Articles
The directions of the development of casting blocks for casting small-sized blanks of nozzle blades at the UVNK-9A installation and the influence of the conditions of the technological process of directed crystallization on the formation of the single-crystal structure of the intermetallic alloy VIN4M-VI of KGO [001] are considered. The results of X-ray diffraction and metallographic studies of blanks of nozzle blades made of nickel alloy VIN4M-VI are presented, confirming the possibility of obtaining a single-crystal structure in them KGO [001], and the results of testing this alloy in pilot and serial production.
2. Drozdov A.A., Povarova K.B., Morozov A.E., Antonova A.V., Bulakhina M.A., Aladieva N.A. Dandritic liquidation in single-zerolins of intermetallic alloys based on Ni3Al, alloyed Cr, Mo, W, Ti, Co, Re. Metally, 2015, no. 4, pp. 48–55.
3. Buntushkin V.P., Bazileva O.A. Allocations based on nickel aluminides NiAl, Ni3Al for engineering. Aviatsionnaya promyshlennost, 1999, no. 2, pp. 47–50.
4. Buntushkin V.P., Bazileva O.A. High-temperature foundry of the Ni3Al aluminum-resistant alloy. Aviacionnye materialy i tehnologii, 2000, no. 3, pp. 20–24.
5. Kablov E.N., Povarova K.B., Buntushkin V.P., Kazan N.K., Bazilyov O.A. High-temperature alloys based on Ni3Al for neoclated nozzle and working blades of the gas turbine engine. Report Intersectoral Scientific and practical. Conf. "Problems of creating new materials for the air-cosmic industry". Moscow: VIAM, 2002, pp. 33–34.
6. Gerasimov V.V., Petrushin N.V., Visik E.M. Improvement of casting technology and composition of single crystal blades made of heat-resistant intermetallic alloy. Trudy VIAM, 2015, no. 3, paper no. 01. Available at: http://www.viam-works.ru (accessed: May 10, 2023). DOI: 10.18577/2307-6046-2015-0-3-1-1.
7. Kablov E.N., Ospennikova O.G., Petrushin N.V. New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades. Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
8. Povarova K.B., Buntushkin V.P., Kazan N.K., Drozdov A.A. A comparative analysis of the principles of the creation of heat-resistant nickel super-payments and alloys based on Ni3Al (γ-phase). Perspektivnye materialy, 2005, no. 2, pp. 9–19.
9. Kablov E.N., Petrushin N.V. Computer method for constructing casting heat-resistant nickel alloys. Foundry heat-resistant alloys. The effect of S.T. Kishkin. Moscow: Nauka, 2006, pp. 56–78.
10. Petrushin N.V., Elyutin E.S., Korolev A.V. Monocrystalline heat-resistant alloys: composition, technology, structure and properties. Materials of All-Rus. Sci.-tech. Conf. “Fundamental and applied research in the field of creating cast-resistant nickel and intermetal alloys and highly effective technologies for the manufacture of GTD parts”. Moscow: VIAM, 2017, pp. 271–303.
11. Visik E.M., Tikhomirova E.A., Petrushin N.V., Ospennikova O.G., Gerasimov V.V., Zhihushkin A.A. Technological testing of a new heat-resistant alloy with low density when casting turbine workers of monocrystalline blades. Metallurg, 2017, no. 2, рр. 34–40.
12. Gerasimov V.V. From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting). Trudy VIAM, 2016, no. 10, paper no. 1. Available at: http://www.viam-works.ru (accessed: May 18, 2023). DOI: 10.18577/2307-6046-2016-0-10-1-1.
13. Kablov E.N. Casting shoulder blades of gas turbine engines: alloys, technology, coating. Moscow: MISIS, 2006, 632 p.
14. Kolyadov EV, Visik EM, Gerasimov VV, Arginbaeva E.G. The influence of directional solidification parameters on the structure and properties of the intermetallic alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 18, 2023). DOI: 10.18577/2307-6046-2019-0-3-14-26.
15. Ma D., Wang F., Wu Q., Bogner S., Bührig A.S. Innovations in Casting Techniques for Single Crystal Turbine Blades of Superalloys. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys. Wiley, 2016, рр. 237–246. DOI: 10.1002/9781119075646.ch26.
16. Elliot A.J., Karney G.B., Pollock T.M., Gigliotti M.F.X. Issue in Processing by the Liquid-Sn Assisted Directional Solidification Technique. Superalloys 2004. ТМS Minerals, Metals & Materials Society, 2004, pp. 421−445.
17. Toloraya V.N., Demonis I.M., Ostroukhova G.A. The formation of a monocrystalline structure of alloy large-sized turbine blades of the GTD and GTU at the installations of high-gradient directed crystallization. Metallovedeniye i termicheskaya obrabotka metallov, 2011, no. 1, pp. 25–33.
18. Kuzmina N.A., Petrushin N.V., Visik E.M., Eremin N.N., Naprienko S.A. Application of the Laue method to study the structure of a nickel heat-resistant alloy sample destroyed during mechanical processing. Trudy VIAM, 2020, no. 10 (92), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2023). DOI: 10.18577/2307-6046-2020-0-10-3-12.
19. Tikhomirova E.A., Sidokhin E.F. Determination by the method of LAUE crystallographic orientation and devastating of the blocks of monocrystal products in the production of turbine shovels. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 3 (27), pp. 43–49.
20. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 18, 2023). DOI: 10.18577/2307-6046-2019-0-12-11-19.
21. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 22, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
The influence of the degree of corrosion damage on the strength characteristics of aluminum alloy are considered. Methods for assessing corrosion damage, including pitting corrosion, and mathematical models for assessing the durability of aluminum alloys are considered. The methods used for this assessment have high errors. It is proposed to use the approach based on the creation of corrosion damages identical to those that occur after full-scale tests.
2. Butushin S.V., Semin A.V. The integrity of airframe structural elements during long-term operation of civil aircraft. Nauchniy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2009, no. 141, pp. 30–37.
3. Feigenbaum Yu.M., Dubinsky S.V. Influence of accidental operational damage on the strength and service life of aircraft structures. Nauchniy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2013, no. 1 (187), pp. 83–91.
4. Lapaev A.V., Shapkin V.S. On the issue of assessing the effect of airframe corrosion damage on the airworthiness of aircraft in terms of fatigue strength. Nauchniy vestnik GosNII GA, 2014, no. 4, pp. 17–21.
5. Kutyrev A.E., Chesnokov D.V. Analysis of data on field tests of aluminum alloys and the development of their complex corrosion tests. Materials of the III Intern. sci.-tech. conf. "Corrosion, Aging, and Biostability of Materials in Marine Climates". Moscow: VIAM, 2018, p. 80.
6. Grinevich A.V., Lutsenko A.N., Karimova S.A. Durability of products and corrosion fatigue of structural materials. Voprosy materialovedeniya, 2013, vol. 1, no. 73, p. 220.
7. Gerasimenko A.A., Yampolskaya T.E. Exfoliating corrosion of aluminum alloys. I. Causes of occurrence and features of the development of the process. Diagnostics, modeling, forecasting. Zashchita metallov, 2000, vol. 36, no. 2, pp. 195–202.
8. Kablov E.N., Karimova S.A., Semenova L.V. Corrosion activity of carbon plastics and protection of metal load-bearing structures in contact with carbon fiber. Korroziya: materialy, zashchita, 2011, no. 12, pp. 1–7.
9. Karimova S.A., Pavlovskaya T.G., Chesnokov D.V., Semenova L.V. Corrosion activity of carbon plastics and protection of metal load-bearing structures in contact with carbon fiber. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 54, no. 1, pp. 110–116.
10. Ignatovich S.R., Karuskevich M.V., Yutskevich S.S., Maslyak T.P. Resource and durability of aviation equipment: textbook. Kyiv: NAU, 2015, 18 p.
11. Timofeev A.N. Criteria for the corrosion state of aircraft structures. Nauchniy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 2008, no. 4, pp. 141–154.
12. Zubarev A.P., Lapaev A.V., Lapaev V.P. Using a generalized parameter of corrosion damage to assess the durability of structural elements with corrosion damage. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2007, no. 119, pp. 30–32.
13. Timofeev A.N. Review of methods for assessing the admissibility of corrosion damage to aircraft structures. Novosti materialovedeniya. Nauka i tekhnika, 2014, no. 4, paper no. 04. Available at: http://www.materialsnews.ru (accessed: February 07, 2023).
14. Semenychev V.V. Corrosion resistance and properties of aluminum alloys for aviation purposes in a marine subtropical climate: Cand. Sc. (Tech.). Moscow: VIAM, 2006, 125 p.
