Articles
A description of the development of the technology for obtaining parts of the hot path of gas turbine engines by the method of directed crystallization from superalloys are considered. The analysis of the existing specialized equipment used in Russia, the USA, Germany and other countries to produce blades with a directional and monocrystalline structure is carried out. The prospects of the method of directed crystallization with a liquid-metal cooler in the production of gas turbine engine blades for both modern and promising gas turbine engines are clearly demonstrated.
2. Kablov E.N. Developments of VIAM for gas turbine engines and installations. Krylya Rodiny, 2010, no. 4, рр. 31–33.
3. Weingard U. Introduction to the physics of crystallization of metals. Moscow: Mir, 1967, 172 p.
4. Walston S., Cetel A., MacKay R. et al. Joint development of a fourth generation single crystal superalloys. Superalloys 2004. Minerals, Metals & Materials Society, 2004, рр. 15–24.
5. Chumakov V.A., Stepanov V.M., Ivanov B.G., Belyaeva I.G., Verin A.S., Sobolev G.I. Casting technology for gas turbine engine blades using the directional crystallization method. Liteynoe proizvodstvo, 1978, no. 1, pp. 23–24.
6. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, 520 p.
7. Logunov A.V., Burov M.N., Danilov D.V. Development of power and marine engine building in the world: a review. Part 1. Dvigatel, 2016, no. 1 (103), pp. 10–13.
8. Giamei A.F., Tschinkel J.G. Liquid Metal Cooling: A New Solidification Technique. Metallurgical Transactions A, 1976, vol. 7A, pp. 1427–1434.
9. Lohmuller A., Eber W., Grobmann J. et al. Improved Quality and Economics of Investment Castings by Liquid Metal Cooling – the Selection of Cooling Media. Superalloys 2000. The Minerals, Metals & Materials Society, 2000, pp. 181–188.
10. Hugo F., Betz U., Ren J. et al. Casting of Directionally Solidified and Single Crystal Components Using Liquid Metal Cooling (LMC): Results from Experimental Trials and Computer Simulations. International Symposium on Liquid Metal Processing and Casting. VMD-AVS, 1999, pp. 16–30.
11. Elliott A.J., Tin S., King W.T. et al. Directional Solidification of Large Superalloy Casting with Radiation and Liquid-Metal Cooling: A Comparative Assessment. Metallurgical and Materials Transactions A, 2004, vol. 35A, no. 3, pp. 3221–3231.
12. Miller J.D., Pollock T.M. Process Simulation for the Directional Solidification of a Tri-Crystal Ring Segment via the Bridgman and Liquid-Metal-Cooling Processes. Metallurgical and Materials Transactions A, 2012, vol. 43A, pp. 2414–2425.
13. Pankratov V.A., Kablov E.N. Incubator for turbine blades. Nauka i zhizn, 1991, no. 8, pp. 62–64.
14. Gerasimov V.V., Visik E.M., Kolyadov E.V. Mastering the technology of directional crystallization of large-sized castings at the UVNK-15 unit. Liteynoe proizvodstvo, 2014, no. 3, pp. 28–31.
15. Kolyadov EV, Visik EM, Gerasimov VV, Arginbaeva E.G. The influence of directional solidification parameters on the structure and properties of the intermetallic alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2023). DOI: 10.18577/2307-6046-2019-0-3-14-26.
16. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
17. Bondarenko Yu.A., Kolodyazhnyj M.Yu., Echin A.B., Narskij A.R. Directional solidification, structure and properties of natural composite based on eutectic Nb–Si at working temperatures up to 1350 °С degrees for the blades of gas turbine engines. Trudy VIAM, 2018, no. 1 (61), paper no. 01. Available at: http://www.viam-works.ru (accessed: March 24, 2023). DOI: 10.18577/2307-6046-2018-0-1-1-1.
18. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines. Aviation materials and technologies, 2022, no. 2 (67), paper no. 01. Available at: http://www.journal.viam.ru (accessed: March 30, 2023). DOI: 10.18577/2713-0193-2022-0-2-5-17.
A comprehensive study of a membrane made of corrosion-resistant heat-resistant steel 30H13 was carried out in order to identify the causes of loss of elastic properties. The structure was evaluated, the chemical composition, the structure of the surface and the fracture of the part were studied using optical and electron microscopy, chemical analysis and non-destructive testing. It was found that during the production process, the membrane was subjected to high-temperature heating, causing grain growth (normalization), as well as prolonged electropolishing, leading to the identification of grain boundaries and the development of corrosion processes.
2. Grader of steels and alloys. 4th ed., rev. and add. Ed. Yu.G. Dragunov, A.S. Zubchenko Moscow: Mashinostroenie, 2014, 491 p.
3. State Standard 5949–2018. Metal products from stainless steels and iron-nickel alloys, corrosion-resistant, heat-resistant and heat-resistant. Specifications. Moscow: Standartinform, 2018, 32 p.
4. Andreeva L.E. Elastic elements of devices. Moscow: Mashgiz, 1962, 456 p.
5. Rannev G.G. Intelligent measuring instruments. Moscow: Academy, 2010, 272 p.
6. Friden J. Modern sensors. Moscow: Technosfera, 2006, 592 p.
7. Krasnoyarsky V.V., Frenkel G.V., Nosov R.P. Corrosion and protection of metals. Moscow: Metallurgiya, 1969, 299 p.
8. Protection against corrosion, aging and biodamage of machines, equipment and structures: a reference book in 2 vols. Ed. A.A. Gerasimenko. Moscow: Mashinostroenie, 1987, vol. 1, 688 p.
9. State Standard 9.908–85. Unified system of protection against corrosion and aging. Metals and alloys. Methods for determining the indicators of corrosion and corrosion resistance. Moscow: Gosstandart SSSR, 1985, 79 p.
10. State Standard 9.106–2021. Unified system of protection against corrosion and aging. Corrosion of metals. Terms and Definitions. Moscow: RST, 2021, 12 p.
11. ISO 8044:2020. Corrosion of metals and alloys. ISO copyright office, 2020, 29 p.
12. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
13. Kablov E.N. The key problem is materials // Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
14. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
15. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DO1: 10.18577/2071-9140-2020-0-4-59-70.
16. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: February 28, 2023). DOI: 10.18577/2713-0193-2022-0-1-129-142.
17. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
18. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractodiagnostics of destruction of metallic materials and structures. Moscow: MISIS, 2007, 259 p.
Reducing warpage and residual stresses during hardening is an urgent problem in the production of parts and semi-finished products from aluminum alloys. Water is usually used as a cooling medium during quenching, and, for volumetric forgings, hot or boiling water, depending on the composition of the alloy. However, water as a quenching medium has significant drawbacks: uneven (three-stage) cooling due to a change in the state of aggregation, sharpness of cooling and, accordingly, the creation of large warpage and residual stresses in the case of using cold water, an insufficient degree of reduction in warpage and residual stresses during cooling in hot water, low speed cooling and, accordingly, the deterioration of the properties of most alloys during quenching in boiling water. Discusses in detail various methods for reducing warping and residual stresses during hardening in parts made of high-strength aluminum alloys.
2. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Aluminum alloys in aerospace engineering. Ed. E.N. Kablov. Moscow: Nauka, 2001, 192 p.
3. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the development of promising aluminum-lithium alloys for aerospace engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
4. Benarieb I., Ber L.B., Antipov K.V., Sbitneva S.V. Trends in development of wrought alloys of Al–Mg–Si–(Cu) system. Part 1 (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 14–22. DOI: 10.18577/2071-9140-2019-0-3-14-22.
5. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
6. Antipov V.V., Grigoryev M.V., Konovalov A.N., Meshkov A.A., Serebrennikova N.Yu. Research of the influence of riveting on the low-cycle fatigue of riveted connection sheets of aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 3–8. DOI: 10.18577/2071-9140-2019-0-3-3-8.
7. Koptyug V.A., Fridlyander I.N., Mikhailova I.F. et al. Cooling media with polymer additives for low-deformation hardening of aluminum alloys. Metallurgy of aluminum alloys. Moscow: Nauka, 1985, pp. 55–60.
8. Moazam M.A., Honarpisheh M. Residual stress formation and distribution due to precipitation hardening and stress relieving of AA7075. Materials Research Express, 2019, no. 6. DOI: 10.1088/2053-1591/ab59b6.
9. Koc M., Culp J., Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology, 2006, no. 174, pp. 342–354. DOI: 10.1016/j.jmatprotec.2006.02.007.
10. Lin G.Y., Zhang H., Zhu W. et al. Residual stress in quenched 7075 aluminum alloy thick plates. Transactions of Nonferrous Metals Society of China, 2003, no. 13, pp. 641–644. DOI: 10.4236/msce.2021.94002.
