Articles
Microstructure, microhardness and kinetics of diffusion saturation of beryllium-containing steel VNS32-VI after various types of thermochemical treatment were studied. It was found that the microstructure of the diffusion layer consists of martensite, δ-ferrite and carbides of various sizes and morphology. The study of diffusion saturation kinetics showed that increasing the saturation time during vacuum cementation leads to an increase in the thickness of the diffusion layer only with the use of preliminary vacuum nitriding.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. Russia Needs New Generation Materials. Redkie zemli, 2014, no. 3, pp. 8–13.
4. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
5. Udod K.A., Trofimenko N.N., Romanenko D.N., Sevalnev G.S. Prospects for the development of constructional aluminium-doped steels. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 9–13. DOI: 10.18577/2071-9140-2019-0-3-9-13.
6. Blinov V.M., Lukin E.I., Blinov E.V. et al. Tensile Fracture of Austenitic Corrosion-Resistant Steels with an Overequilibrium Nitrogen Content and Various Vanadium Contents. Russian Metallurgy (Metally), 2021, vol. 2021, is. 10, pp. 1265–1269. DOI: 10.1134/S0036029521100062.
7. Terentʹev V.F., Prosvirnin D.V., Sevalneva T.G. et al. Structural state and mechanical behavior of Fe–Cr–Ni maraging steels. Russian metallurgy (Metally), 2020, vol. 2020, is. 4, pp. 426–433.
8. PH stainless steel: certificate of authorship 541374 USSR; filed 03.04.75; publ. 15.05.91.
9. Mosolov A.N., Sevalnev G.S., Krylov S.A., Skugorev A.V., Chirkov I.A. Study of the structure and properties of beryllium-containing steel VNS32-VI. Trudy VIAM, 2022, no. 5 (111), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 01, 2022). DOI: 10.18577/2307-6046-2022-0-5-3-14.
10. Eliseev E.A., Sevalnev G.S., Doroshenko A.V., Druzhinina M.E. Influence of time-temperature parameters of long-duration exposure on transformations in structural steels (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 07, 2022). DOI: 10.18577/2713-0193-2021-0-2-15-23.
11. Structural materials: reference book. Ed. B.N. Arzamasov. Moscow: Mashinostroenie, 1990, 688 p.
12. Aleksandrov V.G., Bazanov B.I. Reference book on aviation materials and technology of their application. Moscow: Transport, 1979, 263 p.
13. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
14. Smirnov A.E. Control of phase composition of complexly alloyed high-temperature steels under vacuum carburizing and quenching. Metal Science and Heat Treatment, 2021, vol. 62, no. 9–10, pp. 586–593.
15. Semenov M.Y., Smirnov A.E., Ryzhova M.Y. Problems of simulation of carbon mass transfer from low-pressure saturating atmosphere into steel. Metal Science and Heat Treatment, 2021, vol. 63, no. 1–2, pp. 101–105.
16. Semenov M.Y., Vintaikin B.E., Smirnov A.E., Shevchenko S.Y., Cherenkova S.A., Jian D.K. Modeling of the nitrogen saturation of the alloys based on nickel and chromium in a glow discharge. Russian Metallurgy (Metally), 2021, vol. 2021, no. 3, pp. 283–289.
17. Smirnov A.E., Semenov M.Y., Mokhova A.S., Sevalnev G.S. Use of Combined Methods of Successive Carburizing and Nitriding of Martensitic Steels in Low-Pressure Atmospheres. Metal Science and Heat Treatment, 2020, vol. 62, no. 1–2, pp. 127–132.
18. Minkevich A.N. Chemical-thermal treatment of metals and alloys. Moscow: Mashinostroenie, 1965, 493 p.
19. Minkevich A.N. Chemical-thermal treatment of steel. Moscow: Mashgiz, 1950, 432 p.
20. Arzamasov B.N., Bratukhin A.G., Eliseev Yu.S., Panayoti T.A. Ionic chemical-thermal treatment of alloys. Moscow: MSTU im. N.E. Bauman, 1999, 400 p.
21. Petrova L.G., Alexandrov V.A., Zyuzin D.M. Regulated processes of nitriding of corrosion-resistant steels. Vestnik Moskovskogo avtomobilno-dorozhnogo instituta (gosudarstvennogo tekhnicheskogo universiteta), 2003, no. 1, pp. 20–26.
