Articles
The effect of annealing at the temperature of 800–1040 °С on the η-phase formation in the weldable wrought VZh176 alloy of the Ni–Fe–Co–Nb–Ti system, intended for use in gas turbine engines, has been investigated. It is shown that annealing leads to the precipitation of η-phase particles and change the shape and distribution: from short plates at the grain boundaries to the Widmanstatten structure. The dependence of the quantity of the phase on the duration of processing is established. The composition and crystallographic structure of the η-plates are determined by the methods of transmission electron and scanning microscopy, using the methods of backscattered electron diffraction and х-ray microanalysis. A diagram of the change of the η-phase from temperature and duration of treatment was built.
2. Reed R.C. The Superalloys: Fundamentals and Applications. N.Y.: Cambridge University Press, 2008, 392 р.
3. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaitsev D.V., Prager S.M. The evolution of the structure and properties of a high-resistant heat-resistant alloy VZh159 obtained by the method of selective laser fusion. Part I. Materialovedenie, 2019, no. 3, pp. 9–17.
4. Kablov E.N., Letnikov M.N., Ospennikova O.G., Bakradze M.M., Shestakova A.A. Particulars of the precipitation strengthening γʹ-phase during aging of heat-resistant wrought nickel superalloy VZh175-ID. Trudy VIAM, 2019, no. 9 (81), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 11, 2022). DOI: 10.18577/2307-6046-2019-0-9-3-14.
5. Lomberg B.S., Shestakova A.A., Bakradze M.M., Karachevtsev F.N. The investigation of the stability of γ′-phase with size below 100 nm in Ni-base superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.
6. Shestakova A.A., Karachevtsev F.N., Zhebelev N.M. The investigation of the influence of ageing temperature on structural and phase transformations in VZh177. Trudy VIAM, 2018, no. 5, papers no. 01. Available at: http://www.viam-works.ru (accessed: November 11, 2022). DOI: 10.18577/2307-6046-2018-0-5-3-11.
7. Lomberg B.S., Shestakova A.A., Letnikov M.N., Bakradze M.M. The influence of temperature and stresses on nature of nanosize γʹ-phase in Ni-base superalloy VZh175-ID. Trudy VIAM, 2019, no. 12 (84), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 11, 2022). DOI: 10.18577/2307-6046-2019-0-12-3-10.
8. Sun F. Achieving High Tensile Strength of Heat-Resistant Ni-Fe-Based Alloy by Controlling Microstructure Stability for Power Plant Application. Crystals, 2022, vol. 12, is. 10 (1433), pp. 1–11. DOI: 10.3390/cryst12101433.
9. Kappmeyer G., Hubig C., Hardy M. et al. Modern Machining of Advanced Aerospace Alloys – Enabler for Quality and Performance. Procedia CIRP, 2012, no. 1, pp. 28–43. DOI: 10.1016/j.procir.2012.04.005.
10. Ducki K.J. Analysis of the Precipitation and Growth Processes of the Intermatallic Phases in an Fe–Ni Superalloy. Superalloy. Intech open Science, 2015, pp. 111–137.
11. Nickel-Iron alloys market report: Global Forecast from 2022 to 2030. Available at: www.dataintelo.com/report/nickel-iron-alloys-market (accessed: November 11, 2022).
12. Kobayashi S., Otsuka T., Watanabe R. et al. Alloying Effects on the Competition Between Discontinuous Precipitation Versus Continuous Precipitation of δ/η Phases in Model Ni-Based Superalloys. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys. Springer Cham, 2020, pp. 163–170. DOI: 10.1007/978-3-030-51834-9_16.
13. Tang L. Precipitation sequences in rapidly solidified Allvac 718 Plus alloy during solution treatment. Journal of Materials Science & Technology, 2022, vol. 128, pp. 180–194. DOI: 10.1016/j.jmst.2022.03.031.
14. Guo X., Kusabiraki K., Saji S. Intragranular precipitates in Incoloy Alloy 909. Scripta Materialia, 2001, vol. 44, is. 1, pp. 55–60. DOI: 10.1016/S1359-6462(00)00576-5.
15. Lagow D.W. Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials. JOM, 2016, no. 68, pp. 2770–2775.
16. Incoloy 903. Available at: www.specialmetals.com/documents/technical-bulletins/incoloy/incoloy-alloy-903.pdf (accessed: November 11, 2022).
17. Incoloy 907. Available at: www.specialmetals.com/documents/technical-bulletins/incoloy/incoloy-alloy-907.pdf (accessed: November 11, 2022).
18. Incoloy 909. Available at: www.specialmetals.com/documents/technical-bulletins/incoloy/incoloy-alloy-909.pdf (accessed: November 11, 2022).
19. A heat-resistant deformable alloy based on a nickel with a low temperature coefficient of linear expansion and the product made from it: pat. 2721261 Rus. Federation; filed 11.12.19; publ. 18.05.20.
20. Xiong U., Zhao L., Zhipeng W. et al. Effect of Long-term Aging on Properties of Low Expansion Superalloy GH2909. Chinese Journal of Materials Research, 2021, vol. 35, is. 5, pp. 330–338. DOI: 10.11901/1005.3093.2020.314.
21. Wong M.J. Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C). Metallurgical and Materials Transactions, 2015, no. 46. DOI: 10.1007/s11661-015-2898-0.
22. Mohale N. Role of Eta Phase Evolution on Creep Properties of Nickel Base Superalloys Used In Advanced Electric Power Generation Plants. Open Access Dissertation. Michigan Technological University, 2021. DOI: 10.37099/mtu.dc.etdr/1295.
23. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Priority directions for the development of technologies for the production of heat-resistant materials for aviation engineering. Problemy chernoy metallurgii i materialovedeniya, 2013, no. 3, pp. 47–54.
25. Antonov S., Detrois M., Helmink R.C., Tin S. Precipitate phase stability and compositional dependence on alloying additions in γ–γ′–δ–η Ni-base superalloys. Journal of Alloys and Compounds, 2015, vol. 626, pp. 76–86.
26. Rath M., Povoden-Karadeniz E., Kozeschnik Е. Precipitation Kinetic Modeling of the New Eta-Phase Ni6AlNb in Ni-Base Superalloys. Superalloys. Ed. M. Hardy et al. TMS, 2016, pp. 97–105.
The article presents and summarizes data on the modification of cast aluminum alloys. In addition to the use of standard modifiers such as sodium, strontium, titanium, zirconium, scandium and titanium diboride, a positive effect of europium and hafnium on alloys has been shown. Despite the fact that many effective modifiers belong to the rare earth elements (REE), not all REE have a strong effect. The introduction of metals such as ytterbium and erbium into aluminum alloys had almost no effect on the morphology and size of the microstructure.
2. Lipchin T.N. Structure and properties of non-ferrous alloys hardened under pressure. Moscow: Metallurgiya, 1994, 128 p.
3. Nikitin K.V. Modification and complex processing of silumins: textbook. 2nd ed., rev. and add. Samara: Samara State Tech. Univ., 2016, 92 p.
4. Altman M.B., Stromskaya N.P. Improving the properties of standard cast aluminum alloys. Moscow: Metallurgiya, 1984, 128 p.
5. Maltsev M.V. Metallography of industrial non-ferrous metals and alloys. 2nd ed. Moscow: Metallurgiya, 1970, 346 p.
6. Lu L., Nogita K., Dahle A.K. Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Material Science and Engineering A, 2005, vol. 399, pp. 244–253.
7. Li J.H., Barrirero J., Engstler M. et al. Nucleation and growth of eutectic Si in Al–Si alloys with Na addition. Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 1300–1311.
8. Emadi D., Gruzleski J.E., Toguri J.M. The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metallurgical and Materials Transactions B, 1993, vol. 24 (6), pp. 1055–1063.
9. lwahori H., Yonekura K., Yamamoto Y., Nakamura M. Occurring behavior of porosity and feeding capabilities of sodium- and strontium-modified Al–Si alloys. Transactions of the American Foundrymen’s Society, 1990, vol. 98, pp. 167–173.
10. Wang Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metallurgical and Materials Transactions A, 2003, vol. 34 (12), pp. 2887–2899.
11. Gruzleski J.E., Closset B.M. The treatment of liquid aluminum-silicon alloys. Des Plaines: American Foundrymen’s Society, Inc., 1990, 256 p.
12. Wang Q.G., Apelian D., Lados D.A. Fatigue behavior of A356–T6 aluminum cast alloys. Part I. Effect of casting defects. Journal of Light Metals, 2001, vol. 1 (1), pp. 73–84.
13. Wang Q.G., Apelian D., Lados D.A. Fatigue behavior of A356–T6 aluminum cast alloys. Part II. Effect of microstructural constituents. Journal of Light Metals, 2001, vol. 1 (1), pp. 85–97.