11. Robinson J.S., Hossain S., Truman C.E. et al. Residual stress in 7449 aluminium alloy forgings. Materials Science and Engineering: A, 2010, no. 527, pp. 2603–2612. DOI: 10.1016/J.MSEA.2009.12.022.
12. Robinson J.S., Tanner D.A. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments. Materials Science and Technology, 2003, no. 19, pp. 512–518. DOI: 10.1179/026708303225001939.
13. Sun Y.S., Jiang F.L., Zhang H., Su J., Yuan W.H. Residual stress relief in Al‒Zn‒Mg‒Cu alloy by a new multistage interrupted artificial aging treatment. Materials and Design, 2016, no. 92, pp. 281–287. DOI: 10.1016/j.matdes.2015.12.004.
14. Bates C.E., Totten G.E. Procedure for quenching media selection to maximize tensile properties and minimise distortion in aluminium-alloy parts. Heat Treatment of Metals, 1988, no. 15, pp. 89–97. DOI: 10.1007/BF02831618.
15. Hilder N. Polymer quenchants – a review. Heat Treatment of Metals, 1986, no. 13, pp. 15–26.
16. Hilder N. The behavior of polymer quenchants. University of Aston in Birmingham, 1988, 404 р.
17. Zhang J., Deng Y.L., Yang W. et al. Design of the multi-stage quenching process for 7050 aluminum alloy. Materials and Design, 2014, no. 56, pp. 334‒344. DOI: 10.1016/j.matdes.2013.09.029.
18. Tanner D.A., Robinson J.S. Reducing residual stress in 2014 aluminum alloy die forgings. Materials and Design, 2008, no. 29, pp. 1489–1496. DOI: 10.1016/j.matdes.2007.07.002.
19. Kolobnev N.I., Senatorova O.G. Patterns of changes in properties during hardening. Metallurgy of aluminum and its alloys: a reference book. Moscow: Metallurgiya, 1983, pp. 143–180.
20. Schimanski K. Heat Treatment and Distortion – Challenge for Aircraft Industries. Proceedings of ICAA-12. Bremen, 2012, pp. 68–73.
21. Ivanov A.L., Sidelnikov V.V., Nechaikina T.A., Kozlova O.Yu. Influence of low-deformation hardening on the complex of properties of sheet parts from aluminum alloys. Metallovedenie i termicheskaya obrabotka metallov, 2021, no. 10, pp. 9–15.
22. Ivanov A.L., Senatorova O.G., Mitasov M.M., Antipov V.V., Straupenek M.E., Tormysheva N.Yu. Kinetics of cooling of sheet parts made of aluminum alloys during low-deformation hardening in a polymeric medium. Metallovedenie i termicheskaya obrabotka metallov, 2017, no. 11 (749), pp. 31–36.
23. Masoudi S., Amirian Gh., Saeedi Eh., Ahmadi M. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts. Journal of materials Engineering and performance, 2015, no. 24, pp. 3933–3941. DOI: 10.1007/s11665-015-1695-7.
24. Robinson J.S., Donovan A.O., Wimpory R.C. Uphill quenching to reduce residual stress in aluminium alloy 7449 hollow structures. Experimental mechanics, 2022, no. 62, pp. 1411–1420. DOI: 10.1007/s11340-022-00836-8.
25. Liu J., Jiang F., Tang M. et al. Reduced residual stress and retained properties in Al–Zn–Mg–Cu alloys using a novel cladding quenching process. Journal of materials research and technology, 2020, no. 9, pp. 7201–7209. DOI: 10.1016/j.jmrt.2020.04.080.
The current paper is the second part of the scientific and technical review of bismaleimide (BMI) resins chemistry. Shows the modification of bismaleimide binders with epoxy resins, benzoxazines, cyanate esters and thermoplastics. The most significant physical and thermomechanical properties of polymer matrices based on modified bismaleimide resins and their main advantages are considered. Modern approaches to the synthesis and processing of heat-resistant bismaleimide resins are described.
2. Stenzenberger H.D. Bismaleimide Resins. ASM Handbook. Ed. D.B. Miracle, S.L. Donaldson, 2001, vol. 21, pp. 97–104.
3. Iredale R.J., Ward C., Hamerton I. Modern advances in bismaleimide resin technology: А 21st century perspective on the chemistry of addition polyimides. Progress in Polymer Science, 2017, vol. 69, pp. 1–21.
4. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series «International Conference on Engineering Systems 2020». 2020, p. 012031.
5. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 10, 2022). DOI: 10.18577/2307-6046-2019-0-12-67-79.
6. Evsyukov S.E., Pohlmann T., Wiel M. Modern approaches to the processing of bismaleimide resins. Current Trends in Polymer Science, 2020, vol. 20, pp. 2–14.
7. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Process for the Manufacture of Crosslinked Polymers which Contain Imide Groups: pat. US 4100140A; appl. 18.06.76; publ. 11.07.78.
10. Shosheva A.L. Bismaleimide resins (review). Part 1. Trudy VIAM, 2022, no. 10 (116), paper no. 03. Available at: http://www.viam-works.ru (accessed: September December 15, 2022). DOI: 10.18577/2307-6046-2022-0-10-23-41.
11. Park J.O., Jang S.H. Synthesis and Characterization of Bismaleimides from Epoxy Resins. Journal of Polymer Science, 1992, vol. 30, pp. 723–729.
12. Kumar A.A., Lagar M.A., Rao R.M.V.G.K. Synthesis and characterization of siliconized epoxy-1,3-bis(maleimide)benzene intercrosslinked matrix materials. Polymer, 2002, vol. 43, pp. 693–702.
13. Chattha M.S., Dickie R.A., Carduner K.R. Epoxy-modified diallylbisphenol A and bis(maleimidopheny1)methane thermoset compositions: composition and dynamic mechanical thermal analysis. Industrial Engineering Chemistry Research, 1989, vol. 28, pp. 1438–1441.
14. Kim D.S., Han M.J., Lee J.R. Cure Behavior and Properties of an Epoxy Resin Modified With a Bismaleimide Resin. Polymer Engineering and Science, 1995, vol. 35, pp. 1354–1357.
15. Woo E.M., Chen L.B., Seferis J.C. Characterization of epoxy-bismaleimide network matrices. Journal of materials science, 1987, vol. 22, pp. 3665–3671.
16. Chen Y., Wu Y., Geng C., Li Z., Dai G., Cui W. Curing Kinetics and the Properties of KH560-SiO2/Polyethersulfone/Bismaleimide-Phenolic Epoxy Resin Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2019, vol. 30, pp. 1735–1743.
17. Musto P., Martuscelli E., Ragosta G., Russo P., Scarinz G. An Interpenetrated System Based on a Tetrafunctional Epoxy Resin and a Thermosetting Bismaleimide: Structure – Properties Correlation. Journal of Applied Polymer Science, 1998, vol. 69, pp. 1029–1042.
18. Seo J., Jang W., Ha H. Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites. Macromolecular Research, 2007, vol. 15, pp. 10–16.
19. Kumar A.A., Alagar M., Rao R.M.V.G.K. Preparation and Characterization of Siliconized Epoxy/Bismaleimide(N,N-Bismaleimido-4,4-diphenylmethane)Intercrosslinked Matrices for Engineering Applications. Journal of Applied Polymer Science, 2001, vol. 81, pp. 38–46.
20. Gaina V., Gaina C. New Bismaleimide-Epoxy Resin System. Polymer-Plastics Technology and Engineering, 2009, vol. 48, pp. 525–529.
21. Dolgova E.V., Lavrova K.S. Application of cyanate ester materials (review). Part 1. Aviation and space structures. Trudy VIAM, 2021, no. 4 (98), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 23, 2022). DOI: 10.18577/2307-6046-2021-0-4-48-60.
22. Nair C.P.R., Mathew D., Ninan K.N. Cyanate Ester Resins, Recent Developments. Advances in Polymer Science, 2001, vol. 155, p. 57.
23. Domeier L.A., Gardner H.C. Bismaleimides and prepreg resins therefrom: pat. US 4691025A; appl. 22.12.83; publ. 01.09.87.
24. Penczek P., Kaminska W. Polyfunctional Cyanate Monomers as Components of Polymer Systems. Advances in Polymer Sciences, 1990, vol. 97, pp. 48–49.
25. Kessler M.R. Cyanate Ester Resins. Wiley Encyclopedia of Composites, Second Edition. John Wiley & Sons, 2012, pp. 1–9.
26. Liu X., Yu Y., Li S. Study on cure reaction of the blends of bismaleimide and dicyanate ester. Polymer, 2006, vol. 47, pp. 3767–3773.
