Articles
The chemical composition and mechanical properties of the well-known corrosion-resistant nickel-based superalloys for of turbine blades with a columnar granular structure and a single-crystal structure are considered. Result of computer design and experimental studies of new single crystal corrosion resistant nickel-based superalloy VZHM9 with 1.5 (% wt.) Re and density 8.35 g/cm3 are presented. It is shown that the VZHM 9 alloy has high phase stability, increased tensile strength and ductility characteristics ( ), and creep strength ( ).
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
4. Getsov L.B. Materials and strength of gas turbine parts: in 2 books. Rybinsk: Gas Turbine Technologies, 2010, book 1, 611 p.
5. Logunov A.V., Burov M.N., Danilov D.V. Development of power and marine gas turbine engine building in the world (review). Part 3. Prospects for the development of gas turbines plants in Russia. Dvigatel, 2016, no. 3 (105), pp. 2–5.
6. Nozhnitsky Yu.A., Golubovsky E.R. Ensuring the Strength Reliability of Single-Crystal Blades of High-Temperature Turbines of Advanced GTEs. Scientific ideas S.T. Kishkin and modern materials science: Int. sci.-tech. conf. Moscow: VIAM, 2006, pp. 65−71.
7. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006, 372 p.
8. Harada H. Development of Superalloys for 1700 °C ultra-efficient gas turbines. Proceeding 9th Liege Conference «Materials for Advanced Power Engineering 2010». Belgium: University of Liège, 2010, pp. 604−614.
9. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Rybinsk: Gazoturbinnyye tekhnologii, 2017, 854 p.
10. Casting heat-resistant alloys. S.T. Kishkin effect. Ed. E.N. Kablov. Moscow: Nauka, 2006, 272 p.
11. Nikitin V.I. Corrosion and protection of gas turbine blades. Moscow: Mashinostroenie, 1987, 272 p.
12. Ross I.V., Sims Ch.T. Nickel based alloys. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 books. Eds. Ch.T. Sims, N.S. Stoloff, W.K. Hagel; trans. from Engl. Moscow: Metallurgiya, 1995, book 1, pp. 128–174.
13. Kishkin S.T., Logunov A.V., Petrushin N.V. and other Scientific bases of alloying heat-resistant nickel alloys. Voprosy aviatsionnoy nauki i tekhniki. Ser.: Aviatsionnyye materialy. Moscow: VIAM, 1987, is.: Methods for the study of structural materials, pp. 6–18.
14. Erickson G.L., Harris K. DS and SX superalloys for industrial gas turbines. Material for advanced engineering: Proceedings Conference in Liège (Belgium). Dordrecht; Boston; London: Kluwer Academic Publishers, 1994, part II, рр. 1055–1074.
15. Erickson G.L. The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application. Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996, рр. 45–52.
16. Schneider K. Advanced blading. High temperature materials for power engineering: Proceedings Conference in Liège (Belgium). Dordrecht; Boston; London: Kluwer Academic Publishers, 1996, рart II, рр. 935–955.
17. Caron P., Escale A., McColvin G. et al. Development of new high strength corrosion resistant single crystal superalloys for industrial gas turbine applications. Proceeding of the 5th International Charles Parson Turbine Conference: PARSONS 2000 – Advanced Materials for 21st Century Turbines and Power Plant. London: IOM Communications Ltd, 2000, рр. 847–864.
18. Kablov E.N., Svetlov I.L., Petrushin N.V. Heat-resistant nickel alloys for casting blades with directional and single-crystal structure (part 1). Materialovedenie, 1997, no. 4, pp. 32–39.
19. Nickel-based casting alloy: pat. 2017850 С22С19/05 Rus. Federation; filed 19.07.91; publ. 15.08.94.
20. Nickel-based heat-resistant alloy for casting gas turbine rotor blades: pat. 2524515 С1 Rus. Federation; filed 05.09.13; publ. 27.07.14.
21. Dilip M., Cetel A. Evaluation of PWA1483 for large single crystal IGT blade applications. Superalloys 2000. Pennsylvania: Minerals, Metals & Materials Society, 2000, рр. 295–304.
22. Wilcock I.M., Lukas P., Maldini M. et al. The Creep behavior of as-cast SX CM186LC at industrial gas turbine operating conditions. Materials for advanced power engineering: Proceedings of the 7th Liège Conference. Forschungszentrum Jülich GmbH, 2002, рart I, рр. 139–147.
23. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72–103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
24. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Rhenium in single crystal nickel-based superalloys for gas turbine engine blades. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
25. Huang M., Zhu J. An overview of rhenium effect in single-crystal superalloys. Rare Metals, 2016, vol. 35, no. 2, pp. 127–139.
26. Lu F., Antonov S., Zheng Y. et al. Effect of Re on long-term creep behavior of nickel-based single-crystal superalloys for industrial gas turbine applications. Superalloys 2020. PA: TMS, 2020, рр. 218–227.
27. Svetlov I.L., Petrushin N.V., Epishin A.I., Kara-shaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: January 25, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
28. Low carbon directional solidification alloy – CM186LC: pat. US 5069873; filed 14.08.89; publ. 03.12.91.
29. Toloraiya V.N., Kablov E.N., Orekhov N.G. Casting technology for single-crystal turbine blades of GTE and GTU. Aviacionnye materialy i tehnologii, 2003, no. 1, pp. 63–79.
30. Ross E.W., O’Hara K.S. RENÉ N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength. Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996, рр. 19–25.
31. Kuzmina N.A. Growth structural defects in single crystals of nickel heat-resistant alloys. Aviation materials and technologies, 2022, no. 1 (66), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 14, 2022). DOI: 10.18577/2713-0193-2022-0-3-15-26.
32. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
33. Morozova G.I. Compensation for alloying imbalance in heat-resistant nickel alloys. Metallovedeniye i termicheskaya obrabotka metallov, 2012, no. 12 (690), pp. 52–56.
34. Samoilov A.I., Morozova G.I., Krivko A.I., Afonicheva O.S. Analytical method for optimizing alloying of heat-resistant nickel alloys. Materialovedenie, 2000, no. 2, pp. 14–17.
35. Physical metallurgy: in 3 vols. Ed. R. Kahn. Moscow: Mir, 1967, vol. 1: Atomic structure of metals and alloys, 334 p.
36. Sims C.T. Behavior of Alloys. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 books. Eds. Ch.T. Sims, N.S. Stoloff, W.K. Hagel; trans. from Engl. Moscow: Metallurgiya, 1995, book 1, pp. 277–308.
37. Morinaga M., Yukawa N., Adachi H., Ezaki H. New phacomp and its applications to alloy design. Superalloys 1984. Pennsylvania: Minerals, Metals & Materials Society, 1984, pp. 523–532.
38. Morinaga M., Murata Y., Yukawa H. Recent progress in molecular orbital approach to alloy design. Materials Science Forum. 2004, vol. 449–452, pp. 37–42.
39. Ohno T., Watanabe R., Tanaka K. Development of a nickel-base single crystal superalloy containing molybdenum by an alloy designing method. Journal of the Iron and Steel Institute of Japan, 1988, vol. 74, no. 11, pp. 133–140.
40. Calculation of parameters of heat-resistant nickel alloys: certificate of state registration of the computer program RU 2019661855; filed 28.08.19; publ. 10.09.19.
41. Kablov E.N., Petrushin N.V., Parfenovich P.I. Design of castable refractory nickel alloys with polycrystalline structure. Metal Science and Heat Treatment, 2018, is. 1‒2, pp. 106–114.
42. Petrushin N.V., Visik E.M., Elyutin E.S. Improvement of the chemical composition and structure of castable nickel-base superalloy with low density. Part 2. Trudy VIAM, 2021, no. 4 (98), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 14, 2022). DOI: 10.18577/2307-6046-2021-0-4-3-15.
43. Nickel-based cast heat-resistant alloy and a product made from it: pat. 2633679 C1 Rus. Federation; filed 20.12.16; publ. 16.10.17.
44. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: NRC "Kurchatov Institute" – VIAM, 2022, vol. 3: Nickel-based cast heat-resistant and intermetallic alloys, 200 p.
45. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 14, 2022). DOI: 10.18577/2307-6046-2019-0-12-11-19.
46. Epishin A.I., Petrushin N.V., Svetlov I.L., Noltse G. Model for predicting the temperature dependence of γ/γʹ-misfit in heat-resistant nickel alloys. Materialovedenie, 2021, no. 3, pp. 9–18.
47. Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Monocrystals of nickel heat-resistant alloys. Moscow: Mashinostroyenie, 1997, 336 р.
