet carbon fiber VCU-65, developed by NRC «Kurchatov Institute» – VIAM.
2. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2071-9140-2023-0-1-61-81.
3. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
4. Gunyaev G.M., Kablov E.N. Structural carbon fiber reinforced plastics at the turn of the century. Aviation materials. Selected works of «VIAM» 1932–2002. Moscow: VIAM, 2002, pp. 242–247.
5. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 02, 2023). DOI: 10.18577/2071-9140-2022-0-1-41-50.
6. Ivanov M.S., Sagomonova V.A., Morozova V.S. Domestic thermoplastic carbon plastic based on polyetheretherketone. Trudy VIAM, 2022, no. 12 (118), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 02, 2023). DOI: 10.18577/2307-6046-2022-0-12-49-62.
7. Beev A.A., Khashirova S.Yu., Beeva D.A., Shokumova M.U. Powdered aromatic polyetheretherketones and copolyetheretherketones. Plasticheskiye massy, 2022, no. 7–8, pp. 6–9. DOI: 10.35164/0554-2901-2022-7-8-6-9.
8. Mikitaev A.K., Salamov A.Kh., Beev A.A., Beeva D.A. Filling with polyetheretherketones (PEEK) as a method for producing composites with high performance properties. Plasticheskiye massy, 2017, no. 5–6, pp. 6–9. DOI: 10.35164/0554-2901-2017-5-6-6-9.
9. Lyashenko E.Yu., Yakovleva K.A., Andreeva T.I., Prudskova T.N., Kravchenko T.P., Gorbunova I.Yu., Davidyants N.G. Composite materials based on polyetheretherketone. Plasticheskiye massy, 2023, no. 1–2, pp. 11–13. DOI: 10.35164/0554-2901-2023-1-2-11-13.
10. Kharaev A.M., Bazheva R.Ch. Polyetheretherketones: synthesis, properties, application (review). Plasticheskiye massy, 2018, no. 7–8, pp. 15–23. DOI: 10.35164/0554-2901-2018-7-8-15-23.
11. May R. Polyetheretherketones. Encyclopedia of Polymer Science and Technology. Wiley, 2008, pp. 1–9. DOI:10.1002/0471440264.pst266.
12. Method for producing polyetheretherketone: pat. 2673242 Rus. Federation; appl. 27.06.18; publ. 23.11.18.
13. Gurenkov V.M., Gorshkov V.О., Chebotarev V.P., Prudskova Т.N., Andreeva Т.I. Comparative analysis of properties of polyetheretherketone of domestic and foreign production. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 41–47. DOI: 10.18577/2071-9140-2019-0-3-41-47.
14. Gurenkov V.M., Molotkova N.N., Shelonina I.M., Petrova M.A., Gorshkova M.Yu., Prudskova T.N. Molecular mass characteristics of polyetheretherketone (PEEK): analysis of determination conditions. Plasticheskiye massy, 2021, no. 11–12, pp. 3–6. DOI: 10.35164/0554-2901-2021-11-12-3-6.
15. Bogutsky V.B., Shron L.B. On the issue of using the melt flow index in polymer processing. Vestnik nauki i obrazovaniya Severo-Zapada Rossii, 2021, vol. 7, no. 2, pp. 1–8.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The chemical vapor deposition method ensures uniformity of the applied coating over the entire surface of the part, however, it has a number of drawbacks that are currently being technologically solved. The problem of applying the coating to all surfaces is being addressed with the help of masking pastes and powder mixtures. The main methods of chemical vapor deposition processes for applying diffusion coatings are considered. The superiority over coatings applied by powder methods is demonstrated.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Electrometallurgiya, 2022, no. 4, pp. 15–25. DOI: 10.31044/1684-5781-2022-0-4-15-25.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 4. Development of heat-resistant materials. Electrometallurgiya, 2022, no. 5, pp. 8–19. DOI: 10.31044/1684-5781-2022-0-5-8-19.
4. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2021-0-3-19-34.
5. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
6. Nerush S.V., Sviridov A.V., Afansiev-Khodykin A.N., Galushka I.A., Tarasov S.A. Development of brazing technology for parts obtained by additive technologies from cobalt based metal powder composition. Aviation materials and technologies, 2022, no. 2 (67), paper no. 02. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2022-0-2-5-17.