15. Rudzey G.F., Bezhenar A.N. Reliability assessment of aviation equipment with operational damage using statistical analysis methods. Politransportnye sistemy, 2020, no. 11, pp. 519–525.
16. Asadulina E.Yu. On the issue of fatigue failure of aircraft parts. Izbrannye voprosy nauki XXI veka, 2021, no. 6, pp. 82–86.
17. Kadirbekova K.K., Khurshudyan D.D. Typical destruction of metal structures of aviation equipment. Transport shelkovogo puti, 2020, no. 4, pp. 29–31.
18. Plotnikov N.I. Resource contradictions of air transport safety. Problemy bezopasnosti poletov, 2010, no. 10, pp. 23–29.
19. Nesterenko B.G., Nesterenko G.I. Survivability of aircraft structures. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2007, no. 119, pp. 57–69.
20. Nesterenko B.G. Requirements for fatigue and survivability of civil aircraft structures. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2011, no. 163, pp. 49–59.
21. Nesterenko B.G., Nesterenko G.I. Problems of fatigue and survivability of civil aircraft structures. Prochnost konstruktsiy letatelnykh apparatov, 2013, no. 1, pp. 85–86.
22. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
23. Grinevich A.V., Zhirnov A.D., Karimova S.A. Predicting the fatigue life of metallic materials under corrosive action. Reports conf. "Hydro-Aviasalon-2012". Moscow: TsAGI, 2010, pp. 38–45.
24. Lutsenko A.N., Grinevich A.V., Karimova S.A. Strength characteristics of aircraft airframe materials under humid conditions. Voprosy materialovedeniya, 2013, vol. 1, no. 73, p. 212.
25. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Investigation of corrosion failure of deformable aluminum alloys during full-scale accelerated tests. Part 1. Voprosy materialovedeniya, 2016, no. 1 (85), pp. 116–126.
26. Lapaev A.V. Methods for assessing the effect of airframe corrosion damage on the airworthiness of civil aviation aircraft: Dr. Sc. (Tech.). Moscow: State scientific research Institute of Civil aviation, 2013, 74 p.
27. Kuzyakina V.A., Toleukhanov A.D. The problem of transition to an aircraft repair system according to the actual technical condition. Progressivnye tekhnologii v transportnykh sistemakh, 2019, no. 14, рр. 332–336.
28. Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Fiber optic sensors for monitoring corrosion processes in units of aviation engineering (review). Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 26–34. DOI: 10.18577/2071-9140-2017-0-3-26-34.
29. Startsev O.V., Molokov M.V., Medvedev I.M., Erofeev V.T. Determination of the influence of the atmosphere on building elements by sensors of temperature, humidity and corrosion. Vse materialy. Entsiklopedicheskiy spravochnik, 2017, no. 3, pp. 61–68.
30. Erofeev V.T., Smirnov I.V., Voronov P.V. et al. Study of the resistance of polymer coatings under the influence of climatic factors of the Black Sea coast. Fundamentalnye issledovaniya, 2016, no. 11 (part 5), pp. 911–924.
31. Laptev A.B., Prokopenko A.N., Bakshaev S.I., Abramova M.G. Carrying out full-scale climatic tests to confirm the persistence of service characteristics of structurally similar elements, parts and assemblies of aviation equipment throughout the entire life cycle. XII All-Rus. conf. on testing and research of the properties of materials "TestMat" – "Modern aspects in the field of research of structural-phase transformations in the creation of new generation materials". Moscow: VIAM, 2020, pp. 479–488.
32. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
33. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
34. Borisov S.P. Forecasting of operational cyclic damage of light alloys in aircraft structural elements: thesis, Dr. Sc. (Tech.). Moscow: MGTU GA, 1998, 130 p.
35. Rybkov A.V., Gerasimova D.S. Evaluation of the influence of corrosion damage on the characteristics of long-term operated aircraft. Reshetnevskiye chteniya, 2013, vol. 1, no. 17, pp. 375–377.
36. Lapaev A.V., Shapkin V.S., Volchek V.A. Study of corrosion damage to elements of aircraft structures of Tu-154, Il-86 aircraft. Nauchniy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2006, no. 100, pp. 25–28.
37. Zubkov B.V., Skripchenko A.S. Scientific and methodological foundations for constructing procedures for airworthiness control of aircraft during operation. Nauchniy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2005, no. 86, pp. 10–17.
38. Belov V.K., Timofeev A.N. Analysis of the characteristics of corrosion damage required to assess the residual fatigue life of aircraft structures. Aviatsionnaya promyshlennost, 2011, no. 3, pp. 37–42.
39. Timofeev A.N., Belov V.K., Korelina O.V. Evaluation of the admissibility of corrosion damage to a structural element. Aviatsionnaya promyshlennost, 2012, no. 2, p. 12.
40. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber. Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 86–94. DOI: 10.18577/2071-9140-2015-0-1-86-94.
41. Grinevich A.V., Karimova S.A., Chesnokov D.V. Search for the equivalent of corrosion damage when assessing the fatigue durability of structural metal materials. Reports conf. "Hydro-Aviasalon-2012". Moscow: TsAGI, 2012, pp. 264–266.
42. Kuzin Ya.S., Chesnokov D.V., Antipov V.V., Kutyrev A.E. Accounting for a temporary factor when applying corrosion lesions to aluminum alloys by an electrochemical method. Report Scientific and Technical. Conf. "Metal science and modern developments in the field of casting technology, deformation and thermal processing of light alloys". Moscow, 2016, p. 26.
43. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode. Trudy VIAM, 2018, no. 9 (69), paper no. 11. Available at: http://www.viam-works.ru (accessed: March 21, 2023). DOI: 10.18577/2307-6046-2018-0-9-105-118.
44. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. A study of the use of combined anodic dissolution of aluminum alloys with not high sensibility to IGC evidence from alloy of Al–Li–Cu system with the purpose of predicting loss of mechanical properties at atmospheric corrosion. Trudy VIAM, 2021, no. 2 (96), paper no. 12. Available at: http://www.viam-works.ru (accessed: March, 21, 2023). DOI: 10.18577/2307-6046-2021-0-2-109-118.
45. Bellinger N.C., Liao M. Corrosion and fatigue modeling of aircraft structures. Corrosion Control in the Aerospace Industry, 2009, vol. 2, pp. 172–191.
46. Li L., Chakik M., Prakash R. A review of corrosion in aircraft structures and graphene-based sensors for advanced corrosion monitoring. Sensors, 2021, vol. 21, no. 9, p. 2908.
47. Crawford B.R., Sharp R.K. Equivalent Crack Size Modelling of Corrosion Pitting in an AA7050-T7451 Aluminium Alloy and its Implications for Aircraft Structural Integrity. Victoria: Defense Science and Technology Organization, 2012, 82 p.
48. Lincoln J.W. Corrosion and fatigue: Safety issue or economic issue. USAF Aircraft Structural Integrity Program-ASIP, 1998, vol. 98, pp. 1–3.
49. Shlyannikov V., Sulamanidze A., Yarullin R. Fatigue and creep-fatigue crack growth in aviation turbine disk simulation models under variable amplitude loading. Engineering Failure Analysis, 2022, vol. 131, p. 105886.
50. Nejad R.M., Berto F., Wheatley G., Tohidi M. et al. On fatigue life prediction of Al-alloy 2024 plates in riveted joints. Structures, 2021, vol. 33, pp. 1715–1720.
51. Dubinsky V.S, Senik V.Y. Estimation of the Corrosion Damage of the Airplanes in Operation by Means of Mathematical Statistics (TsAGI). I Report for joint workshop held in Milan university, Milan, 2006, 31 p.
52. Chubb J.P., Morad T.A., Hockenhull B.S., Bristow J.W. The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium. International Journal of fatigue, 1995, vol. 17, no. 1, pp. 49–54.
53. Qiu Y., Liu R., Zou L., Chi H. Influence of grain boundary precipitates on intergranular corrosion behavior of 7050 Al alloys. Coatings, 2022, vol. 12, no. 2, p. 249.
54. Shapkin V.S., Laptev A.V., Matveev K.A. et al. Analytical-Experimental Evaluation of the Fatigue Resistance for Aircraft Fuselage Skin in the Case of Corrosion Damage. Russian Aeronautics, 2021, vol. 64, pp. 181–188.
55. DuQuesnay D.L., Underhill P.R., Britt H.J. Fatigue crack growth from corrosion damage in7075-T6511 aluminium alloy under aircraft loading. International Journal of Fatigue, 2003, vol. 25, no. 5, pp. 371–377.
56. Mills T., Sharp P.K., Loader C. The incorporation of pitting corrosion damage into F-111 fatigue life modelling. Canberra: Defense Science and Technology Organization Canberra, 2002, 45 p.