22. Lakhtin Yu.M., Kogan Ya.D. Nitriding of steel. Moscow: Mashinostroenie, 1976, 256 p.
23. Kuksenova L.I., Alekseeva M.S. Study of the structural state and wear resistance of nitrided iron alloys with different types of crystal lattice. Vestnik nauchno-tekhnicheskogo razvitiya, 2019. no. 9, pp. 21–29.
24. Papirov I.I. Structure and properties of beryllium alloys: a reference book. Moscow: Energoizdat, 1981, 368 p.
25. Papirov I.I. Beryllium in alloys: a reference book. Moscow: Energoatomizdat, 1986, 184 p.
26. Zhubaev A.K., Bekturgan N.B., Kuvatbaeva K.K., Nurtazina A.S. Investigation of the phase-structural state of stainless steel with beryllium. Fundamentalnye problemy radioelektronnogo priborostroyeniya, 2014, vol. 14, no. 3, pp. 70–73.
27. Naik B.G., Sivasubramanian N. Applications of beryllium and its alloys. Mineral Processing and Extractive Metullargy Review, 1994, vol. 13, no. 1, pp. 243–251.
28. Marder J.M. Beryllium – technology and applications. JOM, 1984, vol. 36, no. 6, pp. 45–47.
29. Sawyer C.B., Kjellgren B.R. Newer Developments in Beryllium. Industrial & Engineering Chemistry, 1938, vol. 30, no. 5, pp. 501–505.
30. Hunt R.M. et al. Diffusion bonding beryllium to Reduced Activation Ferritic Martensitic steel: Development of processes and techniques. Fusion Engineering and Design, 2012, vol. 87, no. 9, pp. 1550–1557.
31. Lee J.S., Park J.Y., Choi B.K. et al. Beryllium/ferritic martensitic steel joining for the fabrication of the ITER test blanket module first wall. Fusion engineering and design, 2009, vol. 84, no. 7–11, pp. 1170–1173.
32. Study of beryllium influence on iron surface layers and stainless steel. International symposium dedicated to 100-years from birthday of K.I. Satpaev. Kazakstan: AJKOS, 1999, vol. 3, pp. 68–69.
In this paper the structure and mechanical properties of SLM-built EP648 alloy are investigated. The research results of alloy via SEM, HR-TEM allowed detecting CrN particles and Me23C6 carbides in γ-matrix. The complex analysis of hot cracking in EP648 alloy was done. The effect of scan strategy type and oxygen content on hot crack volume density was shown. The connection between scan strategy type and tensile properties at room temperature was researched.
2. Campbell T.A., Ivanova O.S. Additive manufacturing as a disruptive technology: implications of three-dimensional printing. Technology & Innovation, 2013, vol. 15, no. 1, pp. 67–79. DOI: 10.3727/194982413x13608676060655.
3. Gebler M., Schoot Uiterkamp A.J.M., Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy, 2014, vol. 74 (C), pp. 158–167. DOI: 10.1016/j.enpol.2014.08.033.
4. Najmon J.C., Raeisi S., Tovar A. Review of additive manufacturing technologies and applications in the aerospace industry. Additive Manufacturing for the Aerospace Industry. Elsevier, 2019, pp. 7–31. DOI: 10.1016/B978-0-12-814062-8.00002-9.
5. Yadroitsev I., Yadroitsava I., Du Plessis A. Basics of laser powder bed fusion. Fundamentals of Laser Powder Bed Fusion of Metals. Elsevier, 2021, pp. 15–38. DOI: 10.1016/B978-0-12-824090-8.00024-X.
6. Scalmalloy. Available at: https://www.apworks.de/scalmalloy (accessed: 04.04.2022).
7. Katsarelis C., Chen P., Gradl P. et al. Additive Manufacturing of NASA HR-1 Material for Liquid Rocket Engine Component Applications. Available at: https://ntrs.nasa.gov/search.jsp? R=20200001007 (accessed: April 04, 2022).
8. Ferrium C64. Available at: https://www.carpentertechnology.com/alloy-finder/ferrium-c64 (accessed: December 09, 2022).
9. Deng D., Peng R. L., Brodin H., Moverare J. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments. Materials Science & Engineering A, 2018, vol. 713, pp. 294–306. DOI: 10.1016/j.msea.2017.12.043.