27. Nair C.P.R., Francis T., Viayan T.M., Krishnan K. Sequential Interpenetrating Polymer Networks from Bisphenol A Based Cyanate Ester and Bimaleimide: Properties of the Neat Resin and Composites. Journal of Applied Polymer Science, 1999, vol. 74, pp. 2737–2746.
28. Barton J.M., Humerton I., Jones J.R. The Synthesis, Characterisation and Thermal Behaviour of Functionalised Aryl Cyanate Ester Monomers. Polymer International, 1992, vol. 29, pp. 145–156.
29. Hamerton I. High-performance thermoset–thermoset polymer blends: a review of the chemistry of cyanate ester-bismaleimide blends. High Performance Polymers, 1996, vol. 8, pp. 83–95.
30. Chaplin A., Hamerton I., Herman H., Mudhar A.K., Shaw S.J. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends. Polymer, 2000, vol. 41, pp. 3945–3956.
31. Hamerton H., Herman H., Rees K.T., Chaplin A., Shaw S.J. Water uptake effects in resins based on alkenyl-modified cyanate ester–bismaleimide blends. Polymer International, 2001, vol. 50, pp. 475–483.
32. Nair C.P.R., Francis T. Blends of Bisphenol A-Based Cyanate Ester and Bismaleimide: Cure and Thermal Characteristics. Journal of Applied Polymer Science, 1999, vol. 74, pp. 3365–3375.
33. Lyu Y., Ishida H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications. Progress in Polymer Science, 2019, vol. 99, p. 101168.
34. Kumar K.S.S., Nair C.P.R., Sadhana R., Ninan K.N. Benzoxazine–bismaleimide blends: Curing and thermal properties. European Polymer Journal, 2007, vol. 43, pp. 5084–5096.
35. Kumar K.S.S., Nair C.P.R., Radhakrishnan T.S., Ninan K.N. Bis allyl benzoxazine: Synthesis, polymerization and polymer properties. European Polymer Journal, 2007, vol. 43, pp. 2504–2514.
36. Wang Z. Zhao J., Ran Q. et al. Research on curing mechanism and thermal property of bisallyl benzoxazine and N,N′-(2,2,4-trimethylhexane-1,6-diyl) dimaleimide blend. ReactiveFunctional Polymers, 2013, vol. 73, pp. 668–673.
37. Wang Y., Kou K., Zhuo L. et al. Thermal, mechanical and dielectric properties of BMI modified by the Bis allyl benzoxazine. Journal of Polymer Science, 2015, vol. 22, p. 51.
38. Jin L., Agag T., Ishida H. Bis(benzoxazine-maleimide)s as a novel class of high performance resin: Synthesis and properties. European Polymer Journal, 2010, vol. 46, pp. 354–363.
39. Jin J.Y., Cui J., Tang X.L., Ding Y.F., Li S.J., Wang J.C., Zhao Q.S., Hua X.Y., Cai X.Q. On polyetherimide modified bismaleimide resins, 1 Effect of the chemical backbone of polyetherimide. Macromolecular Chemistry and Physics, 1999, vol. 200, pp. 1956–1960.
40. Jin J.Y., Cui J., Tang X.L. et al. Polyetherimide-modified bismaleimide resins. II. Effect of polyetherimide content. Journal of Applied Polymer Science, 2001, vol. 81, pp. 350–358.
41. Wilkinson S.P., Ward T.C., McGrath J.E. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer, 1993, vol. 34, pp. 870–884.
42. Mai K., Huang J., Zeng H. Studies of the Stability of Thermoplastic-Modified Bismaleimide Resin. Journal of Applied Polymer Science, 1997, vol. 66, pp. 1965–1970.
43. Liu X., Yu Y., Li S. Viscoelastic phase separation in polyethersulfone modified bismaleimide resin. European Polymer Journal, 2006, vol. 42, pp. 835–842.
44. Hamerton I., Klewpatinond P. Synthesis and characterization of functionalized thermoplastics as reactive modifiers for bismaleimide resins. Polymer International, 2001, vol. 50, pp. 1309–1317.
45. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
46. Chaplin A., Davies T.J., Jones D.A., Shaw S.J., Tudgey G.F. Novel hydrophobic, tough, and high temperature matrix resins for polymer composite. Plastics, Rubber and Composites, 1999, vol. 28, pp. 191–200.
47. Liu X.Y., Zhan G.Z., Han Z.W. et al. Phase Morphology and Mechanical Properties of a Poly(ethersulfone)-Modified Bismaleimide Resin. Journal of Applied Polymer Science, 2007, vol. 106, pp. 77–83.
48. Ding F., Chen Q., Lai S. Bismaleimide (BMI) Resin Modified by PEEK Bearing Pendant Reactive Propenyl Groups. Advanced Materials Research, 2011, vol. 197–198, pp. 1299–1305.
49. Iijima T., Shiono H., Fukuda W., Tomoi M. Toughening of Bismaleimide Resin by Modification with Poly (ethylene phthalate) and Poly (ethylene phthalate-co-ethylene isophthalate ). Journal of Applied Polymer Science, 1998, vol. 65, pp. 1349–1357.
50. Hu X., Zhang J., Yue C.Y., Zhao Q. Thermal and morphological properties of polyetherimide modified bismaleimide resins. High Perfomance Polymer, 2000, vol. 12, pp. 419–428.
51. Babkin A.V., Erdni-Goryaev E.M., Solopchenko A.V. et al. Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide. Polymers for Advanced Technologies, 2016, vol. 27, pp. 774–780.
Article is devoted to the analysis of the elastomeric materials which are widely applied to manufacturing of sealing harness, which used in technological process of vacuum infusion when manufacturing polymeric composite materials (PCM). The schematic circuit of manufacturing of elastomeric sealing harness is given. The main processes of production of sealing harness as length elastomeric materials are described. The rubbers which are of interest for manufacturing of elastomeric pressurizing plaits are described. Recommendations about application of rubbers on the basis of different rubbers as bases for manufacturing elastomeric sealing harness are made.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, vol. 1, pp. 25–26.
3. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
4. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, pp. 346–348.
5. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
6. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 03, 2023). DOI: 10.18577/2307-6046-2019-0-11-22-36.
7. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
8. Callister U., Ristic D. Materials science: from technology to application (metals, ceramics, polymers). St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 896 p.
9. Rudd C.D., Long A.C., Kendall K.N., Mangin C.G.E. Liquid Moulding Technologies. Wood Head Publishing and SAE International, 1997, pp. 42–57.
10. Kryzhanovsky V.K., Kerber M.L., Burlov V.V. Manufacture of products from polymeric materials. St. Petersburg: Professiya, 2004, 464 p.
11. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: March 03, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
12. Mikhailin Yu.A. Structural polymeric composite materials. 2nd ed. St. Petersburg: Nauchnye osnovy i tekhnologii, 2016, 820 p.
13. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: March 09, 2023). DOI: 10.18577/2713-0193-2022-0-1-65-77.
14. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review). Trudy VIAM, 2022, no. 11 (117), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 09, 2023). DOI: 10.1877/2307-6046-2022-0-11-81-92.
15. Donetskiy K.I., Usacheva M.N., Khrulkov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM, 2022, no. 6 (112), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 09, 2023). DOI: 10118577/2307-6046-2022-0-6-58-67.
16. Khrulkov A.V., Donetskiy K.I., Usacheva M.N., Goryansky A.N. Infusion methods for the manufacture of polymer composite materials (review). Part 2. Trudy VIAM, 2022, no. 6 (112), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 09, 2023). DOI: 10.1877/2307-6046-2022-0-7-50-62.
17. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
18. Vacuum injection process for manufacturing fiber reinforced composite products involves evacuating second chamber causing resin to flow into preform in adjacent evacuated first chamber: pat. 10013409 DE; appl. 17.03.00; publ. 23.04.00.
19. A large reference book of rubber workers: at 2 parts. Moscow: Tekhinform, 2012, 1385 p.
20. Technology of rubber: Formulation and testing: trans. from Engl. Ed. J.S. Dick. St. Petersburg: Nauchnye osnovy i tekhnologii, 2010, 620 p.
21. Fedyukin D.P., Makhlis F.A. Technical and technological properties of rubbers. Moscow: Khimiya, 1985, 240 p.
22. Makhlis F.A., Fedyukin D.L. Terminological guide to rubber. Moscow: Chemistry, 1989, 400 p.
23. Kornev A.E., Bukanov A.M., Sheverdyaev O.N. Technology of elastomeric materials. Moscow: NPPA "Istek", 2009, 502 p.
24. Agayants I.M. Five centuries of rubber and rubber. Moscow: Modern-A, 2002, 432 p.
25. Koshelev F.F., Kornev A.E., Bukanov A.M. General rubber technology. 4th ed. Moscow: Khimiya, 1978, 528 p.
26. Ososhnik I.A., Shutilin Yu.F., Karmanova O.V. Manufacture of rubber technical products. Ed. Yu.F. Shutilin. Voronezh: Voronezh State Tech. Acad., 2007, 972 p.