57. Russo S., Sharp P.K., Dhamari R., Mills T.B. The influence of the environment and corrosion on the structural integrity of aircraft materials. Fatigue & Fracture of Engineering Materials & Structures, 2009, vol. 32, no. 6, pp. 464–472.
58. Mills T., Clark G., Loader C., Sharp P.K. Review of F-111 structural materials. Victoria: Defense Science and Technology Organization, 2001, 35 p.
59. Scheuring J.N., Grandt Jr.A.F. Mechanical properties of aircraft materials subjected to long periods of service usage. Journal of Engineering Materials and Technology, 1997, vol. 119 (4), pp. 380–386.
60. Molent L. A review of equivalent precrack sizes in aluminium alloy 7050-T7451. Fatigue & Fracture of Engineering Materials & Structures, 2014, vol. 37, no. 10, pp. 1055–1074.
61. Huang Y., Ye X., Hu B., Chen L. Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6. International Journal of Fatigue, 2016, vol. 88, pp. 217–226.
62. Kim S., Burns J.T., Gangloff R.P. Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu. Engineering Fracture Mechanics, 2009, vol. 76, no. 5, pp. 651–667.
63. Correia J.A.F.O., Blason S., De Jesus A.M.P. et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Engineering Failure Analysis, 2016, vol. 69, pp. 15–28.
64. Alves A.S.F., Sampayo L.M.C.M.V., Correia J.A.F.O. et al. Fatigue life prediction based on crack growth analysis using an equivalent initial flaw size model: Application to a notched geometry. Procedia Engineering, 2015, vol. 114, pp. 730–737.
65. Zhao T., Liu Z., Du C. et al. Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory. Corrosion Science, 2018, vol. 142, pp. 277–283.
66. Liu Y., Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. International Journal of Fatigue, 2009, vol. 31, no. 3, pp. 476–487.
67. Cole G.K., Clark G., Sharp P.K. The Implications of Corrosion with respect to Aircraft Structural Integrity. Melbourne Aeronautical and Maritime Research Lab., 1997, 56 р.
68. Bernard S., Covino Jr. Corrosion: Fundamentals, Testing, and Protection: ASM Handbook. ASM International, 2003, vol. 13A, p. 1135.
69. Sharp P.K., Mills T.B., Clark G. Modeling of fatigue crack growth from pitting and exfoliation corrosion. Toulouse: International Committee on Aeronautical Fatigue, 2001, 21 p.
The article presents a theoretical study of the structure isomerization methylsilylene, silaethylene, silylcarbene. Calculation of the geometry dimensions in the researched isomers was performed non-empirical method according to theory of density functional, the second-order Meller–Plesset perturbation theory, coupled clusters. The calculation chemical reaction isomerization has shown the most likely a transitional state structure. We defined that silaethylene in singlet state has least energy.
2. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 12, 2023). DOI: 10.18577/2071-9140-2021-0-4-70-80.
3. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crys-tallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: April 12, 2023). DOI: 10.18577/2307-6046-2020-0-3-3-12.
4. Eliel E.L., Wilen S.H. Stereochemistry of organic compounds. NY: John Wiley and Sons Inc., 1994, 1296 р.
5. Sidorov D.V., Schavnev А.А., Solodkin P.V., Kirilin A.D. Quantum chemical calculation of intermolecular interaction methylsilane molecules during the pyrolysis process. Trudy VIAM, 2019, no. 11 (83), paper no. 5. Available at: http://www.viam-works.ru (accessed: April 10, 2023). DOI: 10.18577/2307-6046-2019-0-11-44-52.
6. Martynova N.S., Eliseev S.A., Novikov Y.N., Filyanin P.E. Low-energy nuclear isomerism. Vestnik SPbGU. Fizika i khimiya, 2017, vol. 4 (62), is. 3, pp. 236–248.
7. Audi G., Bersillon O., Blachot J., Wapstra A. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 2003, vol. 729, pp. 3–128.
8. Shibaev V.P., Bobrovsky A.Yu. Liquid crystalline polymers: development trends and photo -controlled materials. Uspekhi khimii, 2017, vol. 86 (11), pp. 1024–1072.
9. Smirnova I.G., Gildeeva G.N., Kukes V.G. Optical isomeria and biological activity of drugs. Vestnik moskovskogo universiteta. Seriya 2. Khimiya, 2012, vol. 53, pp. 147–156.
10. Singhal S., Mehta J., Desikan R. Antitumor activity of thalidomide in refractory multiple myeloma. The New England Journal of Medicine, 1999, vol. 341 (21), pp. 1565–1571.
11. Bykov A.V., Matveeva V.G., Sulman E.M. Some approaches to asymmetric catalytic hydration. Khimicheskaya tekhnologiya, 2006, vol. 49, pp. 64–68.
12. Busacca A., Fandrick R., Song J. The growing impact of catalysis in the pharmaceutical industry. Advanced synthesis catalysis, 2011, vol. 353, рр. 1825–1864.
13. Adam D. Chemistry prize tailor-made reactions. Nature, 2001, vol. 413, p. 661.
14. Safonov V.V. The structure, properties and use of silicon compounds. Moscow: RGU im. A.N. Kosygina, 2018, 160 p.
15. Maier G., Reisenauer H., Glatthaar J. Reactions of silicon atoms with methane and silane in solid argon: a matrix-spectroscopic study. Chemistry – А European Journal, 2002, vol. 8, pp. 4383–4391.
16. Gordon M. The methylsilylene-silaethylene-silylcarbene isomerization. Chemical Physics Letters, 1978, vol. 54, pp. 9–13.
17. Hopkinson A., Lien M., Csizmadia I. Ab initio calculation on the singlet and triplet energy surface for CSiH2. Chemical Physics Letters, 1983, vol. 95, pp. 232–234.
18. Wiberg B. Basis set effect on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. Journal of computational chemistry, 2004, vol. 25, pp. 1342–1346.
19. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian-09: revision A.02. Wallingford–Wallington CT: Gaussian Inc., 2009, 12 р.
20. Sidorov D.V., Kirilin A.D., Schavnev А.А., Melentev А.А., Flotskiy А.А., Grunin А.А. Transition state chemical reaction producing silaethylene from methylsilane. Trudy VIAM, 2022, no. 9 (115), paper no. 09. Available at: http://www.viam-works.ru (accessed: April 11, 2023). DOI: 10.18577/2307-6046-2022-0-9-111-120.
A review of imide oligomers with phenylethynyl (PE) groups is presented. Physico-chemical properties of different oligomers are disclosed, new series of imide oligomers with phenylethynyl groups are described, thermal stability, glass transition temperatures (Tg) and curing temperatures are analyzed. The effect of molecular weight of PETI-5 oligomer on various properties is also presented.
2. Scola D.A. Polyimid Resins. ASM Handbook. ASM International, 2001, vol. 21: Composites, pp. 105–119.
3. Zharinov M.A., Petrova A.P., Babchuk I.V., Akhmadieva K.R. Heat-resistant polyimide adhesives of structural purposes. Klei. Germetiki. Tekhnologii, 2021, no. 4, pp. 2–8.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of the FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
5. Connell J.W., Smith J.G., Hergenrother P.M. Oligomers and Polymers Containing Phenylethynyl Groups. Journal of Macromolecular Science Part C: Polymer Reviews, 2000, vol. 40, no. 2, рр. 207–230.
6. Jensen B.J., Bryant R.G., Smit J.G., Hergenrother P.M. Adhesive Properties of Cured Phenylethynyl-Terminated imide Oligomers. Journal Adhesion, 1994, vol. 54, pp. 57–66.
7. Vannucci R. Non-MDA Polyimides. High Temple Workshop, 1995, vol. 15, pp. 16–19.
8. Chuang K.C., Kinder J.D., Hull D.L., Rigid-Rod Polyimides Based on Noncoplanar 4,4ʹ-Biphenylenediamines: A Review of Diamines. Macromolecules, 1997, vol. 30, no. 23, pp. 7183–7190.
9. Gray R. Resin Transfer Molding of High Temperature Composites. High Temple Workshop, 1998, vol. 17, рр. 20–22.
10. Smith J.G., Connell J.W., Hergenrother P.M. The Effect of Phenylethynyl Terminated Imide Oligomer Molecular Weight on the Properties of Composites. Journal Composite Materials, 2000, vol. 34, no. 7, рр. 614–627.
11. Wright M.E., Schorzman D.A., Pence L.E. Thermally Curing Aryl−Ethynyl End-Capped Imide Oligomers: Study of New Aromatic End Caps. Macromolecules, 2000, vol. 33, no. 15, рр. 8611–8617.
12. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
13. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 01, 2023). DOI: 10.18577/2071-9140-2021-0-4-70-80.
14. Hong W., Yuan L., Ma Y. Resin Transfer Moldable Fluorinated Phenylethynyl-Terminated Imide Oligomers with High Tg: Structure–Melt Stability Relationship. Journal Polymers, 2021, vol. 13, p. 903.
15. Cano R.J., Jensen B.J. Effect of Molecu ar Weight on Processing and Adhesive Properties of the Phenylethynyl-Terminated Polyimide LARCTM-PETI-5. Journal Adhesion, 1997, vol. 60, рр. 113–123.
16. Kurnosov A.O., Petrova A.P., Slavin A.V., Vavilova M.I., Kurshev Е.V. Comparison of the properties of glass-reinforced plastics based on polyimide binders of solution and melt type. Trudy VIAM, 2022, no. 10 (116), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 03, 2023). DOI: 10.18577/2307-6046-2022-0-10-42-54.
17. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 10, 2023). DOI: 10.18577/2307-6046-2021-0-1-43-53.
18. Johnston J.A., Li F.M., Harris F.W. Synthesis and characterization of imide oligomers end-capped with 4-(phenylethynyl) phthalic anhydrides. Journal Polymer, 1994, vol. 35, no. 22, pp. 4865–4873.
19. Su C.-N., Ji M., Fan L., Yang S.-Y. Phenylethynyl-endcapped oligomides with low melt viscosities and high Tg: Effects of the molecular weights. High Performance Polymers, 2011, vol. 23, p. 352–361.
20. Meyer G.W., Glass T.E., Grubs H.J., McGrath J.E. Synthesis and Characterization of Polyimides Endcapped with Phenylethynylphthalic Anhydride. Journal of Polymer Science, 1995, vol. 33, p. 2141–2149.
21. Jensen B.J., Bryant R.G., Hergenrother P.M. Chemistry and properties of a phenylethynyl terminated polyimide. Journal of applied polymer science, 1996, vol. 59, no. 8, pp. 1249–1254.
22. Thermally stable, highly fused quinoxaline composition and method of synthesis: pat. US 3876614A; appl. 17.04.74; publ. 08.04.75.
23. Hergenrother P.M. Acetylene Terminated Phenyl-as-triazine Oligomers and Polymers. Macromolecules, 1978, vol. 11, pp. 332–339.
24. Jensen B.J., Chang A.C. Synthesis and Characterization of Modified Phenylethynyl Imides. High Performance Polymers, 1998, vol. 10, no. 2, pp. 168–175.
25. Connell J.W., Smith J.G., Hergenrother P.M., Rommel M.L. Neat resin, adhesive and composite properties of reactive additive/PETI-5 blends. Journal High Performance Polymers, 2000, vol. 12, pp. 323–333.
26. Cano R.J., Jensen B.J. Out of the Autoclave Fabrication of LaRC™ PETI-9 Polyimide Laminates, NASA Langley Research Center Hampton. Materials Science, 2013, vol. 10, pp. 56–68.
27. Hou T.H., Cano R.J., Jensen B.J. IM7/LaRC™ MPEI-1 polyimide composites. High Performance Polymers, 1998, vol. 10, no. 2, pp. 181–183.
28. Kolpachkov E.D., Kurnosov A.O., Papina S.N., Petrova A.P. Specificity of the formation of fiberglass based on PMR-polyimides. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 12, 2023) DOI: 10.18577/2307-6046-2022-0-7-37-49.
29. Pryde C.A. Effects of Chemical and Physical Changes During Cure. Journal Polymer Science. Part A: Polymer Chemistry, 1989, vol. 27, pp. 711.
30. Rommel M.L., Connell J., Hergenrother P.M. Neat Resin, Adhesive and Composite Properties of Reactive Additive/PETI-5 Blends. Materials Science, 2000, vol. 23, pp. 104–109.
31. Connell J.W., Smith J.G., Hergenrother P.M. Properties of Imide Oligomers Containing Pendent Phenylethynyl Groups. Journal Adhesion, 1997, vol. 60, no. 15, pp. 12–22.
32. Ghose S., Cano R.J., Watson K.A. High temperature VARTM of phenylethynyl terminated imides. High Performance Polymers, 2009, vol. 21, no. 5, pp. 648–653.
33. Connell J.W., Smith J.G., Hergenrother P.M. High Temperature Transfer Molding Resins: Status of PETI-298 and PETI-330. Journal Technologies, Inc. Marietta, 2003, vol. 21, no. 2, pp. 10–15.
34. Hergenrother P.M. Phenylethynyl terminated imide oligomer. Encyclopedia of Polymer Science and Engineering, 1988, vol. 1, p. 61.
35. Hergenrother P.M., Bryant R.G., Jensen B.J., Havens S.J. Phenylethynyl-terminated imide oligomers and polymers therefrom. Journal Polymer Science. Part A: Polymer Chemistry, 1994, vol. 32, pp. 3061.
36. Smith J.G., Connell J.W., Hergenrother P.M. Polyimides from 2,3,3′,4′-biphenyltetracarboxylic dianhydride and aromatic diamines. Journal Composite Materials, 2002, vol. 36, no. 19, pp. 2250–2255.
37. Hergenrother P.M., Smith J.G. Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides. Journal Polymer, 1994, vol. 35, pp. 4857–4864.
38. Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review). Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 15, 2023). DOI: 10.18577/2307-6046-2022-0-6-80-95.
39. Tsampas S., Fernberg P., Joffe R. Development of novel high Tg polyimide-based composites. Part 2: Mechanical characterization. Journal of Composite Materials, 2018, vol. 52, no. 2, pp. 261–274.
40. Zrida H., Fernberg P., Ayadi Z. Microcracking in thermally cycled and aged Carbon fibrepolyimide laminates. International Journal of Fatigue, 2016, vol. 23, no. 12, pp. 26–32.
The basic principles of the technological process of manufacturing highly loaded parts made of polymer composite materials with a complex curved aerodynamic contour using the method of multifragment forming are shown. As an example, the technological process of manufacturing parts of a dust-proof device of a helicopter gas turbine engine is considered. The methods of calculating the main characteristics of prepregs used for laying out parts, schemes for manufacturing these parts and the results of the work done are given.
2. Polymer composite materials: structure, properties, technology. Ed. A.A. Berlin. St. Petersburg: Profession, 2009, 556 p.
3. Gardymov G.P., Meshkov E.V., Pchelintsev A.V et al. Composite materials in rocket and space apparatus building. St. Petersburg: SpecLit, 1999, 117 p.
4. Timoshkov P.N., Khrulkov A.V., Usacheva M.N., Purvin K.E. Technological features of the manufacture of thick-walled parts of the PCM (review). Trudy VIAM, 2019, no. 3 (75), paper no. 07. Available at: http://viam-works.ru (accessed: April, 20 2023). DOI: 10.18577/2307-6046-2019-0-3-61-67.
5. Kablov E.N. The main directions of development of materials for aerospace technology. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
6. Rivin G.L. Repair of structures from polymer composite materials of aircraft. Ulyanovsk: UlGTU, 2000, 39 p.
7. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
8. Vasilevich Yu.V., Gorely K.A., Sakhonenko V.M. et al. Mechanics of prepregs – calculation of products from reinforced composite materials: in 2 parts. Minsk: BNTU, 2016, part 1, 10 p.
9. Composite materials: directory. Ed. V.V. Vasilyeva et al. Moscow: Mashinostroenie, 1990, 14 p.
10. Krysin V.N., Krysin M.V. Technological processes of forming, winding and gluing structures. Moscow: Mashinostroenie, 1989, 78 p.
11. Dzhur E.O., Kuchma L.D., Manko T.A. et al. Polymer composite materials in rocket and space technology. Kyiv: Vishcha osvita, 2003, 278 p.
12. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
13. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 20, 2023). DOI: 10.18577/2307-6046-2021-0-1-43-53.
14. Gulyaev I.N., Safronov A.M., Satdinov R.A. Comparison online and offline of prepregs manufacturing technologies and properties of carbon fiber plastics. Trudy VIAM, 2022, no. 6 (112), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 17, 2023). DOI: 10.18577/2307-6046-2022-0-6-49-57.
15. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 20, 2023). DOI: 10.18577/2307-6046-2020-0-67-38-44.
16. Gulyaev I.N., Pavlovskiy K.A. High modulus carbon plastics for civil aviation equipment (review). Trudy VIAM, 2023, no. 3 (121), paper no. 09. Available at: http://www.viam-works.ru (accessed: April, 20 2023). DOI: 10.18577/2307-6046-2023-0-3-95-106.
