Articles
Using the powder-metallurgy nickel-based superalloy VZh178P as a prototype the chemical composition of an experimental gas turbine disk alloy with zero γ/γ'-misfit and high phase stability was calculated by the method of computer design. After equiaxed solidification and heat treatment the microstructure of alloy represents a γ-phase strengthened by spherical particles of the γ'-phase with a size of ~0,2 μm. After creep tests (750 °C, σ = 650 MPa, τ = 99 h and 850 °C, σ = 300 MPa, τ = 705 h), the microstructure studies and analysis of the creep mechanisms of the alloy were carried out. No traces of the formation of TPU phases were found in the alloy.
2. Garibov G.S., Grits N.M., Vostrikov A.V., Fedorenko E.A. Development and study of a new granular high-strength heat-resistant nickel alloy VV752P for promising aircraft equipment. Tekhnologiya legkikh splavov, 2011, no. 1, pp. 7–11.
3. Logunov A.V., Shmotin Yu.N., Khramin R.V. et al. The influence of alloying elements on the strength properties of heat -resistant nickel alloys for gas turbine disks. Electrometallurgiya, 2021, no. 3, pp. 2–13.
4. Barba D., Alabort E., Pedrazzini S. et al. On the microtwinning mechanism in a single crystal superalloy. Acta Materialia, 2017, vol. 135, pp. 314‒329. DOI: 10.1016/j.actamat.2017.05.072.
5. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 04, 2023). DOI: 10.18577/2713-0193-2023-0-1-30-50.
6. Smith T.M., Esser B.D., Antolin N. et al. Segregation and η-phase formation along stacking faults during creep at intermediate temperatures in Ni-base superalloys. Acta Materialia, 2015, vol. 100, pp. 19‒31. DOI: 10.1016/j.actamat.2015.08.053.
7. Barba D., Smith T.M., Miao J. et al. Segregation-assisted plasticity in Ni-based superalloys. Metallurgical Materials Transactions, 2018, vol. 49A, pp. 4173−4185. DOI: 10.1007/s11661-018-4567-6.
8. Smith T.M., Gabb T.P., Wertz K.N. et al. Enhancing the creep strength of next-generation disk superalloys via local phase transformation strengthening. Superalloys 2020. Pennsylvania: Minerals, Metals, Materials Series, 2020, pp. 726–736.
9. Lilensten L., Antonov S., Gault B. et al. Enhanced creep performance in a polycrystalline superalloy driven by atomic-scale phase transformation along planar faults. Acta Materialia, 2021, vol. 202, pp. 232‒242.
10. Svetlov I.L., Zaitsev D.V., Karashaev M.M., Epishin A.I., Petrushin N.V. The microsgation of the alloying elements on deformation defects of the structure in granular nickel alloy. Fizika metallov i metallovedenie, 2023, vol. 124, no. 6, pp. 517−523. DOI: 10.31857/S0015323023600296.
11. Viswanathan G.B., Sarosi P.M., Henry M.F. et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT. Acta Materialia, 2005, vol. 53, pp. 3041–3057.
12. Ber L.B., Rogozhkin S.V., Khomich A.A., Zaluzhny A.G. The distribution of atoms of the alloying elements between the particles γ- and γʹ-fasm in a heat-resistant nickel alloy. Fizika metallov i metallovedenie, 2022, vol. 123, no. 2, pp. 177–191.
13. Rogozhkin S.V., Ber L.B., Nikitin A.A., Khomich A.A., Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., Karashaev M.M., Zaluzhny A.G. The study of granular nickel alloy by nuclear-zonian tomography. Fizika metallov i metallovedenie, 2020, vol. 121, no. 1, pp. 1–12.
14. Saada G., Veyssiere P. Kear-Wilsdorf locks and mechanical properties of L12 alloys. MRS Online Proceedings Library, 1992, vol. 288, pp. 411−416. DOI: 10.1557/PROC-288-411.
15. Rae C., Vorontsov V., Kovarik L., Mills M. Dislocations in a Ni-based superalloy during low temperature creep. MATEC Web of Conferences, 2014, art. 01006. DOI: 10.1051/matecconf/20141401006.
16. Smith T.M., Unocic R.R., Deutchman H., Mills M.J. Creep deformation mechanism mapping in nickel base disk superalloys. Materials at High Temperatures, 2016, vol. 33, no. 4−5, pp. 372−383. DOI: 10.1080/09603409.2016.1180858.
17. Zaysev D.V., Sbitneva S.V., Ber L.B., Zavodov A.V. Determination of the main phase’s particles chemical composition in products from granulated nickel superalloy EP741NP. Trudy VIAM, 2016, no. 9, paper no. 08. Available at: http://www.viam-works.ru (accessed: October 04, 2023). DOI: 10.18577/2307-6046-2016-0-9-7-7.
18. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
19. Logunov A.V. Heat-resistant nickel alloys for shoulder blades and disks of gas turbines. Rybinsk: Gas turbine technologies, 2017, 854 p.
20. Jena A.K., Chaturvedj M.C. The role of alloying elements in the design of nickel-base superalloys. Journal of Material Science, 1984, vol. 19, pp. 3121–3139.
21. Murakumo T., Kobayashi T., Koizumi Y., Harada H. Creep behavior of Ni-base single-crystal superalloys with various γ'-volume fraction. Acta Materialia, 2004, vol. 52, pp. 3737–3744.
22. Unocic R.R., Vismanathan G.B., Sarosi P.M. et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloy. Materials Science and Engineering A, 2008, vol. 483−484, pp. 25‒32.
23. Bakradze M.M., Skugorev A.V., Bubnov M.V., Derevzov A.S., Sumynikov M.N., Shestakov A.A. Development of technology for obtaining blanks of gas turbine gas turbine engines from a new granular heat-resistant alloy VZh178P method + deformation. Tekhnologiya legkikh splavov, 2018, no. 3, pp. 21–27.
24. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
25. Kablov E.N., Petrushin N.V. Computer method for constructing casting heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2004, no. 1, pp. 3–21.
26. Petrushin N.V., Visik E.M., Elyutin E.S. Improvement of the chemical composition and structure of castable nickel-base superalloy with low density. Part 2. Trudy VIAM, 2021, no. 4 (98), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 04, 2023). DOI: 10.18577/2307-6046-2021-0-4-3-15.
27. Samoilov A.I., Morozova G.I., Krivko A.I., Afonicheva O.S. The analytical method for optimizing the alloying of heat-resistant nickel alloys. Materialovedenie, 2000, no. 2, pp. 14–17.
28. Morozova G.I. Compensation for the imbalance of the focus of heat-resistant nickel alloys. Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 12 (690), pp. 52–56.
29. Morinaga M., Yukawa N., Adachi H., Ezaki H. New phacomp and its applications to alloy design. Superalloys 1984. Pennsylvania: Minerals, Metals & Materials Society, 1984, pp. 523–532.
30. Martin J., Dortart R. The stability of the microstructure of metal systems. Moscow: Atomizdat, 1978, 280 p.
31. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006, 372 p.
32. Logunov A.V., Shmotin Yu.N. Modern heat-resistant nickel alloys for gas turbine disks (materials and technologies). Moscow: Nauka i tekhnologiya, 2013, 264 p.
33. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Definition miss-fit in fragmental single crystals of nickel hot strength alloys. Trudy VIAM, 2013, no. 5, paper no. 02. Available at: http://www.viam-works.ru (accessed: August 31, 2023).
34. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. The influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
35. Glatzel U. Microstructure and internal strains of undeformed and creep-deformed samples of a nickel-base superalloy. Berlin: Verlag Dr. Köster, 1994, 80 p.
36. Karunaratne M.S.A., Kyaw S., Jones A. et al. Modeling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. Journal Materials Science, 2016, vol. 51, pp. 4213–4226. DOI: 10.1007/s10853-015-9554-3.
37. Petrushin N.V., Epishin A.I., Svetlov I.L., Nolce G., Elyutin E.S., Soloviev A.E. The influence of the sign γ/γ′-Mismephite on the structure and long-term strength of monocrystals of nickel heat-resistant alloys. Materialovedenie, 2022, no. 3, pp. 17–26. DOI: 10.31044/1684-579x-2022-0-3-17-26.
38. Epishin A.I., Petrushin N.V., Svetlov I.L., Nolce G. Model for predicting the temperature dependence of γ/γʹ-Mysfit in heat-resistant nickel alloys. Materialovedenie, 2021, no. 3, pp. 9–18. DOI: 10.31044/1684-579X-2021-0-3-9-18.
39. Kablov E.N., Golubovsky E.R. The heat resistance of nickel alloys. Moscow: Mechanical Engineering, 1998, 463 p.
40. Larson F.R., Miller J. A time-temperature relationship for rupture and creep stresses. Transactions ASME, 1952, vol. 74, pp. 765–771.
41. High-Temperature High-Strength Nickel Base Superalloy ‒ Data Supplement. Toronto: Nickel Development Institute, 1995, no. 393, pp. 1−19.
42. Petrushin N.V., Golinets S.A., Rimsha E.G., Ryzhkov P.V. Mechanical properties of corrosion-resistant nickel-based superalloy VZhL23. Trudy VIAM, 2023, no. 8 (126), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 04, 2023). DOI: 10.18577/2307-6046-2023-0-8-3-12.
43. Nabarro F.R.N. Rafting in superalloys. Metallurgical and Materials Transactions A, 1996, vol. 27, no. 3, pp. 513‒530. DOI: 10.1007/BF02648942.
44. Lashko N.F., Zaslavskaya L.V., Kozlova M.N., Morozova G.I., Sorokina K.P., Yakovleva E.F. Physico-chemical phase analysis of steels and alloys. Moscow: Metallurgy, 1978, 336 p.
45. Hirt D.Zh., Lota I. Theory of dislocations. Moscow: Atomizdat, 1972, 600 p.
The article provides an overview of traditional surface polishing methods (mechanical, chemical and electrochemical), which are used for processing parts made by selective laser sintering from metal powder compositions. The main advantages and disadvantages of these methods are described. Taking into account the identified shortcomings, a more high-performance and environmentally friendly method of electrolyte-plasma surface polishing has been proposed. A number of works have been carried out aimed at developing an electrolyte composition for electrolyte-plasma polishing of parts made of metal powder composition aluminum alloy grade VAS1.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Electrometallurgiya, 2022, no. 4, pp. 15–25. DOI: 10.31044/1684-5781-2022-0-4-15-25.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 4. Development of heat-resistant materials. Electrometallurgiya, 2022, no. 5, pp. 8–19. DOI: 10.31044/1684-5781-2022-0-5-8-19.
4. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review) Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2021-0-3-19-34.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
7. Nerush S.V., Sviridov A.V., Afansiev-Khodykin A.N., Galushka I.A., Tarasov S.A. Development of brazing technology for parts obtained by additive technologies from cobalt based metal powder composition. Aviation materials and technologies, 2022, no. 2 (67), paper no. 02. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2022-0-2-5-17.
8. Marakhovskij P.S., Barinov D.Ya., Shorstov S.Yu., Vorobev N.N. On creation of physical and mathematical models of heat and mass transfer during manufacturing by additive technologies (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 10, 2023). DOI: 10.18577/2713-0193-2022-0-2-111-119.
9. Galvanic coatings in mechanical engineering: a reference book in 2 vol. Ed. M.A. Schluger. Moscow: Mashinostroenie, 1985, vol. 1, 240 p.
10. Grilikhes S.Ya. Degreasing, etching and polishing of metals. Ed. P.M. Vyacheslavova. Ed. 5th, rev. and add. Leningrad: Mechanical Engineering, 1983, 101 p.
11. Pogrebnyak A.D., Tyurin Yu.N., Boyko A.G., Zhadkevich M.L., Kalyshkanov M.K., Ruzimov Sh.M. Electrolyte-plasma processing and coating of metals and alloys. Uspekhi fiziki metallov, 2005, vol. 6, pp. 273–344.
12. Volenko A.P., Boychenko O.V., Chirkunova N.V. Electrolyte-plasma processing of metal products. Vektor nauki TGU, 2012, no. 4 (22), pp. 144–147.
13. Kulikov I.S., Vashchenko S.V., Kamenev A.Ya. Electrolytic-plasma processing of materials. Minsk: Belaruskaya Navuka, 2010, 232 p.
14. Method of electrolyte-plasma processing of products made of aluminum and aluminum alloys: pat. 7291, Republic of Belarus; appl. 16.07.15; publ. 28.02.17.
15. Zakharov S.V., Korotkikh M.T. Electrolytic-plasma polishing of complex-profile products made of aluminum alloy D16. Vestnik Kontserna VKO «Almaz–Antey», 2017, no. 3, pp. 83–87.
A retrospective of the use of heat-resistant aluminum alloys of various alloying systems is presented, possible prospects for their applications are considered. The general problems of weldability of these alloys are indicated. The analysis of the causes of hot cracks in welded joints is carried out, methods and approaches for their elimination are considered in detail. The weldability of heat-resistant aluminum alloys 1151, B-1213, AK4-1ch. and 1201 with and without filler wires was evaluated.
2. Fridlyander I.N. Memories of the creation of aerospace and nuclear technology from aluminum alloys. Moscow: Nauka, 2005, 277 p.
3. Fridlyander I.N. Modern aluminum, magnesium alloys and composite materials based on them. Metallovedenie i termicheskaya obrabotka metallov, 2002, no. 7, pp. 24–29.
4. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 10, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
5. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 10, 2023). DOI: 10.18577/2713-0193-2021-0-2-24-34.
6. Kablov E.N., Lukin V.I., Ospennikova O.G. Promising aluminum alloys and technologies for their connection for aerospace products. Report 2nd Int. conf. and the exhibition «Aluminium-21. Welding and soldering». St. Petersburg: Alusil-MViT LLC, 2012, art. 8.
7. Teleshov V.V. Structure and properties of semi-finished products from AK4-2 alloy. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 80–97.
8. Shemetev G.F. Aluminum alloys: compositions, properties, application: textbook. St. Petersburg: SPbPU, 2012, part 1, 155 p. Available at: https://elib.spbstu.ru/dl/2747.pdf/view (accessed: July 10, 2023).
9. Klochkov G.G., Klochkova Y.Y., Romanenko V.A. New alloy of Al–Cu–Mn system for the space hardware. Trudy VIAM, 2015, no. 4, paper no. 01. Available at: http://www.viam-works.ru (accessed: August 10, 2023). DOI: 10.18577/2307-6046-2015-0-4-1-1.
10. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
11. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
12. Yudaev D.P. The influence of technological and operational influences on the structure and properties of aluminum alloys 1151 and 1545K and the possibility of manufacturing promising launch vehicle structures from them: thesis, Cand. Sc. (Tech.). Samara: SamSTU, 2014, 146 p.
13. Chirkov E.F. Weakening rate under heating is the evaluation criterion of heat resistance of Al‒Cu‒Mg and Al‒Cu structural alloys. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 11–19.
14. Chirkov E.F., Kononova L.A., Shmelyova V.S. Effect of equiatomic Cu and Mg content on ageing processes of 1151 (Al−Cu−Mg) high-temperature weldable structural alloy. Trudy VIAM, 2013, no. 2, paper no. 03. Available at: http://www.viam-works.ru (accessed: August 10, 2023).
15. Yakushin B.F., Makarov E.L. Theory of weldability of steels and alloys. Moscow: Bauman MSTU Publ. house, 2018, 487 p.
16. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Perspective welding technologies of aluminum-lithium alloy V-1469 applied to fuselage panels. Trudy VIAM, 2020, no. 12 (94), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 14, 2023). DOI: 10.18577/2307-6046-2020-0-12-35-46.
17. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Journal Material Science Engineering, 2005, vol. 50, pp. 1–78.
18. Popovich A.A., Panchenko O.V., Naumov A.A., Sviridov A.V., Skupov A.A., Sbitneva S.V. Friction stir welding of aluminum-lithium alloy V-1469-T. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 11–17. DOI: 10.18577/2071-9140-2019-0-4-11-17.
Data on the cyclic durability of magnesium alloy samples of the Mg–REM–Zr system are presented. The fatigue characteristics of corset samples and notched samples were assessed at loading cycle asymmetry coefficients R = 0,1 and R = –1. For corset samples, the factors determining cyclic durability are the size of the inclusions; for samples with a notch, the location of the defect relative to the plane of the notch. Fractograms of specimen fractures are presented. The possibility of increasing the fatigue resistance of an alloy of the Mg–REM–Zr system by improving the quality of casting has been established.
2. Mukhina I.Yu., Duyunova V.A., Uridiya Z.P. Promising cast magnesium alloys. Liteynoe proizvodstvo, 2013, no. 5, pp. 2–5.
3. Magnesium Alloys. Design, Processing and Properties. Ed. Frank Czerwinski. IntechOpen, 2011. 540 p. DOI: 10.5772/560.
4. Luo A.A. Magnesium casting technology for structural applications. Journal of Magnesium and Alloys, 2013, vol. 1, pp. 2–22. DOI: 10.1016/j.jma.2013.02.002.
5. Mukhina I.Yu., Leonov A.A. Fluxes in the metallurgy of magnesium alloys. Vse materialy. Entsiklopedicheskiy spravochnik, 2017, no. 8, pp. 19–25.
6. Rycerz L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. Journal of Thermal Analysis and Calorimetry, 2013, vol. 113, pp. 231–238. DOI: 10.1007/s10973-013-3097-0.
7. Duyunova V.A., Uridiya Z.P. Study of the flammability of cast magnesium alloys of the Mg–Zn–Zr system. Liteyshchik Russii, 2012, no. 11, pp. 21–23.
8. Leonov A.A., Trofimov N.V., Duyunova V.A., Uridia Z.P. Trends in the development of cast magnesium alloys with an increased ignition temperature (review). Trudy VIAM, 2021, no. 2 (96), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 25, 2023). DOI: 10.18577/2307-6046-2021-0-2-3-9.
9. Mukhina I.Yu. Research of metal systems based on magnesium and development of principles for creating corrosion-resistant magnesium alloys. Metallovedenie i termicheskaya obrabotka metallov, 2014, no. 1, pp. 8–12.
10. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare-earth elements are materials for modern and future high technologies. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 3–10.
12. Duyunova V.A., Leonov A.A., Trofimov N.V. Study of the influence of rare earth elements and heat treatment on the structure and properties of a heat-resistant cast magnesium alloy of the Mg–REM–Zr system. Metally, 2020, no. 5, pp. 58–63.
13. Kablov E.N. Modern materials are the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
14. Belyaev M.S., Gorbovec M.A. About discontinuity of LCF diagram in S-N coordinates for Ni-based superalloy. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 103–108. DOI: 10.18577/2071-9140-2014-s4-103-108.
15. Grinevich A.V., Rumyancev Yu.S., Morozova L.V., Terehin A.L. Study of fatigue life of 1163-T and V95o.ch.-T2 aluminum alloys after surface hardening. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 93–102. DOI: 10.18577/2071-9140-2014-s4-93-102.
16. Belyaev M.S., Terentev V.F., Gorbovec M.A., Bakradze M.M., Goldberg M.A. Low-cycle fatigue for a given deformation and parameters of elastic-plastic deformation of superalloy VZh175. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 87–92. DOI: 10.18577/2071-9140-2014-0-s4-87-92.
17. Grinevich D.V., Gulina I.V., Yakovlev N.O., Dzandarov D.-S.V., Glagovsky A.A., Ermakova Yu.V. Study of the influence of fatigue loading parameters on the durability of aircraft slat diaphragm lugs. Zavodskaya laboratoriya. Diagnostika materialov, 2023, no. 6, vol. 89, pp. 76–82.
18. Iakovlev N.O., Selivanov A.A., Gulina I.V., Grinevich A.V. Revisiting the durability of hinged-bolt connections. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-4-79-85.
19. Erasov V.S., Avtaev V.V., Oreshko E.I., Yakovlev N.O. Strain-controlled testing advantages at static tension and repeated-static tension. Trudy VIAM, 2018, no. 10 (70), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 25, 2023). DOI: 10.18577/2307-6046-2018-0-9-92-104.
20. Oreshko E.I., Erasov V.S., Grinevich D.V., Sershak P.V. Review of criteria of durability of materials. Trudy VIAM, 2019, no. 9 (81), paper no. 12. Available at: http://www.viam-works.ru (accessed: August 25, 2023). DOI: 10.18577/2307-6046-2019-0-9-108-126.
21. Yakovlev N.O., Grinevich D.V., Mazalov P.B. Mathematical modeling of the stress-strain state during compression of a mesh structure synthesized by selective laser melting. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Natural Sciences, 2018, no. 6 (81), pp. 113–127.
22. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
23. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Qualification tests and researches of durability of aviation materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 440–448.
The composition of an epoxy composition modified with polyarylsulfone PSFF-30 was proposed and the physicochemical and rheological properties of the resulting melt binder were studied. Based on an epoxy-polysulfone binder, glass and carbon fiber plastic samples were made using the vacuum furnace molding method, and the strength and thermophysical characteristics of the polymers were assessed. It has been established that this modification of the epoxy- polysulfone binder reduces the volume fraction of pores in fiberglass with woven filler T-10-14 by 2,7 times, and in carbon fiber with filler VTkU-2.200 – 2 times.
2. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
3. Kablov E.N. To the 80th anniversary of VIAM. Zavodskaya laboratoriya. Diagnostika materialov, 2012, vol. 78, no. 5, pp. 79–82.
4. Salakhova R.K., Tikhoobrazov A.B., Smirnova T.B., Kirilin S.G. Nickel plating of carbon and fiberglass in order to increase the erosion resistance of PCM structures. Uprochnyayushchie tekhnologii i pokrytiya, 2021, vol. 17, no. 5 (197), pp. 221–227.