14. Öztürk İ., Ağaoğlu G.H., Erzi E. et al. Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy. Journal of Alloys and Compounds, 2018, vol. 763, pp. 384–391. DOI: 10.1016/j.jallcom.2018.05.341.
15. Uludağ M., Çetin R., Dispinar D., Tiryakioğlu M. Characterization of the effect of melt treatments on melt quality in Al–7 wt. % Si–Mg Alloys. Metals, 2017, vol. 7 (5), pp. 157–172. DOI: 10.3390/met7050157.
16. Eguskiza S., Niklas A., Fernández-Calvo A.I. et al. Study of strontium fading in Al–Si–Mg and Al–Si–Mg–Cu alloy by thermal analysis. International Journal of Metalcasting, 2015, vol. 9 (3), p. 43–50.
17. Dahle A.K., Nogita K., McDonald S.D. et al. Eutectic modification and microstructure development in Al–Si Alloys. Material Science and Engineering A, 2005, vol. 413, pp. 243–248.
18. Closset B., Gruzleski J.E. Structure and properties of hypoeutectic Al–Si–Mg alloys modified with pure strontium. Metallurgical and Materials Transactions A, 1982, vol. 13 (6), pp. 945–951.
19. Dahle A.K., Nogita K., McDonald S.D. et al. Eutectic nucleation and growth in hypoeutectic Al–Si alloys at different strontium levels. Metallurgical and Materials Transactions B, 2001, vol. 32 (4), pp. 949–960.
20. Samuel A.M., Doty H.W., Valtierra S., Samuel F.H. Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Materials and Design, 2014, vol. 56, pp. 264–273.
21. Lin B., Li H., Xu R. et al. Effects of Vanadium on Modification of Iron-Rich Intermetallics and Mechanical Properties in A356 Cast Alloys with 1.5 wt. % Fe. Journal of Materials Engineering and Performance, 2019, vol. 28, pp. 475–484. DOI: 10.1007/s11665-018-3798-4.
22. Barrirero J., Pauly C., Engstler M. et al. Eutectic modifcation by ternary compound cluster formation in Al–Si alloys. Scientific Reports, 2019, vol. 9, art. 5506. DOI: 10.1038/s41598-019-41919-2.
23. Ahmad R., Wahab N.A., Hasan S. et al. Effect of Erbium Addition on the Microstructure and Mechanical Properties of Aluminium Alloy. Key Engineering Materials, 2019, vol. 796, pp. 62–66. DOI: 10.4028/www.scientific.net/KEM.796.62.
24. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare earth elements – materials of modern and future high technologies. Trudy VIAM, 2013, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: December 05, 2022).
25. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Mazalov I.S., Mazalov P.B., Suhov D.I., Sulyanova E.A. Influence of hot isostatic pressing parameters on structure and properties of cobalt-based alloys obtained by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 06, 2022). DOI: 10.18577/2713-0193-2021-0-2-3-14.
27. Zhang H., Wang D., Qinc K. et al. Effect of Compound Modification and Cooling Rate on Microstructure and Mechanical Properties of Al–25 % Si Alloy. Materials Science Forum, 2016, vol. 877, pp. 27–32. DOI: 10.4028/www.scientific.net/MSF.877.27.
28. Li J.H., Ludwig T.H., Oberdorfer B., Schumacher P. Solidification behavior of Al–Si based alloys with controlled additions of Eu and P. International Journal of Cast Metals Research, 2018, vol. 31, no. 6, pp. 319–331. DOI: 10.1080/13640461.2018.1480891.
29. Krishna N.N., Sivaprasad K., Susila P. Strengthening contributions in ultra-high strength cryorolled Al–4 % Cu–3 % TiB2 in situ composite. Transactions of Nonferrous Metals Society of China, 2014, vol. 24, pp. 641–647.
30. Krishna N.N., Sivaprasad K. High temperature tensile properties of cryorolled Al–4 % Cu–3 % TiB2 in-situ composites. Transactions of the Indian Institute of Metals, 2011, vol. 64, pp. 63–66.
31. Mandal A., Maiti R., Chakraborty M., Murty B.S. Effect of TiB2 particles on aging response of Al–4 % Cu alloy. Material Science and Engineering A, 2004, vol. 386, pp. 296–300.
32. Wu S.Q., Zhu H.G., Tjong S.C. Wear Behavior of In Situ Al-Based Composites Containing TiB2, Al2O3, and Al3Ti Particles. Metallurgical and Materials Transactions A, 1999, vol. 30a, pp. 243–247.
33. Promakhov V.V., Khmeleva M.G., Zhukov I.A. et al. Influence of Vibration Treatment and Modification of A356 Aluminum Alloy on Its Structure and Mechanical Properties. Metals, 2019, vol. 9, pp. 87. DOI: 10.3390/met9010087.
34. Ogorodov D.V., Trapeznikov A.V., Popov D.A., Pentuykhin S.I. The development of casting heat-resistant aluminum alloys (To the 120th anniversary since the birth of I.F. Kolobnev). Trudy VIAM, 2017, no. 2 (50), paper no. 12. Available at: http://viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2017-0-2-12-12.
35. Belousov N.N. Cast aluminum-magnesium alloys. Cast aluminum alloys. Ed. I.N. Friedlander. Moscow: Oborongiz, 1961, pр. 52–65.
36. Cherkasov V.V. Foundry welded corrosion-resistant aluminum alloy VAL16: method. management. Moscow: VIAM, 1990, 84 p.
37. Levchuk V.V., Trapeznikov A.V., Pentyukhin S.I. Corrosion-resistant foundry aluminum alloys (review). Trudy VIAM, 2018, no. 7 (67), paper no. 4. Available at: http://www.viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2018-0-7-33-40.
38. Belov E.V., Duyunova V.A., Leonov A.A., Trapeznikov A.V. Method of increasing tightness and hardening of cast corrosion-resistant welded magnalias. Trudy VIAM, 2020, no. 6–7 (89), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2020-0-67-11-18.
39. Antipov K.V., Oglodkova Yu.S., Kuryntsev S.V., Safiullin E.I. Investigation of the influence of heat treatment modes on the structure and properties of sheets of aluminum-lithium alloy V-1469. Trudy VIAM, 2022, no. 11 (117), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2022-0-11-16-26.
40. Kuznetsov A.O., Oglodkov M.S., Klimkina A.A. The influence of chemical composition on structure and properties of Al–Mg–Si alloy. Trudy VIAM, 2018, no. 7 (67), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2018-0-7-3-9.
41. Yashin V.V., Aryshenskii E.V., Drits A.M., Latushkin I.A. Influence of additives of the transition metal hafnium on the microstructure of aluminum alloy 01570. Tsvetnye metally, 2020, no. 11, pp. 84–90.
42. Postnikov N.S. Corrosion resistant aluminum alloys. Moscow: Metallurgiya, 1976, 300 p.
Titanium alloys often have an advantage over steel in terms of weight and corrosion-resistant characteristics. However, their use in the «hot» parts of gas turbines is limited by the low maximum operating temperature, which is due to their corrosive behavior in the high-temperature region. The paper analyzes the main mechanisms proposed to describe the corrosion behavior of titanium alloys in the main environments typical for the operation of gas turbines. The determining role of titanium in these processes is shown, which limits the possibilities of alloying alloys.
2. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
3. Belov N.A., Belov V.D., Dashkevich N.I. The phase composition of multicomponent gamma luminaries based on titanium aluminides. Ed. E.N. Kablov. Moscow: VIAM, 2018, 340 p.
4. Nochovnaya N.A., Bazileva O.A., Kablov D.E., Panin P.V. Intermetal alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
5. Appel F., Paul J.D.H., Oehring M. Gamma titanium aluminide alloys: science and technology. John Wiley & Sons, 2011, 745 р.
6. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
7. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 23, 2022). DOI: 10.18577/2071-9140-2022-0-1-30-40.
8. Peskova A.V., Sukhov D.I., Mazalov P.B. Exami-nation of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
9. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Study of the structure and properties of heat-resistant alloys based on titanium aluminides with gadolinia microdists. Materialovedenie, 2017, no. 3, pp. 3–10.
10. Skvortsova S.V., Zolotareva A.Yu. The effect of coatings on the kinetics of oxidation of intermetallic titanium alloys of the Ti2AlNb and γ-TiAl. Korroziya: materialy, zashchita, 2019, no. 5, pp. 1–7.
11. Luthra K.L. Stability of protective oxide films on Ti-base alloys. Oxidation of metals, 1991, vol. 36, no. 5, pр. 475–490.
12. Perkins R.A., Chiang K.T., Meier G.H. Formation of alumina on Ti–Al alloys. Scripta metallurgica, 1987, vol. 21, no. 11, pp. 1505–1510.
13. Meier G.H., Pettit F.S., Hu S. Oxidation behavior of titanium aluminides. Le Journal de Physique IV, 1993, vol. 3, no. C9, pp. C9-395–C9-402.