10. Vrancken B., Thijs L., Kruth J.-P., Humbeeck J.V. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys Compound, 2012, vol. 541, pp. 177–185.
11. Li R., Liu J., Shi Yu. et al. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting. Journal of Materials, Engineering and Performance, 2009, vol. 19, no. 5, pp. 667–671.
12. Ferreri N.C., Ghorbanpour S., Bhowmik S. et al. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion. International Journal of Plasticity, 2019, vol. 121, pp. 116–133.
13. Panin P.V., Zavodov A.V., Lukina E.A. Effect of thermal exposure on microstructure evolution and mechanical properties of cast beta-solidifying TiAl-based alloy doped with Gd. Intermetallics, 2022, vol. 145, art. 107534. DOI: 10.1016/j.intermet.2022.107534.
14. Panin P.V., Bogachev I.A., Lukina E.A. Production and investigation of powders for additive synthesis from a new beta-solidifying TiAl-based alloy. Journal of Physics: Conference Series, 2021, vol. 2144, art. 012004. DOI: 10.1088/1742-6596/2144/1/012004.
15. Aslanian G.G., Sukhov D.I., Mazalov PB, Sulyanova E.A. Fractographic study of Co–Cr–Ni–W–Ta alloy samples obtained by selective laser melting. Trudy VIAM, 2019, no. 4 (76), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 01, 2022). DOI: 10.18577/2307-6046-2019-0-4-3-10.
16. Mazalov I.S., Evgenov A.G., Prager S.M. Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
17. Zhang B., Li Y., Bai Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chinese Journal of Mechanical Engineering, 2017, vol. 30, pp. 515–527. DOI: 10.1007/s10033-017-0121-5.
18. Ghoussoub J.N., Tang Y.T., Dick-Clerand W.J.B. et al. On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys. Metallurgical and Materials Transactions A, 2022, vol. 53A, pp. 962–983. DOI: 10.1007/s11661-021-06568-z.
19. Sukhov D.I., Petrushin N.V., Zaitsev D.V., Tikhonov M.M. Features of VZhL21 Nickel-base Superalloy Structure Formation During Selective Laser Melting, Vacuum Heat Treatment and Hot Isostatic Compaction. Metallurgist, 2019, vol. 63, no. 3–4, pp. 409–421.
20. Marchese G. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion. Materials, 2018, vol. 11 (1), pp. 106. DOI: 10.3390/ma11010106.
21. Martin J.H., Yahata B.D., Hundley J.M. et al. 3D printing of high-strength aluminum alloys. Nature, 2017, vol. 549, pp. 365–369.
22. Vrancken B. Influence of Process Parameters and Alloy Composition on Crack Mitigation in Selective Laser Melting. Available at: https://www.osti.gov (accessed: April 04, 2022).
23. Sabzi H.E., Maeng S., Liang X. et al. Controlling crack formation and porosity in laser powder bed fusion: Alloy design and process optimisation. Additive Manufacturing, 2020, vol. 34, art. 101360. DOI: 10.1016/j.addma.2020.101360.
24. Evgenov A.G., Sukhov D.I., Nerush S.V., Rogalev A.M. Mechanical properties and structure of an alloy of the Ni–Cr–W–Mo–Al–Ti–Nb system obtained by selective laser alloying. Tekhnologiya mashinostroyeniya, 2016, no. 3, pp. 5–9.
25. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaitsev D.V., Prager S.M. Structure and properties of EP648 and VZh159 alloys synthesized by selective laser melting after simulation annealing. Materialovedenie, 2020, no. 6, pp. 3–10.
26. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders. Trudy VIAM, 2015, no. 2, paper no. 02. Available at: http://www.viam-works.ru (accessed: July 01, 2022). DOI: 10.18577/2307-6046-2015-0-2-2-2.
27. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
28. Ospennikova O.G., Naprienko S.A., Medve-dev P.N., Zaitsev D.V., Rogalev A.M. Features of the formation of the structural-phase state of the EP648 alloy during selective lase manufacture. Trudy VIAM, 2021, no. 8 (102), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 01, 2022). DOI: 10.18577/2307-6046-2021-0-8-3-11.