48. Epishin A.I., Svetlov I.L., Petrushin N.V. et al. Segregation in single crystal nickel-base superalloys. Defect and Diffusion Forum, 2011, vol. 309–310, pp. 121–126.
49. Kablov E.N., Golubovsky E.R. Heat resistance of nickel alloys. Moscow: Mashinostroenie, 1998, 463 p.
50. Larson F.R., Miller J. A time-temperature relationship for rupture and creep stresses. Transactions ASME, 1952, vol. 74, pp. 765–771.
Presents the history of the development of х-ray diffraction analysis in VIAM in different periods of the institute's existence. The article describes the activities of the first head of the х-ray Laboratory, Evgeny Fedorovich Bakhmetev, an outstanding specialist in the field of х-ray structural research of metals and alloys, the founder and developer of the theory of metal recrystallization. The development of х-ray research equipment is traced in the historical context of the tasks of developing new materials and methods for controlling the structure of alloys.
2. Bakhmetev E.F., Kosolapov G.F. X-ray determination of the residual distortion of the atomic lattice in pressed duralumin. On the nature of structural changes during metal deformation at elevated temperatures. Moscow; Leningrad: Tsvetmetizdat, 1933, pp. 74–85.
3. Bakhmetev E.F., Rovinsky B.M. Investigation of the thermal effect in duralumin during impact deformation. On the nature of structural changes during metal deformation at elevated temperatures. Moscow; Leningrad: Tsvetmetizdat, 1933, рр. 61–73.
4. Trapeznikov A.K. X-ray study of the CuAl2 structure. Moscow; Leningrad: Sector of departmental and correspondence literature, 1934, 28 p.
5. Kozhina N.K. To the method of X-ray analysis of duralumin recrystallization. Moscow; Leningrad: Gosmashmetizdat, 1934, 16 p.
6. Bakhmetev E.F. X-ray determination of the structure of FeAl3. Moscow: ONTI NKTP USSR, 1935, 38 p.
7. Logunov A.V., Petrushin N.V., Kuleshova E.A., Dolzhansky Yu.M. Predicting the influence of structural factors on the mechanical properties of heat-resistant alloys. Metallovedenie i termicheskaya obrabotka metallov, 1981, no. 6, pp. 16–20.
8. Svetlov I.L., Sukhanov N.N., Krivko A.I. Temperature-orientational dependence of short-term strength characteristics, Young's modulus and coefficient of linear expansion of ZhS6F single crystals. Problemy prochnosti, 1987, no. 4, pp. 51–56.
9. Krivko A.I., Epishin A.I., Svetlov I.L., Samoilov A.I. Elastic properties of single crystals of nickel alloys. Problemy prochnosti, 1988, no. 2, pp. 68–75.
10. Chumakov V.A., Stepanov V.M., Ivanov V.G. et al. Casting technology for gas turbine engine blades using the method of directed crystallization. Liteynoe proizvodstvo, 1978, no. 1, pp. 23–24.
11. Krivko A.I., Epishin A.I., Svetlov I.L., Samoilov A.I. Calculation of thermal stresses and thermal stability of anisotropic materials. Message II. Problemy prochnosti, 1989, no. 4, pp. 43–48.
12. Treninkov I.A., Alekseev A.A., Zaitsev D.V., Filonova E.V. Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy. Aviacionnye materialy i tehnologii, 2011, no. 2, pp. 11–19.
13. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure. Aviacionnye materialy i tehnologii, 2010, no. 4, pp. 7–11.
14. Treninkov I.A., Alekseev A.A., Polyakov S.N. Method of determination of residual stress in monocrystals of nickel superalloys using diffractometer of wide application with Cu Kβ-radiation. Aviacionnye materialy i tehnologii, 2010, no. 1, pp. 8–12.
15. Kochubey A.Ya., Medvedev P.N. The use of direct pole figures in the study of structure formation processes during heating of deformed metals and alloys. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 5 (23), paper no. 2. Available at: http://www.materialsnews.ru (accessed: January 16, 2023).
16. Medvedev P.N., Muboyadzhyan S.A. X-ray diffraction studies of electron beam ceramic thermal barrier coating layer based on ZrO2·Y2O3. Trudy VIAM, 2017, no. 1 (49), paper no. 03. Available at: http://www.viam-works.ru (accessed: January 16, 2023). DOI: 10.18577/2307-6046-2017-0-1-3-3.
17. Naprienko S.A., Medvedev P.N., Raevskikh A.N., Popov M.A. Diffraction methods of research in the analysis of the plastic deformation zone under the fracture surface. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyenie, 2019, no. 4 (127), pp. 97–110.
18. Vasilev A.I., Panin P.V., Putyrskiy S.V., Rogalev A.M. Investigation of hot isostatic pressing and heat treatment effect on structure and mechanical properties of 3D-printed samples made from VT6-PS grade material. Trudy VIAM, 2021, no. 7 (101), paper no. 03. Available at: http://www.viam-works.ru (accessed: January 16, 2023). DOI: 10.18577/2307-6046-2021-0-7-22-30.
19. Kolyadov E.V., Visik E.M., Gerasimov V.V., Arginbaeva E.G. The influence of directional solidification parameters on the structure and properties of the intermetallic alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 16, 2022). DOI: 10.18577/2307-6046-2019-0-3-14-26.
20. Zhitnyuk S.V., Medvedev P.N., Sorokin O.Yu., Kachaev A.A. Investigation of the crystallographic texture of corundum ceramics obtained by spark plasma sintering. Kristallografiya, 2022, vol. 67, no. 2, pp. 194–200.
21. Kuzmina N.A., Ezubchenko S.N. Method for obtaining direct pole figures from single crystals of heat-resistant alloys. Metallurgiya mashinostroeniya, 2012, no. 3, pp. 33–34.
22. Kuzmina N.A., Vasikova L.M. Influence of the sample rotation speed on the quality of the spectrum in determining the crystallographic orientation of single-crystal castings of heat-resistant alloys. Metallurgiya mashinostroeniya, 2009, no. 5, pp. 19–20.
23. Kuzmina N.A., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Comparative structure control of single-crystal castings of nickel superalloys x-ray diffraction methods of oscillation and Laue. Trudy VIAM, 2019, no. 9 (81), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 16, 2023). DOI: 10.18577/2307-6046-2019-0-9-15-25.
24. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 12, 2022). DOI: 10.18577/2307-6046-2019-0-12-11-19.
25. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization. Aviacionnye materialy i tehnologii, 2011, no. 4, pp. 25–31.
26. Bazyleva O.A., Bondarenko Yu.A., Timofeeva O.B., Chabina E.B. Intermetallic compositions based on Ni3Al alloyed with rhenium. Metallurgiya mashinostroeniya, 2011, no. 4, pp. 30–34.
27. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. About the directed crystallization of heat-resistant alloys with the use of a cooler. Liteynoe proizvodstvo, 2011, no. 5, pp. 36–39.
28. Bondarenko Yu.A., Bazyleva O.A., Echin A.B., Surova V.A., Narsky A.R. High-gradient directional crystallization of parts from alloy VKNA-1V. Liteynoe proizvodstvo, 2012, no. 6, pp. 12–16.
29. Bazyleva O.A., Bondarenko Yu.A., Timofeeva O.B., Khvatsky K.K. Influence of crystallographic orientation on the structure and properties of the VKNA-1V alloy. Metallurgiya mashinostroeniya, 2012, no. 4, pp. 8–12.
30. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Influence of directional crystallization conditions on the structure of GTE blade-type parts. Liteynoe proizvodstvo, 2012, no. 7, pp. 14–16.
31. Kuzmina N.A., Ezubchenko S.N. Method for obtaining direct pole figures from single crystals of heat-resistant alloys. Metallurgiya mashinostroyeniya, 2012, no. 3, pp. 33–34.
32. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, 520 p.
The welded joints heat-resistant aluminum alloys V-1213 and 1151 were researched. The welded joints were performed according to the tested modes on the Laser Weld 8R60 laser welding complex. The properties joints, provided within ones and twice welding were given. The strength level of welded fuselage elements with an intermittent asymmetrical seam; with an intermittent symmetrical seam, with a continuous seam is investigated. The tests results of welded stringer panels with the bearing capacity determination during shear are presented.
2. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Aluminium-lithium alloys of a new generation and layered aluminum-glass plastics based on them. Tsvetnye metally, 2016, no. 8 (884), pp. 86–91. DOI: 10.17580/tsm.2016.08.13.
3. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
4. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
5. Bliznyuk V., Vasiliev L., Vul V. et al. The truth about supersonic and passenger aircraft. Moscow: Moskovsky Rabochiy, 2000, 335 p.