7. Marakhovskij P.S., Barinov D.Ya., Shorstov S.Yu., Vorobev N.N. On creation of physical and mathematical models of heat and mass transfer during manufacturing by additive technologies (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2022-0-2-111-119.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Khasanova L.A., Drevnyak V.V., Zhukov A.A., Saadatibai M. Analysis of defects in protective coatings during their application. Nauchnyy vestnik MGTU GA, 2015, no. 222, pp. 207–212.
10. Simonov V.N., Unchikova M.V., Pakhomova S.A. Improving the quality of chromo-alitized coatings obtained by the gas circulation method. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyenie, 2016, no. 2, pp. 134–145. DOI: 10.18698/0236-3941-2016-2-134-145.
11. Lesnikov V.P., Kuznetsov V.P., Konakova I.P., Moroz E.V. Design of complex protective coatings for monocrystalline cooled turbine blades of modern gas turbine engines. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, no. 3 (34), pp. 211–216.
12. Bakhrunov K.K. Mechanical properties of coatings on nickel heat-resistant alloys obtained by circulation chromium aluminizing. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyenie, 2011, no. 7, pp. 63–68.
13. Method of diffusion chromoalitization of the surface of a part: pat. 2270880 Rus. Federation; appl. 29.09.04; publ. 27.02.06.
14. A method for applying two-component chromium-aluminum coatings to the internal cavities of cooled working blades of gas turbines and a device for implementing the method: pat. 2520237 Rus. Federation; appl. 28.02.12; publ. 20.06.14.
15. Peng X. Metallic Coatings for high-temperature oxidation resistance. Thermal Barrier Coatings: Woodhead Publishing Series in Metals and Surface Engineering. Cambridge: Woodhead Publishing, 2011, pp. 53–74. DOI: 10.1533/9780857090829.1.53.
16. Method of protecting parts of the surface of a part: pat. 2232205 Rus. Federation; appl. 06.09.02; publ. 10.07.04.
17. Method of protecting the surface of the blade: pat. 2252110 Rus. Federation; appl. 09.10.03; publ. 20.05.05.
18. Diffusion Coating Mixtures: pat. US 4617202; appl. 09.10.81; publ. 14.10.86.
This article is devoted to the analysis of existing methods of increasing the fire resistance of elastomers. The stages and mechanism of the combustion process are considered. Methods for assessing flammability, flammability classes, and prescription methods for increasing the fire resistance of rubbers are described. Rubbers that are of interest for the creation of materials with reduced flammability are listed, and energy characteristics, by which their resistance to open flame is assessed, are given. Traditional flame-retardants used to increase the fire resistance of elastomers and the new ones are presented. The areas of application of low-flammable rubbers are shown.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry: abstracts of reports: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, vol. 1, pp. 25–26.
3. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, pp. 346–348.
4. Kablov E.N. The sixth technological structure. Nauka i zhizn, 2010, no. 4, pp. 2–7.
5. Venediktova M.A., Evdokimov A.A., Krasnov L.L., Petrova A.P. Research of possibility of application of fireproof paste for increase of fire safety of designs from polymeric composite materials. Trudy VIAM, 2021, no. 9 (103), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 27, 2023). DOI: 10.18577/2307-6046-2021-0-9-67-75.
6. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 17, 2023). DOI: 10.18577/2713-0193-2022-0-4-51-60.
7. Garashchenko A.N., Vinogradov A.V., Kobylkov N.V., Nikolchenkin A.A., Antipov E.A. Experimental and computational modeling of fire and thermal protection composite materials under high-temperature exposure. Aviation materials and technologies, 2022, no. 3 (68), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 09, 2023). DOI: 10.18577/2713-0193-2022-0-3-84-97.
8. Garashchenko A.N., Kulkov A.A., Strakhov V.L. The effect of the service life on the flame-retardant efficiency of the bulging coatings and the fire resistance of structures. Aviation materials and technologies, 2022, no. 2 (67), paper no. 09. Available at: http://www.journal.viam.ru (accessed: October 09, 2023). DOI: 10.18577/2713-0193-2022-0-2-97-110.
9. Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review). Trudy VIAM, 2022, no. 7 (113), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 27, 2023). DOI: 10.18577/2307-6046-2022-0-7-134-150.
10. Khomich V.A., Smirnova T.B. Assessment of the influence of flame retardant additives on the flammability of rubber. Education. Transport. Innovation. Construction: Materials of III National Scientific and Practical Conference. Omsk: SibADI, 2020, pp. 472–477.
11. Shashok Zh.S. Fundamentals of formulation development of elastomeric compositions: educational allowance. Minsk: BSTU, 2013, 98 p.
12. Rubber technology. Recipe development and testing: trans. from Engl. Ed. J.S. Dick. St. Petersburg: Scientific principles and technologies, 2010, 620 p.
13. Kodolov V.I. Flammability and fire resistance of polymer materials. Moscow: Khimiya, 1976, 157 p.
14. Kryzhanovsky V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Technical pro-perties of polymer materials: allowance, 2nd. ed. St. Petersburg: Profession, 2005, 249 p.
15. Berlin Al.Al. Combustion of polymers and polymer materials of reduced flammability. Sorosovskiy obrazovatel'nyy zhurnal, 1996, no. 9, vol. 2, pp. 57–63.
16. Venediktova M.A. Fire and heat-protective coatings with improved operational, technological and environmental characteristics: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2021, 114 p.
17. Koshelev F.F., Kornev A.E., Bukanov A.M. General rubber technology. 4th ed. Moscow: Khimiya, 1978, 528 p.
18. Zhirikova Z.M., Aloev V.Z., Tarchokova M.A. Fire resistance of polymer materials and methods for increasing it. Izvestiya Kabardino-Balkarskogo gosudarstvennogo agrarnogo universiteta im. V.M. Kokova, 2019, no. 3 (25), pp. 43–48.
19. Chaikun A.M., Venediktova M.A., Bryk Ya.A. Development of the compounding of rubber extremely high heat resistance with temperature range of exploitation from the –60 to +500 °С. Trudy VIAM, 2019, no. 1 (73), paper no. 03. Available at: http://viam-works.ru (accessed: November 27, 2023). DOI: 10.18577/2307-6046-2019-0-1-21-30.
20. Fire-resistant hose reinforced with fiberglass cord fabric: pat. 2589589 Rus. Federation; appl. 16.04.13; publ. 10.07.16.
21. Petrova N.P. Development of fire-resistant rubbers based on nitrile butadiene rubbers and general purpose rubbers using combinations of fire retardants: thesis abstract, Cand. Sc. (Tech.). Cheboksary: Printing House of Chuvash State Univ., 2015, 24 p.
22. Kodolov V.I. Flame retardants for polymer materials. Moscow: Khimiya, 1980, 274 p.
23. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G. Basic methods and mechanisms for increasing the fire and heat resistance of materials. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 4, pp. 46–60.
24. Fire-resistant rubber mixture: pat. 2522627 Rus. Federation; appl. 21.11.12; publ. 20.07.14.
25. Petrova N.M., Tarasov N.A., Ushmarin N.F. et al. The influence of fire retardants on the combustion kinetics of rubber based on SKI-3 and SKD rubbers. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 2, pp. 104–107.
26. Composition of flame retardant epdm rubber compound and its preparing method: pat. 100637655 KR; appl. 09.08.2005; publ. 24.10.06.
27. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber. Trudy VIAM, 2016, no. 2 (38), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 27, 2023). DOI: 10.18577/2307-6046-2016-0-2-9-9.
28. Fire-retardant material for coatings and method of its production: pat. 2105029 Rus. Federation; appl. 05.09.95; publ. 20.02.98.
29. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G., Zvada S.S., Gaidukova A.A. Study of the influence of highly dispersed intumescent fire retardant systems on the fire and heat resistance of elastomeric compositions. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 14, pp. 48–49.
30. Petrova N.P., Ushmarin N.F., Koltsov N.I. Increasing the fire resistance of NBR-based rubber using combinations of trichlorethyl phosphate with various flame retardants. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no. 19, pp. 94–97.
31. Hamdani S., Longuet C., Perrin D. et al. Flame retardancy of silicone-based materials. Polymer Degradation and Stability, 2009, no. 4, pp. 465–495. DOI: 10.1016/j.polymdegradstab.2008.11.019.
32. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Experimental research in the field of development of organic silicon rubbers with low flammability. Trudy VIAM, 2015, no. 10, paper no. 09. Available at: http://www.viam-works.ru (accessed: November 27, 2023). DOI: 10.18577/2307-6046-2015-0-10-9-9.
33. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Rubbers, sealants, fireproof and heat-shielding materials. Aviacionnye materialy i tehnologii, 2017, no. S, рр. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
34. Zimina A.S., Khakimullin Yu.N. The influence of aluminum hydroxide and magnesium hydroxide on the heat resistance of siloxane rubbers. Promyshlennoe proizvodstvo i ispol'zovaniye elastomerov, 2022, no. 3–4, pp. 22–26. DOI: 10.24412/2071-8268-2022-3-4-22-26.
35. Ryutkyanen E.A., Sirotinkin N.V., Belshina Yu.N. Composite heat-insulating polyurethane foam of reduced flammability. Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhby MCHS Rossii, 2012, no. 1, pp. 42–46.
36. Platonov M.M., Nesterova T.A., Nazarov I.A., Bejder E.Ya. Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 50–54.
37. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G., Tsybulko N.O. Study of the influence of a modified dispersed aluminosilicate filler on the fire resistance of elastomeric compositions. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18 , no. 14, pp. 54–55.
38. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.V. Study of the influence of transition metal compounds on the fire and heat resistance of elastomeric compositions. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2014, no. 22, pp. 68–71.
39. Ushmarin N.F., Petrova N.N., Sandalov S.I., Petrova N.P., Koltsov N.I. Development of fire-resistant rubbers based on nitrile butadiene rubbers using a combination of fire retardants. Kauchuk i rezina, 2012, no. 1, pp. 28–31.
40. Lomakin S.M., Zaikov G.E. Flame retardants for polymers. Kauchuk i rezina, 2010, no. 4, pp. 34–42.
41. Murzaev R.K., Abdumavlyanova M.K., Sodikova M.R., Tadzhikhodzhaev Z.A. Problems of classification of chemical products – fire retardant additives («fire retardants») for customs purposes. Universum: tekhnicheskiye nauki, 2021, no. 10–3 (91), pp. 73–79.
The question of development of methodology for testing, allowing to choose the most highly effective complex system of anticorrosion protection, is considered. The principles of testing of corrosion protection systems are noted/ Structurally similar specimens representing the connection of aluminum alloy 1163-AT and carbon plastic of mark VKU-25 with the help of fasteners from titanium alloy BT6 as with application of protective coatings on the basis of primers, enamels, varnishes, sealants and pastes, and without their application are made. The algorithm of evaluation of corrosion lesions on structural-like samples for selection of complex protection system is proposed.
2. Kablov E.N., Karimova S.A., Semenova L.V. Corrosion activity of carbon fiber reinforced plastics and protection of metal load-bearing structures in contact with carbon fiber reinforced plastics. Korroziya: materialy, zashchita, 2011, no. 12, pp. 1–7.
3. Rosenfeld I.L. Corrosion and protection of metals. Moscow: Metallurgy, 1969, 448 p.
4. Sinyavsky V.S., Valkov V.D., Kalinin V.D. Corrosion and protection of aluminum alloys. Moscow: Metallurgy, 1986, 76 p.
5. Zhang W., Frankel G.S. Transition between pitting and intergranular corrosion in AA2024. Electrochimica Acta, 2003, vol. 48, pp. 1193–1210.
6. Findlay S.J., Harrison N.D. Why aircraft fail. Materials Today: Materials feature, 2002, vol. 5, no. 11, pp. 18–25.
7. Gromov M.S., Shapkin V.S. Features of maintaining the airworthiness of an aircraft in conditions of maintenance-free operation. Nauchnyy vestnik MGTU GA. Seriya Aeromekhanika i prochnost, podderzhaniye letnoy godnosti VS, 2006, no. 103, p. 713.
8. Kinzie R.C. USAF Cost of Corrosion Maintenance. Sixth Joint FAA/DoD/NASA Conference on Aging Aircraft. San Francisco CA, 2002, p. 35.