29. Ospennikova O.G., Min M.G., Rogalev A.M., Vadeev V.E. On the chemical composition, structure and mechanical properties of alloy EP648 fabricated by deformation, project die casting and selective laser melting. Voprosy Materialovedeniya, 2020, no. 1 (101), pp. 44–54. DOI: 10.22349/1994-6716-2020-101-1-44-54.
30. Zhang J.-S. Creep of Second Phase Particles Strengthened Materials. High Temperature Deformation and Fracture of Materials. Elsevier, 2010, pp. 3–13. DOI: 10.1533/9780857090805.1.3.
31. Baik S.I., Wang S.Y., Liaw P.K., Dunand D.C. Increasing the creep resistance of Fe–Ni–Al–Cr superalloys via Ti additions by optimizing the B2/L21 ratio in composite nano-precipitates. Acta Materialia, 2018, vol. 157, pp. 142–154. DOI: 10.1016/j.actamat.2018.07.025.
32. Smallman R.E., Ngan A.H.W. Modern Physical Metallurgy: Eighth Edition. Elsevier Inc., 2013, 697 р. DOI: 10.1016/C2011-0-05565-5.
Researches were carried out metal-powder compositions of the copper-chromium alloy system Cu–(0,5–1,0 %)Cr, obtained by the method of gas atomization. The influence of the formed oxide layer on the surface of particles on the technological properties of the powder has been researched. After the selective laser fusion, a change in the color of the powder from copper to violet was detected, as well as a formation of conglomerates, which led to a decrease in properties. Researches were carried out of fluidity, bulk density, as well as an assessment of the particle morphology were carried out metal-powder compositions before and after selective
laser fusion.
2. Kablov E.N. Additive technologies – the dominant of the national technological initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
3. Kablov E.N. New generation materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
4. Ospennikova O.G. Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 19–36.
5. Kablov E.N. VIAM materials and technologies for Aviadvigatel. Permskiye aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
6. Wan X., Xie W., Chen H. et al. First-principles study of phase transformations in Cu–Cr alloys. Journal of Alloys and Compounds, 2021, vol. 862, art. 158531.
7. Fu H., Xu S., Li W. Effect of rolling and aging processes on microstructure and properties of Cu–Cr–Zr alloy. Materials Science and Engineering A, 2017, vol. 700, pp. 107–115.
8. Shan L., Wang X., Chang Y., Wang Y. Improving the mechanical performance of Cu[sbnd]Cr alloy by dissolving Cu in the Cr second phase. Materials Characterization, 2021, vol. 176, art. 111104.
9. Xia C., Zhang W., Kang Zh. et al. High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments. Materials Science and Engineering A, 2012, vol. 538, pp. 295–301.
10. Jha K., Neogy S., Kumar S. et al. Correlation between microstructure and mechanical properties in the age-hardenable Cu–Cr–Zr alloy. Journal of Nuclear Materials, 2021, vol. 546, art. 152775.
11. Zhang Y., Volinsky A., Train H. et al. Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy. Materials Science and Engineering A, 2016, vol. 650, pp. 248–253.
12. Chbihi A., Sauvage X., Blavette D. Atomic scale investigation of Cr precipitation in copper. Acta Materialia, 2012, no. 11, vol. 60, pp. 4575–4585.
13. Bakradze M.M., Peskova A.V., Kaplansky Yu.Yu. Influence of thermal post-treatment on the texture and anisotropy of mechanical properties in the Cu–Cr construction alloy manufactured by laser powder bed fusion. Aviation materials and technologies, 2022, no. 1 (66), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 15, 2022). DOI: 10.18577/2071-9140-2022-0-1-3-16.
14. Kiparisov S.S., Libenson G.A. Powder metallurgy. Moscow: Metallurgiya, 1980, 496 p.
15. Powder metallurgy. Materials, technology, properties, applications: a reference book. Kyiv: Naukova dumka, 1985, 624 p.
16. Powders of non-ferrous metals: reference book. Ed. S.S. Naboychenko. Moscow: Metallurgiya, 1997, 542 p.
17. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasiev-Khodykin A.N. Investigation of fine-dispersed solder powders for diffusion vacuum soldering, obtained by melt atomization. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie, 2011, no. SP2, pp. 79–87.