6. Altman M.B., Andreev G.N., Arbuzov Yu.P. et al. Application of aluminum alloys. Moscow: Metallurgy, 1985, 344 p.
7. Fomin V.M., Malikov A.G., Orishich A.M., Antipov V.V., Klochkov G.G., Skupov A.A. Heat treatment effect on structure of joint weld sheets from V-1469 alloy of Al–Cu–Li system manufactured by laser welding. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 9–18. DOI: 10.18577/2071-9140-2018-0-1-9-18.
8. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
9. Panteleev M.D., Bakradze M.M., Skupov A.A., Scherbakov A.V., Belozor V.E. Technological features of fusion welding of aluminum alloy V-1579. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 11–17. DOI: 10.18577/2071-9140-2018-0-3-11-17.
10. Rokhlin L.L., Bochvar N.R., Dobatkina T.V. Joint influence of some transition metals on the change in the phase composition and recrystallization of aluminum. Tekhnologiya legkikh splavov, 2009, no. 2, pp. 20–27.
11. Grigorev M.V., Antipov V.V., Vakhromov R.O. et al. Structure and properties of ingots from Al–Cu–Mg system alloy with silver microadditives. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 3–6.
12. Ivanova A.O., Vahromov R.O., Grigor'ev M.V., Senatorova O.G. Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys. Trudy VIAM, 2014, no. 10, paper no. 01. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2014-0-10-1-1.
13. Aluminum alloy and product made from it: pat. 2278179 Rus. Federation; filed 21.12.04; publ. 20.06.06.
14. Oglodkova Yu.S., Lukina E.A., Vakhromov R.O., Antipov K.V. Influence of artificial aging regimes on the structure and properties of the high-temperature alloy V-1213 of the Al–Cu–Mg–Ag system. Metallovedenie i termicheskaya obrabotka metallov, 2014, no. 8 (710), pp. 13–19.
15. Chirkov E.F., Kononova L.A., Shmelyova V.S. Effect of equiatomic cu and mg content on ageing processes of 1151 (Al–Cu–Mg) high-temperature weldable structural alloy. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 20–24.
16. Chirkov E.F. Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems. Trudy VIAM, 2013, no. 2, paper no. 02. Available at: http://www.viam-works.ru (accessed: December 01, 2022).
17. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Aluminum-Lithium alloy V-1469 welded fuselage constructions survivability. Aviation materials and technologies, 2022, no. 1 (69), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 01, 2022). DOI: 10.18577/2713-0193-2022-0-4-25-35.
18. Dittrich D., Standfuss J., Liebscher J. et al. Laser Beam Welding of Hard to Weld Al Alloys for a Regional Aircraft Fuselage Design – First Results. Physics Procedia, 2011, no. 12, pp. 113–122.
In the present work, the thermophysical and physicomechanical characteristics of a molten epoxy resin system VSE-62, developed in SIC «Kurchatov Institute» – VIAM, are considered. The value of the glass transition temperature of the system, the kinetic parameters of the curing process with a different speed of the heating, the plot of the gelation time and flexural strength are given. The results of rheological tests in isothermal and dynamical modes are shown. The low viscosity of the system and long-term viability at high temperatures allows it to be used for the manufacture of various polymer composite materials by resin transfer moulding and vacuum assisted resin transfer moulding.
2. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: October 10, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Timoshkov P.N. Modern polymer composite materials for use in aviation technology. III All-Rus. sci.-tech. conf. "Polymer composite materials and production technologies of a new generation". Moscow: VIAM, 2018, pp. 40–56.
5. Mikhailin Yu.A. Structural polymeric composite materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2008, 822 p.
6. Kogan D.I. Technology for the manufacture of polymer composite materials by the method of impregnation with film binders: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2011, 139 p.
7. Kudryavtseva A.N., Tkachuk A.I., Grigorieva K.N., Gurevich Ya.M. The use of epoxy resin system VSE-30, processed by the infusion technology, for the manufacture of low and medium loaded structural polymer composite materials. Trudy VIAM, 2019, no. 1 (73), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 12, 2022). DOI: 10.18577/2307-6046-2019-0-1-31-39.
8. Kryzhanovsky V.K., Kerber M.L., Burlov V.V. Manufacture of products from polymeric materials. St. Petersburg: Professionya, 2004, 464 p.
9. Vlasov S.V., Kandyrin L.B., Kuleznev A.V. et al. Fundamentals of plastics processing technology. Moscow: Khimiya, 2004, 600 p.
10. Kholodnikov Yu.V. Methods for manufacturing products from composites. Mezhdunarodnyj zhurnal prikladnykh i fundamentalnykh issledovaniy, 2016, no. 6, pp. 214–221.
11. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
12. Bratukhin A.G., Bogolyubov V.S., Sirotkin O.S. Technology for the production of products and integral structures from composite materials in mechanical engineering. Moscow: Gotika, 2003, 516 p
13. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 20–26.
14. Leshukova I.V. Principal technologies for the manufacture of aircraft structures from composite materials: RTM and autoclave molding. Innovatsionnaya nauka, 2018, no. 1, pp. 14–16.
15. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 20, 2022). DOI: 10.18577/2307-6046-2019-0-11-22-36.
16. Arulappan C., Duraisamy A., Adhikari D., Gururaja S. Investigations on pressure and thickness profiles in carbon fiber-reinforced polymers during vacuum assisted resin transfer molding. Journal of Reinforced Plastics and Composites, 2015, vol. 34, pp. 3–18.
17. Ricciardi M.R., Antonucci V., Durante M. et al. A new cost-saving vacuum infusion process for fiber-reinforced composites: Pulsed infusion. Journal of Composite Materials, 2014, vol. 48 (11), pp. 1365–1373.
18. Marques A.T. Fibrous materials reinforced composites production techniques. Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing, 2011, pp. 191–215. DOI: 10.1533/9780857095583.3.191.
19. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 15, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
20. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
21. Terekhov I.V., Tkachuk A.I., Donetsky K.I., Karavaev R.Yu. Technological and operational characteristics of the VSE-62 low-viscosity epoxy resin with increased pot life and its application. Aviation materials and technologies, 2021, no. 2 (63), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 15, 2022). DOI: 10.18577/2713-0193-2021-0-2-43-50.
22. Kladovshchikova O.I., Tikhonov N.N., Zhdanov I.A., Sutyagina A.K., Nakhaeva A.V. Composite materials based on ultra-high molecular weight polyethylene. Uspekhi v khimii i khimicheskoy tekhnologii, 2019, vol. 3, no. 6, pp. 30–32.
23. Lubin. J. Handbook of composite materials. Moscow: Mashinostroenie, 1988, 348 p.
Properties of pilot conducting glue with ponidenny temperature of curing are considered. According to the destination pilot glue is close to conducting glue of the VKP-11 brand of similar assignment. Advantage of pilot glue is the lowered temperature of curing (60 °C instead of 120 °C for VKP-11 glue). Properties of the pilot conducting glue containing in the structure carbonyl nickel as conducting filler, in the range of temperatures from –60 to +120 °C in initial condition and after influence of artificial external factors are investigated.
2. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
3. Kablov E.N. At the crossroads of science, education and industry. Ekspert, 2015, no. 15 (941), pp. 49–53.
4. Grashhenkov D.V., Chursova L.V. Strategy of development of composite and functional materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 231–242.
5. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2019. Vol. 10: Adhesives, sealants, rubbers, hydraulic fluids. Part 1: Adhesives, adhesive prepregs, 276 p
6. Petrova A.P., Donskoy A.A. Adhesive materials. Sealants. St. Petersburg: Professional, 2008, 589 p.
7. Anikhovskaya L.I., Batizat V.P., Petrova A.P. Adhesives and their application. Aviation materials at the turn of the XX–XXI centuries. Moscow: VIAM, 1994, pp. 396–409.
8. Abdullin M.I., Basyrov A.A., Koltaev N.V. et al. Conductive polymer compositions for 3D printing. Byulleten nauki i praktiki, 2016, no. 4, pp. 44–50.
9. Aronovich D.A., Varlamov V.P., Voitovich V.A. et al. Bonding in mechanical engineering: a reference book in 2 vols. Ed. G.V. Malysheva. Moscow: Nauka i Tekhnologii, 2005, vol. 1, 544 p.
10. Efimov V.A. Climatic resistance of adhesive joints. Klei. Germetiki. Tekhnologii, 2009, no. 6, pp. 6–11.
11. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
12. Petrova A.P., Isaev A.Yu., Lukina N.F., Pavlyuk B.F. Influence of fillers on the electrical conductivity of adhesives and the properties of electrically conductive adhesives. Overview. Klei. Germetiki. Tekhnologii, 2018, no. 8, pp. 9–15.