9. Feigenbaum Yu.M., Dubinsky S.V. The influence of accidental operational damage on the strength and service life of aircraft structures. Scientific Bulletin of MSTU GA, 2013, no. 187, pp. 83–91.
10. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode. Trudy VIAM, 2018, no. 9 (69), paper no. 11. Available at: http://www.viam-works.ru (accessed: June 15, 2023). DOI: 10.18577/2307-6046-2018-0-9-105-118.
11. Kuzyakina V.A., Toleukhanov A.D. The problem of transition to an aircraft repair system based on the actual technical condition. Advanced technologies in transport systems. Orenburg: Orenburg State Univ., 2019, pp. 332–336.
12. Vinogradov S.S., Nikiforov A.A., Zakirova L.I. Cadmium replacement. Stage 2 – final. Galvanic thermal coating of zinc–tin system – real alternative to cadmium plating. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 59–66. DOI: 10.18577/2071-9140-2019-0-3-59-66.
13. Chaykun A.M., Venediktova M.A., Smirnov D.N., Gerasimov D.M. Features of the influence of atmospheric factors on the main technical characteristics of sealing materials of various types of aviation purposes. Trudy VIAM, 2019, no. 2 (74), paper no. 06. Available at: http://viam-works.ru (accessed: August 07, 2023). DOI: 10.18577/2307-6046-2019-0-2-58-67.
14. Merkulova Yu.I., Kuznetsova V.A., Novikova T.A. Investigation of properties of coating system based on fluorine polyurethane enamel and primer with low toxical pigment content. Trudy VIAM, 2019, no. 5 (77), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 15, 2023). DOI: 10.18577/2307-6046-2019-0-5-68-75.
15. Fomina M.A., Volkov I.A., Vdovin A.I., Yamshchikov E.I. Study of protective capacity anodic oxide coating with environmental friendly improved filling technology. Aviation materials and technologies, 2023, no. 4 (73), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 20, 2023). DOI: 10.18577/2713-0193-2023-0-4-101-110.
16. Sadkov V.V., Mirkin I.I. Ensuring corrosion resistance of aluminum structures in Tu aircraft. Non-ferrous metals, 2006, no. 11, pp. 73–76.
17. Kurs M.G., Karimova S.A. Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy. Aviacionnye materialy i tehnologii, 2014, no. 1, pp. 51–57. DOI: 10.18577/2071-9140-2014-0-1-51-57.
18. Simpson C.H., Ray C.J., Skerry B.S. Accelerated Corrosion Testing of lndustrial Maintenance Paints Using a Cyclic Corrosion Weathering Method. Journal of Protective Coatings and Linings, 1991, vol. 8, no. 5, p. 2836.
19. Kutyrev A.E., Fomina M.A., Chesnokov D.V. Development of a method of cyclic corrosion tests simulating natural exposure of aluminum alloys in a coastal atmosphere. Part 1. Basic principles. Korroziya: materialy, zashchita, 2019, no. 10, pp. 35–42.
20. Zhuk N.P. Course on the theory of corrosion and protection of metals. Moscow: Metallurgy, 1976, 472 p.
21. DuQuesnay D.L., Underhill P.R., Britt H.J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading. International Journal of Fatigue, 2003, vol. 25, no. 5, рр. 371–377.
22. Mills T., Sharp P.K., Loader C. The incorporation of pitting corrosion damage into F-111 fatigue life modeling. Canberra (Australia): Defense science and technology organization, 2002, 138 p.
23. Sprowls D.O. Evaluation of pitting corrosion. ASM Handbook. ASM International, 1987, vol. 13: Corrosion, pр. 516–521.
A method for the quantitative determination of water and qualitative content of hydrocarbons in oil-bearing rock is proposed using methods of simultaneous thermal analysis and gas chromatography with mass selective detection. A method for analyzing water and light hydrocarbons has been selected. A calibration characteristic was constructed to determine the quantitative water content. Samples of two rock types, namely, bituminous silicite and calcareous siliceous dolomite, were studied. There were developed dependencies of mass loss on temperature and time during gravimetric research. Using the results obtained, the water content in the oil-bearing rock was assessed. The error of the analysis method was calculated.