14. Rahmel A., Spencer P.J. Thermodynamic aspects of TiAl and TiSi2 oxidation: the Al–Ti–O and Si–Ti–O phase diagrams. Oxidation of Metals, 1991, vol. 35, no. 1, pp. 53–68.
15. Gurappa I. Protection of titanium alloy components against high temperature corrosion. Materials Science and Engineering: А, 2003, vol. 356, no. 1–2, pp. 372–380.
16. Qu S.J., Tang S.Q., Feng A.H. et al. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Materialia, 2018, vol. 148, pp. 300–310. DOI: 10.1016/j.actamat.2018.02.013.
17. Leyens C., Braun R., Fröhlich M. et al. Recent progress in the coating protection of gamma Titanium-Aluminides. JOM, 2006, vol. 58, pp. 17–21.
18. Xiang L.L., Zhao L.L., Wang Y.L. et al. Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys. Intermetallics, 2012, vol. 27, pp. 6–13.
19. Zavarzin S.V., Oglodkov M.S., Chesnokov D.V., Kozlov I.A. Hot corrosion and protection of materials of gas turbine engines (review). Trudy VIAM, 2018, no. 3 (109), paper no. 11. Available at: http://www.viam-works.ru (accessed: November 23, 2022). DOI: 10.18577/2307-6046-2022-0-3-121-134.
20. Stringer J. High-temperature corrosion of superalloys. Materials Science and Technology, 1987, vol. 3, no. 7, pp. 482–493.
21. Rapp R.A. Hot corrosion of materials: a fluxing mechanism? Corrosion science, 2002, vol. 44, no. 2, pp. 209–221.
22. Lai G.Y. High-temperature corrosion and materials applications. ASM International, 2007, 461 p.
23. Gurappa I. Mechanism of degradation of titanium alloy IMI 834 and its protection under hot corrosion conditions. Oxidation of metals, 2003, vol. 59, no. 3, pp. 321–322.
24. Anuwar M., Jayaganthan R., Tewari V.K. et al. A study on the hot corrosion behavior of Ti–6Al–4V alloy. Materials Letters, 2007, vol. 61, no. 7, pp. 1483–1488.
25. Logan H., McBee M., Bechtoldt C., Sanderson B. et al. Chemical and physical mechanisms of salt stress-corrosion cracking in the titanium 8-1-1 alloy. Stress-Corrosion Cracking of Titanium. ASTM International, 1966, pp. 215–229.
26. Rideout S., Louthan M., Selby C.L. Basic mechanisms of stress-corrosion cracking of titanium. Stress-Corrosion Cracking of Titanium. ASTM International, 1966, pp. 137–151.
27. Yao Z., Marek M. NaCl-induced hot corrosion of a titanium aluminide alloy. Materials Science and Engineering: A, 1995, vol. 192–193, pp. 994–1000.
28. Fan L., Liu L., Yu Zh. et al. Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet oxygen flow at 600 °C. Scientific Reports, 2016, vol. 6, art. 29019. DOI: 10.1038/srep29019.
29. Ciszaka C., Popaa I., Brossardb J.-M. et al. NaCl induced corrosion of Ti–6Al–4V alloy at high temperature. Corrosion Science, 2016, vol. 110, pp. 91–104.
30. Zimm B.H., Mayer J.E. Vapor pressures, heats of vaporization, and entropies of some alkali halides. The Journal of Chemical Physics, 1944, vol. 12, pp. 362–369. DOI: 10.1063/1.1723958.
31. Ewing C.T., Stern K.H. Equilibrium vaporization rates and vapor pressures of solid and liquid sodium chloride, potassium chloride, potassium bromide, cesium iodide, and lithium fluoride. The Journal of Physical Chemistry, 1974, vol. 78, no. 20, pp. 1998–2005. DOI: 10.1021/j100613a005.
32. Chen L., Jin X., Pang P. et al. Electrochemical Study of TA2 Titanium in a High-Temperature and Pressure Water Environment. Coatings, 2021, vol. 11, no. 6, art. 659. DOI: 10.3390/coatings11060659.
33. Mckay P., Mitton D.B. An electrochemical investigation of localized corrosion on titanium in chloride environments. Corrosion, 1985, vol. 41, no. 1, рр. 52–62.
34. Mobin M., Malik A.U. Studies on the interactions of transition metal oxides and sodium sulfate in the temperature range 900–1200 K in oxygen. Journal of alloys and compounds, 1996, vol. 235, no. 1, pp. 97–103.
The problem of simultaneously reducing the amount of functional filler and achieving the required level of electrically conductive properties of polyamide compositions can be solved by using a hybrid filler based on carbon black and carbon nanotubes. It is shown that due to the high specific surface area of carbon in the extrusion process, the destruction of the initial agglomerates does not occur completely, in addition, the reactation of pre-dispersed TU/CNT particles can occur, which allows the formation of a complex structure of the material – a filler localized in small particles distributed throughout the volume of the polymer matrix.
2. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Thermoplastic materials of new generation for aviation. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
3. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
4. Solovyanchik L.V., Kondrashov S.V. The prospects of using carbon nanotubes to impart functional properties to the surface of polymer materials (review). Trudy VIAM, 2021, no. 9 (103), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 28, 2022). DOI: 10.18577/2307-6046-2021-0-9-11-21.
5. Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 2004, vol. 45, pp. 739–748.
6. Kondrashov S.V., Solovyanchik L.V., Minaeva L.A. Self-organization of conductive networks in thermoplastic materials (review). Trudy VIAM, 2022, no. 8 (114), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 28, 2022). DOI: 18577/2307-6046-2022-0-8-31-48.
7. Gul V.E., Shenfil L.Z. Electrically conductive polymer compositions. Moscow: Khimiya, 1984, 240 p.
8. Kanbur Y., Küçükyavuz Z. Electrical and mechanical properties of polypropylene/carbon black composites. Journal of Reinforced Plastics and Composites, 2009, vol. 28, no. 18, pp. 2251–2260.
9. Garmabi H., Naficy S. Developing electrically conductive polypropylene/polyamide6/carbon black composites with microfibrillar morphology. Journal of applied polymer science, 2007, vol. 106, no. 5, pp. 3461–3467.
10. Deng H., Lin L., Ji M. et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, vol. 39, no. 4, pp. 627–655.
11. Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites: Preparation, properties and applications. Ed. T. McNally, P. Pötschke. Woodhead Publishing, 2011, pp. 587–620.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
14. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
15. Kablov E.N. What is innovation. Nauka i zhizn, 2011, no. 5. S, pp. 2–6.
Results of a study on influence of glass fiber-reinforced bismaleimide composition and curing cycles on the level of its properties are shown. Current development and research in the field of bismaleimide resins and prepregs based on them both in the domestic and the international markets is examined. After testing, a series of physical and mechanical properties were obtained. Based on the results, composition with the highest flexural strength and glass transition temperature was chosen.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
4. Comprehensive program for the development of the air transport industry of the Russian Federation until 2030: Decree of the Government of the Russian Federation of June 25, 2022 No. 1693-r. Collection of Legislation of the Russian Federation, 2022, no. 27, pp. 12996–13019.
5. Valueva M.I., Evdokimov A.A., Nacharkina A.V., Gubin A.M. Polymer composite materials and technologies in the automotive industry (rеview). Trudy VIAM, 2022, no. 1 (107), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 17, 2022). DOI: 10.18577/2307-6046-2022-0-1-53-65.
6. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 17, 2022). DOI: 10.18577/2307-6046-2021-0-1-43-53.
7. Davydova I.F., Kavun N.S. Polyimide fiberglass plastic with lower curing temperature. Trudy VIAM, 2015, no. 2, paper no. 08. Available at: http://www.viam-works.ru (accessed: October 17, 2022). DOI: 10.18577/2307-6046-2015-0-2-8-8.
8. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 17, 2022). DOI: 10.18577/2307-6046-2018-0-12-46-53.
9. Muhametov R.R., Dolgova E.V., Merkulova Yu.I., Dushin M.I. Development of heat-resistant bismaleimide binder for composites for aeronautical application. Aviacionnye materialy i tehnologii, 2014, no. 4, pp. 53–57. DOI: 10.18577/2071-9140-2014-0-4-53-57.
10. Chen X., Yuan L., Zhang Z. et al. New glass fiber/bismaleimide composites with significantly improved flame retardancy, higher mechanical strength and lower dielectric loss. Composites. Part B: Engineering, 2015, vol. 71, pp. 96–102. DOI: 10.1016/j.compositesb.2014.11.001.
11. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 17, 2022). DOI: 10.18577/2307-6046-2019-0-12-67-79.
12. Zhao Y., Liu W., Keey Seah L., Boay Chai G. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Composites. Part B: Engineering, 2016, vol. 106, pp. 332–343. DOI: 10.1016/j.compositesb.2016.09.045.