18. Volkov A. M., Shestakova A. A., Bakradze M. M. The comparison of powder produced by gas atomization and by plasma rotate electrode process in the point of production disk billets from Ni-base superalloys. Trudy VIAM, 2018, no. 11 (71), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 08, 2022). DOI: 10.18577/2307-6046-2018-0-11-12-19.
19. Denisova V.S., Lonskii S.L., Kurshev E.V., Malinina G.A. Investigation of structure formation of reaction cured coatings by scanning electron microscopy. Trudy VIAM, 2019, no. 4 (76), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 07, 2022). DOI: 10.18577/2307-6046-2019-0-4-76-87.
20. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
The structure and phase composition of pressed semi-finished products from two batches of alloy 1420 in states after natural and artificial aging have been studied by x-ray diffraction analysis, optical and electron microscopy. The mechanical properties, dimensions and character of the separation of the hardening phases are determined, the values of the lattice periods of the matrix and the phase of the pressed profiles of alloy 1420 are analyzed. A comparative structural analysis was carried out with cold-rolled semi-finished products of alloy 1424 – after aging, as well as additional, long-term low-temperature heating.
2. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Al–Li alloys (structure and properties). Kyiv: Naukova dumka, 1992, 192 p.
3. Kablov E.N., Antipov V.V., Girsh R.I. et al. Fiber Metal Laminates Based on Aluminum–Lithium Alloy Sheets in New-generation Aircraft. Russian Engineering Research, 2021, vol. 41, no. 3, pp. 215–221.
4. Kolobnev N.I., Khokhlatova L.B., Lukina E.A. Trends in the development of aluminum-lithium alloys and the technology of their processing. Ed. E.N. Kablov. Moscow: VIAM, 2019, 367 p.
5. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the development of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
6. Zhang X.L., Zhang L., Wu G.H. et al. Influence of Sc content on the microstructure and mechanical properties of cast Al–2Li–2Cu–5Mg–0,2Zr alloy. Material Characterization, 2018, vol. 142, pp. 223–236.
7. Joh C.-H., Yamada K., Miura Y. Effect of Sc-addition on the coarsening behavior of Al3Li precipitates in Al–Li alloys. Material Transactions, 1999, vol. 40, pp. 439–442.
8. Rioja R.J., Liu J. The Evolution of Al–Li Base Products for Aerospace and Space Applications. Metal Material Transactions, 2012, vol. 43A, pp. 3325–3337.
9. Lukina E.A., Alekseev A.A., Antipov V.V., Khokhlatova L.B., Zhuravleva P.L. Phase transformations during long-term low-temperature holding for alloys 1424, V-1469 and 1441. Fizika metallov i metallovedenie, 2011, vol. 112, no. 3, pp. 253–261.
10. Noble B., Harris S.J., Katsikis S., Dinsdale D. Influence of Magnesium and Copper Additions on the Low Temperature Thermal Stability of Al–Li Alloys. Proceedings of the 9th International Conference on Aluminium Alloys. Institute of Materials Engineering Australasia Ltd, 2004, p. 777.
11. Noble B., Harris S.J., Katsikis S., Dinsdale D. Low Temperature Thermal Stability of Quaternary Al–Li–Cu–Mg-Alloys. Materials Science Forum, 2006, vol. 519–521, pp. 209–214. DOI: 10.4028/www.scientific.net/MSF.519-521.209.
12. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Aluminium-lithium alloys of a new generation and layered aluminum-glass plastics based on them. Tsvetnye metally, 2016, no. 8 (884), pp. 86–91.
13. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. A new class of layered aluminum-glass-reinforced plastics based on aluminum-lithium alloy 1441 with reduced density. Vestnik MGTU im. N.E. Bauman. Ser.: Mechanical engineering, 2011, no. SP2, pp. 174–183.
14. Kablov E.N., Morozova L.V., Grigorenko V.B., Zhegina I.P., Fomina M.A. Investigation of the influence of a corrosive environment on the process of damage accumulation and the nature of destruction of structural aluminum alloys 1441 and V-1469 during tensile tests and low-cycle fatigue. Materialovedenie, 2017, no. 1, pp. 41–48.
15. Antipov V.V., Grigoryev M.V., Konovalov A.N., Meshkov A.A., Serebrennikova N.Yu. Research of the influence of riveting on the low-cycle fatigue of riveted connection sheets of aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 3–8. DOI: 10.18577/2071-9140-2019-0-3-3-8.
16. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
17. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
Presents the results of studies of the structure and mechanical properties of a heat-resistant aluminum alloy Al–Ce–Cu produced by laser powder bed fusion (L-PBF). The influence of the synthesis parameters on the single track’s formation, the structure of melt pool, and the properties of Al–Ce–Cu alloy has been studied. The analysis of the mechanical properties of the synthesized material was carried out in comparison with the cast material under normal conditions and elevated temperatures. The developed modes of synthesis provided a twofold increase in the yield strength and an eightfold increase in the plastic strain degree of the Al–Ce–Cu alloy in comparison with the cast one, which significantly expands the scope of its application for aircraft critical parts. A comparative analysis of the mechanical properties of the cast and synthesized material under normal conditions and elevated temperatures is given. Using scanning electron microscopy, a high-resolution transmission electron microscopy (HRTEM) and thermodynamic modeling of the phase composition, the structural-phase state of the material in the cast and synthesized states was studied.
2. Kolobnev I.F. Heat resistance of cast aluminum alloys (structure and properties). 2nd ed. Moscow: Metallurgiya, 1973, 320 p.
3. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablova, 7th ed., revised. and additional. Moscow: VIAM, 2008, vol. 4: Aluminum and beryllium alloys, part 2: Cast aluminum alloys and alloys based on beryllium, pp. 58–59.
4. Belov N.A., Naumova E.A., Akopyan T.K. Aluminum based eutectic alloys: new alloying systems. Moscow: Ore and Metals, 2016, pp. 173–174.
5. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts FSUE "VIAM". Part 1. Materials and synthesis technologies. Electrometallurgiya, 2022, no. 1, pp. 2–12. DOI: 10.31044/1684-5781-2022-0-1-2-12.
6. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts FSUE "VIAM". Part 3. Materials and synthesis technologies. Electrometallurgiya, 2022, no. 4, pp. 15–25. DOI: 10.31044/1684-5781-2022-0-4-15-25.
7. Zakharov V.V. Aluminum alloys for additive technologies. Metallovedeniye i termicheskaya obrabotka metallov, 2021, no. 5 (791), pp. 3–8.
8. Aboulkhair N.T., Simoneli M., Parry L. et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in materials science, 2019, vol. 106, art. 100578.
9. Lathabai S. Additive Manufacturing of Aluminium-Based Alloys and Composites. Fundamentals of Aluminium Metallurgy. Elsevier, 2018, pp. 47–92. DOI: 10.1016/B978-0-08-102063-0.00002-3.
10. Herzog D., Vanessa S., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Materialia, 2016, vol. 117, pp. 371–392. DOI: 10.1016/j.actamat.2016.07.019.
11. Dynin N.V., Zavodov A.V., Oglodkov M.S., Khasikov D.V. The influence of process parameters of selective laser melting on the structure of aluminum alloy Al–Si–Mg system. Trudy VIAM, 2017, no. 10 (58), paper no. 01. Available at: http://www.viam-works.ru (accessed: January 20, 2022). DOI: 10.18577/2307-6046-2017-0-10-1-1.
12. Fomina M.A., Dynin N.V., Shurtakov S.V., Morozova S.E. Corrosion behavior of Al–Si–Mg alloy made by selective laser melting method. Trudy VIAM, 2018, no. 4 (64), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 20, 2022). DOI: 10.18577/2307-6046-2018-0-4-91-100.
13. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 20, 2022). DOI: 10.18577/2307-6046-2020-0-11-11-20.
14. Lukina E.A., Zaitsev D.V., Sbitneva S.V., Zavodov A.V. Selective laser synthesis of heat-resistant nickel alloy: structural aspects. Fotonika, 2017, no. 4, pp. 36–46.
15. Evgenov A.G., Petrushin N.V., Shurtakov S.V., Zaitsev D.V. On the issue of developing a physical model of track crystallization in the process of selective laser melting of heat-resistant alloys. The role of fundamental research in the implementation of the "Strategic directions for the development of materials and technologies for their processing for the period up to 2030": materials of VII All-Russian. conf. Moscow: VIAM, 2021, pp. 149–161.