The work revealed the features of the influence of carbon-containing components on the synthesis of the borosilicate system by the sol-gel method. The influence of the nature (coal, starch, sugar) and the amount of the carbon-containing component on the gelation time, the behavior of the gel during the drying process and the retention of carbon in it were studied. The gelation time was 20; 312 and 2 hours for the sols of the SiO2–B2O3 system with starch, sugar and coal with starch, respectively. The gel with finely divided coal and dissolved in water and acid starch contained a maximal amount of carbon (24 %).
2. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
3. Zhitnyuk S.V. Oxygen-free ceramic materials for the space technics (review). Trudy VIAM, 2018, no. 8 (68), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 06, 2023). DOI: 10.18577/2307-6046-2018-0-8-81-88.
4. Voronov V.A., Chainikova A.S., Lebedeva Yu.E., Zhitnyuk S.V. Production, physico-mechanical and tribotechnical properties of hot-pressed carbon-ceramic composite material on the basis of silicon carbide. Aviation materials and technologies, 2022, no. 2 (67), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 03, 2023). DOI: 10.18577/2713-0193-2022-0-2-74-84.
5. Wang L., Fan S., Sun H. et al. Pressure-less joining of SiCf/SiC composites by Y2O3–Al2O3–SiO2 glass: Microstructure and properties. Ceramic International, 2020, vol. 46, no. 17, pp. 27046–27056.
6. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. High-Temperature Structural Composite Materials Based on Glass and Ceramics for Advanced Aircraft Products. Steklo i keramika, 2012, no. 4, pp. 7–11
7. Babashov V.G., Varrik N.M., Maksimov V.G., Samorodova O.N. Oxide fiber coated with silicon carbide for producing composite materials. Aviation materials and technologies, 2021, no. 3 (64), paper no. 09. Available at: http://www.journal.viam.ru (accessed: February 06, 2023). DOI: 10.18577/2713-0193-2021-0-3-94-104.
8. Wang X., Zhao J., Cui E. et al. Nano/microstructures and mechanical properties of Al2O3–WC–TiC ceramic composites incorporating graphene with different sizes. Materials Science & Engineering A, 2021, vol. 812, art. 141132.
9. Cabet C. Review: Oxidation of SiC/SiC Composites in Low Oxidizing and High Temperature Environment. Materials Issues for Generation IV Systems. NATO Science for Peace and Security. Series B: Physics and Biophisics, 2008, pp. 351–366.
10. Lee K.N., Fox D.S., Eldrige J.I. et al. Miller Upper temperature limit of Environmental Barrier Coatings based on mullite and BSAS. Journal of American Ceramic Society, 2003, vol. 86, no. 8, pp. 1299–1306.
11. Jacobson N.S. Corrosion of Silicon-Based Ceramics in Combustion Environments. Journal of American Ceramic Society, 1993, vol. 76, no. 1, pp. 2–28.
12. Kablov E.N., Chainikova A.S., Shchegoleva N.E., Grashchenkov D.V., Kovaleva V.S., Belyanchikov I.O. Synthesis, structure and properties of aluminosilicate glass ceramics modified with zirconium oxide. Inorganic Materials, 2020, vol. 56, no. 10, pp. 1123–1129.
13. Alhaji A., Shoja Razavi R., Ghasemi A. et al. Modification of Pechini sol–gel process for the synthesis of MgO–Y2O3 composite nanopowder using sucrose-mediated technique. Ceramics International, 2017, vol. 43, pp. 2541–2548.
14. Zanurin N.A., Johari J., Alias H. et al. Research progress of sol-gel ceramic coating: a review. Materials today: proceedings, 2022, vol. 48, part 6, pp. 1849–1854.
15. Shabanova N.A., Sarkisov P.D. Fundamentals of the sol-gel technology of nanodispersed silica. Moscow: Akademkniga, 2006, 309 p.
16. Tonooka K., Shimokawa K., Nishimura O. Preparation and luminescent properties of sol–gel derived SiO2–B2O3: Tb glass films. Solid State Ionics, 2002, vol. 151, is. 1–4, pp. 105–110.
17. Grandi S., Tomasi C., Cassinelli V. et al. SiO2–B2O3 xerogels: The problem of boron leaching. Journal of Non-Crystalline Solids, 2012, vol. 358, is. 14, pp. 1631–1637.
18. Medvedev E.F., Minko N.I. Features of the synthesis of silicate and borosilicate glass materials in an aqueous medium. Vestnik BSTU im. V.G. Shukhov, 2016, no. 10, pp. 156–165.
19. Charles R.J. Metastable immiscibility of the B2O3–SiO2 system. Journal of American Ceramic Society, 1968, vol. 51, is. 1, pp. 220–225.
20. Villegas M.A., Aparico M., Duran A. Thick sol-gel coatings based on the B2O3–SiO2 system. Journal of Non-Crystalline Solids. 1997, vol. 218, pp. 146–150.
21. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The main advantages of additive technologies (AT) include the possibility of obtaining parts of a complex configuration of the external and internal structure, as well as the material utilization factor, which is close to unity. For example, traditional methods for producing products from ceramic materials cannot compete with AT in this parameter. In this review, the principle of the stereolithography method is considered, works are presented, the purpose of which is to obtain ceramic products of varying complexity by stereolithography, a description of the methods for obtaining ceramic paste, from which products are obtained.
2. Zhangwei Ch., Ziyong Li, Junjie Li et al. 3D printing of ceramics: a review. Journal of the European Ceramic Society, 2019, vol. 39, pp. 661–687.
3. Deckers J., Vleugels J., Kruth J.-P. Additive Manufacturing of Ceramics: a review. Journal of Ceramic Science Technology, 2014, vol. 04, is. 05, pp. 245–260.
4. Gibson J., Rosen D., Stacker B. Technology of additive manufacturing. 3D printing, rapid prototyping and direct digital manufacturing. Moscow: Technosfera, 2016, 83 p.
5. Kruglov D.V., Pavlyukova N.L. Advantages and disadvantages of additive technologies. Energy-2019, 2019, vol. 4, pp. 65–66.
6. Williams C.B. Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure: Dissertation. Georgia Institute of Technology, 2008, 390 p.
7. Abouliatim Y., Chartier T., Abelard P. et al. Optical characterization of stereolithography alumina suspensions using the Kubelka–Munkmodel. Journal of the European Ceramic Society, 2009, vol. 29, is. 5, pp. 919–924.
8. Badev A., Abouliatim Y., Chartier T. et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. Journal of Photochemistry and Photobiology A: Chemistry, 2011, vol. 222, is. 1, pp. 117–122.
9. Smirnov A.V., Chugunov S.S., Tikhonov A.A. Development and research of methods for additive production of BaTiO3 ceramics using laser stereolithography processes. Perspective technologies and materials: materials of scientific and practical. conf. with international participation. Sevastopol: Sevastopol State Univ., 2020, pр. 182–185.
10. Santoliquido O., Camerota F., Rosa A. et al. A novel device to simply 3D print bulk green ceramic components by stereolithography employing viscous slurries. Open Ceramics, 2021, vol. 5, p. 100089.
11. Bae C.-J., Halloran J.W. Concentrated suspension-based additive manufacturing – viscosity, packing density, and segregation. Journal of European Ceramic Society, 2019, vol. 39, pp. 4299–4306.
12. Xing H., Zou B., Lai Q. et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 2018, vol. 338, pp. 153–161.
13. Xing H., Zou B., Liu X. et al. Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing. Powder Technology, 2020, vol. 359, pp. 314–322.
14. Griffith M.L., Halloran J.W. Freeform fabrication of ceramics via stereolithography. Journal of American Ceramic Society, 1996, vol. 79, pp. 2601–2608.
15. Wang Z., Huang C., Wang J. et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceramic International, 2019, vol. 45, pp. 3902–3909.
16. Zhang S., Sha N., Zhao Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions. Journal of European Ceramic Society, 2017, vol. 37, pp. 1607–1616.
17. Deckers J., Wlugels J., Root J.-P. Additive manufacturing of ceramics: a review. Ceramic Science and Technology, 2014, vol. 5, no. 4, pp. 245–260.
18. Klocke F., Derichs C., Ader C. et al. Investigations on laser sintering of ceramic slurries. Production Engineering, 2007, vol. 1, is. 3, pp. 279–284.
19. Travitzky N., Bonet A., Dermeik B. et al. Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 2014, vol. 16, is. 6, pp.729–754.
20. Tang H.H. Direct laser fusion to form ceramic parts. Rapid Prototyping Journal, 2002, vol. 8, is. 5, pp. 284–289.
21. Krieger I.M., Dougherty T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transaction of Society of Rheology, 1959, vol. 3, pp. 137–148.