13. Ciubotariu-Ana P., Micu C.A., Lohan N.M. et al. Thermal Analysis of a New Glass Fiber-Reinforced Bismaleimide Composite Material Used for Firefighter Helmets. IOP Conference Series: Materials, Science and Engineering, 2018, vol. 374. DOI: 10.1088/1757-899X/374/1/012022.
14. Prasanaa Iyer N., Arunkumar N. Review on Fiber reinforced/modified Bismaleimide resin composites for Aircraft Structure Application. IOP Conference Series: Materials, Science and Engineering, 2020, vol. 923. DOI: 10.1088/1757-899X/923/1/012051.
15. Drukker E., Green A.K., Marom G. Mechanical and chemical consequences of through thickness thermal gradients in polyimide matrix composite materials. Composites. Part A: Applied Science and Manufacturing, 2003, vol. 34, is. 2, pp. 125–133. DOI: 10.1016/S1359-835X(02)00261-0.
16. Fink J.K. Bismaleimide Resins. Reactive Polymers: Fundamentals and Applications. Third Edition. Elsevier, 2018, pp. 367–402. DOI: 10.1016/B978-0-12-814509-8.00011-7.
17. Hopewell J.L., George G.A., Hill D.J.T. Analysis of the kinetics and mechanism of the cure of a bismaleimide-diamine thermoset. Polymer, 2000, vol. 41, is. 23, pp. 8231–8239. DOI: 10.1016/S0032-3861(00)00193-2.
18. Yuan Q., Huang F., Jiao Y. Characterization of modified bismaleimide resin. Journal of Applied Polymer Science, 1996, vol. 62, is. 3, pp. 459–464. DOI: 10.1002/(SICI)1097-4628(19961017)62:3<459::AID-APP3>3.0.CO;2-P.
19. Ruslantsev A.N., Dumansky A.M., Portnova Ya.M. Creep modulus of carbon fiber BMI-3/3692 based on equal-strength fabric. Reports of XXI Int. sci.-tech. conf. "Designs and technologies for obtaining products from non-metallic materials". Obninsk: ONPP Tekhnologiya, 2017, pp. 128–130.
20. Volkov D.A., Popov A.G., Osaulenko A.V. et al. Investigation of the effect of technological factors and configuration of samples on the value of the compressive strength of carbon fiber based prepreg BMI-3/3692. Reports of XXI Int. sci.-tech. conf. "Designs and technologies for obtaining products from non-metallic materials". Obninsk: ONPP Tekhnologiya, 2017, pp. 168–170.
21. Vorvul S.V., Mosiyuk V.N., Tomchani O.V. Selection of modes of additional heat treatment of binder BMI-3 by the DMA method. Report XXI Intern. sci.-tech. conf. "Designs and technologies for obtaining products from non-metallic materials". Obninsk: ONPP Tekhnologiya, 2017, pp. 178–181.
22. Binders for PCM. Available at: https://technologiya.ru/files/1154/%D0%A1%D0%B2%D1%8F%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5%20%D0%B4%D0%BB%D1%8F%20%D0%9F%D0%9A%D0%9C.pdf (accessed: November 15, 2022).
23. Bismaleimide binders. Available at: https://inumit.ru/rus/produkciya-i-uslugi/ugleplastiki/Resins/bismaleimides/ (accessed: November 15, 2022).
24. Products of Itecma. Available at: https://itecma.ru/products/ (accessed: November 15, 2022).
25. Lockheed Martin extends F-35 supply agreement with Solvay. Available at: https://www.solvay.com/sites/g/files/srpend221/files/2020-09/2020-09-29-PR-Lockheed%20Martin%20extends%20F-35%20supply%20agreement%20with%20Solvay_0.pdf (accessed: November 15, 2022).
26. GE Aviation Aerostructures Facility Overview. Available at: https://www.geaerospace.com/sites/default/files/structures-brochure.pdf (accessed: November 15, 2022).
27. Fischer G. High temperature and toughened bismaleimide composite materials for aeronautics. Available at: https://hal.archives-ouvertes.fr/tel-01299359 (accessed: November 15, 2022).
28. Prepregs and Adhesives for Aerospace Applications. Available at: http://www.renegadematerials.com/products/ (accessed: November 15, 2022).
29. CYCOM 5250-4. Available at: https://www.solvay.com/en/product/cycom-5250-4 (дата обращения: 15.11.2022).
30. Prepreg Systems for the Aerospace Market. Available at: https://www.toraycma.com/products/prepreg/ (accessed: November 15, 2022).
31. Prepreg Data Sheet. Available at: https://www.hexcel.com/Resources/DataSheets/Prepreg (accessed: November 15, 2022).
Various aspects of the use of RE–TM–B alloys for the development of magnetocaloric cooling systems are considered. Thermodynamic analysis of temperature variations, magnetic part of entropy, internal energy and mechanical work performed in the Carnot cycle is given. The analysis of such factors as the limiting frequency of cycles, thermal conductivity and heat capacity of the working fluid, the density of particles with spin is given. The possibilities of creating hybrid magnetocaloric machines in which the transition between the para- and ferromagnetic states of rare-earth alloys are stimulated by external influences: temperature, mechanical stresses, laser and current remagnetization are discussed.
2. Andreenko A.S., Belov K.P., Nikitin S.A., Tishin A.M. Magnetocaloric effects in rare earth magnets. Uspekhi fizicheskikh nauk, 1989, vol. 158, is. 4, pp. 553–579.
3. Brown G.V. Magnetic heat pumping near room temperature. Journal of Applied Physics, 1976, vol. 47, no. 8, pp. 3673–3680.
4. Fast R.W. Advances in Cryogenic Engineering. Proceedings of the 1989 Cryogenic Engineering Conference, 1990, vol. 35, part A, pp. 517–599.
5. Zimm C., Jastrab A., Sternberg A. et al. Description and Performance of a Near-Room Temperature Magnetic Refrigerator. Advances in Cryogenic Engineering, 1998, vol. 43, рр. 1759–1766.
6. Gschneidner K.A. (Jr.), Pecharsky V.K. Thirty years of near room temperature magnetic cooling: Where we are today and future prospects. International Journal of Refrigeration, 2008, vol. 31, pp. 945–961.
7. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. IOP Publishing Ltd., 2003, 463 p.
8. Dankov S.Y., Tishin A.M., Pecharsky V.K., Gschneidner K.A. Magnetic phase transitions and the magnetothermal properties of gadolinium. Physical Review B, 1998, vol. 57, no. 6, pp. 3478–3490.
9. Gschneidner K.A., Pecharsky V.K., Gailloux M.J., Takeya H. Utilization of the Magnetic Entropy in Active Magnetic Regenerator Materials. Advances in Cryogenic Engineering, 1996, vol. 42, pp. 465–474.
10. Chernyshov A.S., Tsokol A.O., Tishin A.M. et al. Magnetic and magnetocaloric properties and the magnetic phase diagram of single-crystal dysprosium. Physical Review B, 2005, vol. 71, no. 18, pp. 184410-1-17.
11. Annaorazov M., Asatryan K., Myalikgulyev G. et al. Alloys of the FeRh system as a new class of working material for magnetic refrigerators. Cryogenics, 1992, vol. 32, no. 10, pp. 867–872.
12. Guo Z.B., Du Y.W., Zhu J.S. et al. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides. Physical Review Letters, 1997, vol. 78, no. 6, pp. 1142–1145.
13. Pecharsky V.K., Gschneidner K.A. (Jr.) Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Review Letters, 1997, vol. 78, no. 23, pp. 4494–4497.
14. Pecharsky V.K., Gschneidner K.A. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K. Applied Physics Letters, 1997, vol. 70, no. 24, pp. 3299–3301.
15. Morellon L., Magen C., Algarabel P.A. et al. Magnetocaloric effect in Tb5(SixGe1–x)4. Applied Physics Letters, 2001, vol. 79, no. 9, pp. 1318–1320.
16. Wada H., Tanabe Y. Giant magnetocaloric effect of MnAs1–xSbx. Applied Physics Letters, 2001, vol. 79, no. 20, pp. 3302–3304.
17. Fujita A., Fujieda S., Hasegawa Y., Fukamichi K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1–x)13 compounds and their hydrides. Physics Review B, 2003, vol. 67, no. 10, pp. 104416-1-12.
18. Tegus O., Brück E., Buschow K.H.J., de Boer F.R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002, vol. 415, no. 10, pp. 150–152.
19. Albertini F., Canepa F., Cirafici S. et al. Composition dependence of magnetic and magnetothermal properties of Ni–Mn–Ga shape memory alloys. Journal of Magnetism and Magnetic Materials, 2004, pp. 2111–2112.
20. Gschneidner K.A. (Jr.), Pecharsky V.K., Tsokol A.O. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, vol. 68, no. 6, pp. 1479–1539.
21. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromagnets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: November 05, 2022). DOI: 10.18577/2713-0193-2021-0-1-44-60.
22. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 05, 2022). DOI: 10.18577/2307-6046-2019-0-11-60-67.
23. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 05, 2022). DOI: 10.18577/2307-6046-2019-0-7-67-75.
24. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
25. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 06, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
The dependence of the coefficient of use of ceramic powder material on the parameters of coating by the plasma spraying method was obtained in the work. The dependences of the material utilization factor and arc current, the ratio of argon and nitrogen consumption, the total consumption of plasma gases, the spraying distance and the fractional composition of the powder material are established, and the natural limitations of the variability of these parameters are described. The dependence of the material utilization factor on the average value of the fraction range has been established.
2. Grechanyuk N.I., Kucherenko P.P., Grechanyuk I.N. et al. Modern heat-shielding coatings for gas turbine engine blades and equipment for their production. Naukoví notatki, 2011, no. 31, p. 92.
3. Gurrappa I., Sambasiva Rao A. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surface CoatingsTechnol, 2006, no. 201, pp. 3016. DOI: 10.1016/j.surfcoat.2006.06.026.
4. Kablov E.N., Ospennikova O.G., Svetlov I.L. Highly efficient cooling of GTE hot section blades. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
5. Treninkov I.A., Zavodov A.V., Petrushin N.V. Research of crystal structure and microstructure of the ZhS32-VI nickel-base superalloy synthesized by selective laser fusion method, after high-temperature mechanical tests. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 57–65. DOI: 10.18577/2071-9140-2019-0-1-57-65.
6. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
7. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 24, 2022). DOI: 10.18577/2713-0193-2022-0-1-129-142.
8. Samsonov G.V., Borisova A.L., Zhidkova T.G. et al. Physical and chemical properties of oxides: a reference book. Moscow: Metallurgiya, 1978, 472 p.
9. Kablov E.N., Karachevtsev F.N. Vaporization and thermodynamics of ceramics based on the La2O3–Y2O3–HfO2 system studied by the high-temperature mass spectrometric method. Rapid Communications in Mass Spectrometry, 2018, vol. 32, no. 9, pp. 686–694.
10. Aleksandrov D.A., Muboyadzhyan S.A., Zhuravleva P.L., Gorlov D.S. Investigation of the effect of surface preparation and ion-assisted deposition on the structure and properties of erosion-resistant ion-plasma coating. Trudy VIAM, 2018, no. 10 (70), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 25, 2022). DOI: 10.18577/2307-6046-2018-0-10-62-73.
11. Matsumoto K., Itoh Y., Kameda T. EB-PVD process and thermal properties of hafnia-based thermal barrier coating. Science and Technology of Advanced Materials, 2003, no. 4, pp. 153. DOI: 10.1016/S1468-6996(03)00009-3.
12. Sosnin N.A., Ermakov S.A., Topolyansky P.A. Plasma technologies. Guide for engineers. St. Petersburg: Publishing house of Polytech. Univ., 2013, 406 p.
13. Hasui A., Morigaki O. Surfacing and spraying. Trans. from Japanese. Ed. V.S. Stepin, N.G. Shesterkin. Moscow: Mashinostroenie, 1985, 240 p.
14. Kudinov V.V. Plasma coatings. Moscow: Nauka, 1977, 184 p.
15. Thermal spraying: textbook. Ed. L.H. Baldaev. Moscow: Market DS, 2007, 344 p.
16. Kudinov V.V., Bobrov G.V. Spray coating. Theory, technology and equipment: textbook for universities. Moscow: Metallurgiya, 1992, 432 p.
17. Sidorov A.I. Restoration of machine parts by spraying and welding. Moscow: Mashinostroenie, 1987, 192 p.
18. Kibzun A.I., Goryanova E.R., Naumov A.V., Sirotin A.N. Theory of Probability and Mathematical Statistics. Basic course with examples and tasks. Moscow: Fizmatlit, 2002, 224 p.
A review of developments and scientific publications in the field of protective coatings based on polyvinylidene fluoride and vinylidene fluoride copolymers is presented. Chemical properties of the polymer, its polymorphic modifications, peculiarities of dissolution and properties of obtained dispersions in the environment of organic solvents are described. Advantages and disadvantages of obtained protective coatings are given. A review of research results on modification of polyvinylidene fluoride dispersions with inorganic fillers and preparation of superhydrophobic coatings is presented.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, p. 24.
4. Huang X., Tepylo N., Pommier-Budinger V. et al. A survey of acephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Progress in Aerospace Sciences, 2019, vol. 105, pp. 74–97.
5. Shuldeshov E.M., Nazarov I.A., Ivanov M.S., Donskih I.N. Decoratively finishing materials for wall panels of passenger cab and the crew cockpit of air vehicles (review). Trudy VIAM, 2022, no. 11 (117), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 03, 2022). DOI: 10.18577/2307-6046-2020-0-11-38-47.
6. Zhivulin B.E., Zherebtsov D.A., Lebedeva S.M. Synthesis and properties of products of high-temperature heat treatment of polyvinylidene fluoride. Fizika tverdogo tela, 2017, vol. 59, no. 2, pp. 394–398.
7. Leivo E., Wilenius T., Kinos T. et al. Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Progress in Organic Coatings, 2004, vol. 49, pp. 69–73.
8. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 03, 2022). DOI: 10.18577/2307-6046-2019-0-5-62-67.
9. Pavlov A.V., Andreeva N.P., Pavlov M.R., Merkulova Yu.I. Climatic tests of paint coating based on fluoroplastic and features of its destruction. Trudy VIAM, 2019, no. 5, paper no. 12. Available at: http://www.viam-works.ru (accessed: August 03, 2022). DOI: 10.18577/2307-6046-2019-0-5-103-110.
10. Beider E.Ya., Donskoy A.A., Zhelezina G.F. and others. Experience in the use of fluoropolymer materials in aviation technology. Rossiyskiy khimicheskiy zhurnal, 2008, vol. LII, no. 3, pp. 30–44.
11. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 03, 2022). DOI: 10.18577/2713-0193-2021-0-1-71-79.
12. Yun H.K., Yong S.K., Min Y.S., Myung J.M. Corrosion Protection Performance of PVDF/PMMA-Blended Coatings by Electrochemical Impedance Method. Journal Electrochemical Science and Technology, 2018, vol. 9, no. 1, pp. 1–8.
13. Wood K.A., Tanaka A., Zheng M., Garcia D. 70 % PVDF Coatings for Highly Weatherable Architectural Coatings. Available at: https://www.researchgate.net/publication/238712168_70_PVDF_Coatings_for_Highly_Weatherable_Architectural_Coatings (accessed: August 03, 2022).
14. Sonnendecker A., Crouse P.L. PVDF coatings: Solvent compatibility and the effect of plasticisers on the morphology, physical and mechanical properties of high molecular-weight PVDF. Fluoropolymers: research, production problems, new applications: coll. abstracts of the Intern. conf. Kirov: Publishing House of Vyatsk State Univ., 2020, pp. 55–59.
15. Kostitsyn A.V., Golikov I.V., Kulikova O.A. Influence of the concentration of the network-forming component on the properties of polymer mixtures based on polyvinylidene fluoride. Khimiya i khimicheskaya tekhnologiya, 2009, vol. 52, no. 8, pp. 82–84.
16. Kostitsyn A.V., Golikov I.V., Sakharov L.A. Influence of polymethyl methacrylate on the rheological properties of polyvinylidene fluoride dispersions in organic solvents of various nature. Khimiya i khimicheskaya tekhnologiya, 2008, vol. 51, no. 4, pp. 77–78.
17. Fluoropolymer organodispersion: pat. 2047625 Rus. Federation; filed 02.07.82; publ. 10.11.95.
18. McKeen L.W. Fluorinated coatings and finishes handbook: the definitive user’s guide and databook. William Andrew Inc., 2006, 367 p.
19. Screening polymer film and method for its production: pat. 2705967 Rus. Federation; filed 23.05.18; publ. 12.11.19.
20. Mohamdi S., Sharifi-Sanjani N., Foyouhi A. Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. Journal of Polymer Research, 2013, vol. 20, no. 46, pp. 1–10.
21. Kondrashov E.K., Malovа N.E. Paint coatings based on copolymers of trifluorochloroethylene. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 39–44. DOI: 10.18577/2071-9140-2015-0-2-39-44.
22. hotocatalytic coating of protective rubber-fabric material: pat. RU 2622439C2; filed 13.10.15; publ. 15.06.17.
23. Chernyavsky G.G., Baranets I.V., Purtseladze V.I., Emelyanov G.A. Mixed compositions based on low molecular weight fluoro(co)polymers of vinylidene fluoride with hexafluoropropylene and determination of the physical and mechanical properties of their vulcanizates. Molodoy ucheniy, 2014, no. 14.1 (73.1), pp. 48–50.