13. Petrova A.P., Lukina N.F., Pavlyuk B.F., Isaev A.Yu., Besednov K.L. Fillers for conductive adhesives. Novosti materialovedeniya. Nauka i tekhnika, 2017, no. 5–6 (28), paper no. 06. Available at: http://www.materialsnews.ru (accessed: November 30, 2022).
14. Bykov P.M., Egorenkova S.V., Kuzminov A.A. Operational materials: textbook. Cherepovets: ChGU, 2013, 340 p.
15. Besednov K.L., Petrova A.P., Lukina N.Ph., Isaev A.Yu. Influence of the composition and conditions of heat treatment of the conductive properties of silver-containing electrically conductive adhesive compositions (review). Part 1. Trudy VIAM, 2021, no. 5 (99), paper no. 07. Available at: http://www.viam-works.ru (accessed: January 20, 2023). DOI: 10.18577/2307-6046-2021-0-5-64-77.
16. Lukin V.I., Rulnikov V.S., Afanasiev-Khodikin A.N., Kucevich K.E., Nischev K.N. The method for adhesion strength determining of silver coating to the silicon substrate by glue applying. Trudy VIAM, 2015, no. 4, paper no. 12. Available at: http://www.viam-works.ru (accessed: January 20, 2023). DOI: 10.18577/2307-6046-2015-0-4-12-12.
17. Kurilin S.L. Electrical materials and technologies of electrical work: allowance at 3 parts. Gomel: BelSUT. 2008, part 1: Conductor and semiconductor materials, 88 p.
18. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
19. Lewis A., Babiarz A. Conductive Adhesive Dispensing Process Considerations. Asymtek, Nordson Electronic Business Group. Available at: http://www.asymtek.com (accessed: January 19, 2023).
20. Ranzhin Yu.S., Kalashnikov Yu.N., Litvinenko N.P. Electrically conductive adhesives for automatic assembly of open crystals. Elektronika i mikroelektronika SVCh, 2016, vol. 2, pp. 97–101.
21. Ershova T.N., Smirnova G.V., Bakhin N.B., Smirnova E.N. Investigation of finely dispersed silver powders for electrically conductive adhesive compositions. Elektronnaya Tekhnika. Ser. 1: microwave technology, 2014, is. 3 (522), pp. 61–68.
22. Gladkikh S.N., Kuznetsova L.I., Kornev V.V., Barkovskaya N.P. Conductive adhesives developed by JSC «Composite». Klei. Germetiki. Tekhnologii, 2009, no. 4, pp. 8–11.
23. Gladkikh S.N., Shestakov A.S., Dreval T.N. et al. Conductive adhesives for the installation of space electronics. Pechatnyy montazh, 2016, no. 3, pp. 156–160.
24. Gladkikh S.N., Shestakova A.S., Kolesnikova E.V. Conductive adhesives for ERI elements. Klei. Germetiki. Tekhnologii, 2014, no. 5, pp. 2–4.
25. Conductive Adhesives (Technical Data). Available at: www.henkel-adhesives.com (accessed: January 17, 2023).
26. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
27. Bolshakov V.A., Antyufeeva N.V. Investiga-tion of the modification shungite of carbon plastic on the basis of epoxy matrix. Trudy VIAM, 2018, no. 3 (63), paper no. 12. Available at: http://www.viam-works.ru (accessed: January 17, 2023). DOI: 10.18577/2307-6046-2018-0-3-103-110.
28. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 25, 2023). DOI: 10.18577/2307-6046-2021-0-3-58-67.
29. Volkov A.V., Moskvina M.A., Karachevtsev I.V. Structure and electrical conductivity of highly dispersed polymer compositions – CuS, obtained in situ. Vysokomolekulyarnye soyedineniya. Seriya A, 1998, vol. 40, no. 6, pp. 970–976.
The features of manufacturing polymer composite materials (PCM) based on semipregs processed by vacuum molding are considered. The main approaches and requirements for binders, fillers and processes taking place during molding are established. Attention is drawn to the research carried out by foreign manufacturers of semipregs. Darcy's law is presented as the main postulate when carrying out the processes of impregnation of fillers with a binder. The properties of PCM based on semipregs made of equal-strength and unidirectional fabrics and epoxy melt binder developed by SIC «Kurchatov Institute» – VIAM are given.
2. Terebenin B.P. Technological features of manufacturing large-sized products from fiberglass. Fiberglass and other structural plastics. Moscow: Oborongiz, 1960, 168 p.
3. Gunyaev G.M. Design of high-modulus polymer composites. Moscow: Mashinostroenie, 1977, 159 p.
4. Mikhailin Yu.A. Structural polymeric composite materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2008, 822 p.
5. Brautman L. Destruction and fatigue. Moscow: Mir, 1978, 153 p.
6. Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D. Сarbon fiber based on a volume-reinforcing braided preform for an element of a propeller blade. Trudy VIAM, 2022, no. 12 (118), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 16, 2022). DOI: 10.18577/2307-6046-2022-0-12-27-38.
7. Donetskiy K.I., Usacheva M.N., Khrulkov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM, 2022, no. 6 (112), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 16, 2022). DOI: 10118577/2307-6046-2022-0-6-58-67.
8. Donetskiy K.I., Karavayev R.YU., Raskutin A.Ye., Dun V.A. Carbon fibers composite material on the basis of volume reinforcing triax braiding preformes. Trudy VIAM, 2019, no. 1 (73), paper no. 07. Available at: http://viam-works.ru (accessed: December 16, 2022). DOI: 10.18577/2307-6046-2019-0-1-55-63.
9. Donetskiy K.I., Bystrikova D.V., Karavaev R.Yu., Timoshkov P.N. Application of polymeric composite materials for creation of elements of transmissions of aviation engineering (review). Trudy VIAM, 2020, no. 3 (87), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 16, 2022). DOI: 10.18577/2307-6046-2020-0-3-82-93.
10. Ridgard C. Advances in Low Temperature Curing Prepregs for Aerospace Structures. Proc. SAMPE 2000 Conf. Long Beach: Society for the Advancement of Materials and Process Engineering, 2000, vol. 31, pp. 1–10.
11. Ridgard C. Out of Autoclave Composite Technology for Aerospace. Defense and Space Structures. Proc. SAMPE 2009 Conf. Baltimore: Society for the Advancement of Materials and Process Engineering, 2009, vol. 54, pp. 1–13.
12. Ridgard C. Next Generation Out of Autoclave Systems. Proc. SAMPE 2010 Conf. Seattle: Society for the Advancement of Materials and Process Engineering, 2010, vol. 33, pp. 1–18.
13. Boyd J., Maskell R.K. Product Design for Low Cost Manufacturing of Composites for Aerospace Applications. Proc. SAMPE 2001 Conf. Long Beach: Society for the Advancement of Materials and Process Engineering, 2001, vol. 48, pp. 59–90.
14. Repecka L., Boyd J. Vacuum-bag-only-curable prepregs that produce void-free parts. Proc. SAMPE 2002 Conf. Long Beach: Society for the Advancement of Materials and Process Engineering, 2002, vol. 47, pp. 1–13.
15. Bond G.G., Griffith J.M., Hahn G.L. et al. Non-Autoclave Prepreg Manufacturing Technology. Proc. SAMPE 2008 Conf. Memphis: Society for the Advancement of Materials and Process Engineering, 2008, vol. 12, pp. 58–74.
16. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
17. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
18. Kablov E.N. Aviation materials science in the XXI century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS; VIAM, 2002, pp. 23–47.
19. Gaskell D.R. An Introduction to Transport Phenomena in Materials Engineering. Macmillan Publishing Company, 1992, 687 p.
20. Kratz J., Hubert P. Anisotropic air permeability in out-of-autoclave prepregs: Effect on honeycomb panel evacuation prior to cure. Composites. Part A: Applied Science and Manufacturing, 2013, vol. 49, pp. 179–191.
21. Lee C.W., Gibson T., Tienda K.A., Storage T.M. Reaction Rate and Viscosity Model Development For Cytec s Cycom 5320 Family of Resins. Proc. SAMPE Tech.2010 Conf. Salt Lake City: Society for the Advancement of Materials and Process Engineering, 2010, vol. 6, pp. 1–15.
22. Grunenfelder L.K., Nutt S.R. Prepreg age monitoring via differential scanning calorimetry. Journal of Reinforced Plastics and Composites, 2012, vol. 31, pp. 295–302.