22. Camargo I.L., Mateus Mota Morais M.M. et al. A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceramics International, 2021, vol. 47, pp. 11906–11921.
23. Jie T., Xiaotian G., Haotian Ch. et al. The preparation of SiC ceramic photosensitive slurry for rapid stereolithography. Journal of the European Ceramic Society, 2021, vol. 41, is. 5, pp. 10115–10126.
24. Guojiao D., Rujie H., Keqiang Zh. et al. Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror. Ceramic International, 2020, vol. 46, is. 11, pp. 18785–18790.
25. Kihm H., Yang H.S. Design optimization of a 1-m lightweight mirror for a space telescope. Optical Engineering, 2013, vol. 52, is. 9, pp. 1239–1246.
26. Xing H., Zou B., Li Sh. et al. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceramics International, 2017, vol. 43, is. 18, pp. 16340–16347.
27. Sun J., Huang C., Wang J. et al. Mechanical properties and microstructure of ZrO2–TiN–Al2O3 composite ceramics. Materials Science and Engineering, 2006, vol. 416, is. 1, pp. 104–108.
28. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Ceramic materials aviation engineering (review). Trudy VIAM, 2018, no. 12 (72), paper no. 06. Available at: http://www.viam-works.ru (accessed: February 06, 2023). DOI: 10.18577/2307-6046-2018-0-12-54-61.
29. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
30. Zhitnyuk S.V. Oxygen-free ceramic materials for the space technics (review). Trudy VIAM, 2018, no. 8 (68), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 06, 2023). DOI: 10.18577/2307-6046-2018-0-8-81-88.
31. Kablov E.N., Karachevtsev F.N., Shilov A.L. et al. Thermodynamics and vaporization of ceramics based on the Gd2O3–ZrO2 and Gd2O3–HfO2 systems studied by kems. Journal of Alloys and Compounds, 2022, vol. 908, pp. 164575.
32. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The erosion-corrosion-resistant coatings applicable to protect impellers of a gas-turbine engine compressor made of titanium alloys are studied. The properties of promising systems of ion-plasma coatings are studied: (TiN–CrN), TiN/Ti/TiN, (TiN–Ti–Al–Cr–N)–TiN. Erosion and corrosion resistance tests were carried out, residual stresses in the coating were investigated, high-cycle fatigue tests and metallographic studies were carried out. The influence of the thickness and design of coatings on the erosion and corrosion resistance of titanium alloys, the endurance limit has been established.
2. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
3. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for gas turbine engine compressor blades. Russian metallurgy (Metally), 2017, vol. 2017, no. 6, pp. 494–504.
4. Muboyadzhyan S.A. Erosion-resistant coatings for GTE compressor blades. Metally, 2009, no. 3, pp. 3–20.
5. Uglov V.V., Prikhodko Zh.L., Khodasevich V.V., Prikhodko I.I., Eizner A.B. Influence of the composition on the mechanical properties of coatings formed by the method of condensation with ion bombardment. Fizika i khimiya obrabotki materialov, 2003, no. 5, pp. 48–52.
6. Jianliang L., Xuhai Z., Fangfang G. et al. Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance. Surface & Coatings Technology, 2019, no. 377, pp. 124922–124933. Available at: http://www.elsevier.com/locate/surfcoat (дата обращения: 22.05.2023). DOI: 10.1016/j.surfcoat.2019.124922.
7. Imamutdinov V.E., Veksler Yu.V., Styazhkin V.A. Erosion-heat-resistant coating for protection of compressor rotor parts. Konstruktsii iz kompozitsionnykh materialov, 2006, no. 4, pp. 228–230
8. Grzesik W., Malecka J., Kwasny W. Identification of oxidation process of TiAlN coatings versus heat resistant aerospace alloys based on diffusion couples and tool wear tests. CIRP Annals – Manufacturing Technology, 2020, no. 69, pp. 41–44. DOI: 10.1016/j.cirp.2020.04.024.
9. Zhang M., Cheng Y., Xin L. et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy. Corrosion Science, 2020, no. 166, pp. 108476–108486. DOI: 10.1016/j.corsci.2020.108476.
10. Alexandrov D.A., Gorlov D.S. The Research of erosion resistance and residual stresses in layered ion-plasma coatings. Trudy VIAM, 2022, no. 12 (118), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 22, 2023). DOI: 10.18577/2307-6046-2022-0-12-87-95.
11. Duyunova V.A., Oglodkov M.S., Gerasimov M.V., Kozlov I.A., Knyazev A.V. Features of formation of electrolyte-plasma coatings from nickel-containing electrolytes on titanium alloys. Trudy VIAM, 2021, no. 7 (101), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 22, 2023). DOI: 10.18577/2307-6046-2021-0-7-86-94.
12. Zavarzin S.V., Duyunova V.A., Fomina M.A. High-temperature corrosion of titanium alloys (review). Trudy VIAM, 2023, no. 2 (122), paper no. 03. Available at: http://www.viam-works.ru (accessed: May, 22 2023). DOI: 10.18577/2307-6046-2023-0-4-27-39.
13. Alexandrov D.A., Gorlov D.S., Budinovskii S.A. Application of a complex of ion-plasma technologies to protect the compressor blades of a helicopter gas-turbine engine from erosion wear and fretting. Trudy VIAM, 2021, no. 2 (96), paper no. 08. Available at: http://www.viam-works.ru (accessed: May, 22 2023). DOI: 10.18577/2307-6046-2021-0-2-71-80.
14. Vereschaka A.A., Grigoriev S.N. Study of cracking mechanisms in multi-layered composite nanostructured coatings. Wear, 2017, no. 378–379, pp. 43–57. DOI: 10.1016/j.wear.2017.01.101.
15. Tillmann W., Grisales D., Stangier D. et al. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface & Coatings Technology, 2021, no. 406, pp. 126664–126675. DOI: 10.1016/j.surfcoat.2020.126664.
16. Xu Y.X., Riedl H., Holec D. et al. Thermal stability and oxidation resistance of sputtered Ti–Al–Cr–N hard coatings. Surface & Coatings Technology, 2017, no. 324, pp. 48–56. DOI: 10.1016/j.surfcoat.2017.05.053.
17. Asanuma H., Polcik P., Kolozsvari S. et al. Cerium doping of Ti–Al–N coatings for excellent thermal stability and oxidation resistance. Surface & Coatings Technology, 2017, no. 326, pp. 165–172. DOI: 10.1016/j.surfcoat.2017.07.037.
18. Sui X., Li G., Zhou H. et al. Evolution behavior of oxide scales of TiAlCrN coatings at high temperature. Surface & Coatings Technology, 2019, no. 360, pp. 133–139. DOI: 10.1016/j.surfcoat.2019.01.016.
19. Peskova A.V., Sukhov D.I., Mazalov P.B. Exami-nation of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
The paint and varnish materials and coverings with special optical properties (camouflage, light-reflective, heatreflecting, heat-radiating, fluorescent, instrument) for some products of aviation and aerospace engineering are presented. Main characteristics of the paint coatings applied to giving of the painted surface of the flight vehicle and its parts, special optical properties for increase of efficiency of its work are given in difficult conditions.
2. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM. 2012, pp. 319–329.
3. Kondrashov E.K. Paint and varnish materials and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, 255 p.
4. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: June 28, 2023). DOI: 10.18577/2307-6046-2019-0-5-62-67.
5. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: July 03, 2023). DOI: 10.18577/2713-0193-2022-0-1-93-104.
6. Kozlova A.A., Kondrateva O.V., Kuznetsova V.A. The main problems of using domestically produced moisture-proof electrical insulating materials for automated selective application on printed assemblies (review). Aviation materials and technologies, 2022, no. 1 (69), paper no. 07. Available at: http://www.journal.viam.ru (accessed: July 03, 2023). DOI: 10.18577/2713-0193-2022-0-4-72-83.
7. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
8. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: July 03, 2023). DOI: 10.18577/2713-0193-2022-0-1-120-128.
9. Sklyarov N.M. A journey of 70 years – from wood to supermaterials. Ed. E.N. Kablov. Moscow: MISIS-VIAM, 2002, 212 p.
10. Goldberg M.M. Materials for paint and varnish coatings. Moscow: Khimiya, 1972, 208 p.
11. Kondrashov E.K., Vereninova N.P. Thermoregulating paint coatings of the "solar reflector" class. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 2, pp. 24–28.
12. Livshits M.L., Pshiyalkovsky B.I. Paintwork materials: Ref. allowance. Moscow: Khimiya, 1982, 236 p.
13. Kablov E.N. Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 3–9.
14. Armor for "Buran". Materials and technologies of VIAM for the ISS "Energiya-Buran". Ed. E.N. Kablov. Moscow: Nauka i zhizn, 2013, 128 p.