24. Low molecular weight ternary copolymers of vinylidene fluoride and a monomer containing a fluorosulfate group: pat. RU 2432366C1; filed 09.04.10; publ. 27.10.11.
25. Buznik V.M. Superwaterproof materials on the basis of fluoropolymers. Aviacionnye materialy i tehnologii, 2013, no. 1, pp. 29–34.
26. Nam K.L., Young H.K., Tae G.I. et al. Analysis of PVDF Coating Properties with Addition of Hydrophobically Modified Fumed Silica. Corrosion science and technology, 2019, vol. 18, no. 6, pp. 232–242.
27. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
28. Liling Y., Ke W., Lin Y. Super hydrophobic property of PVDF/CaCO3 nanocomposite coatings. Journal of Material Science Letters, 2003, vol. 22, pp. 1713–1717.
29. Method for obtaining an anticorrosive wear-resistant coating on magnesium alloys: pat. 2617088 Rus. Federation; filed 18.02.16; publ. 19.04.17.
30. Method for obtaining protective superhydrophobic coatings on aluminum alloys: pat. 2617088 Rus. Federation; filed 29.06.21; publ. 13.05.22.
31. Chaoyi P., Suli X., Zhiqing Y. et al. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Applied Surface Science, 2012, vol. 259, pp. 764–768.
32. Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinilidene fluoride) using FTIR. RSC Advances, 2017, vol. 7, no. 25, pp. 15382–15389.
33. Kochervinsky V.V. Structure and properties of block polyvinylidene fluoride and systems based on it. Uspekhi khimii, 1996, vol. 65, no. 10, pp. 936–987.
34. Kochervinsky V.V. Structure formation in crystallizing ferroelectric polymers. Fizika tverdogo tela, 2006, vol. 48, no. 6, pp. 1016–1018.
Comparative experiments were carried out to determine the protective properties of promising conservation oils in comparison with standard K-17 oil. The most effective conservation oils that can be used in the development of recommendations for the protection of aircraft parts and the revision of current regulatory documentation have been determined. Based on the analysis of the oil-soluble corrosion inhibitors contained in the tested oils and the mechanism of their action, an assumption was made to explain the effectiveness of a particular oil.
2. Shekhter Yu.N., Shkolnikov V.M., Bogdanova T.I., Milovanov V.D. Working-preservation lubricants. Moscow: Khimiya, 1979, 256 p.
3. Shekhter Yu.N., Krein S.E., Teterina L.N. Oil-soluble surfactants. Moscow: Khimiya, 1978, 304 p.
4. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report of XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
7. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
8. Abramova M.G. Full-scale accelerated tests of aluminum alloys at continental and marine type stations. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 57–65. DOI: 10.18577/2071-9140-2020-0-3-57-65.
9. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
10. Startsev V.O., Slavin A.V., Nikolaev E.V. Study of the content of aggressive ions in the at-mosphere and sea water of the Gelendzhik bay. Trudy VIAM, 2020, no. 10 (92), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 07, 2022). DOI: 10.18577/2307-6046-2020-0-10-106-115.
11. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Factors of influence (review). Corrosion: materials, protection. 2013, no. 12, рр. 6–18.
12. Shkolnikov V.M. Fuel. Lubricants. Technical liquids. Range and application. Moscow: Tekhinform, 1999, 596 p.
13. Conservation oil "Rosoil-700": pat. 2232794С1 Rus. Federation; filed 26.12.02; publ. 20.07.04.
14. Washing-preservation liquid concentrate: pat. 2024605 Rus. Federation; filed 14.04.92; publ. 15.12.94.
15. Washing-preservation liquid concentrate: pat. 2218385 Rus. Federation; filed 29.08.02; publ. 10.12.03.
16. Washing-preservation liquid concentrate: pat. 2215777 Rus. Federation; filed 22.04.02; publ. 10.11.03.
17. Gaidar S.M., Nizamov R.K., Golubev M.I., Golubev I.G. Protective efficiency of water-soluble corrosion inhibitors. Vestnik Mordovskogo universiteta, 2018, vol. 28, no. 3, pp. 429–444.
18. Gaidar S.M., Petrovsky D.I., Posunko I.A. Boric derivatives of amines as water-soluble corrosion inhibitors. Korroziya: materialy, zashchita, 2017, no. 12, pp. 27–35.
19. Levashova V.I., Yangirova I.V., Kazakova E.V. Review of corrosion inhibitors based on organoboron compounds. Sovremennye problemy nauki i obrazovaniya, 2014, no. 6, pp. 10–17.
20. Kuznetsov Yu.I. Progress in the science of corrosion inhibitors. Korroziya: materialy, zashchita, 2015, no. 3, pp. 12–23.
21. Kuznetsov Yu.I. Triazoles are a class of multifunctional corrosion inhibitors. Review. Part I-1. 1, 2, 3-benzotriazole, its derivatives, copper, zinc and their alloys. Korroziya: materialy, zashchita, 2019, no. 1, pp. 1–14.
In the third part of the article, the influence of additives of multilayer carbon nanotubes (astralene) on the change in the coefficient of linear thermal expansion (CLTE) of CFRP based on a cyanoether binder, exposed for 24 months in a temperate climate and laboratory simulation conditions, is considered. It is shown that the presence of 0.5 and 3.0 wt. % astralene significantly changes the CLTE in the glassy and highly elastic states of the binder carbon fiber in the initial state and at the stages of 24 months of climatic testing in the modes of standard exposure on an open atmospheric stand and exposure with weekly thermal cycles simulating the mode of takeoff and landing of an aircraft. The mechanism of the stabilizing effect of the nanomodifier was revealed when comparing the CLTE, compressive and bending strengths, and the glass transition temperature of the binder during the aging of carbon fiber in natural and simulated laboratory conditions.
2. Gunyaev G.M., Chursova L.V., Raskutin A.E., Gunyaeva A.G. Lightning firmness of modern polymeric composites. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 20–22.
3. Liew K.M., Lei Z.X., Zhang L.W. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures, 2015, vol. 120, pp. 90–97.
4. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskie nanotekhnologii, 2012, no. 3–4, pp. 28–46.
5. Sharma H., Kumar A., Rana S., Guadagno L. An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers, 2022, vol. 14, art. 1548.
6. Cha J., Kim J., Ryu S., Hong S.H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Composites. Part B: Engineering, 2019, vol. 162, pp. 283–288.
7. Chhetri S., Adak N.C., Samanta P. et al. Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability. Polymer Testing, 2017, vol. 63, pp. 1–11.
8. Shivakumar H., Renukappa N.M., Shivakumar K.N., Suresha B. The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites. Open Journal of Composite Materials, 2020, vol. 10, pp. 27–44.
9. Bolshakov V.A., Kondrashov S.V., Merkulova Y.I., Dyachkova T.P., Yurkov G.Y., Ilyichyov F.V. Research of nanomodified carbon composites before and after hydrothermal aging. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 61–66. DOI: 10.18577/2071-9140-2015-0-2-61-66.
10. Raimondo M., Catauro M., Guadagno L. Strategic Role of Carbon Nanotube Functionalization on the Multifunctional Properties of Structural Epoxy Nanocomposites. Macromolecular Symposia, 2022, vol. 404, аrt. 2100275.
11. Liang X., Dai F. Epoxy Nanocomposites with Reduced Graphene Oxide-Constructed Three-Dimensional Networks of Single Wall Carbon Nanotube for Enhanced Thermal Management Capability with Low Filler Loading. ACS Applied Materials and Interfaces, 2020, vol. 12, pp. 3051–3058.
12. Huh S.H., Choi S.H., Ju H.M., Kim D.H. Properties of interlayer thermal expansion of 6-layered reduced graphene oxide. Journal of the Korean Physical Society, 2014, vol. 64, pp. 615–618.
13. Dong C. Coefficient of thermal expansion of single-wall carbon nanotube reinforced nanocomposites. Journal of Composites Science, 2021, vol. 5, art. 26.
14. Fasanella N., Sundararaghavan V. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites. Modelling and Simulation in Materials Science and Engineering, 2015, vol. 23, аrt. 065003.
15. Ackermann A.C., Fischer M., Wick A. et al. Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. Journal of Composites Science, 2022, vol. 6, art. 153.
16. Wang S., Tambraparni M., Qiu J. et al. Thermal expansion of graphene composites. Macromolecules, 2009, vol. 42, pp. 5251–5255.
17. Wang S., Liang Z., Gonnet P. et al. Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Advanced Functional Materials, 2007, vol. 17, no. 1, pp. 87–92.
18. Seong M., Kim D.S. Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites. Journal of Applied Polymer Science, 2015, vol. 132, аrt. 42269.