27. Grishin B.S. Materials of the rubber industry (information-analytical database): in 2 vols. Kazan: KSTU, 2010, 1084 p.
28. Rubber and resine. Science and technology: trans. from Engl. Ed. A.A. Berlin, Yu.L. Morozov. Dolgoprudny: Intellect, 2011, 768 p.
29. Nudelman Z.N. Fluororubbers: basics, processing, application. Moscow: RIAS, 2007, 383 p.
30. Lepetov V.A., Yurtsev L.N. Calculations and design of rubber products. 3rd ed., rev. and add. Leningrad: Khimiya, 1987, 406 p.
31. Shetz M. Silicone rubber. Moscow: Khimiya, 1975, 400 p.
Рresents the issues of corrosion of ceramic thermal barrier coatings caused by the molten mixture of calcium, magnesium, aluminium and silicon oxides (CMAS). The influence of structure of the thermal barrier coatings on CMAS-corrosion is examined. The faliure mechanisms of thermal-barrier coatings are discussed in detail. It has been determined that the primary cause of faliure is the difference in the coefficients of thermal expansion between the CMAS-penetrated layers and the rest of the thermal barrier system. Different methods of testing the effects of CMAS-corrosion on thermal barrier coatings are reviewed.
2. Zhang W.W., Li G.R., Zhang Q., Yang G.J. Epitaxial growth and cracking of highly tough 7YSZ splats by thermal spray technology. Journal of Advanced Ceramics, 2017, vol. 6, pp. 230–239.
3. Li G.R. Strain-induced stiffness-dependent structural changes and the associated failure mechanism in TBCs. Journal of Advanced Ceramics, 2017, vol. 37, pp. 3609–3621.
4. Wright P.K., Evans A.G. Mechanisms governing the performance of thermal barrier coatings. Current opinion in solid state and material science, 1999, vol. 4, pp. 255–265.
5. Evans A.G., Mumm D.R., Hutchinson J.W. et al. Mechanisms controlling the durability of thermal barrier coatings. Progress in material science, 2001, vol. 5, pp. 505–553.
6. Padture N.P. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, vol. 6, pp. 280–284.
7. Levi C.G. Emerging materials and processes for thermal barrier systems. Opinion in Solid State and Materials Science, 2004, vol. 8, pp. 77–91.
8. Schafrik R., Sprague R. Saga of gas turbine materials Part I. Advanced Materials and Processes, 2004, vol. 5, pp. 29–33.
9. Kablov E.N., Muboyadzhyan S.A. Heat-shielding coatings for high-pressure turbine blades of promising gas turbine engines. Metally, 2012, no. 1, pp. 5–13. DOI: 10.18577/2307-6046-2016-0-1-17-24.
10. Kablov E.N., Muboyadzhyan S.A. Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 60–70.
11. Zhou Y.C., Liu Q.X., Yang L. Failure mechanisms and life predictions of thermal barrier coating. Acta Mechanica Solida Sinica, 2010, vol. 31, pp. 504–531.
12. Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. Materials research society, 2012, vol. 37, pp. 891–898.
13. Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 2013, vol. 58, pp. 315–348.
14. Peng H., Wang L., Guo L. et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 2012, vol. 22, pp. 461–464.
15. Meier S., Gupta D., Sheffler K. Ceramic thermal barrier coatings for commercial gas turbine engines. The Journal of the Minerals, 1991, vol. 43, pp. 50–53.
16. Kablov E.N., Muboyadzhyan S.A. Heat-shielding coatings with a ceramic layer of low thermal conductivity based on zirconium oxide for high-pressure turbine blades of promising gas turbine engines. Modern achievements in the field of creating promising non-metallic composite materials and coatings for aviation and space technology. Moscow: VIAM, 2015, p. 3.
17. Kablov E.N., Doronin O.N., Artemenko N.I., Stekhov P.A., Marakhovsky P.S., Stolyarova V.L. Study of the physicochemical properties of ceramics based on the Sm2O3–Y2O3–HfO2 system for the development of advanced heat-shielding coatings. Zhurnal neorganicheskoy khimii, 2020, vol. 65, no. 6, pp. 846–855. DOI: 10.31857/S0044457X20060070.
18. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
19. Sokolov A.V., Deynega G.I., Kuzmina N.A. Influence of Sc2O3 additive on sintering temperature and properties of ZrO2–Y2O3 system oxide ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 64–69. DOI: 10.18577/2071-9140-2020-0-1-64-69.
20. Stiger M.J., Yanar N.M., Topping M.G. et al. Thermal Barrier Coatings for the 21st Century. Zeitschrift fur Metallkunde, 1999, vol. 90, pp. 1–37.
21. Jadhav A.D., Padture N.P., Jordan E.H. et al. Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures. Acta Materialia, 2006, vol. 6, pp. 3343–3349.
22. Schulz U., Fritscher K., Peters M. EB-PVD Y2O3- and CeO2Y2O3-stabilized zirconia thermal barrier coatings – crystal habit and phase composition. Surface and Coatings Technology, 1996, vol. 82, pp. 259–269.
23. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 24, 2023). DOI: 10.18577/2713-0193-2022-0-1-129-142.
24. Sampath S., Schulz U., Jarligo M.O., Kuroda S. Processing science of advanced thermal-barrier systems. MRS Bulletin, 2012, vol. 37, pp. 903–910.
25. Lugscheider E., Bobzin K., Bärwulf S., Etzkorn A. Mechanical properties of EB-PVD-thermal barrier coatings by nanoindentation. Surface and Coatings Technology, 2001, vol. 138, pp. 9–13.
26. Drexler J.M., Chen C.H., Gledhill A.D. et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al-silicate glass. Surface and Coatings Technology, 2012, vol. 206, pp. 3911–3916.
27. Wu J., Guo H., Gao Y., Gong S. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011, vol. 31, pp. 1881–1888.
28. Niranatlumpong P., Ponton C.B., Evans H.E. The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings. Oxidation of Metals, 2000, vol. 53, pp. 241–258.
29. Koomparkping T., Damrongrat S., Niranatlumpong P. Al-rich precipitation in CoNiCrAlY bondcoat at high temperature. Journal of Thermal Spray Technology, 2005, vol. 14, pp. 264–267.
30. Mumm D.R., Evans A.G., Spitsberg I.T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Materialia, 2001, vol. 49, pp. 2329–2340.
31. Chen W.R. The growth and influence of thermally grown oxide in a thermal barrier coating. Surface and Coatings Technology, 2006, vol. 201, pp. 1074–1079.
32. Karlsson A.M., Hutchinson J.W., Evans A.G. The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling. Materials Science and Engineering, 2003, vol. 351, pp. 244–257.
33. Wiesner V.L., Bansal N.P. Mechanical and thermal properties of calcium–magnesium aluminosilicate (CMAS) glass. Journal of the European Ceramic Society, 2005, vol. 35, pp. 2907–2914.
34. Kramer S., Faulhaber S., Chambers M. et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 2008, vol. 490, pp. 26–35.
35. Kim J., Dunn M., Baran A. et al. Deposition of volcanic materials in the hot sections of two gas turbine engines. The Journal of Engineering for Gas Turbines and Power, 1993, vol. 155, pp. 641–651.
36. Borom M., Johnson C., Peluso L. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 1996, vol. 86, pp. 116–126.
37. Stott F., Wet D., Taylor R. The effects of molten silicate deposits in the stability of the thermal barrier coatings for turbine applications at very high temperatures. 3rd International SAMPE Metal Conference, 1992, vol. 3, pp. M92–M101.
38. Strangman T., Raybould D., Jamell A., Baker W. Damage mechanisms, life prediction and development of EB-PVD thermal barrier coatings for turbine airfoils. Surface and Coatings Technology, 2007, vol. 202, pp. 658–664.
39. Mackenzie J., Canil D. Volatile heavy metal mobility in silicate liquids: implications for volcanic degassing and eruption prediction. Earth and Planetary Science Letters, 2008, vol. 269, pp. 488–496.
40. Leyen P., Schulz U., Pint B., Wright I. Influence of EB-PVD TBC microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surface and Coatings Technology, 1999, vol. 6, pp. 280–284.
41. Kramer S., Yang J., Levi C. Thermochemical interaction of thermal barrier coatings with CMAS deposits. Journal of the American Ceramic Society, 2006, vol. 89, pp. 3167–3175.
42. Grant K., Kramer S., Lofvander J., Levi C. CMAS degradation of environmental barrier coatings. Surface and Coatings Technology, 2007, vol. 202, pp. 653–657.