5. Salakhova R.K., Tikhoobrazov A.B., Smirnova T.B., Kirilin S.G. Chemical-galvanic metallization of carbon and fiberglass. Galvanotekhnika i obrabotka poverkhnosti, 2020, vol. 28, no. 3, pp. 13–21.
6. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
7. Vorobyov A. Epoxy resins. Komponenty i tekhnologii, 2003, no. 8. pp. 170–173.
8. Petrova A.P., Mukhametov R.R. Binders for polymer composite materials based on epoxy oligomers. Klei. Germetiki. Tekhnologii, 2018, no. 7, pp. 21–27.
9. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
10. Sopotov R.I., Gorbunova I.Yu., Onuchin D.V. et al. The influence of polysulfone and polyethersulfone modifiers on the thermomechanical properties of an epoxyamine binder. Uspekhi v khimii i khimicheskoy tekhnologii, 2015, vol. 29, no. 10, pp. 62–64.
11. Sergeeva E.A., Abdullin I.Sh., Zenitova L.A., Kostina K.D. Analysis of methods for modifying fibrous materials. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, no. 20, pp. 164–167.
12. Kopitsyna M.N., Bessonov I.V., Kotomin S.V. Crack resistance of epoxy binders modified with thermoplastic polysulfone and furfural acetone resin. Inzhenernyy zhurnal: nauka i innovatsii, 2016, no. 12, pp. 1–9.
13. Starostina I.V., Petrova A.P., Shevchenko Yu.N., Shishimirov M.V. Control thermoplastic binding for PCM (review). Trudy VIAM, 2019, no. 4 (76), paper no. 11. Available at: http://viam-works.ru (accessed: August 09, 2023). DOI: 10.18577/2307-6046-2019-0-4-99-107.
14. Solodilov V.I., Korokhin R.A., Gorbatkina Yu.A., Kuperman A.M. Organoplastics based on complex hybrid matrices, including polysulfone and carbon nanotubes as epoxy resin modifiers. Khimicheskaya fizika, 2012¸ vol. 31, no. 6, pp. 63–71.
15. Khasbulatova Z.S. Aromatic polysulfones. Plasticheskiye massy, 2009, no. 4, pp. 20–23.
16. Shteiberg E.M., Sergeeva E.A., Zenitova L.A., Abdullin I.Sh. Application and production of polysulfone. Review. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no. 20, pp. 168–171.
17. Borodulin A.S. Plasticizers for epoxy adhesives and binders. Klei. Germetiki. Tekhnologii, 2012, no. 7, pp. 31–35.
18. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, is. 10, pp. 61–71.
19. Gurenkov V.M., Gorshkov V.О., Chebotarev V.P., Prudskova Т.N., Andreeva Т.I. Comparative analysis of properties of polyetheretherketone of domestic and foreign production. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 41–47. DOI: 10.18577/2071-9140-2019-0-3-41-47.
20. Kostromina N.V., Olikhova Yu.V., Malakhovsky S.S., Gorbunova I.Yu. Development of epoxy binders modified with heat-resistant thermoplastics for the creation of reinforced composite materials. Plasticheskiye massy, 2022, no. 9–10, pp. 17–19.
21. Besednov K.L., Babin A.N., Grebeneva T.A., Tkachuk A.I., Pleshakov D.V. Study of the dissolution processes of polysulfones in epoxy resins. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. 30, no. 8, pp. 15–17.
22. Zagora A.G., Tkachuk A.I., Terekhov I.V., Mukhametov R.R. Methods of chemical modification of epoxy oligomers (review). Trudy VIAM, 2021, no. 7 (101), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 23, 2023). DOI: 10.18577/2307-6046-2021-0-7-73-85.
23. Mishkin S.I., Klimenko O.N., Kutcevich K.E. Determination of stickiness of prepregs on the basis of carbon fillers the sounding method. Trudy VIAM, 2018, no. 3 (109), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 17, 2023). DOI: 10.18577/2307-6046-2022-0-3-35-43.
24. Malysheva G.V., Akhmetova E.Sh., Marycheva A.N. Estimation of the glass transition temperature of epoxy binders modified with polysulfone. Fizika i khimiya stekla, 2014, vol. 40, no. 5, pp. 718–724.
The article discusses the main features of the process of forming parts of complex configurations such as helicopter engine hood and the lower skin of an aircraft wing panel made of metal-polymer composite material. The stages of the technological process of forming these parts are described in detail. The results of determining the mechanical and fatigue characteristics are presented. samples of various reinforcement schemes from metal-polymer composite material. It is shown that the use of metal-polymer composite materials will simplify the manufacturing technology of complex contour parts and significantly increase the material utilization rate.
2. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Yu., Konovalov A.N. Constructed layered materials based on sheets of aluminum-lithium alloys and fiberglass in the structures of new generation aircraft. Vestnik mashinostroyeniya, 2020, no. 12, pp. 46–52.
3. Zichenkov M.Ch., Shanygin A.N. New generation hybrid aircraft structures for advanced civil aircraft. Polet, 2018, no. 11, pp. 106–114.
4. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Adhesive prepregs and layered materials on their basis. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 19–21.
5. Fridlyander I.N. Modern aluminum, magnesium alloys and composite materials based on them. Metallovedeniye i termicheskaya obrabotka metallov, 2002, no. 7, pp. 24–29.
6. Fridlyander I.N., Senatorova O.G., Anikhovskaya L.I., Sidelnikov V.V., Dementeva L.A. Layered metalpolymer composites. Mechanical engineering: encyclopedia in 40 vol. Moscow: Mashinostroyenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metal materials. Ed. I.N. Friedlander et al., рр. 818–832.
7. Fridlyander I.N., Senatorova O.G., Anikhovskaya L.I. et al. Glued metal and layered metal-polymer composites. Mechanical engineering: encyclopedia in 40 vol. Moscow: Mashinostroyenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metal materials. Ed. I.N. Friedlander et al., pp. 814–818.
8. Roebroeks G. GLARE features. Fibre Metal Laminates. Dordrecht: Springer, 2001, рр. 23−37.
9. Beumler Th. Flying GLARE: PhD Thesis. Delft: Delft University of Technology, 2004, 460 p.
10. Vlot A. GLARE history of development of a new aircraft material. Kluwer Academic Publishers, 2001, р. 222.
11. Bucci R.J., Kulak M., Heinimann M.B. et al. Large Panel Validation of Advanced Metallic and Hybrid Structural Concepts for Next-Gen Transport Aircraft. AeroMat 2007. Baltimore, 2007. Available at: https://asm.confex.com/ (accessed: September 08, 2023).
12. Gunnink J.W., Vlot A., De Vries T.J., Van Der Hoeven W. GLARE technology development 1997–2000. Applied Composite Materials, 2002, vol. 9, is. 4, pp. 201–219.
13. Gisario A., Barletta M. Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material. Optics and Lasers in Engineering, 2018, vol. 110, pp. 364–376.
14. Qi С., Zhidong G., Zengshan L. et al. Experimental investigation on impact performances of GLARE laminates. Chinese Journal of Aeronautics, 2015, vol. 28, is. 6, pp. 1784–1792.
15. Sang Y.P., Won J.C., Chi H.C., Heung S.C. Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate. Composite Structures, 2018, vol. 185, pp. 684–698.