15. Technical Standard Order TSO-C69c. Emergency Evacuation Slides, Ramps, Ramp/Slides, and Slide/Rafts. Washington, DC: Department of Transportation Federal Aviation Administration Aircraft Certification Service, 1999. 47 p.
16. Kozlova A.A., Kondrashov E.K., Barbotko S.L., Vereninova N.P. Heat-reflective coating for protection of expandable structure on against influence of the heat transfer rate. Trudy VIAM, 2018, no. 4 (64), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 28, 2023). DOI: 10.18577/2307-6046-2018-0-4-75-83.
17. Kondrashov E.K., Vereninova N.P. Heat-resistant enamels with high reflective and low emissivity. Lakokrasochnye materialy i ikh primenenie, 2019, no. 10, pp. 36–41.
18. Kondrashov E.K. Thermoregulating inorganic and polymeric coatings ISS "Buran". Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 8, pp. 33–38.
The influence of solvents in the composition of the paintwork material on the properties of coatings was studied. For research, paints and varnishes based on polyurethane film-forming agents cured with an isocyanate hardener were selected. Solvent R-189 from various manufacturers was used to dilute paints and varnishes. Using the method of gas chromatography-mass spectrometry, the qualitative and quantitative composition of the used solventsR-189 was determined. It has been established that the studied solvents from various manufacturers do not comply with TU 6-10-1725–78, and a significant effect of the composition of the R-189 solvent on the properties of the obtained coatings has also been shown.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: April 10, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Buznik V.M., Kablov E.N. Materials for the development of the Arctic and cold territories. Reports XXI Mendeleevsky Congress for General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 21.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Denker I.I., Vladimir V.N. Technology for the coloring of aircraft and helicopters of civil aviation. Moscow: Mashinostroenie, 1988, 124 p.
6. Kablov E.N. Materials and chemical technologies for aviation technology. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
7. Kablov E.N. The role of chemistry in the creation of materials of the new generation for complex technical systems. Reports XX Mendeleevsky Congress for General and Applied Chemistry. Ekaterinburg: SB of RAS, 2016, pp. 25–26.
8. Rosenfeld I.L., Rutinstein F.I., Zhigalova K.A. Protection of metals from corrosion with paint coatings. Moscow: Khimiya, 1987, 224 p.
9. Chebotarevsky V.V., Kondrashov E.K. Technology of paintwork in mechanical engineering. Moscow: Mashinostroenie, 1978, 295 p.
10. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: April 17, 2023). DOI: 10.18577/2307-6046-2019-0-5-62-67.
11. Problems of protective LKM. Review of the materials of the European Conference "Protective Coating" (Protective Coating), Dusseldorf. Lakokrasochnyye materialy i ikh primenenie, 2013, no. 9, pp. 33–35.
12. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
13. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: April 04, 2023). DOI: 10.18577/2713-0193-2022-0-1-110-119.
14. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: May 17, 2023). DOI: 10.18577/2713-0193-2022-0-1-93-104.
15. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 05, 2023). DOI: 10.18577/2713-0193-2022-0-2-120-130.
16. Raw materials and semi-products for paint and varnishes: reference. Ed. M.M. Goldberg. Moscow: Khimiya, 1978, 510 p.
17. Yakovlev A.D. Chemistry and technology of paintwork: textbook for universities. St. Petersburg: Khimiya, 2010, 448 p.
18. Okhrimenko I.S., Verkholatsev V.V. Chemistry and technology of film-forming substances. Leningrad: Khimiya, 1978, 392 p.
19. Sorokin M.F., Kochnova Z.A., Shode L.G. Chemistry and technology of film-forming substances. Moscow: Khimiya, 1989, 477 p.
20. Goldberg M.M. Materials for paintwork. Moscow: Khimiya, 1972, 343 p.
21. Orlova O.V., Fomicheva T.N., Okunchikov A.Z., Kursk G.R. Technology of varnishes and colors. Moscow: Khimiya, 1980, 392 p.
22. Denker I.I., Volberg V.V. Technology for painting products in mechanical engineering. Moscow: Vysshaya Shola, 1990, 303 p.
23. Tag A.A. Physico-chemistry of polymers. Moscow: Khimiya, 1968, 536 p.
24. Chalyh A.E. Diffusion in polymer systems. Moscow: Khimiya, 1987, 312 p.
25. Varnish and paint coatings in mechanical engineering: reference. Ed. M.M. Goldberg. Moscow: Mashinostroenie, 1974, 576 p.
26. Zubov P.M., Sukhareva L.A. The structure and properties of polymer coatings. Moscow: Khimiya, 1982, 256 p.
27. Brock T., Groteklaus M., Mishka P. European leadership for paint and varnishes and coatings. Ed. L.N. Mashlyakovsky. Moscow: Paint-Media, 2004, 548 p.
28. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
29. Fundamentals of analytical chemistry. Ed. Yu.A. Zolotov. Moscow: Vysshaya Shola, 2004, vol. 1, 360 p.
30. Ponomarenko S.A., Shimkin A.A. Chromatographic methods of analysis: the possibilities of application in the aviation industry. Zavodskaya laboratoriya. Diagnostika materialov, 2017, no. 83 (4), pp. 5–13.
The impurities of 68 elements in high (5N) purity nickel were determined by the method of high-resolution glow discharge mass spectrometry. Sample preparation for analysis is described. To achieve maximum analytical signals from all the required elements, the appropriate equipment settings were selected. Spectral interferences are eliminated by applying high resolution. Relative sensitivity coefficients were calculated for all analyzed elements using a standard nickel sample.
2. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: June 01, 2023). DOI: 10.18577/2071-9140-2021-0-3-11-18.
3. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 01, 2023). DOI: 10.18577/2071-9140-2023-0-2-3-22.
4. Gorbovets M.A., Hodinev I.A., Ryzhkov P.V. Low-cycle fatigue at high temperatures of heat-resistant nickel-based alloy manufactured by selective laser melting. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 65–73. DOI: 10.18577/2071-9140-2019-0-4-65-73.
5. Yoon Y.Y., Lee K.Y., Lee G.H. Neutron activation analysis of high purity nickel by solvent extraction using 2-benzylpyridin/benzene. Journal of Radioanalytical and Nuclear Chemistry. 1996, vol. 210, no. 1, pp. 55–63.
6. State Standart 849–2018. Nickel is primary. Specifications. Moscow: Standinform, 2018, pp. 3–4.
7. Kablov E.N., Cabina E.B., Morozov G.A., Muravskaya N.P. Assessment of compliance of new materials using high -level CO and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
8. State Standart 6689.1–92. Nickel, nickel and copper-nickel alloys. Methods for determining copper. Moscow: Publ. House of Standards, 1992, pp. 8–9.
9. State Standart 6689.5–92. Nickel, nickel and copper-nickel alloys. Methods for determining iron. Moscow: Publ. House of Standards, 1992, pp. 1–4.
10. State Standart 6689.12–92. Nickel, nickel and copper-nickel alloys. Methods for determining magnesium. Moscow: Publ. House of Standards, 1992, pp. 5–6.
11. State Standart 6012–98. Nickel. Methods of chemical-atom-emission analysis. Minsk: Publishing House of Standards, 1999, рр. 1–4.
12. ASTM E2594–09. Standard Test Method for Analysis of Nickel Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry. USA, 2014, рр. 1–9.
13. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS. Mikrochimica Acta, 2001, vol. 137, рр. 149–155.
14. Pyupishev A.A., Epova E.N. The spectral interference of polyiatomic ions in the method of mass spectrometry with inductively connected plasma. Analitika i kontrol, 2001, vol. 5, no. 4, pp. 335–369.
15. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry. Part I. Tutorial: Fundamentals and instrumentation. Journal of Analytical Atomic Spectrometry. 2011, vol. 26, pp. 693–726.
16. Ganeyev A.A., Gubal A.R., Uskov K.N., Potapov S.V. Analytical mass spectrometry with a smoldering category. Izvestiya Akademii nauk. Seriya khimicheskaya, 2012, no. 4, pp. 1–15.
The article discusses the main directions of development of methods of non-destructive testing, and in particular magnetic powder non-destructive testing of aircraft parts. The possibilities of magnetic powder control and the reasons for its development are given. with their help, discontinuities, depending on the purpose of control. The development of control automation and the use of neural networks, as well as mathematical modeling of processes in IPC, are identified as the main promising areas for the development of non-destructive magnetic particle control. The experience of the work carried out in these areas is given.
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N., Shevchenko Yu.N., Grinevich A.V., Kochanov D.I. Problems of certification of aviation materials at the present stage. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 388–396.