Selective laser alloying (SLM) of metal powders is one of the most common methods of additive manufacturing of products. The most studied aluminum alloys for SLS technology are AlSi12 and AlSi10Mg alloys. In the paper, using the example of these alloys, some structural features of synthesized aluminum alloys are described, as well as typical defects that can form during synthesis depending on various factors. Scientific and technical literature data on the structure and mechanical properties of aluminum alloys of other alloying systems (Al–Cu–Mg, Al–Mg–Sc, Al–Zn–Mg–Cu) are presented.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts FSUE "VIAM". Part 3. Adaptation and creation of materials. Electrometallurgiya, 2022, no. 4, pp. 15–25.
3. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 20, 2022). DOI: 10.18577/2307-6046-2020-0-11-11-20.
4. Tang H.P., Qian M., Liu N. et al. Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting. Journal of the Minerals, 2015, vol. 67, pp. 555–563.
5. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
6. Babu S.S. Materials science aspects related to additive manufacturing. Scripta Materialia, 2017, vol. 135, pp. 97–99.
7. Kimura T., Nakamoto T. Thermal and mechanical properties of commercial-purity aluminum fabricated using selective laser melting. Materials Transactions, 2017, vol. 58, pp. 799–805.
8. Montero Sistiaga M.L., Mertens R., Vrancken B. et al. Changing the alloy composition of Al7075 for better processibility by selective laser melting. Materials Processing Technology, 2016, vol. 238, pp. 437–445.
9. Kruth J., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed fusion layered manufacturing. CIRP Annals-Manufacturing Technology, 2007, vol. 56, pp. 730–759.
10. Medvedev P.N., Gulyaev A.I. Analysis of the spatial distribution of cracks in a heat-resistant nickel alloy manufactured using SLM technology. Aviation materials and technologies, 2020, no. 1 (58), pp. 12–18. DOI: 10.18577/2071-9140-2022-0-1-12-18.
11. Hönnige J.R., Colegrove P.A., Ganguly S. et al. Control of Residual Stress and Distortion in Aluminium Wire + Arc Additive Manufacture with Rolling. Additive Manufacturing, 2018, vol. 22, pp. 775–783.
12. Brice C.A., Hofmeister W.H. Determination of Bulk Residual Stresses in Electron Beam Additive-Manufactured Aluminum. Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5147–5153.
13. Fomina M.A., Dynin N.V., Shurtakov S.V., Morozova S.E. Corrosion behavior of Al–Si–Mg alloy made by selective laser melting method. Trudy VIAM, 2018, no. 4 (64), paper no. 11. Available at: http://www.viam-works.ru (accessed: October 03, 2022). DOI: 10.18577/2307-6046-2018-0-4-91-100.
14. Dynin N.V., Zavodov A.V., Oglodkov M.S., Khasikov D.V. The influence of process parameters of selective laser melting on the structure of aluminum alloy Al–Si–Mg system. Trudy VIAM, 2017, no. 10 (58), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 03, 2022). DOI: 10.18577/2307-6046-2017-0-10-1-1.
15. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 20, 2022). DOI: 10.18577/2713-0193-2022-0-2-43-51.
16. Siddique S., Imran M., Walther F. Very high cycle fatigue and fatigues crack propagation behavior of selective laser melted AlSi12 alloy. International Journal of Fatigue, 2017, vol. 94, pp. 246–254.
17. Prashanth K.G., Scudino S., Eckert J. Tensile properties of Selective Laser Melted (SLM) Al–12Si at different temperatures. Technologies, 2016, vol. 4, pp. 38–46.
18. Wang Z., Prashanth K.G., Scudino S. et al. Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co2 glassy particles. Alloys Compounds, 2014, vol. 586, pp. 419–422.
19. Siddique S., Imran M., Walther F. Very high cycle fatigue and fatigues crack propagation behavior of selective laser melted AlSi12 alloy. International Journal of Fatigue, 2017, vol. 94, pp. 246–254.
20. Handbook of Aluminum, vol. 2: Alloy Production and Materials Manufacturing. Eds. G.E. Totten, D.S. MacKenzie. CRC Press: Boca Raton, 2003. 736 p.
21. Wang D., Yang Y., Chen Y. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. International Journal of Advanced Manufacturing Technology, 2012, vol. 58, pp. 1189–1199.
22. Wang P., Eckert J., Prsahanth K.G. et al. A review of particles-reinforced aluminum matrix composites fabricated by selective laser melting. Transactions of Nonferrous Metals Society of China, 2020, vol. 30, pp. 2001–2034.