23. Kim D., Centea T., Nutt S.R. Out-Time Effects on Cure Kinetics and Viscosity for an Out-Of-Autoclave (OOA Prepreg: Modeling and Monitoring). Journal of Reinforced Plastics and Composites, 2014, vol. 100, pp. 63–69.
24. Kratz J., Hsiao K., Fernlund G., Hubert P. Thermal models for MTM45-1 and Cycom 5320 out-of-autoclave prepreg resin. Journal of Composite Materials, 2012, vol. 47, pp. 341–352.
25. Grunenfelder L.K., Nutt S.R. Out Time Effects on VBO Prepreg and Laminate Properties. Proc. SAMPE 2011 Conf. Long Beach: Society for the Advancement of Materials and Process Engineering, 2011, vol. 31, pp. 23–36.
26. Centea T., Hubert P. Measuring the impregnation of an out-of-autoclave prepreg by micro-CT. Composites Science and Technology, 2011, vol. 71, pp. 593–599.
27. Cender T.A., Simacek P., Advani S.G. Resin film impregnation in fabric prepregs with dual length scale permeability. Composites. Part A: Applied Science and Manufacturing, 2013, vol. 53, pp. 118–128.
In this work, we investigated the possibility of improving the flexibility of sealing heat-insulating materials by introducing a reinforcing component into the composition of the material in the form of chopped oxide ceramic refractory fibers. The effect of a reinforcing component on the change in the critical bending radius of samples of fibrous material based on ceramic refractory fibers has been studied. Sample tests showed an improvement in flexibility by 12–25 %, depending on the thickness and bulk density of heat-insulating materials.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovacii, 2020, no. 6 (260), pp. 3–16.
4. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
5. Chentsov I.V., Klibansky I.B., Mashchensky A.A., Kapitanov A.F. Technology of the most important industries. Minsk: Vysheyshaya shkola, 1980, part 1, 324 p.
6. Polezhaev Yu.V., Yurevich F.B. Thermal protection. Ed. A.B. Lykov. Moscow: Energy, 1976, 391 p.
7. Varrik N.M., Maksimov V.G. Features of obtaining high-temperature oxide fiber. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 6, paper no. 06. Available at: http://www.materialsnews.ru (accessed: November 23, 2022).
8. Afanasov I.M., Lazoryak B.I. High temperature ceramic fibers. Moscow: Lomonosov Moscow State Univ., 2010, 51 p.
9. Fibers from oxide ceramics: pat. 2396388 Rus. Federation; filed 10.02.10; publ. 10.08.10.
10. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Ceramic fibers of aluminum oxide and materials based on them. Steklo i keramika, 2012, no. 4, pp. 32–35.
11. Babashov V.G., Varrik N.M., Maksimov V.G., Samorodova O.N. Oxide fiber coated with silicon carbide for producing composite materials. Aviation materials and technologies, 2021, no. 3 (64), paper no. 09. Available at: http://www.journal.viam.ru (accessed: October 26, 2022). DOI: 10.18577/2713-0193-2021-0-3-94-104.
12. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: October 31, 2022). DOI: 10.18577/2713-0193-2021-0-1-119-126.
13. Katz S.M. High temperature thermal insulation materials. Moscow: Metallurgiya, 1981, 231 p.
14. Shirokorodyuk V.K. Effective thermal insulation materials. Krasnodar: KSAU, 2005, 130 p.
15. Aksenov S.E. Modern thermal insulation materials. Arkhangelsk: AGTU, 2009, 119 p.
16. Rakhimov R.Z., Shelikhov N.S. Modern thermal insulation materials. Kazan: KGASU, 2006, 392 p.
17. Ermolenko I.N., Ulyanova T.M., Vityaz P.A., Fedorova I.L. Fibrous high temperature materials. Minsk: Nauka i tekhnologii, 1991, 255 p.
18. Refractory fibrous ceramic insulation and process of making same: pat. US 6183852; filed 05.06.95; publ. 09.07.02.
19. Perepelkin K.E. Reinforcing fibers and fibrous polymer composites. St. Petersburg: Nauchnye osnovy i tekhnologii, 2009, 380 p.
20. Method for obtaining fibrous oxide material: pat. SU 1730233 A1; filed 28.03.89; publ. 30.04.92.
21. Zhitnyuk S.V., Medvedev P.N., Sorokin O.Yu., Kachaev A.A. Formation of crystallographic texture in polycryctalline ceramics as a way to enhance properties (review). Trudy VIAM, 2022, no. 5 (111), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 11, 2022). DOI: 10.18577/2307-6046-2022-0-5-74-86.
22. Stepanova E.V., Maksimov V.G., Ivakhnenko Yu.A. Internal defects of complex threads from oxide refractory fibers. Novye ogneupory, 2022, no. 2, pp. 56–60.
23. Butakov V.V., Basargin O.V., Babashov V.G., Ivakhnenko Yu.A. A behavioral model of the fibrous material during bending tests. Trudy VIAM, 2014, no. 12, paper no. 6. Available at: http://www.viam-works.ru (accessed: November 14, 2022). DOI: 10.18577/2307-6046-2014-0-12-6-6.
24. Kolyshev S.G., Basargin O.V., Butakov V.V. Experiments to determine the tensile strength of samples from lightweight flexible fibrous materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 5, pp. 8–11.
25. Duka A.V. Development of technology for improved quartz HSM based on the development of the principles of structure formation of fibrous pulps: thesis abstract, Cand. Sc. (Tech.). Moscow: VIAM, 1989, 22 p.
26. Khodakovsky M.D. Manufacture of glass fibers and fabrics. Moscow: Khimiya, 1973, 312 p.
27. Chernyak M.G. Continuous glass fiber. Moscow: Khimiya, 1965, 322 p.
28. Zhabin A.N., Sidorov D.V., Nyafkin A.N. Fibrous composite materials with a metal matrix (review). Trudy VIAM, 2021, no. 6 (100), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 04, 2022). DOI: 10.18577/2307-6046-2021-0-6-27-35
Optimality of choice of an antiadhesive for a specific molding surface when molding products from polymer composite materials (PCM) is determined by many factors: absence of scratching of coating from the surface of tooling and of transfer of release agent to molded blank, ease of removal and defectlessness of the product from PCM. Offers an additional factor for evaluating the optimality of selecting an antiadhesive for polymer tooling: determination of free surface energy (FSE), which gives a characteristic of tooling surface wettability. In the framework of this work the FSEs of five different antiadhesion compositions were investigated.
2. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
3. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. High-Temperature Structural Composite Materials Based on Glass and Ceramics for Advanced Aircraft Products. Steklo i keramika, 2012, no. 4, pp. 7–11.
6. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: November 16, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-33.
7. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
8. Mosiyuk V.N., Tomchani O.V. Evaluation of properties of glass-fibre-reinforced plastics based on epoxybisma-leimide resin, produced by different non-autoclave molding techniques. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 47–52. DOI: 10.18577/2071-9140-2019-0-2-47-52.
9. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 16, 2022). DOI: 10.18577/2307-6046-2019-0-11-22-36.
10. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
11. Mukhametov R.R., Petrova A.P., Ponomarenko S.A. Anti-adhesive coatings and their properties. Trudy VIAM, 2018, no. 12 (72), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 16, 2022). DOI: 10.18577/2307-6046-2018-0-12-88-96.
12. Semenova L.V., Novikova T.A., Nefedov N.I. Study of removing ability of removers for paint systems removal. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 32–37. DOI: 10.18577/2071-9140-2017-0-1-32-37.
13. Frolov V.I., Semenov A.P., Grishina I.N., Kucherov V.G. Wetting angle and methods for its determination. Moscow: Publishing Center of the Russian State University of Oil and Gas (NRU) im. I.M. Gubkina, 2021, 53 p.
14. Zinina I.N., Pimanov M.V. Influence of the surface energy of metal samples on the strength of adhesive joints. Izvestiya MSTU "MAMI", 2011, no. 2 (21), pp. 127–130.
15. Yakovets N.V., Krutko N.P., Opanasenko O.N. Determination of the free surface energy of powdered resinous-asphalten substances by the Owens–Wendt–Rabel–Kaelble method. Sviridovskie chteniya, 2012, no. 8, pp. 253–260.
Superhydrophobic polymer coatings arouse considerable interest in their industrial application, and the development of nanotechnology has simplified the development and production of nanotextured superhydrophobic coatings. Currently, the presence of functional particles/nanoparticles in its composition is a prerequisite for obtaining most superhydrophobic coatings, and the main problem of such coatings is low stability, which affects their practical application. The review is devoted to the analysis of the latest trends in the use of micro- and nanoparticles for the formation of superhydrophobic coatings, modification of particles and methods of their introduction into the coating.