43. Kramer S., Yang J., Levi C. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. Journal of the American ceramics society, 2008, vol. 91, pp. 576–583.
44. Mercer C., Faulhaber S., Evans A., Darolia R. A delamination mechanism for the thermal barrier coatings subject to CMAS infiltration. Acta Materialia, 2005, vol. 53, pp. 1029–1039.
45. Guo L., Li G., Gan L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications. Journal of Advanced Ceramics Society, 2020, vol. 10, pp. 472–481.
46. Watanabe M., Mercer C., Levi C.G., Evans A.G. On a Ferroelastic Mechanism Governing The Toughness of Metastable Tetragonal-Prime Yttria-Stabilized Zirconia. Acta Materialis, 2004, vol. 52, pp. 1479–1487.
47. Zhao L.G., Lu T.J., Fleck N.A. Crack channeling and spalling in a plate due to thermal shock loading. Journal of the Mechanics and Physics of Solids, 2000, vol. 48, pp. 867–897.
48. Suo Z., Hutchinson J.W. Steady-state cracking in brittle. substrates beneath adherent films. International Journal of Solids and Structures, 1989, vol. 25, pp. 1337–1487.
49. Drory M.D., Thouless M.D., Evans A.G. On the decohesion of residually stressed thin films. Acta Metallurgica, 1988, vol. 36, pp. 2019–2028.
50. Chen X., Wang R., Yao N. et al. Foreign object damage in a thermal barrier system: mechanisms and simulations // Materials Science and Engineering. 2002, vol. 352, no. 1–2, рр. 221–231.
51. Zavarzin S.V., Oglodkov M.S., Chesnokov D.V., Kozlov I.A. Hot corrosion and protection of materials of gas turbine engines (review). Trudy VIAM, 2018, no. 3 (109), paper no. 11. Available at: http://www.viam-works.ru (accessed: April 24, 2023). DOI: 10.18577/2307-6046-2022-0-3-121-134.
52. Liu S., Liu Q., Hu X. et al. CMAS corrosion resistance behavior and mechanism of Hf6Ta2O17 ceramic as potential material for thermal barrier coatings. Coatings, 2023, vol. 13, art. 404.
53. Li D., Jiang P., Gao R. et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion. Journal of Advanced Ceramics, 2021, vol. 10, pp. 551–564.
54. DeWet D.J., Taylor R., Stott F.H. Corrosion mechanisms of ZrO2–Y2O3 thermal barrier coatings in the presence of molten middle-east sand. Journal de physique. IV, Colloque, 1993, vol. 3, pp. 655–663.
55. Zhao H., Levi C.G., Haydn N.G.W. Molten silicate interactions with thermal barrier coatings. Surface and coatings Technology, 2014, vol. 251, pp. 74–86.
56. Zhang Q., Zhang X., Ma Zh. et al. Water vapor and CMAS corrosion tests of Y2SiO5/Si thermal and environmental barrier coating. Heliyon, 2022, vol. 8, art. e10262. DOI: 10.1016/j.heliyon.2022.e10262.
57. Guo L., Xin H., Hu Ch. Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings. Corrosion Science, 2020, vol. 177, art. 108968. DOI: 10.1016/j.corsci.2020.108968.
58. Shifler D.A., Choi S.R. CMAS effects on ship gas-turbine components/materials. Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2018, art. GT2018-75865. DOI: 10.1115/GT2018-75865.
59. Budinovsky S.A., Stekhov P.A., Doronin O.N., Artemenko N.I. Main mechanisms of destruction of the ceramic layer of thermal barrier coatings (review). Trudy VIAM, 2019, no. 2 (74), paper no. 11. Available at: http://www.viam-works.ru (accessed: April 24, 2023). DOI: 10.18577 / 2307-6046-2019-0-2-105-112.
Due to the increase in application of PСM in designs of aviation engineering there is use question protection against lightnings. In article requirements to protection against lightnings, applied in airplanes are provided. Different ways of increase in conductivity of PСM, including at the expense of implementation of metal grid or foil, their advantage and shortcomings are considered. The main developers and producers of materials for protection against lightnings are specified. The overview of works of Research Center «Kurchatovsky institute» ‒ VIAM directed on development protection against lightnings for aircraft is provided.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
4. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Bondaletova L.I., Bondaletov V.G. Polymer composite materials: textbook. Tomsk: Publ. House of Tomsk Polytech. Univ., 2013, part 1, 118 p.
7. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 16, 2023). DOI: 10.18577/2307-6046-2020-0-67-38-44.
8. Gulyaev I.N., Gunyaeva A.G., Raskutin A.E., Fedotov M.Yu., Sorokin K.V. Lightning protection and the built-in control for designs from PCM. Trudy VIAM, 2013, no. 4, paper no. 10. Available at: http://www.viam-works.ru (accessed: March 13, 2023).
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
10. Kablov E.N., Gunyaev G.M., Krivonos V.V. et al. Increasing the transversal conductivity of structural carbon fiber reinforced plastics modified with fulleroid nanopa. Nanokompozity: issledovaniye, proizvodstvo, primenenie. Moscow: TorusPress, 2004, pp. 20–23.
11. Gunyaev G.M., Chursova L.V., Raskutin A.E., Nachinkina G.V., Gunyaeva A.G., Kuprienko V.M. Lightning protective coatings for structural carbon plastics containing nanoparticles. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 3, pp. 24–35.
12. Gunyaeva A.G., Chursova L.V., Fedotov M.Yu., Cherfas L.V. Investigation of the effect of a lightning discharge on carbon plastic with a nanomodified lightning protection coating and a built-in control system based on fiber Bragg gratings. Voprosy materialovedeniya, 2016, no. 1 (85), pp. 80–91.
13. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
14. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
15. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 20, 2023). DOI: 10.18577/2713-0193-2021-0-3-105-116.
Modern and promising blades of rotors and tail rotors of helicopters are almost entirely made of polymer composite materials. All these structures are extremely sensitive to operational damage, which can not only appear for a variety of reasons, but are also poorly detected visually from the outside, even with large areas of delamination and cracking of the base material. To solve the problems of detecting and measuring the size of operational damage, the selection of optimal options for non-destructive testing methods for each type of structure was made, the features of their application were studied, and the optimal settings and control modes were selected.
2. Kablov E.N. The key problem is materials. Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
3. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Estimation of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using domestic and foreign flaw detection liquids. Defektoskopiya, 2021, no. 1, pp. 64–71. DOI: 10.31857/S0130308221010073.
4. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
7. Goncharov V.A., Timoshkov P.N., Usacheva M.N. Prospects of the production of large-sized aircraft parts from polymer composite materials (review). Trudy VIAM, 2021, no. 12 (106), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2018-0-8-55-62.
8. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: December 01, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
9. Boychuk A.S., Dikov I.A., Chertishchev V.Yu., Generalov A.S. Determination of the porosity of monolithic zones of aircraft parts and assemblies made from PCM using the ultrasonic echo-pulse method. Defektoskopiya, 2019, no. 1, pp. 3–9. DOI: 10.1134/S01303082190100019.
10. Murashov V.V. Control and diagnostics of multilayer structures made of polymer composite materials by acoustic methods. Moscow: Spektr, 2016, 244 p.
11. Murashov V.V. Research and improvement of acoustic low-frequency control methods of products from layered plastics and multilayered glued of constructions. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 87–93. DOI: 10.18577/2071-9140-2018-0-4-87-93.
12. Hopkins D., Neau G., Le Ber L. Advanced phased-array technologies for ultrasonic inspection of complex composite parts. Smart materials, structures & NDT in aerospace. Conference NDT in Canada 2011, 2–4 November, Montreal, Quebec, Canada. Available at: https://www.ndt.net/article/ndtcanada2011/papers/109_Hopkins.pdf (accessed: December 07, 2022).
13. Demidov A.A., Krupnina O.A., Mikhaylova N.A., Kosarina E.I. Investigation of polymer composite material samples by x-ray computed tomography and processing of tomograms with the image of the volume fraction of porosity. Trudy VIAM, 2021, no. 5 (99), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2021-0-5-105-113.
14. Chertishchev V.Yu., Boychuk A.S., Dikov I.A., Yakovleva S.I., Generalov A.S. Determination of the Defect Depth in Multilayer PCM Structures by Acoustic Methods Based on the Mechanical Impedance. Defektoskopiya, 2018, no. 8, pp. 21–34. DOI: 10.1134/50130308218080031.
15. Lange Yu.V. Acoustic low-frequency methods and means of non-destructive testing of multilayer structures. Moscow: Mashinostroenie, 1991, 272 p.