2. Shcherbakova K.O. Analysis of the problem of high water cut in the production of horizontal wells. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka, 2022, no. 6, pp. 29–38. DOI: 10.32454/0016-7762-2022-64-6-29-38.
3. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: September 13, 2023). DOI: 10.18577/2713-0193-2022-0-1-110-119.
4. Rodkina I.A., Kazak E.S. Quantitative determination of bound water in rocks of the Bazhenov Formation. Vestnik Moskovskogo universiteta. Geologiya, 2019, no. 4, pp. 34–44. DOI: 10.33623/0579-9406-2019-4-34-44.
5. Konovalova L.N., Zinovyeva L.M., Gukasyan T.K. Reservoir physics: textbook. Stavropol: Publ. house of North Caucasian Federal Univ., 2016, 120 p.
6. Ivanov M.K., Burlin Yu.K., Kalmykov G.A., Karnyushina E.E., Korobova N.I. Petrophysical methods for studying core material (Terrigenous sediments). Moscow: Publ. house of Moscow Univ., 2008, 112 p.
7. Erofeev V.T., Salnikova A.I., Kablov E.N., Startsev O.V., Varchenko E.A. Study of the durability of bitumen composites under conditions of variable humidity, ultraviolet irradiation and sea water. Fundamentalnye issledovaniya, 2014, no. 12–12, pp. 2549–2556.
8. Gimatudinov Sh.K., Shirkovsky A.I. Physics of oil and gas reservoirs. Moscow: Nedra, 1982, 311 p.
9. Тabarin V.A., Demyantseva S.D. Determination of bound water content in cores using microwaves. Neftegazovoye delo, 2009, no. 1, pp. 1–28.
10. Tabarin V.A., Pototsky A.Yu. Determination of bound water content in cores at ultrahigh frequencies. Vestnik Tyumenskogo gosudarstvennogo universiteta, 2014, no. 7, pp. 51–57.
11. Andreeva R.Yu. Comparison of capillary pressure values obtained by centrifugation and capillarimetry methods. Ufimskiy Gosudarstvennyy Neftyanoy Tekhnicheskiy Universitet, 2016, no. 2 (3), pp. 1–3.
12. Method for determining the content of bound water in oils and petroleum products: pat. 2044307 Rus. Federation; appl. 02.03.93; publ. 20.09.95.
13. Method for determining bound water in minerals: pat. 1229662 Rus. Federation; appl. 22.05.84; publ. 07.05.86.
14. Barinov D.Ya., Shorstov S.Yu., Razmahov M.G., Gulyaev A.I. Examination of thermophysical characteristics of a heat-protective material based on fiberglass during destruction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 13, 2023). DOI: 10.18577/2713-0193-2021-0-4-91-97.
15. Karachevtsev F.N., Dvoretskov R.M., Zagvozdkina T.N. Determination of silver in aluminum alloys by atomic emission spectrometry with inductively coupled plasma. Aviation materials and technologies, 2022, no. 1 (66), paper no. 12. Available at: http://www.journal.viam.ru (accessed: September 13, 2023). DOI: 10.18577/2713-0193-2022-0-1-143-152.
16. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Researches by method of infrared spectroscopy of structural changes of gels in heat treatment process when receiving high-temperature glassceramic materials on technology sol-gel. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 22–25.
17. Karachevtsev F.N., Letov A.F., Slavin A.V. Uncertainty of the measurements results of the chemical composition and its methods assessment. Trudy VIAM, 2021, no. 8 (102), paper no. 10. Available at: http://www.viam-works.ru (accessed: September 13, 2023). DOI: 10.18577/2307-6046-2021-0-8-84-91.
The article gives an overview of the most common and promising nondestructive methods of residual stress evaluation. Diffractometric, ultrasonic, magnetic, potential drop and eddy current methods of residual stress assessment are presented and their comparative analysis is carried out. Advantages and disadvantages of each method are given, and conclusions are made about application specifics of testing objects made of different materials. This article is relevant for specialists studying the problem of stress-strain state estimation of materials.
2. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 1. Materials and synthesis technologies. Electrometallurgiya, 2022, no. 2, pp. 2–12.
3. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matrix strength characteristics for the assessment of limit states of structural metallic materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
4. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021. no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 23, 2023). DOI: 10.18577/2071-9140-2021-0-1-104-118.