2. Xi J., Jiang L. Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research, 2008, vol. 47 (17), pp. 6354–6357.
3. Barthlott W., Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, vol. 202, pp. 1–8.
4. Ren T., He J. Substrate-versatile approach to robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments. ACS Applied Materials and Interfaces, 2017, vol. 9 (39), pp. 34367–34376.
5. Ma X., Shen B., Zhang L. et al. Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Composites Science and Technology, 2018, vol. 158, pp. 86–93.
6. Yang Z., Wang L., Sun W., Liu G. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Applied Surface Science, 2017, vol. 401, pp. 146–155.
7. Liu Y., Bai Y., Jin J. et al. Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate. Applied Surface Science, 2015, vol. 355, pp. 1238–1244.
8. Liu Y., Li X., Jin J. et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model. Applied Surface Science, 2017, vol. 400, pp. 498–505.
9. Buznik V.M., Kablov E.N., Koshurina A.A. Scientific and technical problems of the development of the Arctic. Moscow: Nauka, 2015, pp. 275–285.
10. Buznik V.M., Kablov E.N. Technologies for obtaining and adapting materials for use in the Arctic. Reports of satellite V Int. conf.-school on Chemical Technology of the XX Mendeleev Congress on General and Applied Chemistry. Volgograd: Volgograd State Tech. Univ., 2016, pp. 9–10.
11. Bespalov A.S., Nefedov N.I., Deev I.S., Kurshev E.V., Lonsky S.L., Buznik V.M. Features of hydrophobization of high-porous ceramic materials using fluoroligomers. Trudy VIAM, 2019, no. 5 (77), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2019-0-5-41-51.
12. Yin K., Du H., Dong X. et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale, 2017, vol. 9, pp. 14620–14626.
13. Sun Z., Liao T., Liu K. et al. Fly-Eye Inspired superhydrophobic anti-fogging inorganic nanostructures. Small, 2014, vol. 10, pp. 3001–3006.
14. Ou J., Hu W., Xue M. et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection. ACS Applied Materials and Interfaces, 2013, vol. 5, pp. 3101–3107.
15. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
16. Varchenko E.A., Kurs M.G. Crevice corrosion of aluminum alloys and stainless steel in marine water. Trudy VIAM, 2018, no. 7 (67), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2018-0-7-96-105.
17. Chen X., Gong Y., Suo X. et al. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification. Applied Surface Science, 2015, vol. 356, pp. 639–644.
18. Tesler А.B., Kim P., Kolle S. et al. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature communications, 2015, vol. 6, p. 8649.
19. Tan C., Cai P., Xu L. et al. Fabrication of superhydrophobic surface with controlled adhesion
by designing heterogeneous chemical composition. Applied Surface Science, 2015, vol. 349, pp. 516–523.
20. Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings. Langmuir, 2018, vol. 34 (24), pp. 7059–7066.
21. Sheen Y.C., Huang Y.C., Liao C.S. et al. New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica nanoparticles. Journal of Polymer Science. Part B: Polymer Physics, 2008, vol. 46 (18), pp. 1984–1990.
22. Xu Q.F., Wang J.N., Sanderson K.D. Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability. ACS Nano, 2010, vol. 4 (4), pp. 2201–2209.
23. Gupta N., Kavya M.V., Singh Y.R.G. et al. Superhydrophobicity on transparent fluorinated ethylene propylene films with nano-protrusion morphology by Ar + O2 plasma etching: Study of the degradation in hydrophobicity after exposure to the environment. Journal of Applied Physics, 2013, vol. 114 (16), p. 164307.
24. Gu H.Y., Qi Z.Y., Wu W. et al. Superhydrophobic polyimide films with high thermal endurance via UV photo-oxidation. Express Polymer Letters, 2014, vol. 8 (8), pp. 588–595.
25. Nguyen-Tri P., Nguyen T.A., Carriere P., Xuan C.N. Nanocomposite coatings: preparation, characterization, properties, and applications. International Journal of Corrosion, 2018, vol. 2018, pp. 1–19.
26. Wang F., Arai S., Endo M. Electrochemical preparation and characterization of nickel/ultra-dispersed PTFE composite films from aqueous solution. Materials Transactions, 2004, vol. 45 (4), pp. 1311–1316.
27. Darband Gh.B., Aliofkhazraei M., Khorsand S. et al. Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arabian Journal of Chemistry, 2020, vol. 13 (1), pp. 1763‒1802.
28. Toledano R., Mandler D. Electrochemical codeposition of thin gold nanoparticles/sol-gel nanocomposite films. Chemistry of Materials, 2010, vol. 22 (13), pp. 3943–3951.
29. Celia E., Darmanin T., Givenchy E. et al. Recent advances in designing superhydrophobic surfaces. Journal Colloid Interface Science, 2013, vol. 402, pp. 1–18.
30. Duan Z., Zhao Z., Luo D. et al. A facial approach combining photosensitive sol-gel with self-assembly method to fabricate superhydrophobic TiO2 films with patterned surface structure. Applied Surface Science, 2016, vol. 360, pp. 1030–1035.
31. Deng X., Mammen L., Butt H.J., Vollmer D. Candle soot as a template for a transparent robust superamphiphobic coating. Science, 2012, vol. 335, pp. 67–70.
32. Ahn B.K., Lee D.W., Israelachvili J.N., Waite J.H. Surface-initiated self-healing of polymers in aqueous media. Nature Materials, 2014, vol. 13, pp. 867–872.
33. Qin L., Chen N., Zhou X., Pan Q. A superhydrophobic aerogel with robust self-healability. Journal of Materials Chemistry A, 2018, vol. 6, pp. 4424–4431.
34. Golovin K., Boban M., Mabry J.M., Tuteja A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Applied Materials and Interfaces, 2017, vol. 9, pp. 11212–11223.
35. Huang X., Kong X., Cui Y. et al. Durable superhydrophobic materials enabled by abrasion-triggered roughness regeneration. Chemical Engineering Journal, 2018, vol. 336, pp. 633–639.
36. Wang Z., Shen X., Qian T. et al. Facile fabrication of a PDMS@stearic acid-kaolin coating on lignocellulose composites with superhydrophobicity and flame retardancy. Materials Science, 2018, vol. 11, p. 727.
37. Lu Y., Sathasivam S., Song J. et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, vol. 347 (6226), pp. 1132–1135.
38. Ling X.Y., Phang I.Y., Vancso G.J. et al. Stable and transparent superhydrophobic nanoparticle films. Langmuir, 2009, vol. 25 (5), pp. 3260–3263.
39. Solovyanchik L.V., Kondrashov S.V. The prospects of using carbon nanotubes to impart functional properties to the surface of polymer materials (review). Trudy VIAM, 2021, no. 9 (103), paper no. 02. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2021-0-9-11-21.
40. Xu L., Karunakaran R.G., Guo J., Yang S. Transparent superhydrophobic surfaces from one-step centrifugation of hydrophobic nanoparticles. ACS Applied Materials & Interfaces, 2012, vol. 4 (2), pp. 1118–1125.
41. Pykhtin A.A., Simonov-Emelyanov I.D. Effect of nano and ultradispersed silica particles (SiO2) on the impact strength of epoxy polymers. Trudy VIAM, 2019, no. 6 (78), paper no. 01. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2019-0-6-3-12.
42. Ogihara H., Xie J., Okagaki J., Saji T. Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir, 2012, vol. 28 (10), pp. 4605–4608.
43. Su C., Li J., Geng H. et al. Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica. Applied Surface Science, 2006, vol. 253 (5), pp. 2633–2636.
44. Zhang J., Li B., Wu L., Wang A. Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chemical Communications, 2013, vol. 49, pp. 11509–11511.
45. Cook K.T., Tettey K.E., Bunch R.M. et al. One-step index-tunable antireflection coatings from aggregated silica nanoparticles. ACS Applied Materials & Interfaces, 2012, vol. 4 (12), pp. 6426–6431.
46. Lee D., Rubner M.F., Cohen R.E. All-nanoparticle thin-film coatings. Nano Letters, 2006, vol. 6 (10), pp. 2305–2312.
47. Goswami D., Medda S.K., De G. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. ACS applied materials & interfaces, 2011, vol. 3 (9), pp. 3440–3447.
48. Piscitellia F., Tescioneb F., Mazzolaa L. et al. On a simplified method to produce hydrophobic coatings for aeronautical applications. Applied Surface Science, 2019, vol. 472, pp. 71–81.