When studying the thermophysical properties of new materials, it is often necessary to measure composite samples consisting of a coated substrate. In this paper, we consider a technique for measuring the thermal conductivity of a sample located between two substrate disks using a three-layer model. The influence of thermal resistance between layers on the measurement results is analyzed. It is shown that the application of silicone oil and graphite lubricant reduces the measurement error by up to 40 % compared with the use of pure metal-to-metal contact.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nickel foundry heat resisting alloys of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 36–52.
3. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
4. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Aluminum-lithium alloys of a new generation and layered alumina-glass-reinforced plastics and their basis. Tsvetnye metally, 2016, no. 8, pp. 86–91.
5. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 23, 2023). DOI: 10.18577/2713-0193-2022-0-2-30-42.
6. Kashin D.S., Stekhov P.A. Modern thermal barrier coatings obtained by electron-beam physical vapor deposition (review). Trudy VIAM, 2018, no. 2, paper no. 10. Available at: http://www.viam-works.ru (accessed: March 23, 2023). DOI: 10.18577/2307-6046-2018-0-2-10-10.
7. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
8. Budinovskiy S.A., Lyapin A.A., Gorlov D.S., Benklyan A.S., Tatarnikov S.V. Multilayer antifretting coating on large-sized manufactures. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (accessed: March 23, 2023). DOI: 10.18577/2713-0193-2022-0-3-98-107.
9. Pavlovskaya T.G., Kozlov I.A., Volkov I.A., Zakharov К.Е. Formation of hard wear-resistant anodic oxide coatings on parts made of casting aluminium alloys. Trudy VIAM, 2015, no. 8, paper no. 04. Available at: http://viam-works.ru (accessed: March 23, 2023). DOI: 10.18577/2307-6046-2015-0-8-4-4.
10. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Computational and experimental investigations of thermophysical properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.
11. Netzsch. Thermoreflectance method. Available at: https://analyzing-testing.netzsch.com/ru/contact-testing/methods/thermoreflectance (accessed: March 23, 2023).
12. Loshchinin Yu.V., Razmakhov M.G., Pakhomkin S.I., Lutsenko A.N. Influence of structure and technology of drawing of multilayer heat-protective coatings produced by thermal spraying dusting on thermal conductivity. Trudy VIAM, 2019, no. 6 (78), paper no. 10. Available at: http://viam-works.ru (accessed: March 23, 2023). DOI: 10.18577/2307-6046-2019-0-6-95-103.
13. Ezhov A.D. Determination of contact thermal resistance of a pair: composite material С–Si–C and titanium alloy. Trudy MAI, 2015, no. 82. Available at: http://trudymai.ru/upload/iblock/34e/ezhov_rus.pdf (accessed: March 23, 2023).
14. Ezhov A.D. Modeling of surface roughness for contact heat-strength problems. Reports of the XLII Intern. youth sci. conf. «Gagarin Readings» (Moscow, April 12–15, 2016). Moscow: MAI, 2016, vol. 1, pp. 105–106.
15. Mesnyankin S.Yu., Dikov A.V. Calculation of thermal resistance of the contact of elements of power plants with wavy surfaces. Trudy MAI, 2015, no. 81. Available at: https://trudymai.ru/upload/iblock/6dc/6dc7a30f6c82e050847e8b0204d4c78a.pdf (accessed: March 23, 2023).
16. Mesnyankin S.Yu., Ezhov A.D., Basov A.A. Determination of contact thermal resistance based on three-dimensional modeling of contiguous surfaces. Izvestiya Akademii Nauk. Ser.: Energy, 2014, no. 5, pp. 65–74.
17. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
18. State Standard R 57943–2017. Plastics. Determination of thermal conductivity and thermal diffusivity. Part 4. Method of laser flash. Moscow: Standartinform, 2017, 12 p.
19. ASTM E1461–01. Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International, 2001, pp. 1–13.
20. State Standard 15139–69. Plastics. Methods for determining density (bulk mass). Moscow: Publishing House of Standards, 1981, 17 p.
Various standards for determining the glass transition temperature by dynamic mechanical analysis and the dependence of the dynamic modulus of elasticity on temperature are considered. Two melt-type epoxy binders with similar values of glass transition temperature, but different nature of the drop in the dynamic modulus of elasticity upon heating, were selected. Samples were made, a tensile test was carried out, after which the polymer matrices were evaluated using various standards and the results were compared.
2. Kablov E.N. Marketing of materials science, aircraft building and industry: present and future. Marketing and sales director. 2017, no. 5–6, pp. 40–44.
3. Creation of heat-resistant polymer composites – one of the priority areas of national materials science. Available at: https://viam.ru/news/2734 (accessed: January 13, 2023).
4. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020 vol. 90, no. 2, pp. 225–228.
5. Pichugina E.V. Heat resistance and methods of its study for polymeric materials. Proceedings of the XV Intern. student scientific conf. "Student Scientific Forum", 2020, no. 9 (4), art. 03. Available at: https://scienceforum.ru (accessed: April 17, 2023).
6. Method and device for determining the heat resistance of polymer composite materials: pat. 2651617 Rus. Federation; appl. 24.08.17; publ. 23.04.18.
7. Atyasova E.V. Optimization of recipe-technological parameters that ensure the maximum heat resistance of polymer composites, determined by improved methods of thermomechanical testing: thesis, Cand. Sc. (Tech.). Biysk, 2016, рр. 7–11.
8. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 13, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
10. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: February 08, 2023). DOI: 10.18577/2071-9140-2022-0-1-41-50.
11. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 18, 2023). DOI: 10.18577/2713-0193-2021-0-2-51-61.
12. Perepechko I.I. Introduction to polymer physics. Moscow: Khimiya, 1978, pp. 50–70.
13. Postnov V.I., Burkhan O.L., Rakhmatullin A.E., Mantusova O.Yu., Nikitin E.K. Investigation of the influence of post-hardening processes on the glass transition temperature of polymer-composite materials. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye, 2012, no. 3-1 (34), pp. 275–280.
14. Khaskov M.A. On the specifics of determining the glass transition temperature of moisture-saturated polymer composite materials by the method of dynamic mechanical analysis. Zavodskaya laboratoriya. Diagnostika materialov, 2016, no. 82 (1), pp. 25–31.
15. State Standard R 56753–2015. Plastics. Determination of mechanical properties under dynamic loading. Part 11: Glass transition temperature. Moscow: Standartinform, 2016, 12 p.
16. Startsev O.V., Kablov E.N., Makhonkov A.Yu. Patterns of the α-transition of epoxy binders of composite materials according to dynamic mechanical analysis. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie, 2011, no. SP2, pp. 104–113.
17. State Standard R 57739–2017. Polymer composites. Determination of glass transition temperature by dynamic mechanical analysis of glass transition. Moscow: Standartinform, 2017, 23 p.
18. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120. Trudy VIAM, 2017, no. 1 (49), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 17, 2023). DOI: 10.18577/2307-6046-2017-0-1-8-8.
The literature data analysis in the field of biocides for protection the polymeric materials aircraft products from biodegradation has been carried out. General definitions of biocides, their characteristics, mechanisms of action, scopes are considered. Examples of complex reagents to prevent the growth of bacteria and microfungi are given, chemicals that enhance the main action of biocides are listed. The article focuses on the problem of acquiring the resistance of microorganisms to the biocides action.
2. Krivushina A.A., Bobyreva T.V., Yakovenko T.V., Nikolaev E.V. Methods of microorganisms-destructors storage in FSUE «VIAM» collection (review). Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 89–94. DOI: 10.18577/2071-9140-2019-0-3-89-94.
3. Krivushina A.A., Bobyreva T.V., Nikolaev E.V., Slavin A.V. Mechanisms of hydrocarbon fuel and other petroleum products destruction by micromycetes (review). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 66–71. DOI: 10.18577/2071-9140-2020-0-3-66-71.
4. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
5. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
6. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: March 19, 2023). DOI: 10.18577/2307-6046-2019-0-7-84-91.
7. Turova T.P., Sokolova D.Sh., Nazina T.N., Gruzdev D.S., Laptev A.B. Phylogenetic diversity of microbial communities from the surface of polyethylene terephthalate materials during exposure to aquatic environments. Mikrobiologiya, 2020, vol. 89, pp. 99–110. DOI: 0.31857/S0026365620010152
8. Averina A.E., Laptev A.B., Nesterov A.S., Sarvaeva G.A., Nikolaev E.V. Application of quantum-chemical calculations to evaluate the aging processes of polyethylene terephthalate under the influence of climate. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 47–56. DOI: 10.18577/2071-9140-2020-0-3-47-56.
9. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, vol. 1, pp. 25–26.
10. Williams J.F., Worley S.D. Process Hygiene. Types of Biocides. Encyclopedia of Food Microbiology, 1999, pp. 1794–1801.