16. Fredell R.S., Gunnink J.W., Bucci R.J., Hinrichsen J. «Care-free» hybrid wing structures for aging USAF transports. First International Conference on Damage Tolerance of Aircraft Structures. Delft: Delft University of Technology, 2007. Available at: https://www.researchgate.net (accessed: September 07, 2023).
17. Lavrov A.V., Erasov V.S., Podzhivotov N.Yu., Avtaev V.V. Optimization of structure of hybrid composition materials for aircraft. Trudy VIAM, 2016, no. 11 (47), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 07, 2023). DOI: 10.18577/2307-6046-2016-0-11-7-7.
18. Antipov V.V., Zaitsev M.D., Rodchenko T.S., Stoyda Yu.M., Serebrennikova N.Yu., Sidelnikov V.V. Study of the durability of a structurally similar sample of a fuselage panel with SIAL aluminum fiberglass skin. Deformatsiya i razrusheniye materialov, 2021, no. 3, pp. 18–24.
19. Oreshko E.I., Erasov V.S., Lashov O.A., Podzhivotov N.Yu., Kachan D.V. Calculation of tension in a layered material. Trudy VIAM, 2018, no. 10 (70), paper no. 11. Available at: http://viam-works.ru (accessed: September 08, 2023). DOI: 10.18577/2307-6046-2018-0-10-93-106.
20. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
21. Pekarsh A.I., Oleynikov A.I., Bakaev V.V., Sarykov S.E., Dolgopolik O.D. Preparation for the production of complex parts of double alternating curvature using the method of finite element analysis of the geometric model with the integrated development of forming equipment, part development and recommendations for the technological process. SAPR i grafika, 2009, no. 2, pp. 88–96.
22. Antipov V.V., Samokhvalov S.V., Sidelnikov V.V., Nefedova Yu.N., Ogurtsov P.S., Solo-viev V.A. Development and research of fire-resistant aluminum fiberglass for a helicopter engine cowling. Deformatsiya i razrusheniye materialov, 2022, no. 5, pp. 19–25.
23. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Oglodkov M.S. Experience and prospects for the use of aluminum-lithium alloys in aviation and space technology products. Metallurg, 2021, no. 1, pp. 62–70.
25. Oglodkova Yu.S., Selivanov A.A., Lukina E.A., Zaitsev D.V. The influence of temperature-time parameters of stepwise aging on the structure, phase composition, mechanical and corrosion properties of sheets made of alloy 1441. Metally, 2020 no. 6, pp. 12–21.
26. Оглодков М.С., Щетинина Н.Д., Рудченко А.С., Пантелеев М.Д. Направления развития перспективных алюминий-литиевых сплавов для авиационно-космической техники (обзор). Авиационные материалы и технологии. 2020. № 1 (58). С. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
27. Щетинина Н.Д., Рудченко А.С., Селиванов А.А. Применение методов математического моделирования при разработке режимов деформации алюминий-литиевых сплавов (обзор). Труды ВИАМ. 2020. № 8 (90). Ст. 03. URL: http://www.viam-works.ru (дата обращения: 08.09.2023). DOI: 10.18577/2307-60246-2020-0-8-20-34.
28. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the development of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
29. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Aluminum-lithium alloys. Mechanical engineering: encyclopedia in 40 vols. Moscow: Mashinostroyenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metal materials. Ed. I.N. Fridlander et al., pp. 156–185.
30. Smith А. Aluminium-lithium alloys in helicopter airframes. Aerospace materials, 2001. Available at: http://www.slideshare.net (accessed: September 08, 2023).
31. Gudladt H.-J., Lendvai J., Schneider J. Precipitation strengthening and its influence in the mechanical behavior of cyclically deformed Al–Li alloys. Acta Metall, 1989, vol. 37, no. 12, pp. 3327–3333.
32. Grigorev M.V., Oglodkov M.S. Influence of machining on mechanical and fatigue properties of sheets from aluminum-lithium alloys 1441 and V-1481. Trudy VIAM, 2018, no. 4 (64), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 07, 2023). DOI: 10.18577/2307-6046-2018-0-4-20-27.
33. Duyunova V.A., Nechaikina T.A., Oglodkov M.S., Yakovlev A.L., Leonov A.A. Promising developments in the field of light materials for modern aerospace technology. Tekhnologiya legkikh splavov, 2018, no. 4, pp. 28–43.
The modern polymer composite materials of the new generation are capable of meeting increased requirements for elastic-strength characteristics and their operational stability, which are necessary to ensure the operability of structures. Blade processing this materials is associated with a number of technological difficulties. An urgent task is the development of technology for wire-cut electrical discharge machining of polymer composite materials. A full factorial experiment was conducted. A theoretical model has been obtained that allows one to calculate the tool correction value when writing a control program for processing a part. A study of the 3D structure of the carbon composite material VKU-29 was carried out. It is shown that the structure of the composite is homogeneous.
2. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, рр. 225–228.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), p. 3.
4. Hsissou R., Benhiba F., Echihi S. et al. New epoxy composite polymers as a potential anticorrosive coatings for carbon steel in 3,5 % NaCl solution: Experimental and computational approaches. Chemical Data Collections, 2021, vol. 31, art. 100619. DOI: 10.1016/j.cdc.2020.100619.
5. Hsissou R., Bekhta A., Dagdag O. et al. Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 2020, vol. 6, is. 6, art. e04187. DOI: 10.1016/j.heliyon.2020.e04187.
6. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vol. St. Petersburg, 2019, vol. 4, p. 24.
7. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review). Trudy VIAM, 2022, no. 11 (117), paper no. 08. Available at: http://www.viam-works.ru (accessed: September 26, 2023). DOI: 10.1877/2307-6046-2022-0-11-81-92.
8. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 01, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
10. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
11. Dyshenko V.S., Donetskiy K.I., Minibaev M.I., Ablyaz T.R., Shlykov E.S., Shiryaev V.V. Methods of mechanical and electrical discharge machining of polymer composite materials (review). Trudy VIAM, 2018, no. 3 (109), paper no. 10. Available at: http://www.viam-works.ru (accessed: September 20, 2023). DOI: 10.18577/2307-6046-2022-0-3-102-120.
12. Ablyaz T.R., Donetsky K.I., Shlykov E.S., Muratov K.R., Dyshenko V.S., Minibaev M.I. Complex analysis of methods for processing polymer composite materials. STIN, 2022, no. 6, pp. 5–8.
13. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 20, 2023). DOI: 10.18577/2713-0193-2021-0-3-105-116.
14. Panner Selvam M., Ranjith Kumar P. Optimization Kerf Width and Surface Roughness in Wirecut Electrical Discharge Machining Using Brass Wire. Mechanics and Mechanical Engineering, 2017, vol. 21, no. 1, pp. 37–55.
15. Maher I., Lingb L.H., Sarhan A.A.D. Improve wire EDM performance at different machining parameters – ANFIS modeling. IFAC-Papers OnLine, 2015, vol. 48-1, pp. 105–110. DOI: 10.1016/j.ifacol.2015.05.109.
16. Mu-Tian Yan, Yi-Peng Lai. Surface quality improvement of wire-EDM using a fine-finish power supply. International Journal of Machine Tools and Manufacture, 2007, no. 47, pp. 1686–1694. DOI: 10.1016/j.ijmachtools.2007.01.006.