5. Kablov E.N., Startsev V.O. The influence of internal stresses on the aging of polymer composite materials (review). Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 805–822.
6. Monakhov A.D., Yakovlev N.O., Shershak P.V. Methods for the formation of objects with artificially created residual stresses. Aviation materials and technologies, 2023, no. 4 (73), paper no. 12. Available at: http://www.journal.viam.ru (accessed: November 23, 2023). DOI: 10.18577/2713-0193-2023-0-4-122-132.
7. Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components (Review). Materials and Design, 2012, no. 35, pp. 572–588. DOI: 10.1016/j.matdes.2011.08.022.
8. Schajer G., Ruud C. Overview of Residual Stresses and their measurement. Practical Residual stress: measurement methods. Ed. G.S. Schajer. John Wiley & Sons, Ltd, 2013, pp. 1–27. DOI: 10.1002/8402832.ch1.
9. Monakhov A.D., Yakovlev N.O., Avtaev V.V., Kotova E.A. Destructive methods for determining residual stresses (review). Trudy VIAM, 2021, no. 9 (103), paper no. 10. Available at: http://www.viam-works.ru (accessed: October 23, 2023). DOI: 10.18577/2307-6046-2021-0-9-95-104.
10. Dolle H. Influence of Multiaxial Stress States, Stress Gradients and Elastic Anisotropy on the Evaluation of (Residual) Stresses by X-rays. Journal of Applied Crystallography, 1979, no. 12, pp. 489–501. DOI: 10.1107.S0021889879013169.
11. Hayaski M., Ohkido S., Minakawa N., Murii Y. Residual Stress Distribution Measurement in Plastically Bent Carbon Steel by Neutron Diffraction. V International Conference on Residual Stresses. Sweden: Linkoping University, 1997, pp. 676–681.
12. ISO/TS 21432. Non-destructive testing – Standard test method for determining residual stress by neutron diffraction. Switzerland: Technical Specification, 2019, 15 р.
13. DSF/PrEN 15305. Non-destructive testing – Test method for Residual Stress by X-ray diffraction. Irish: European Standard Working Document, 2005, 88 p.
14. Reimers W., Pyzalla A., Broda M. et al. The Use of High-Energy Synchrotron Diffraction for Residual Stress Analyses. Journal of Materials Science Letters, 1999, no. 18, pр. 581–583. DOI: 10.1023/A:1006651217517.
15. Em V.T., Karpov I.D., Sumin V.V. Neutron measurements of residual stresses at the IR-8 reactor of the National Research Center «Kurchatov Institute». V mire nerazrushayushchego kontrolya, 2018, vol. 21, no. 1, pp. 20–23.
16. Ya M., Marquette P., Belahcene F., Lu J. Residual stresses in laser welded aluminium plate by use of ultrasonic and optical methods. Materials Science Engineering, 2004, vol. 382, pp. 257–264. DOI: 10.1016/j.msea.2004.05.020.
17. Marusina M., Fedorov A., Bychenok V., Berkutov I. Ultrasonic Laser Diagnostics of Residual Stresses. Measurement Techniques, 2015, no. 57, pp. 1154–1159. DOI: 10.1007/s11018-015-0595-4.
18. Karabutov A., Devichensky A., Ivochkin A. et al. Laser ultrasonic diagnostics of residual stress. Ultrasonics, 2008, no. 48, pp. 631–635. DOI: 10.1016/j.ultras.2008.07.006.
19. Baryakhtar V.G., Ivanov B.A. In the world of magnetic domains. Kyiv: Naukova Dumka, 1986, 159 p.
20. Blaow M., Evans J.T., Shaw B.A. The effect of microstructure and applied stress on magnetic Barkhausen emission in induction hardened steel. Journal of Materials Science, 2007, no. 42, pp. 4364–4371. DOI: 10.1007/s10853-006-0631-5.
21. Ilker Y.H., Cam I., Hakan G.C. Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique. NDT&E International, 2010, no. 43, pp. 29–33. DOI: 10.1016/j.ndteint.2009.08.003.