11. Ribeiro M., Simões L.C. Simões, M. Biocides. Encyclopedia of Microbiology. Fourth Edition. 2019, pp. 478–490.
12. Wypych A., Wypych G. Databook of UV Stabilizers. 2nd ed. Elsevier, 2020, 644 p.
13. Rossmoore H.W. Biocides for metalworking lubricants and hydraulic fluids. Handbook of Biocide and Preservative Use. Ed. H.W Rossmoore. Dordrecht: Springer, 1995, 52 p. DOI: 10.1007/978-94-011-1354-0_5.
14. Johannes T., Paulus M. Market Structure Scenarios in International Steam Coal Trade. The Energy Journal, 2012, vol. 33, no. 3, pp. 91–123. Available at: http://www.jstor.org/stable/23268095 (accessed: April 03, 2023).
15. Fraise A.P., Maillard J.Y., Sattar S.А. Principles and practice of disinfection, preservation and sterilization. 5th Ed. Heidelberg: John Wiley & Sons, 2013, 606 p.
16. Keasler V.V., Paula R.D., Tidwell T. et al. Biocides overview and applications in petroleum microbiology. Trends in Oil and Gas Corrosion Research and Technologies. Production and Transmission. Woodhead Publishing Series in Energy, 2017, pp. 539–562. DOI: 10.1016/B978-0-08-101105-8.00023-1.
17. Finnegan E.J., Kovac K.A., Jaligot E. et al. The down-regulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. The Plant Journal. 2005, vol. 44, is. 3, рр. 420–432. DOI: 10.1111/j.1365-313X.2005.02541.x.
18. Kahrilas G.A., Blotevogel J., Corrin E.R., Borch T. Downhole transformation of the hydraulic fracturing fluid biocide glutaraldehyde: implications for flowback and produced water quality. Environmental Science & Technology, 2016, vol. 50, pp. 11414–11423. DOI: 10.1021/acs.est.6b02881.
19. Oliveira G.F., Rohde C., Garcia A.C. et al. Contributions of Dryland Forest (Caatinga) to Species Composition, Richness and Diversity of Drosophilidae. Neotropical Entomology, 2016, vol. 45, pp. 537–547. DOI: 10.1007/s13744-016-0406-x.
20. Rubioa D., López-Galindoa C., Casanuevab J.F., Nebota E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Applied Thermal Engineering, 2014, vol. 67, is. 1–2, pp. 378–387. DOI: 10.1016/j.applthermaleng.2014.03.057.
21. Elumalai S.D., Shaw A.M., Pattillo D.A., Currey C.J., Rosentrater K.A., Xie K. Influence of UV treatment on the food safety status of a model aquaponics system. Water, 2017, vol. 9, no. 1, p. 27. DOI: 10.3390/w9010027.
22. Jia R., Yang D., Al-Mahamedh H.H., Gu T. Electrochemical testing of biocide enhancement by a mixture of D-amino acids for the prevention of a corrosive biofilm consortium on carbon steel. Industrial & Engineering Chemistry Research, 2017, vol. 56, no. 27, pp. 7640–7649. DOI: 10.1021/acs.iecr.7b01534.
23. Lenz R.W. Biodegradable Polymers. Advances in polymer science. Berlin, Heidelberg: Springer, 1993, vol. 107, pp. 1–40.
24. Liu X. A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions. Human Mutation, 2011, vol. 32, no. 8, pp. 894–899. DOI: 10.1002/humu.21517.
25. Wu W., Pang X., Lin J. et al. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacilluscaldus. Public Library of Science, 2017, vol. 12, is. 9, pp. 1–23. DOI: 10.1371/journal.pone.0183668.
26. Farina R., Ehrhardt F., Bellocchi G., Chenu C. et al. C-MIP: An international model inter-comparison simulating organic carbon dynamics in bare fallow soils. Abstracts of 6th International Symposium on Soil Organic Materials. Harpenden, 2017, p. 24.
27. Kahrilas P.J., Bredenoord A.J., Fox M., Gyawali C.P., Roman S., Smout A.J.P.M. et al. The Chicago Classification of Esophageal Motility Disorders, v3.0. Journal of Neurogastroenterology and Motility. 2015, vol. 27, no. 2, pp. 160–174. DOI: 10.1111/nmo.12477.
28. Kolodkin-Gal I., Romero D., Cao S. et al. D-amino acids trigger biofilm disassembly. Science, 2010, vol. 328, pp. 627–629. DOI: 10.1126/science.1188628.
29. Kao W.K., Frye M., Gagnon P. et al. D-amino acids do not inhibit biofilm formation. Laryngoscope Investigative Otolaryngol, 2017, vol. 2, no. 2, pp. 4–9. DOI: 10.1002/lio2.34.
30. Cava F., Lam H., De Pedro M.A., Waldor M.K. Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011, vol. 68, pp. 817–831. DOI: 10.1007/s00018-010-0571-8.
31. Lam A. J., St-Pierre F., Gong Y. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nature Methods, 2012, vol. 9, pp. 1005–1012. DOI: 10.1038/nmeth.2171.
32. Yang D., Jia R, Rahman H.B.A., Gu T. Preliminary Investigation of Utilization of a Cellulose-Based Polymer in Enhanced Oil Recovery by Oilfield Anaerobic Microbes and its Impact on Carbon Steel Corrosion. Corrosion Journal, 2020, vol. 76, is. 8, pp. 766–772. DOI: 10.5006/3476.
33. Jia R., Li Y., Al-Mahamedh H.H., Gu T. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Frontiers in Microbiology, 2017, vol. 8, art. 1538. DOI: 10.3389/fmicb.2017.01538.
34. Jia R., Yang D., Xu D., Gu T. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Scientific Reports, 2017, vol. 7, art. 6946. DOI: 10.1038/s41598-017-07312-7.
35. Li Z., Yang J., Guo H. et al. Carbon Source Starvation of a Sulfate-Reducing Bacterium–Elevated MIC Deterioration of Tensile Strength and Strain of X80 Pipeline Steel. Frontiers in Materials, 2021, vol. 8, art. 794051. DOI: 10.3389/fmats.2021.794051.
36. Xu Z.P., Jin Y., Liu S. et al. Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. Journal of Colloid and Interface Science, 2008, vol. 326, is. 2, pp. 522–529. DOI: 10.1016/j.jcis.2008.06.062.
37. Xu W., Molino B.Z., Cheng F. et al. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application // ACS Applied Materials & Interfaces, 2019, vol. 11, pp. 8838–8848. DOI: 10.1021/acsami.8b21268.
38. Sánchez-Higueras C., Sotillos S., Castelli-GairHombría J. Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Current Biology, 2014, vol. 24, is. 1, pp. 76–81. DOI: 10.1016/j.cub.2013.11.010.
39. Zilm P.S., Butnejski V., Rossi-Fedele G., Kidd S.P. et al. D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. Public Library of Science, 2017, vol. 12, is. 2, art. e0170670. DOI: 10.1371/journal.pone.0170670.
40. Ou M., Ling J. Norspermidine changes the basic structure of S. mutans biofilm. Molecular Medicine Reports, 2016, vol. 5, pp. 210–220. DOI: 10.3892/mmr.2016.5979.
41. Qu S.X., Li H.P., Ma L., Song J.D. Insights into the evolution of chemoreceptor genes superfamily in Tyrophagusputrescentiae (Acari: Acaridae). Journal of Medical Entomology, 2016, vol. 53, is. 4, pp. 753–759. DOI: 10.1093/jme/tjv257.
42. Ortega A., Farah S., Tranque P. et al. Antimicrobial evaluation of quaternary ammonium polyethyleneimine nanoparticles against clinical isolates of pathogenic bacteria. IET Nanobiotechnology, 2015, vol. 9, is. 6, pp. 342–348. DOI: 10.1049/iet-nbt.2014.0078.
43. Shi J., Long C., Li A. Selective reduction of nitrate into nitrogen using Fe–Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH. Chemical Engineering Journal, 2016, vol. 286, pp. 408–415. DOI: 10.1016/j.cej.2015.10.054.
44. Gonik A.A. Hydrogen sulfide corrosion and measures to prevent it. Moscow: Nedra, 1966, 178 p.
45. Kuznetsov S.I. The role of microorganisms in the cycle of substances in lakes. Moscow: AN SSSR, 1952, 300 p.
46. Polyakov A. Analysis of the composition of the antiseptic. Available at: https://nobel-group.by/tag/disinfection/ (accessed: March 15, 2023).
47. Biocidal preparation and method of biocidal surface treatment: pat. 2 287348 C2 Rus. Federation; appl. 23.12.04; publ. 20.11.06.
48. Polyhexamethyleneguanidine phosphate with antitumor activity: certificate of authorship SU 944290; appl. 16.01.81; publ. 23.03.86.