17. Abbas N.M., Solomon D.G., Bahari Md.F. A review on current research trends in electrical discharge machining (EDM). International Journal of Machine Tools & Manufacture, 2007, no. 47, pp. 1214–1228. DOI: 10.1016/j.ijmachtools.2006.08.026.
18. Shlykov E.S., Ablyaz T.R., Oglezneva S.A. Electrical Discharge Machining of Polymer Composites. Russian Engineering Research, 2020, vol. 40, no. 10, pp. 878–879.
19. Ablyaz T.R., Muratov K.R., Shlykov E.S. et al. Electric-Discharge Machining of Polymer Composites. Russian Engineering Research, 2019, vol. 39, no. 10, p. 898900.
20. Fukuzawa Y., Katougi H., Mohri N. et al. Machining properties of ceramics with an electric discharge machine. Proceedings of the XII ISEM, 1998, pp. 445–454.
21. Mohri N., Fukuzawa Y., Tani T. et al. Assisting electrode method for machining insulating ceramics. Annals CIRP, 1996, no. 45 (1), pp. 201–204.
22. Mohri N., Fukusima Y., Fukuzawa Y. et al. Layer generation process on work-piece in electrical discharge machining. Annals CIRP, 2003, no. 52 (1), pp. 161–164.
23. Lauwers B., Kruth J.P., Liu W. et al. Investigation of Material Removal Mechanisms in EDM of Composite Ceramic Materials. Journal of Materials Processing Technology, 2004, no. 149, pp. 347–352.
24. Puertas I., Luis C. A Study on the Electrical Discharge Machining of Conductive Ceramics. Journal of Materials Processing Technology, 2004, vol. 153–154/1–3, pp. 1033–1038.
25. Kucukturk C., Çogun C. A New Method for Machining of Electrically Nonconductive Workpieces Using Electric Discharge. Machining Technique, Machining Science and Technology, 2010, vol. 14, pp. 189–207.
26. Hosel T., Müller C., Reinecke H. Simple Techniques of Spark Erosive Structuring of Electrically Nonconductive Zirconia (ZrO2), 4M. 4M/ICOMM 2009. The Global Conference on Micro Manufacture, 2009.
27. Wüthrich R., Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon – an overview. International Journal of Machine Tools and Manufacture, 2005, vol. 45, pp. 1095–1098.
28. Schubert A., Zeidler H., Wolf N., Hackert M. Micro electro discharge machining of electrically nonconductive ceramics. AIP Conference Proceedings, 2011, pp. 1303–1308.
29. Cnudde V., Boone M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 2013, vol. 123, pp. 1–17.
30. Feldkamp L.A., Jesion G. 3-D X-ray computed tomography. Review Progress Quantitative Nondestructive Evalution, 1986, vol. 5a, pp. 555–566.
31. Hanna R.D., Ketcham R.A. X-ray computed tomography of planetary materials: A primer and review of recent studies. Geochemistry, 2017, vol. 77, is. 4, pp. 547–572.
32. Stock S.R., Sasov A., Liu X., Salmon P.L. Compensation of mechanical inaccuracies in micro-CT and nano-CT. Developments in X-ray Tomography VI. Washington, DC: SPIE, 2008. DOI: 10.1117/12.793212.
The results of gradient deposition of a condensation-diffusion coating to protect a nickel alloy from sulfide-oxide corrosion and high-temperature oxidation are presented in order to obtain the minimum size of the droplet phase at the initial moment of deposition when the bias voltage is operating in constant or pulse modes. It is established that the displacement operating modes do not significantly affect the adhesive component and the number of defects at the alloy-coating interface, and the gradient onset of deposition increases these characteristics.
2. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 10, 2023). DOI: 10.18577/2307-6046-2020-0-3-3-12.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nickel foundry heat resisting alloys of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 36–52.
4. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines. Aviation materials and technologies, 2022, no. 2 (67), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 11, 2023). DOI: 10.18577/2713-0193-2022-0-2-5-17.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. A method of applying a combined heat-resistant coating: pat. 2402633 Rus. Federation; appl. 31.03.09; publ. 27.10.10.
7. A method of processing the surface of a metal product: pat. 2368701 Rus. Federation; appl. 08.11.07; publ. 27.09.09.
8. Muboyajyan S.A., Kablov E.N., Budinovsky S.A. Vacuum-plasma technology for obtaining protective coatings from complex alloy alloys. Metallovedeniye i termicheskaya obrabotka metallov, 1995, no. 2, рр. 15–18.
9. Budinovsky S.A., Muboyajyan S.A. The effectiveness of a two-stage ion-plasma technology for obtaining alloy diffusion aluminum coatings on heat-resistant nickel alloy. Metallovedeniye i termicheskaya obrabotka metallov, 2003, no. 5, pp. 27–32.
10. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
11. Kablov E.N., Muboyajyan S.A., Budinovsky S.A., Egorova L.P., Lutsenko A.N., Galoyan A.G. Protective and strengthening coatings of the blades and parts of the GTD. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 27–44.
12. Belous V.Ya., Zhirnov A.D., Lutsenko A.N., Muboyajyan S.A. Increase in corrosion resistance of steel blades of the compressor of the GTD by using ion-plasma coating. Aviacionnye materialy i tehnologii, 2006, no. 1, pp. 53–60.
13. Matveev P.V., Budinovskij S.A. Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300 °C. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 22–26.
14. Muboyajyan S.A., Budinovsky S.A. Heat-resistant high-temperature ion-plasma coatings for turbines of modern GTD. Aviacionnye materialy i tehnologii, 2003, no. 1, pp. 92–102.
15. Aleksandrov D.A., Muboyadzhyan S.A., Zhuravleva P.L., Gorlov D.S. Investigation of the effect of surface preparation and ion-assisted deposition on the structure and properties of erosion-resistant ion-plasma coating. Trudy VIAM, 2018, no. 10 (70), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 20, 2023). DOI: 10.18577/2307-6046-2018-0-10-62-73.
16. Budinovsky S.A., Lyapin A.A., Benklyan A.S. Expensive industrial-plasma installations of MASH-50 and MAP-R for applying protective coatings to parts of transport and energy gas turbine installations. Inzhenernyy zhurnal: nauka i innovatsii, 2021, no. 10, pp. 1–13. DOI: 10.18698/2308-6033-2021-10-2120.
17. Azarovskiy E.N., Doronin O.N., Muboyadzhyan S.A. Formation of porosity on the border «of heat-resistant alloy–heat-resistant condensation-diffusion coating». Trudy VIAM, 2019, no. 2 (74), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 17, 2023). DOI: 10.18577/2307-6046-2019-0-2-113-120.
Methodological and material science problems arising during mechanical tensile tests of samples made of composite materials are considered. An overview of the methods of tensile testing of polymer composite materials (PCM) is given. The characteristics of the material determined during the tensile test are considered, including the main one – the deformation diagram under the «rigid» loading mode. A unified sample for testing PCM with various reinforcement schemes and new more functional designations of types of destruction are proposed.
2. ASTM D4762-18. Standard Guide for Testing Polymer Matrix Composite Materials. American Society for Testing and Materials, 2018, 25 p.
3. ASTM D3039/D3039M-17. Standard Test Methods for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials, 2017, 13 p.
4. State Standard R 56785–2015. Polymer composites. Tensile test method for flat samples. Moscow: Standartinform, 2015, 20 p.