19. Schapery R.A. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. Journal of Composite Materials, 1968, vol. 2, no. 3, pp. 380–404.
20. Kamarian S., Bodaghi M., Isfahani R.B. et al. Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations. Mechanics Based Design of Structures and Machines, 2021, vol. 49, no. 2, pp. 217–232.
21. Startsev V.O., Nikolaev E.V., Vardanyan A.M., Nechaev A.A. The influence of climatic fac-tors on residual stresses in nanomodified cyanate ester-based CFRP. Trudy VIAM, 2021, no. 8 (102), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 05, 2022). DOI: 10.18577/2307-6046-2021-0-8-104-112.
22. Awad S.A., Fellows C.M., Mahini S.S. Effects of accelerated weathering on the chemical, mechanical, thermal and morphological properties of an epoxy/multi-walled carbon nanotube composite. Polymer Testing, 2018, vol. 66, pp. 70–77.
23. Awad S.A., Fellows C.M., Mahini S.S. Evaluation of bisphenol A-based epoxy resin containing multiwalled carbon nanotubes to improve resistance to degradation. Journal of Composite Materials, 2019, vol. 53, pp. 2981–2991.
24. Chiang C.-L., Chou H.-Y., Shen M.-Y. Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates. Composites. Part A: Applied Science and Manufacturing, 2020, vol. 130, art. 105718.
25. Aslan A., Salur E., Düzcükoğlu H. et al. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Construction and Building Materials, 2021, vol. 272, art. 121929.
26. Jojibabu P., Ram G.D.J., Deshpande A.P., Bakshi S.R. Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging. Polymer Degradation and Stability, 2017, vol. 140, pp. 84–94.
27. Arribas C., Prolongo M.G., Sánchez-Cabezudo M. et al. Hydrothermal ageing of graphene/carbon nanotubes/epoxy hybrid nanocomposites. Polymer Degradation and Stability, 2019, vol. 170, art. 109003.
28. Kara M., Ak S., Uyaner M. et al. The Effect of Hydrothermal Aging on the Low-Velocity Impact Behavior of Multi-Walled Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Composite Pipes. Applied Composite Materials, 2021, vol. 28, no. 5, pp. 1567–1587.
29. Sánchez-Romate X.F., Terán P., Prolongo S.G. et al. Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films. Polymer Degradation and Stability, 2020, vol. 177, art. 109170.
30. Yang T., Lu S., Song D. et al. Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions. Materials, 2021, vol. 14, art. 7810.
31. Wang J., Guan L., Ge J. Research on Aging Resistance of Three Phase Composites for Anti-collision Intelligent Control of Bridge Engineering. Journal of Physics: Conference Series, 2021, vol. 2095, аrt. 012041.
32. Mach P., Geczy A., Polanský R., Bušek D. Glass transition temperature of nanoparticle-enhanced and environmentally stressed conductive adhesive materials for electronics assembly. Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 4895–4907.
33. Glaskova-Kuzmina T., Aniskevich A., Zarrelli M. et al. Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes. Composites Science and Technology, 2014, vol. 100, pp. 198–203.
34. Glaskova-Kuzmina T., Aniskevich A., Martone A. et al. Effect of moisture on elastic and viscoelastic properties of epoxy and epoxy-based carbon fibre reinforced plastic filled with multiwall carbon nanotubes. Composites. Part A: Applied Science and Manufacturing, 2016, vol. 90, pp. 522–527.
35. Glaskova-Kuzmina T., Aniskevich A., Papanicolaou G. et al. Hydrothermal aging of an epoxy resin filled with carbon nanofillers. Polymers, 2020, vol. 12, art. 1153.
36. Kondrashov S.V., Merkulova Yu I., Marakhovskii P. S. et al. Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging. Russian Journal of Applied Chemistry, 2017, vol. 90, no. 5, pp. 788–796.
37. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
38. Perov N.S., Startsev V.O., Chutskova E.Yu. et al. Properties of carbon plastic based on polycyanurate binder after exposure to various natural and artificial environments. Materialovedenie, 2017, no. 2, pp. 3–9.
39. Slavin A.V., Startsev O.V. Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering. Trudy VIAM, 2018, no. 9 (69), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 5, 2022). DOI: 10.18577/2307-6046-2018-0-9-71-82.
40. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 5, 2022). DOI: 10.18577/2307-6046-2021-0-5-114-126.
41. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible influence of moisture on the mechanical properties of PCM after weathering. Trudy VIAM, 2018, no. 5 (65), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 5, 2022). DOI: 10.18577/2307-6046-2018-0-5-110-118.
42. Startsev O.V., Kurs I.S., Deev I.S., Nikishin E.F. Thermal expansion of KMU-4L carbon fiber after 12 years of exposure in outer space. Voprosy materialovedeniya, 2013, no. 4 (76), pp. 77–85.
43. Startsev V.O., Molokov M.V., Grebeneva T.A., Tkachuk A.I. Dynamic mechanical and thermomechanical analysis of reversible plasticization of epoxy-diane resin-diaminodiphenylsulfon system by moisture. Polymer Science. Series A, 2017, vol. 59, no. 5, pp. 640–648.
44. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
45. Odegard G.M., Bandyopadhyay A. Physical aging of epoxy polymers and their composites. Journal of Polymer Science. Part B: Polymer Physics, 2011, vol. 49, no. 24, pp. 1695–1716.
46. Kong E.S.-W. Physical aging in epoxy matrices and composites. Epoxy Resins and Composites. Berlin, 1986, pp. 125–171.
47. Startsev O.V., Krotov A.S., Golub P.D. Effect of climatic and radiation ageing on properties of VPS-7 glass fibre reinforced epoxy composite. Polymer Degradation and Stability, 1999, vol. 63, no. 3, pp. 353–358.
48. Di Ludovico M., Piscitelli F., Prota A. et al. Improved mechanical properties of CFRP laminates at elevated temperatures and freeze-thaw cycling. Construction and Building Materials, 2012, vol. 31, pp. 273–283.
49. Park S.Y., Choi W.J., Choi C.H., Choi H.S. An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption. Composite Structures, 2019, vol. 207, pp. 81–92.
50. Herakovich C.T., Hyer M.W. Damage-induced property changes in composites subjected to cyclic thermal loading. Engineering Fracture Mechanics, 1986, vol. 25, no. 5, pp. 779–791.
51. Kato A., Goto K., Kogo Y., Inoue R. Changes in thermal expansion coefficient of CFRP laminate due to thermal cycle. ICCM International Conferences on Composite Materials, 2017, vol. 2017, art. 138793.
52. Startsev O.V., Perepechko I.I. Molecular mobility and relaxation in an epoxy matrix. 1. Influence of the reinforcing filler. Mechanics of Composite Materials, 1984, vol. 20, no. 3, pp. 271–274.
53. Startsev O.V., Mashinskaya G.P., Yartsev V.A. Molecular mobility and relaxation processes in an epoxy matrix. 2. Effects of weathering in humid subtropical climate. Mechanics of Composite Materials, 1985, vol. 20, no. 4, pp. 406–409.
54. Kablov E.N., Startsev O.V., Panin S.V. Moisture transfer in carbon-fiber-reinforced plastic with degraded surface. Doklady Physical Chemistry, 2015, vol. 461, no. 2, pp. 80–83.
55. Salnikov V.G., Startsev O.V., Lebedev M.P. et al. Influence of daily and seasonal changes in relative humidity and temperature on moisture saturation of carbon fiber in open climatic conditions. Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 5, pp. 2–10.
56. Startsev V.O., Nechaev A.A. Moisture transfer in cyanoether carbon plastic during accelerated and full-scale climatic tests. Physical and mechanical tests, strength and reliability of modern structural and functional materials: materials of XIV All-Russia. conf. for testing and research of the properties of materials "TestMat". Moscow, 2022, pp. 214–226.
57. Panin S.V., Startsev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Corrosion and aging of structural materials surface studied by 3D microscopy. Trudy VIAM, 2014, no. 12, paper no. 12. Available at: http://www.viam-works.ru (accessed: December 5, 2022). DOI: 10.18577/2307-6046-2014-0-12-12-12.
58. Startsev VO, Valevin EO, Gulyaev AI. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 5, 2022). DOI: 10.18577/2307-6046-2020-0-8-64-76.
59. Startsev O.V., Medvedev I.M., Kurs M.G. Hardness as the indicator of corrosion of aluminum alloys in sea conditions. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 16–19.
Within the framework of the general qualification of the VRT-12 brand coated textile material developed by the «Kurchatov Institute» ‒ VIAM for the manufacture of a sealed shell of flexible air ducts of the air conditioning system of aircraft, studies of fire safety characteristics and the influence of operational factors on the properties of the material were carried out. Compliance of the material with aviation regulations on flammability, smoke formation and release of toxic gases has been established. Resistance to temperatures from ‒60 to +80 °C, high humidity, mold fungi and aggressive liquids has been confirmed.
2. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
3. Kravchenko A.G., Shilova A.K., Tamba-Tamba V.P., Ozersky A.I. Overview of the main units of air conditioning systems for aircraft. Tekhnika. Tekhnologii. Inzheneriya, 2017, no. 3, pp. 24–27. Available at: https://moluch.ru/th/8/archive/62/2532/ (accessed: December 01, 2022).
4. Savin S.P. The use of modern polymeric composite materials in airframe construction. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (2), pp. 686–693.
5. Platonov M.M., Nazarov I.A., Nesterova T.A. Tissue-film materials for inflatable air rescue equipment. Novosti materialovedeniya. Nauka i tekhnika, 2013, no. 2, art. 6. Available at: http://www.materialsnews.ru (accessed: December 01, 2022).
6. Levant M.G., Ponomarev P.A. Creation of domestic materials for the manufacture of shells for aeronautical complexes. Polet, 2008, no. 12, pp. 57–60.
7. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: December 01, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
8. Ivanov M.S., Veshkin E.A., Satdinov R.A., Donskikh I.N. New domestic coated textile material for flexible air conditioning ducts of flight vehicles. Trudy VIAM, 2019, no. 4 (76), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2019-0-4-57-66.
9. Aviation regulations. Airworthiness standards for transport category aircraft: AP-25. 5th ed., rev. 1–8. Moscow: Aviaizdat, 2015, 278 p.
10. Barbotko S.L. Development of the fire safety test methods for aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
11. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
12. Kablov E.N. The key problem is materials. Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
13. Kablov E.N. Creation of a national network of climatic stations is a necessary condition for the reliability and resource of aviation equipment. Krylya Rodiny, 2010, no. 8, pp. 3–6.
14. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577 / 2307-6046-2021-0-1-114-122.
15. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
16. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
17. Aviation regulations. Airworthiness standards for civil light aircraft: AP-23. 4th ed., rev. 1–5. Moscow: Aviaizdat, 2014, 207 p.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
A review of the physicochemical properties of defectoscopic materials that affect the results of penetrant testing has been carried out. The rationale for the need to determine and verify each parameter of a set of defectoscopic materials is presented. The properties of the components of the kits that are not specified in the quality certificates and manufacturer's certificates are considered. It has been established that the characteristics and properties specified in the technical documentation of the manufacturer are not enough to assess the quality of defectoscopic materials. Parameters for quality assessment are proposed, which will allow choosing the most technologically advanced modern sets of defectoscopic materials.
2. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
3. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
4. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Revisiting the ecotoxicity and efficiency of different classes of industrial nonionic surfaces used for cleaning metal surfaces in the process of capillary control of details of the aviation technology (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 17, 2022). DOI: 10.18577/2713-0193-2021-0-4-98-106.
5. Klyuev V.V., Evlampiev A.I., Popov E.D. et al. Non-destructive control and diagnostics: a reference book. Moscow: Mashinostroenie, 2003, 656 p..
6. Karyakin A.V., Borovikov A.S. Luminescent and color flaw detection. Moscow: Mashinostroenie, 1972, 240 p.
7. State Standard 18442-80. Unbrakable control. capillary methods. Moscow: Publishing house of standards, 1987, 24 p.
8. Prokhorenko P., Migun N., Dezhkunov N. Development of penetrant test theory based on new physical effects. Proceedings of the 13th World Conference of Non-Destructive Testing (Sao Paulo, Brazil, October 18–23, 1992), 1992, pp. 538–542. DOI: 10.1016/B978-0-444-89791-6/50116-5.
9. Prokhorenko P., Migun N. Quantitative model of liquid penetrant hydrodynamics. AIP Conference Proceedings, 2000, vol. 509, is. 1, pp. 1865. DOI: 10.1063/1.1306257.
10. Gulak Y., Braido D. Capillary models of solvent diffusion. Chemical Engineering Science, 2013, vol. 101, is. 20, pp. 515–522. DOI: 10.1016/j.ces.2013.07.016.
11. Prokhorenko P., Migoun N. Calculation of Penetrant Testing Sensibility for Powder Developer. Proceeding of the 4th European Conference (London, UK, September 13–17, 1987), 1992, pp. 2774–2782. DOI: 10.1016/B978-0-08-036221-2.50071-1.
12. Prokhorenko P., Migun N., Grebenshchikov S. Experimental studies of polar indicator liquids used in capillary penetrant testing. International Journal of Engineering Science, 1987, vol. 25, is. 7, pp. 769–773.
13. Beril A. Capillarity effect analysis for alternative liquid penetrant chemicals. NDT & E International, 1997, vol. 30, is. 1, pp. 19–23. DOI: 10.1016/S0963-8695(96)00044-8.
14. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://journal.viam.ru (accessed: November 11, 2022). DOI: 10.18577/2713-0193-2021-0-2-115-122.
15. Lobanova I., Kalinichenko A. Investigation of the Liquid Flow on Rough Surfaces to Solve the Problems of Liquid Penetrant Testing. Progress in Material Science and Engineering. Springer International Publishing Switzerland, 2021, pp. 89–99. DOI: 10.1007/978-3-030-68103-6-9.
16. Prokhorenko P., Migun N. Film-flow mechanism of flaw development in penetrant-dye test. Russian Journal of Nondestructive testing, 2002, vol. 38, pp. 704–708.
17. Deutsch S. A Preliminary Study of the Fluid Mechanics of Liquid Penetrant Testing. Journal of Research of the National Bureau of Standards, 1977, vol. 84, is. 4, pp. 287–292. DOI: 10.6028/jres.084.012.
18. Migoun N., Prokhorenko P., Gnusin A. et al. On the reliability of quantitative evaluation of penetrant systems quality. AIP Conference Proceedings, 2002, vol. 615, pp. 1991–1996. DOI: 10.1063/1.1473037.
19. Prokhorenko P., Migoun N., Stadthaus S. Quantitative model of liquid penetrant hydrodynamics. AIP Conference Proceedings, 2000, vol. 509, pp. 1865. DOI: 10.1063/1.1306257.
20. Zolfaghari A., Kolahan F. Reliability and sensitivity of visible liquid penetrant NDT for inspection of welded components. Material Testing, 2017, vol. 59, is. 3, pp. 290–294. DOI: 10.3139/120.111000.
21. Kulichkova S.I., Golovkov A.N., Kudinov I.I., Laptev A.S. Modern flaw detection materials, equipment and automation of the process of capillary non-destructive testing. Kontrol. Diagnostika, 2019, no. 2, pp. 52–57. DOI: 10.14489/td.2019.02.pp 052-057.
22. Loshchinin Yu.V., Pakhomkin S.I., Razmakhov M.G. Phase transformation temperatures and calorimetric analysis of powder compositions of nickel-based superalloys. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-1-79-85.
23. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
Heat-resistant alloys and steels
Ovsepyan S.V., Akhmedzyanov M.V., Filonova E.V., Zaytsev D.V. Precipitation of η-phase during heat treatment in Ni–Fe–Co–Nb–Ti alloy
Light-metal alloys
Duyunova V.A., Trapeznikov A.V., Leonov A.A., Koreneva E.A. Modifying of cast aluminum alloys (review)
Zavarzin S.V., Duyunova V.A., Fomina M.A. High-temperature corrosion of titanium alloys (review)
Composite materials
Kondrashov S.V., Solovyanchik L.V., Minaeva L.A., Shorstov S.Yu. Thermoplastic polyamide composition with electrically conductive properties
Prokopenkov V.G., Kolpachkov E.D., Shosheva A.L.Influence of glass fiber-reinforced bismaleimide composition on the level of its properties
Korolev D.V., Valeev R.A., Piskorsky V.P., Morgunov R.B. Analysis of the applicability of rare earth magnets RE–TM–B and RE–TM for magnetocaloric cooling (review)
Protective and functional
coatings
Artemenko N.I., Tatarnikov S.V., Doronin O.N. Investigation of the influence of the para-meters of applying the ceramic layer of the ZrO2–7 % Y2O3 heat-shielding coating by plasma spraying on the productivity of the technological process
Losev A.V. Properties and features of protective coatings based on polyvinylidene fluoride and its copolymers (review)
Material tests
Kravchenko N.G., Shchekin V.K., Efimova E.A., Zherdev D.V. Conservation oils protective ability
Startsev V.O., Vardanyan A.M. Influence of external influences on the coefficient linear thermal expansion of carbon fiber plastics. Part 3. Climatic aging of nanomodified cyanester carbon plastic
Ivanov М.S., Pavlukovich N.G., Donskih I.N., Morozova V.S. Influence of operational factors on the properties of fabric-film material for low-pressure air ducts of the air conditioning system of aircraft
Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Criteria for evaluating the quality of defectoscopic materials in penetrant testing (review)