49. Wood preservative: certificate of authorship SU 1698061, appl. 31.01.90; publ. 15.12.91.
50. Stable, Low Voc, Low Viscous Biocidal Formulations and Method Of Making Such Formulations: pat. US 2010/286217 (A1); appl. 02.12.08; publ. 11.11.10.
51. Fungicidal mixtures based on triazole fungicides and 4,6-dimethyl-N-phenyl-2-pyrimidinamine: pat. EP 0556157 A1; appl. 04.02.93; publ. 18.08.93.
52. Micronized wood preservative formulations: pat. US 7674481 B2; appl. 09.04.04; publ. 09.03.10.
53. Biocidal Compound Containing 4,5-Dichloro-2-Cyclohexyl-3-Isothiazolone and Certain Kind of Commercially Available Biocide: pat. JPH 0558817 (A); appl. 10.12.91; publ. 09.03.93.
54. Taylor C.J., Bain L.A., Richardson D.J. et al. Construction of a whole-cell genereporter for the Xuorescent bioassay of nitrate. Analytical Biochemistry, 2014, vol. 328, is. 1, pp. 60–66. DOI: 10.1016/j.ab.2004.01.013.
Describes the stages of biodegradation in the environment of synthetic hydrocarbons having a polymeric structure. Special attention is paid to the selection of bacterial strains and nutrient media for testing the relevant materials in the laboratory. The role of microorganisms in the production of enzyme preparations is shown, indicating the classes of enzymes that are functionally significant in the processes of destruction of materials. Information about the parameters and conditions of laboratory experiments involving bacterial strains, which are assumed to have a biodestructor phenotype, is presented.
2. Zhang B., Patlolla V.R., Chiao D. Galvanic corrosion of Al/Cu meshes with carbon fibers and graphene and ITO-based nanocomposite coatings as alternative approaches for lightning strikes. The International Journal of Advanced Manufacturing Technology, 2013, vol. 67, pp. 1317–1323. DOI: 10.1007/s00170-012-4568-3.
3. Yoshida S., Hiraga K., Takehana T. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, vol. 353, pp. 759–759. DOI: 10.1126/science.aad6359.
4. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 29, 2023). DOI: 10.18577/2071-9140-2021-0-4-70-80.
5. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, no. 331–334.
6. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
7. Krivushina A.A., Terekhov I.V., Moskvitina K.N., Malysheva S.F., Kuimov V.A. Efficiency of new fungicide compounds based on modified polysept for protection of polymer materials against biodeterioration. Trudy VIAM, 2021, no. 12 (106), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 13, 2023). DOI: 10.18577/2307-6046-2021-0-12-107-116.
8. Otake Y., Kobayashi T., Asabe H. et al. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal Applied Polymer Science, 1995, vol. 56, pp. 1789–1796. DOI: 10.1002/app.1995.070561309.
9. Mohanan N., Montazer Z., Sharma P.K., Levin D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, 2020, vol. 11, pp. 1–22. DOI: 10.3389/fmicb.2020.580709.
10. Ermishev V.Yu. Metabolic possibilities of bacteria with respect to synthetic hydro-carbons used in the production of non-metallic materials (review). Trudy VIAM, 2023, no. 2 (120), paper no. 11. Available at: http://www.viam-works.ru (accessed: February, 16 2023). DOI: 10.18577/2307-6046-2023-0-2-132-146.
11. Ahmed T., Shahid M., Azeem F. Biodegradation of plastics: current scenario and prospects for environmental safety. Environmental Science and Pollution Research, 2018, vol. 25, pp. 7287–7298. DOI: 10.1007/s11356-018-1234-9.
12. Ghosh S., Pal S., Ray S. Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 2013, vol. 20, pp. 4339–4355. DOI: 10.1007/s11356-013-1706.
13. Sinha V., Patel M.R., Patel J.V. Pet Waste Management by Chemical Recycling: A Review. Journal Polymer Environment, 2010, vol. 18, pp. 8–25. DOI: 10.1007/s10924-008-0106-7.
14. Sоrensen L., Groven A.S., Hovsbakken I.A. et al. UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives. Science of The Total Environment, 2021, vol. 755, pp. 1–17. DOI: 10.1016/j.scitotenv.2020.143170.
15. Eskander S., Saleh H. Biodegradation: Process Mechanism. Environmental Science and Engineering, 2017, vol. 8, pp. 1–31. DOI: 10.1007/978-3-030-83783-9_73-1.
16. Gamage A., Liyanapathiranage A., Manamperi A. et al. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability, 2022, vol. 14, pp. 60–85. DOI: 10.3390/su14106085.
17. Nishida H., Tokiwa Y. Distribution of poly(3-hydroxybutyrate) and polycaprolactone aerobic degrading microorganisms in different environments. Journal of Environment Polymer Degradation, 1993, vol. 1, pp. 227–233. DOI: 10.1007/BF01458031.
18. Caballero K.P., Karel S.F., Register R.A. Biosynthesis, and characterization of hydroxybutyrate-hydroxycaproate copolymers. International journal of biological macromolecules, 1995, vol. 17, pp. 86–92. DOI: 10.1016/0141-8130(95)93522-y.
19. Mohn W.W., Wilson A.E., Bicho P., Moore E.B. Physiological and Phylogenetic Diversity of Bacteria Growing on Resin Acids. Systematic and Applied Microbiology, 1999, vol. 22, pp. 68–78. DOI: 10.1016/S0723-2020(99)80029-0.
20. Shadia M., Abdel A. Production and some properties of two chitosanases from Bacillus alvei. Journal Basic Microbiology, 1999, vol. 39, pp. 79–87. DOI: 10.1002/(SICI)1521-4028(199905)39:2.
21. Corti A., Solaro R., Chiellini E. Biodegradation of poly(vinyl alcohol) in selected mixed microbial culture and relevant culture filtrate. Polymer Degradation and Stability, 2002, vol. 75, pp. 447–458. DOI: 10.1016/S0079-6700(02)00149-1.
22. Stiles M., Holzapfel W. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 1997, vol. 36, pp. 1–29. DOI: 10.1016/S0168-1605(96)01233-0.
23. Decker E.L., Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess and Biosystems Engineering, 2008, vol. 31, pp. 3–9. DOI: 10.1007/s00449-007-0151-y.
24. Schocken M.J., Gibson D.T. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Applied Environmental Microbiology, 1984, vol. 48, pp. 10–16. DOI: 10.1128/aem.48.1.10-16.1984.
25. Morozova O.V., Shumakovich G.P., Shleev S.V. Laccase–Mediator Systems and Their Applications: A Review. Applied Biochemistry and Microbiology, 2007, vol. 43, pp. 523–535. DOI: 10.1134/S0003683807050055.
26. Rosales E., Rodríguez Couto S., Sanromán A. New uses of food waste: application to laccase production by Trametes hirsute. Biotechnology Letters, 2002, vol. 24, pp. 701–704. DOI: 10.1023/A:1015234100459.
Heat-resistant alloys and steels
Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from superalloys with directional and single-crystal structure
Morozova L.V.Investigation of the causes of loss of elastic properties of a 30H13 steel membrane
Light-metal alloys
Nefedova Yu.N., Shlyapnikova T.A., Ivanov A.L., Sedelnikov V.V. Methods for reducing residual stresses during hardening of high-strength aluminum alloys
Polymer materials
Shosheva A.L., Akhmadieva K.R., Valueva M.I.,Nacharkina A.V. Bismaleimide resins (review). Part 2
Composite materials
Chaykun A.M., Bobrova I.I., Gerasimov D.M., Sergeyev A.V. Elastomers for sealing harness materials: properties, methods of receiving and feature of manufacturing
Protective and functional
coatings
Tolmachev Ya.V., Zavarzin S.V., Loshchinina A.O., Knyazev A.V. High temperature oxide corrosion of ceramic materials in turbine engines
Mishkin S.I., Klimenko O.N., Gunyaeva A.G. Materials for the lightnings protection of aviation engineering
Material tests
Antipov V.V., Boichuk A.S., Chertishchev V.Yu., Yakovleva S.I., Barannikov A.A. Identification of operational damage from blades of
rotors and tail rotors made of PCM in operating conditions
Barinov D.Ya. Investigation of thermal conductivity of composite multilayer samples
Melnikov D.A., Gromova A.A., Gorodilova N.A., Zagora A.G. Determination of heat resistance of epoxy matrixes by DMA method
Kravchenko N.G., Shchekin V.K., Laptev A.B., Krivushina A.A. Biocides. Examples, mechanisms and applications
Ermishev V.Yu., Laptev A.B., Startsev V.O. Peculiarities of assessing the resistance of polymeric materials to biodegradation in laboratory conditions. Part 1. Degradation of polymeric materials in natural environments, selection of bacterial strains, nutrient media and cultivation conditions