5. State Standard 32656–2017. Polymer composites. Test methods. Tensile tests. Moscow: Standartinform, 2017, 32 p.
6. State Standard 25.601–80. Calculations and strength tests. Methods of mechanical testing of composite materials with a polymer matrix (composites). Method of tensile testing of flat samples at normal, elevated and low temperatures. Moscow: Standards Publishing House, 1980, 15 p.
7. ISO 527-4:2021. Plastics – Determination of tensile properties – Part 5: Test conditions for unidirectional fibre-reinforced plastic composites, 2021, 27 p.
8. EN 2561:1995. Aerospace series – Carbon fibre reinforced plastics – Unidirectional laminates – Tensile test parallel to the fibre direction. CEN, 1995, 14 p.
9. EN 2597:1998. Aerospace series – Carbon fibre reinforced plastics – Unidirectional laminates – Tensile test perpendicular to the fibre direction. CEN, 1998, 16 p.
10. State Standard 32658–2014. Polymer composites. Determination of mechanical characteristics during shear in the plane of reinforcement by tensile testing at an angle of ±45 degrees. Moscow: Standartinform, 2014, 15 p.
11. ASTM D5766/D5766M-11. Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates. American Society for Testing and Materials, 2018. 7 p.
12. ASTM D6742/D6742M-12. Standard Practice for Filled-Hole Tension and Compression Testing of Polymer Matrix Composite Laminates. American Society for Testing and Materials, 2012, 8 p.
13. Vildeman V.E., Tretyakov V.P. Testing of materials with construction of complete strain diagrams. Problemy mashinostroyeniya i nadezhnosti mashin, 2013, no. 2. pp. 93–98.
14. Zabulonov D.Yu., Myktybekov B., Ukhov P.A. Comparison of domestic and foreign methods for testing polymer composite materials. Nauchnyye trudy (Vestnik MATI), 2009, no. 15 (87). pp. 287–292.
15. Adamov A.A., Laptev M.Yu., Gorshkova E.G. Analysis of domestic and foreign regulatory framework for mechanical testing of polymer composite materials. Konstruktsii iz kompozitsionnykh materialov, 2012, no. 3. pp. 72–77.
16. Ilyichev A.V., Raskutin A.E., Gulyaev I.N. Comparison of the geometric dimensions of PCM samples used in international ASTM standards and domestic GOST standards. Novosti materialovedeniya. Nauka i tekhnika, 2015, no. 4 (16), art. 05. Available at: http://www.materialsnews.ru (accessed: August 09, 2023).
17. Ilyichev A.V. Comparison of GOST and ASTM standards for mechanical tensile testing of PCM. Comments on standards, specifications, certificates: supplement to journal «Vse materialy. Entsiklopedicheskiy spravochnik», 2015, no. 8, pp. 2–9.
18. Evdokimov A.A., Gulyaev I.N., Zelenina I.V. Investigation of the physicomechanical properties and microstructure of volume-reinforced carbon fiber reinforced plastic. Trudy VIAM, 2019, no. 4 (76), paper no. 05. Available at: http://viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2019-0-4-38-47.
19. Shershak P.V., Ryabovol D.Yu. Standards for dynamic mechanical testing of plastics and polymer composite materials. Aviatsionnaya promyshlennost, 2017, no. 4, pp. 48–52.
20. Wildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mechanics of inelastic deformation and fracture of composite materials. Ed. Yu.V. Sokolkina. Moscow: Fizmatlit, 1997, 288 p.
21. Principles of creating composite polymer materials. Moscow: Khimiya, 1990, 240 p.
22. Pobedrya B.E. Mechanics of composite materials. Moscow: Moscow State Univ. Publ. House, 1984, 352 p.
23. Composite materials: reference book. Ed. D.M. Karpinos. Kyiv: Naukova Dumka, 1985, 592 p.
24. Vanin G.A. Micromechanics of composite materials. Kyiv: Naukova Dumka, 1985, 304 p.
25. Gunyaev G.M. Structure and properties of polymer fiber composites. Moscow: Khimiya, 1981, 232 p.
26. Vasiliev V.V., Protasov V.D., Bolotin V.V. Composite materials: reference book. Ed. V.V. Vasilyeva, Yu.M. Tarnopolsky. Moscow: Mashinostroyenie, 1990, 512 p.
27. Vasiliev V.V. Mechanics of structures made of composite materials. Moscow: Mashinostroyenie, 1988, 270 p.
28. Christensen R.M. Introduction to the mechanics of composites. Moscow: Mir, 1982, 336 p.
29. Mechanics of composite materials. Ed. J. Sendecki. Moscow: Mir, 1978, 564 p.
30. Jones R.M. Mechanics of Composite materials. 2nd ed. Taylor & Francis, 1999, 519 p.
31. Woven structural composites. Moscow: Mir, 1990, 432 p.
32. Tarnopolsky Yu.M., Zhigun I.G., Polyakov V.A. Spatially reinforced composite materials. Moscow: Mashinostroyenie, 1987, 224 p.
33. Gorshkov A.G., Starovoitov E.I., Tarlakovsky D.V. Theory of elasticity and plasticity. Moscow: Fizmatlit, 2002, 416 p.
34. Dimitrienko Yu.I. Fundamentals of solid mechanics. Moscow: Bauman MSTU Publ. house, 2013, vol. 4: Continuum mechanics, 624 p.
35. Goldman A.Ya. Prediction of deformation-strength properties of polymer and composite materials. Leningrad: Khimiya, 1988, 272 p.
36. Dimitrienko Yu.I., Kashkarov A.I. Calculation of the effective characteristics of composites with a periodic structure by the finite element method. Vestnik MGTU im. N.E. Baumana, ser.: Natural Sciences, 2002, no. 2, pp. 95–108.
37. Monocrystal fibers and materials reinforced by them. Ed. A.T. Tumanov. Moscow: Mir, 1973, 464 p.
38. ASTM E83-10. Practice for Verification and Classification of Extensometer Systems. American Society for Testing and Materials, 2010, 19 p.
39. State Standard 12423–2013 (ISO 291:2008). Plastics. Conditioning conditions and testing of samples (specimen). Moscow: Standartinform, 2014, 11 p.
40. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdul-lin M.R., Limonin M.V. Layered metal-polymer materials in aircraft structural elements. Perspektivnye materialy, 2016, no. 10, pp. 5–19.
41. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2019-0-7-92-111.
42. Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Erasov V.S., Yakovlev N.O. Numerical modeling and experimental study of the deformation of elastoplastic plates under compression. Matematicheskoe modelirovanie i chislennye metody, 2015, no. 1 (5), pp. 67–82.
43. Yakovlev N.O., Erasov V.S., Petrova A.P. Comparison of regulatory frameworks in different countries for testing adhesive joints of materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 7, pp. 2–8.
44. Yakovlev N.O., Gulyaev A.I., Popkova E.A. Assessment of geometric parameters of carbon fibers. Mat. XIV All-Rus. conf. on testing and research into the properties of materials «Physical and mechanical tests, strength and reliability of modern structural and functional materials». Moscow: National Research Center «Kurchatov Institute» – VIAM, 2022, pp. 227–239.
45. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Qualification tests and researches of durability of aviation materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 440–448.