49. Naderizadeh S., Athanassiou A. Bayer I.S. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance. Journal of Colloid and Interface Science, 2018, vol. 519, pp. 285–295.
50. Wang X., Zeng J., Yu X., Zhang Y. Superamphiphobic coatings with polymer-wrapped particles: enhancing water harvesting. Journal of Materials Chemistry, 2019, vol. 7, pp. 5426–5433.
51. Wooh S., Huesmann H., Tahir M.N. et al. Synthesis of mesoporous supraparticles on superamphiphobic surfaces. Advances material, 2015, vol. 27 (45), pp. 7338–7343.
52. Zhua Q., Lic B., Li S. et al. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. Progress in Organic Coatings, 2022, vol. 173, p. 107145.
53. Lu Z., Xu L., He Y., Zhou J. One-step facile route to fabricate functionalized nano-silica and silicone sealant based transparent superhydrophobic coating. Thin Solid Films, 2019, vol. 692, p. 137560.
54. Zhang J., Liu S., Huang Y. et al. Durable fluorinated-SiO2/epoxy superhydrophobic coatings on polycarbonate with strong interfacial adhesion enhanced by solvent-induced crystallization. Progress in Organic Coatings, 2021, vol. 150, р. 106002.
55. Wang X., Ding H., Sun S., Zhang H. et al. Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2–TiO2@PDMS coating with photocatalytic activity. Surface and Coatings Technology, 2021, vol. 408, p. 126853.
56. Verma J., Nigam S., Sinha S., Bhattacharya A. Development of polyurethane based anti-scratch and anti-algal coating formulation with silica-titania core-shell nanoparticles. Vacuum, 2018, vol. 153, pp. 24–34.
57. Zhang F., Qian H., Wang L. et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying. Surface and Coatings Technology, 2018, vol. 341, pp. 15–23.
58. Shen Y., Cai Z., Tao J. et al. Multi-type nanoparticles in superhydrophobic PU-based coatings towards self-cleaning, self-healing and mechanochemical durability. Progress in Organic Coatings, 2021, vol. 159, p. 106451.
59. Lia B., Zhang J. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chemical Communications, 2016, vol. 52, pp. 2744–2747.
60. Li H., Qu M., Sun Z. et al. Facile Fabrication of a hierarchical superhydrophobic coating with aluminate coupling agent modified kaolin. Journal of Nanomaterials, 2013, art. ID 497216, p. 5.
61. Qu M., Liu S., He J. et al. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride. Applied Surface Science, 2017, vol. 410, pp. 299–307.
62. Wu B., Lyu J., Peng C. et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness. Chemical Engineering Journal, 2020, vol. 387, p. 124066.
63. Penna M.O., Silva A.A., Rosário F.F. et al. Organophilic nano-alumina for superhydrophobic epoxy coatings. Materials Chemistry and Physics, 2020, vol. 255, p. 123543.
64. Yuan Z., Bin J., Wang X. et al. Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating. Surface and Coatings Technology, 2014, vol. 254, pp. 97–103.
65. Atta A.M., Al-Lohedan H.A., Ezza A.O., Al-Hussain S. Characterization of superhydrophobic epoxy coatings embedded by modified calcium carbonate nanoparticles. Progress in Organic Coatings, 2016, vol. 101, pp. 577–586.
66. Wang P., Yang Y., Wang H., Wang H. Fabrication of super-robust and nonfluorinated superhydrophobic coating based on diatomaceous earth. Surface and Coatings Technology, 2019, vol. 362, pp. 90–96.
67. Lazzara G., Cavallaro G., Panchal A. et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid & Interface Science, 2018, vol. 35, pp. 42–50.
68. Yuan P., Tan D., Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 2015, vol. 112–113, pp. 75–93.
69. Cavallaro G., Lazzara G., Milioto S. et al. Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS applied materials & interfaces, 2018, vol. 10 (9), pp. 8265–8273.
70. Wang J., Zhang L., Li C. Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes. Chinese Journal of Chemical Engineering, 2022, vol. 52, pp. 56–65.
71. John B., Rajimol P.R., Rajan T.P.D., Sahoo S.K. Design and fabrication of nano textured superhydrophobic and anti-corrosive silane-grafted ZnO/bio-based polyurethane bilayer coating. Surface and Coatings Technology, 2022, vol. 451, p. 129036.
The paper is devoted to nondestructive testing of CFRP monolithic structures radius zones. Manual ultrasonic testing technique by radius phased array and special device is proposed by the authors. Technique allows non-destructive testing of such zones with different radii and bending angles of structures from the inside without testing object immersing in a water container. Technique makes it possible to detect flat defects in radius zones such as extraneous inclusions and voids with diameter from 3 mm and a signal-to-noise ratio of more than 10 dB.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 05, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
4. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: December 01, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
5. Slavin А.V., Silkin A.N., Grinevich D.V., Yakov-lev N.O. Composite materials with a 3D-reinforced structure (review). Trudy VIAM, 2022, no. 8 (114), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2022-0-8-113-122.
6. Goncharov V.A., Timoshkov P.N., Usacheva M.N. Prospects of the production of large-sized aircraft parts from polymer composite materials (review). Trudy VIAM, 2021, no. 12 (106). paper no. 07. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2018-0-8-55-62.
7. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: December 02, 2022). DOI: 10.18577/2713-0193-2021-0-2-51-61.
8. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 2. Automated Fiber Placement (AFP). Aviation materials and technologies, 2021, no. 3 (64), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 02, 2022). DOI: 10.18577/2713-0193-2021-0-3-117-127.
9. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of methods for studying the early stages of aging. Deformatsiya i razrushenie materialov, 2020, no. 1, pp. 15–21.
10. Barinov D.Ya. About selection of optimal thickness of the carbon sample for thermal conductivity measurements using laser flash method. Aviation materials and technologies, 2022, no. 2 (67), paper no. 12. Available at: http://www.journal.viam.ru (accessed: December 05, 2022). DOI: 10.18577/2713-0193-2022-0-2-131-140.
11. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
12. Veligodskiy I.M., Koval T.V., Kurnosov A.O., Marakhovskiy P.S. Study of resistance of glass fiber reinforced plastic to natural weathering in different climatic conditions. Trudy VIAM, 2022, no. 11 (117), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 06, 2022). DOI: 10.18577/2307-6046-2022-0-11-134-148.
13. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. FRP structures radius zones ultrasonic testing (review). Trudy VIAM, 2021, no. 8 (102), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 06, 2022). DOI: 10.18577/2307-6046-2021-0-8-92-103.
14. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline. Quebec: R/D Tech inc., 2004, 368 p.
15. Boychuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. Inspection of monolithic parts and structures of aviation equipment made from PCM by ultrasonic non-destructive testing using phased arrays. Proceedings of the X All-Rus. conf. "The main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry" (TestMat). Moscow: VIAM, 2018, pp. 18–31. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (accessed: December 06, 2022).
16. Hopkins D., Neau G., Le Ber L. Advanced phased-array technologies for ultrasonic inspection of complex composite parts. Smart Materials, Structures & NDT in Aerospace. Montreal; Quebec, 2011. Available at: https://www.ndt.net/article/ndtcanada2011/papers/109_Hopkins.pdf (accessed: December 07, 2022).
17. Lamarre A. Ultrasonic phased-array for aircraft maintenance. Amsterdam, 2009. Available at: https://ndt.aero/images/docs/UTPAfor%20maintenance.pdf (accessed: December 07, 2022).
18. Brotherhood C.J., Drinkwater B.W., Freemantle R.J. An ultrasonic wheel-array sensor and its application to aerospace structures. Insight, 2003, vol. 45, no. 11, pp. 729–734. Available at: http://https://www.researchgate.net/publication/239411267_An_ultrasonic_wheel-array_sensor_and_its_application_to_aerospace_structures (accessed: December 07, 2022).
19. Nageswaran C., Bird C.R. Phased array scanning of artificial and impact damage in carbon fibre reinforced plastic (CFRP). Insight, 2006, vol. 48, no. 3, pp. 155–159. Available at: https://www.ndt.net/article/insight/papers/insi_48_3_155.pdf (accessed: December 07, 2022).
20. Boychuk A.S. Development of technologies for non-destructive testing of monolithic structures made of carbon fiber using ultrasonic antenna arrays: thesis, Cand. Sc. (Tech.). Moscow, 2016, 203 p.
21. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
22. Boychuk A.S., Dikov I.A., Generalov A.S. Features of ultrasonic structures made of carbon fiber with a convex surface using phased arrays and Waterbox mandrels. Kontrol. Diagnostika, 2019, no. 3, pp. 14–21.