4. Chertishchev V.Yu., Ospennikova O.G., Boichuk A.S., Dikov I.A., Generalov A.S. Determination of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
5. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
6. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Revisiting the ecotoxicity and efficiency of different classes of industrial nonionic surfaces used for cleaning metal surfaces in the process of capillary control of details of the aviation technology (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: June 07, 2023). DOI: 10.18577/2713-0193-2021-0-4-98-106.
7. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: June 07, 2023). DOI: 10.18577/2713-0193-2021-0-2-115-122.
8. State Standard R 56512–2015. The control is non-destructive. Magnetic particle method. Typical technological processes. Moscow: Standartinform, 2016, 56 p.
9. State Standard R ISO 9934-1–2011. The control is non-destructive. Magnetic particle method. Part 1. Basic requirements. Moscow: Standartinform, 2019, 16 p.
10. Lozhkova D.S., Krasnov I.S., Dalin M.A. Evaluation of defectiveness of blanks of GTE disks from titanium alloys. Kontrol. Diagnostika, 2016, no. 7, pp. 61–67. DOI: 10.14489/td.2016.07.pp.061-067.
11. Ekobori T. Physics and mechanics of destruction and strength of solid bodies. Moscow: Metallurgiya, 1971, 264 p.
12. Methodological materials for the implementation of the requirements for the main parts of the engine, the resource of which is set in cycles: Aviation Regulations-33.70-1. Moscow: Aviaizdat, 2012, 31 p.
13. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Estimation of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using domestic and foreign flaw detection liquids. Defektoskopiya, 2021, no. 1, pp. 64–71.
14. SDANK-01-2020. Rules for attestation and basic requirements for non-destructive testing laboratories. Available at: https://ntcexpert.ru/documents/sdank-01-2020.pdf (accessed: June 13, 2023).
15. ISO 9934-1. Non-destructive testing. Magnetic particle testing. Part 1: General principles. Geneva: ISO, 2001, 14 p.
16. DIN EN 1369-2013. Founding – Magnetic particle testing. Deutsches Institut für Normung e.V., 2013, 26 р.
17. ASTM E1444/E1444M. Standard Practice for Magnetic Particle Testing for Aerospace. ASTM International (ASTM), 2022, 16 р.
18. ASTM E709-21. Standard Guide for Magnetic Particle Testing. ASTM International (ASTM), 2021, 48 р.
19. Mariani S., Rendu Q., Urbani M., Sbarufatti C. Causal dilated convolutional neural networks for automatic inspection of ultrasonic signals in non-destructive evaluation and structural health monitoring. Mechanical Systems and Signal Processing. Elsevier, 2021, 21 р. DOI: 10.1016/j.ymssp.2021.107748.
20. Rawat W., Wang Z. Deep Convolutional Neural Networks for Image Classification: a Comprehensive Review. Neural Computation, 2017, vol. 29, no. 9, pp. 2352–2449. DOI: 10.1162/neco_a_00990.
21. Tout K., Meguenani A., Urban J.P. et al. Automated vision system for magnetic particle inspection of crankshafts using convolutional neural networks. The International Journal of Advanced Manufacturing Technology, 2021, vol. 112, рр. 3307–3326. DOI: 10.1007/s00170-020-06467-4.
22. Link R., Riess N. NDT 4.0-significance and implications to NDT–automated magnetic particle testing as an example. 12th European Conference on Non-Destructive Testing (ECNDT 2018), 2018, vol. 15, р. 6.
23. Antonio S., Fulginei F., Faba A. et al. Vector Hysteresis Processes for Innovative Fe-Si Magnetic Powder Cores: Experiments and Neural Network Modeling. Magnetochemistry, 2021, vol. 7 no. 2, p. 18. DOI: 10.3390/magnetochemistry7020018.
24. Ferguson M., Ak R., Lee Y.-T.T., Law K. H. Automatic localization of casting defects with convolutional neural networks. 2017 International conference on big data, 2017, pp. 1726–1735.
25. Chen Y., Feng B., Kang Y. et al. A novel thermography-based dry magnetic particle testing method. IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, pp. 1–9. DOI: 10.1109/TIM.2022.3165742.
26. Wong B.S., Low Y.G., Wang X. et al. 3D finite element simulation of magnetic particle inspection. 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, 2010, pp. 50–55. DOI: 10.1109/STUDENT.2010.5687008.
27. Zolfaghari A., Zolfaghari A., Kolahan F. Reliability and sensitivity of magnetic particle nondestructive testing in detecting the surface cracks of welded components. Nondestructive Testing and Evaluation, 2018, vol. 33, no. 3, pp. 290–300. DOI: 10.1080/10589759.2018.1428322.
28. Apostol E.S., Nedelcu A., Daniel D.V. et al. Mathematical modeling of eddy current non-destructive testing. 10th International Symposium on Advanced Topics in Electrical Engineering, 2017, pp. 469–474. DOI: 10.1109/ATEE.2017.7905088.
29. Tout K., Meguenani A., Urban J.-P., Cudel C. Automated vision system for magnetic particle inspection of crankshafts using convolutional neural networks. The International Journal of Advanced Manufacturing Technology, 2021, vol. 112, pp. 3307–3326. DOI: 10.1007/s00170-020-06467-4.
30. Ueda A., Lu H., Kamiya T. Deep-Learning Based Segmentation Algorithm for Defect Detection in Magnetic Particle Testing Images. Proceedings of International Conference on Artificial Life and Robotics, 2021, vol. 26, pp. 235–238. DOI: 10.5954/ICAROB.2021.GS3-1.
31. Yang Y., Yang Y., Li L. et al. Automatic Defect Identification Method for Magnetic Particle Inspection of Bearing Rings Based on Visual Characteristics and High-Level Features. Applied Sciences, 2022, vol. 12 (3), p. 1293. DOI: 10.3390/app12031293.
32. Staněk P., Škvor Z. Automated Magnetic Field Evaluation for Magnetic Particle Inspection by Impulse. Journal of Nondestructive Evaluation, 2019, vol. 38, art. 75. DOI: 10.1007/s10921-019-0615-4.
33. Bermúdez A., Gómez D., Piñeiro M. et al. Numerical Simulation of Magnetization and Demagnetization Processes. IEEE Transactions on Magnetics, 2017, vol. 53, no. 12, pp. 1‒6. DOI: 10.1109/TMAG.2017.2743069.
34. Mao B., Lan T., Deng W. Simulation of Magnetic Field Penetration of Cylindrical Cavity with Wound Solenoid. Advances in Computer Science Research, 2016, vol. 58. Available at: https://www.atlantis-press.com/article/25868834.pdf (accessed: June 07, 2023).
Heat-resistant alloys and steels
Visik E.M., Kolyadov E.V., Kuzmina N.A. Influence of directional crystallization parameters on the structure of the intermetallic nickel alloy VIN4M-VI when casting single-crystal blanks of nozzle blades
Light-metal alloys
Fomina M.A., Kutyrev A.E., Yamschikov E.I., Vdovin A.I. Experience in impact research of corrosion damage on strength characteristics aluminum alloys used in the aviation industry
Polymer materials
Sidorov D.V., Kirilin A.D., Grunin А.А., Schavnev А.А.Structure isomerization of system «methylsilylene–silaethylene–silylcarbene»
Gavrish A.V., Akhmadieva K.R., Shosheva A.L., Lavrin M.A. Thermosetting oligoimides with phenylethynyl reactive groups
Composite materials
Veshkin E.A., Barannikov A.A., Makrushin K.V., Zhelezina G.F. Features of the manufacturing of curved parts of a complex contour made of polymer composite materials
Lebedeva Yu.E., Shchegoleva N.E., Turchen-ko M.V., Volobueva T.M. Modifying additives influence on the properties of SiO2–B2O3 system materials produced by sol-gel method
Turchenko M.V., Lebedeva Yu.E., Belyachen-kov I.O., Prokofiev V.A. Obtaining of ceramic materials by stereolithography method
Protective and functional
coatings
Aleksandrov D.A., Doronin O.N., Zhuravleva P.L., Benklyan A.S. The research of erosion-corrosion-resistant coatings for protection of titanium impellers for helicopter gas-turbine engine
Kondrashov E.K., Kozlova A.A. Paint coatings with special optical properties
Kuznetsova V.A., Ponomarenko S.A., Zhelez-nyak V.G., Timoshina E.A. Influence of solvents in the composition of the paint and varnish material on the appearance and properties of paint and varnish coatings
Material tests
Alekseev A.V., Yakimovich P.V. Analysis of high purity nickel by glow discharge high resolution mass spectrometry
Lednev I.S., Khodakova E.A. Prospects for the development of magnetic particle inspection of aircraft parts