22. Kekalo I.B. Physical properties of metals. Section: Electrical properties: Laboratory workshop. Moscow, 1998, 139 p.
23. Vasilkov D.V., Aleksandrov A.S., Golikova V.V., Kochina T.B. Non-destructive testing of residual stresses in the surface layer of parts made of heat-resistant alloys after machining. IPDME-2021: collection of abstracts of the VIII Int. Scientific and Practical Conf. St. Petersburg: St. Petersburg State Univ., 2021, pp. 12–17.
24. Marchenkov A.Yu., Shkatov P.N., Pichugin S.S., Danilchenko S.A., Rudenko E.M., Chernov D.V. Development of a methodology for assessing changes in the specific electrical conductivity of a deformed material using the electropotential method of non-destructive testing. MIKMUS–2021. Moscow: Blagonravov Institute of Mechanical Science, 2021, pp. 563–569.
25. Bowler N. Four-point potential drop measuring for materials characterization. Measurement Science and Technology, 2010, no. 22, pp. 1–11. DOI: 10.1088/0957-0233/22/1/012001.
26. Hognestad H., Honne A. Determination of stress in ferromagnetic steel by potential drop measurements. Journal of Materials Science and Technology, 1998, vol. 14, pp. 1109–1114.
27. Blodgett M.P., Nagy P.B. Eddy current assessment of nearsurface residual stress in shot-peened nickel-base superalloys. Journal of nondestructive evaluation, 2004, no. 23, pp. 107–123. DOI: 10.1063/1.1916828.
28. Sekine Y., Soyama H. Evaluation of equibiaxial compressive stress introduced into austenitic stainless steel using an eddy current method. Journal of nondestructive evaluation, 2011, no. 31, pp. 99–107. DOI: 10.1007/s10921-011-0125-5.
29. Shitikov V.S., Kodak N.P., Golovkov A.N., Kudinov I.I. Analysis of the features of testing parts made of titanium and heat-resistant alloys using the eddy current method for the presence of cracks. Electrometallurgiya, 2020, no. 8, pp. 20–29. DOI: 10.31044/1684-5781-2020-0-8-20-29.
30. Shitikov V.S., Kodak N.P., Kutyrev A.E., Vdovin A.I. Application of pulse excitation to assess the degree of corrosion damage of aluminum alloys using the eddy current method. Electrometallurgiya, 2022, no. 9, pp. 34–39. DOI: 10.31044/1684-5781-2022-0-9-34-39.
Light-metal alloys
Shchetinina N.D., Savichev I.D., Kotlyarova M.R., Selivanov A.A. Features of heat treatment of a thermostable alloy of the
Al–Fe–Ni–Zr system
Volkova E.F., Mostyaev I.V., Akinina M.V., Alikhanyan A.A. Studies of the regularities of the heat treatment influence on the structure, phase composition and mecha-nical properties of medium-sized forgings made of heat-resistant alloy of the Mg‒Zn‒Zr‒REE system
Trofimov N.V., Tokarev M.S., Mukhina I.Yu., Uridia Z.P. Development trends of modern technologies for modifying magnesium alloy systems Mg–Al–Zn–Mn
Polymer materials
Solovyanchik L.V., Minaeva L.A., Gurov D.A. The influence of carbon filler type on the physical, mechanical and electrically conductive properties of polyamide-based injection molded thermoplastic materials
Composite materials
Morozova V.S., Ivanov М.S., Shestakov A.M., Pavlukovich N.G. The influence of the melt flow of polyetheretherketone on the characteristics of carbon fiber plastic based on it
Protective and functional
coatings
Kashin D.S., Stekhov P.A., ChesnokovD.V. Modern trends in the development of chemical vapor deposition coatings
Potapova A.I., Bobrova I.I., Evdokimov A.A., Venediktova M.А. Prescription techniques for creating elastomeric compositions with reduced flammability
Material tests
Kutyrev А.E., Vdovin A.I., Antipov V.V., Duyu-nova V.A. Methodological issues of stu-dying the effectiveness of anticorrosion protection used in aviation equipment products
Zaporozhskaya A.A., Marakhovsky P.S., Shorstov S.Yu. Methodological features of studying the water content in solid mate-rials with closed porosity
Pichugin S.S., Shitikov V.S., Golovkov A.N. Non-destructive methods for residual stress assessment