23. Rau E., Grauvogl E., Manzke H., Cyr P. Ultrasonic Phased Array Testing of Complex Aircraft Structures. Available at: https://www.ndt.net/article/ecndt2006/doc/Tu.1.1.2.pdf (accessed: December 07, 2022).
24. Moles M. Portable Phased Array Applications. 3rd MENDT – Middle East Nondestructive Testing Conference & Exhibition. Bahrain, Manama, 2005. Available at: https://www.ndt.net/article/mendt2005/pdf/20.pdf (accessed: December 08, 2022).
25. Kass D., Nelligan T., Henjes E. The Evolution and Benefits of Phased Array Technology for the Every Day Inspector. 9th European Conference on NDT. Berlin, 2006, pp. 1–6. Available at: https://www.ndt.net/article/ecndt2006/doc/P198.pdf (accessed: December 08, 2022).
Impurities (the concentration of most elements is less than 0,01 % wt.) As, Ca, Zr, Pb, Nb, La, Nd and Fe in a nickel alloy were determined by spark optical emission spectroscopy (ISES). The equipment settings were selected to maximize the analytical signals from all the elements being determined. The analysis was carried out without the use of standard samples using the calibration dependences embedded in the software of the equipment. The correctness of the obtained results was confirmed by a comparative analysis by inductively coupled plasma mass spectrometry.
2. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
3. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
4. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
6. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: Fedruaru 02, 20232). DOI: 10.18577/2071-9140-2021-0-3-11-18.
7. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
8. State Standard 6689.13–92. Nickel. Nickel and copper-nickel alloys. Methods for the determination of arsenic. Moscow: Publishing house of standards, 1992, pp. 2–5.
9. State Standard 6689.5–92. Nickel. Nickel and copper-nickel alloys. Methods for the determination of iron. Moscow: Publishing house of standards, 1992, pp. 2–4.
10. State Standard 6689.24–92. Nickel. Nickel and copper-nickel alloys. Methods for the determination of calcium. Moscow: Publishing house of standards, 1992, pp. 2–4.
11. State Standard 6689.20–92. Nickel. Nickel and copper-nickel alloys. Methods for the determination of lead. Moscow: Publishing house of standards, 1992, pp. 2–4.
12. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS. Mikrochimica Acta, 2001, vol. 137, pp. 149–155.
13. Fundamentals of analytical chemistry. Ed. Yu.A. Zolotova. Moscow: Academy, 2012, 102 p.
14. Karpov Yu.A., Gimelfard F.A., Savostin A.P., Salnikov V.D. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, 98 p.
15. Gorsky E.V., Livshits A.M. Accounting for interelement influences in the analysis of high-alloy steels on the Papuas-4 emission spectrometer. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 2, pp. 26–30.
16. Popova A.N., Sukhomlinov V.S., Mustafaev A.S. Accounting for Interelement in Atomic Emission Spectroscopy: A Nonlinear Theory. Applied Sciences, 2021, vol. 11, pp. 11–23.
17. Kuznetsov A.A., Slepterev V.A., Peleznev A.V. Implementation of mobile calibration characteristics of instruments for spectral analysis of materials using virtual standards. Omskiy nauchnyy vestnik, 2013, no. 3 (125), pp. 241–246.
18. Tables of Spectral Lines. Eds. S.L. Mandelstam, S.M. Raisky. Moscow: GONTI NKTP USSR, 1938, 321 p.
19. Kuznetsov A.A., Meshkova O.B., Slepterev V.A. Investigation of the factors influencing the results of measurement of intensities in the spectral analysis of materials. Omskiy nauchnyy vestnik, 2011, no. 3 (103), pp. 242–245.
In this work, the impurities of 72 elements in high purity (4N) aluminum were determined by the method of high-resolution glow discharge mass spectrometry (GDMS). The most suitable sample preparation was selected, including preliminary acid etching of the sample. To achieve the maximum analytical signals from all the required elements, the appropriate equipment settings were selected. Relative sensitivity coefficients (RCF) were calculated for all the elements being determined using a standard aluminum sample.
2. Popovich A.A., Panchenko O.V., Naumov A.A., Sviridov A.V., Skupov A.A., Sbitneva S.V. Friction stir wel-ding of aluminum-lithium alloy V-1469-T. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 11–17. DOI: 10.18577/2071-9140-2019-0-4-11-17.
3. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Aluminium-lithium alloys of a new generation and layered aluminum-glass plastics based on them. Tsvetnye metally, 2016, no. 8 (884), pp. 86–91. DOI: 10.17580/tsm.2016.08.13.
4. Shavnev A.A., Babashov V.G., Varrik N.M. Continuous fibers based on alumina (review). Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 27–34. DOI: 10.18577/2071-9140-2020-0-4-27-34.
5. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
6. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the develop-ment of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
7. State Standard 11069–74. Aluminum primary. Marks. Moscow: Publ. house of standards, 1974, pp. 1–2.
8. Kurochkin V.D., Kravchenko L.P. Analysis of impurities in high-purity aluminum oxide by glow discharge mass spectrometry. Powder Metallurgy and Metal Ceramics, 2006, vol. 45, pp. 493–499. DOI: 10.1007/s11106-006-0111-0.
9. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
10. State Standard 11739.6–99. Alloys aluminum casting and deformable. Methods for the determination of iron. Moscow: Publ. house of standards, 1999, pp. 1–3.
11. State Standard 11739.4–90. Alloys aluminum casting and deformable. Methods for the determination of bismuth. Moscow: Publ. house of standards, 1990, pp. 21–22.
12. State Standard 11739.7–99. Alloys aluminum casting and deformable. Methods for the determination of silicon. Moscow: Publ. house of standards, 1999, pp. 8–9.
13. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plasma methods of nickel alloys elemental chemical composition analysis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
14. Pupyshev A.A., Epova E.N. Spectral noise of polyatomic ions in the method of mass spectrometry with inductively coupled plasma. Analitika i kontrol, 2001, vol. 5, no. 4, pp. 335–369.
15. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry. Part I. Tutorial: Fundamentals and instrumentation. Journal of Analytical Atomic Spectrometry, 2011, vol. 26, pp. 693–726.
16. Ganeev A.A., Gubal A.R., Uskov K.N., Potapov S.V. Glow Discharge Analytical Mass Spectrometry. Izvestiya Akademii nauk. Seriya khimicheskaya, 2012, no. 4, pp. 1–15
17. ASTM F1593–08. Standard Test Method for Trace metallic Impurities in Electronic Grade Aluminum by High Mass-Resolution Glow-Discharge Mass Spectometr. ASTM International, 2014, рр. 1–9.
Heat-resistant alloys and steels
Petrushin N.V., Rimsha E.G., Lutskaya S.A., Dmitriev N.S. Design of corrosion-resistant nickel-based superalloy VZHM9 for single crystal gas turbine blades
Kuzmina N.A. Development of x-ray diffraction analysis in VIAM. On the 130th anniversary of the birth of E.F. Bakhmetev, the first head of the х-ray laboratory of the institute
Light-metal alloys
Antipov V.V., Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Heat-resistant aluminum alloys 1151 and B-1213 welded fuselage panels fabrication and testing
Polymer materials
Kuznetcova P.A., Tkachuk A.I., Lyubimova A.S., Eldjaeva G.B. Characteristics of the molten epoxy resin system VSE-62, processed by the injection methods, for the manufacture of highly loaded structural polymer composite materials
Lukina N.F., Isaev A.Yu., Starodubtseva О.А., BalabanovаО.S. Approaches to creation of conducting glue from the lowered curing temperature
Composite materials
Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Production of polymer composite materials based on semipregs
Antipov V.V., Stepanova E.V., Babashov V.G.,Ivakhnenko Yu.A., Butakov V.V. Influence of reinforcement with oxide refractory fibers on the flexibility of thermal insulation materials
Savitsky R.S., Sudin Yu.I., Salakhova R.K. Comparison of the effect of different release agents on the free surface energy of polymer tooling
Protective and functional
coatings
Marchenko S.A., Zheleznyak V.G., Kuznetsova V.A. Application and modification of particles to create superhydrophobic coatings (review)
Material tests
Boychuk A.S., Dikov I.A., Chertishchev V.Yu., Generalov A.S., Gorbovets M.A. Ultrasonic testing of CFRP monolith structures radius zones by radius phased array and special device
Alekseev A.V., Petrov P.S. Determination of impurities in nickel alloys by the method of park optical emission spectroscopy
Alekseev A.V., Yakimovich P.V., Koshelev A.V. Analysis of aluminum by glow discharge high resolution mass spectrometry