46. Yakovlev N.O., Popkova E.A., Landik D.N. Deformation as a quality criterion for carbon fiber. Reports VII All-Rus. scientific-technical conf. “The role of fundamental research in the implementation of strategic directions for the development of materials and technologies for their processing for the period until 2030”. Moscow: VIAM, 2021, pp. 198–203.
47. Slavin А.V., Silkin A.N., Grinevich D.V., Yakovlev N.O. Composite materials with a 3D-reinforced structure (review). Trudy VIAM, 2022, no. 8 (114), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2022-0-8-113-122.
48. Kablov E.N. Quality control of materials is a guarantee of safe operation of aviation equipment. Aviacionnye materialy i tekhnologii, 2001, no. 1, pp. 3–8.
49. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 16, 2023). DOI: 10.18577/2071-9140-2021-0-1-104-118.
A special approach is required for repair process as opposed to polymer composite materials monolithic structures testing for it production and operation. The results of repaired monolithic specimens simulating helicopter blade spar fragment research is described at the article. The researches were carried out by ultrasonic pulse-echo technique. It is shown that the repaired monolithic zone testing depending on the repair scheme can be divided into the repair patch material testing and quality testing of its gluing to the main material of the repaired object.
2. Kablov E.N. What will the future be made of? New generation materials, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. Materials for aerospace technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, рр. 7–27.
4. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 12, 2023). DOI: 10.18577/2713-0193-2021-0-3-105-116.
5. Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D. Сarbon fiber based on a volume-reinforcing braided preform for an element of a propeller blade. Trudy VIAM, 2022, no. 12 (118), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 12, 2023). DOI: 10.18577/2307-6046-2022-0-12-27-38.
6. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: June 06, 2023). DOI: 10.18577/2713-0193-2021-0-2-51-61.
7. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 2. Automated Fiber Placement (AFP). Aviation materials and technologies, 2021, no. 3 (64), paper no. 11. Available at: http://www.journal.viam.ru (accessed: June 06, 2023). DOI: 10.18577/2713-0193-2021-0-3-117-127.
8. Barannikov A.A., Postnova M.V., Krasheninnikova E.V., Vasyukov A.N. Application of new technologies in the production of helicopter main rotor blades. Trudy VIAM, 2021, no. 11 (105), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 06, 2023). DOI: 10.18577/2307-6046-2021-0-11-91-102.
9. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, рр. 1–33. Available at: http://cyberleninka.ru/article/n/analiz-primeneniya-kompozitsionnyh-materialov-v-konstruktsii-planerov-vertoletov (accessed: June 13, 2023).
10. Doroshenko N.I. Application of PCM in the design of helicopter rotor blades. Polymer composite materials for the aerospace industry: All-Rus. materials. scientific-technical conf. Moscow: VIAM, 2019. P. 23–41. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1234.pdf (accessed: June 19, 2023).
11. Rivin G.L. Repair of structures made of polymer composite materials of aircraft: a textbook. Ulyanovsk: UlSTU, 2000, 75 p.
12. Katnam K.B., DaSilva L.F.M., Young T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 2013, no. 61, рр. 26–42. Available at: https://www.researchgate.net/publication/258240754_Bonded_repair_of_composite_aircraft_structures_A_review_of_scientific_challenges_and_opportunities (accessed: June 19, 2023).
13. Barannikov A.B. Materials, technologies and equipment of the National Research Center «Kurchatov Institute» – VIAM for the repair of structures made of PCM. New materials and technologies for deep processing of raw materials – the basis of innovative development of the Russian economy: materials of the III Int. scientific-technical conf. Moscow: National Research Center «Kurchatov Institute» – VIAM, 2022. P. 167–190. Available at: https://conf.viam.ru/sites/default/files/uploads /proceedings/1497.pdf (accessed: June 19, 2023).
14. Non-destructive testing: a reference book in 7 vol. Ed. V.V. Klyueva. Moscow: Mashinostroyeniye, 2004, vol. 3: Ultrasonic testing, 864 p.
15. Boychuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. Inspection of monolithic parts and structures of aircraft manufactured from PCM by ultrasonic non-destructive testing using phased arrays. TestMat. Main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: materials of the X All-Rus. conf. Moscow: VIAM, 2018, pp. 18–31. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (accessed: June 08, 2023).
16. Dikov I.A., Boychuk A.S., Chertishchev V.Yu., Dalin M.A., Generalov A.S. Experience in automated ultrasonic testing of monolithic and honeycomb structures made of PCM. TestMat. Digital technologies, modeling and automation of non-destructive testing processes in the aerospace industry. Problems and prospects for implementation: materials of the XIII All-Rus. conf. on testing and research of materials properties. Moscow: VIAM, 2021, рр. 157–180. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (accessed: June 20, 2023).
17. Chertishchev V.Yu., Ospennikova O.G., Boichuk A.S., Dikov I.A., Generalov A.S. Determina-tion of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
18. Rusakov D., Chernushin V., Shelkovoy A. Theoretical and practical justification of high-precision of defects in multilayer polymer honeycomb structures by the honeycomb filler height reduction method. Journal of Physics: Conference Series, 2020, vol. 1636. Available at: http://www.researchgate.net/publication/346163891_Theoretical_and_practical_justification_of_high-precision_of_defects_in_multilayer_polymer_honeycomb_structu-res_by_the_honeycomb_filler_height_reduction_method (accessed: July 19, 2023).
19. Kuryatin A., Rusakov D., Chernushin V. Identification of defect type in non-destructive testing of polymer composite structures. Journal of Physics: Conference Series, 2020, vol. 1636. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1636/1/012020 (accessed: July 19, 2023).
20. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
Heat-resistant alloys and steels
Petrushin N.V., Zaitsev D.V., Svetlov I.L., Karashaev M.M., Epishin A.I. Mechansims of creep in the temperature range 750–850 °Соf nickel-based superalloy with zero γ/γ′-lattice misfit
Light-metal alloys
Dobrynin D.A., Pavlova T.V. Electrolyte-plasma polishing of parts made by selective laser sintering from metal powder composition of aluminum alloy grade VAS1. Part 1
Panteleev M.D., Sviridov A.V., Nerush S.V., Bondarenko S.V., Mostyaev I.V. Weldability features of heat-resistant aluminum alloys
Terekhin A.L., Leonov A.A., Trofimov N.V., Grinevich A.V. Features of fatigue failure of magnesium based alloy samples
Polymer materials
Salakhova R.K., Veshkin E.A., Sudin Yu.I., Tikhoobrazov A.B. Research of the properties of epoxy compositions modified with polyarylsulphone and polymer composite materials based on them
Composite materials
Antipov V.V., Samohvalov S.V.,Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Features of manufacturing complex contour parts from metal-polymer composite material
Donetskiy K.I., Ablyaz T.R., Plotnikov E.V., Shlykov E.S., Kamenskih A.A., Osinnikov I.V., Panteleev I.A., Mubassarova V.A. Process research of wire-cut electrical discharge machining of polymeric composite materials
Protective and functional
coatings
Gorlov D.S., Kashin D.S., Azarovskiy E.N., Druzhnova Yа.S.Тechnological methods of ion processing with applying condensation-diffusion coating
Material tests
Erasov V.S., Sibayev I.G, Sutubalov A.I. Tensile testing of composite materials samples
Boychuk A.S., Chertishchev V.Yu., Dikov I.A., Generalov A.S. The repair monolithic zones of polymer composite materials helicopter blades ultrasonic testing specificity