23. Vilaro T., Kottman-Rexerodt V., Thomas M. et al. Direct fabricated of a Ti–47Al–2Cr–2Nb alloy by selective laser melting and direct metal deposition processes. Advanced Materials Research, 2010, vol. 89, pp. 586–591.
24. Culha O., Tekmen C., Toparli M., Tsunekawa Y. Mechanical properties of in situ Al2O3 formed Al–Si composite coating via atmospheric plasma spraying. Materials and Design, 2010, vol. 31, pp. 533–544.
25. Wu J., Wang X.Q., Wang W. et al. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Materials, 2016, vol. 117, pp. 311–320.
26. Prashanth K.G. Work hardening in selective laser melted Al–12Si alloy. Materials Design Processing Communications, 2019, vol. 1 (2), art. e46.
27. Zhang H., Zhu H., Nie X. et al. Fabrication and heat treatment of high strength Al–Cu–Mg alloy processed using selective laser melting. International Society for Optics and Photonics, 2016. DOI: 10.1117/12.2211362.
28. Casati R., Lemke J.N., Alarcon A.Z., Vedani M. Aging behavior of high-strength Al Alloy 2618 produced by selective laser melting. Metallurgical and Materials Transactions A, 2017. Vol. 48 (2), pp. 575–579.
29. Kotadia H.R., Gibbons G., Das A., Howes P.D. A review of laser powder bed fusion additive manufacturing of aluminium alloys: Microstructure and properties. Additive Manufacturing, 2021, vol. 46, pp. 1–23.
30. Tan Q., Zhang J., Sun Q. et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Materials, 2020, vol. 196, pp. 1–16.
31. Wang P., Gammer C., Brenne F. et al. Microstructure and mechanical properties of a heat-treatable Al–3.5Cu–1.5Mg–1Si alloy produced by selective laser melting. Materials Science and Engineering A, 2018, vol. 711, pp. 562–570.
32. Zhang H., Zhu H., Nie X. et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al–Cu–Mg alloy. Scripta Materialia, 2017, vol. 134, pp. 6–10.
33. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr IN additive manufacturing (review) Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 22, 2022). DOI: 10.18577/2713-0193-2021-0-3-19-34.
34. Li R., Wang M., Li Z. et al. Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Materials, 2020, vol. 193, pp. 83–98.
35. Li X.P., Wang X.J., Saunders M. et al. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafineeutectic microstrcuture and 25 % tensile ductility. Acta Materialia, 2015, vol. 95, pp. 74–82.
36. Kaufmann N., Imran M., Wischeropp T.M. et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Physics Procedia, 2016, vol. 83, pp. 918–926.
37. Martin J.H., Yahata B.D., Hundley J.M. et al. 3D printing of high-strength aluminium alloys. Nature, 2017, vol. 549, pp. 365–369.
The paper analyzes the changes phase composition of the surface layer metal composite material base on Mo–Si–B system, reinforced with dispersed particles Al2O3 oxide. The main stages formation phase composition surface layer with a thickness of 0–250 microns at an exposure temperature of 1300–2100 °C have been established by x-ray phase analysis. It is established that protective amorphous phase is formed at temperature of 1700 °C. At a heating temperature of 1900 °C and above, the glassy layer ablates, which leads to oxidation of the near-surface layers of the base material.
2. Morgunova N.N., Klypin B.A., Boyarshnov V.A. et al. Alloys of molybdenum. Moscow: Metallurgiya, 1975, 392 p.
3. Karashaev M.M., Bazyleva O.A., Shestakov A.V., Ovsepyan S.V. Technological principles for the development of metal composite materials reinforced with oxide and intermetallic particles. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 29–36. DOI:10.18577/2071-9140-2020-0-3-29-36.
4. Majumdar S., Schliephake D., Gorr B. et al. Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo–Si–B Alloys. Metallurgical and Materials Transactions A, 2013, vol. 44, no. 5, pp. 2243–2257.
5. Perepezko J.H., Sakidja R. Environmental Resistance of Mo–Si–B Alloys and Coatings. Oxidation of Metals, 2013, vol. 80, no. 3, pp. 207–218. DOI: 10.1007/S11085-013-9373-3.
6. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Investigation of the Oxidative Resistance of High-Temperature Coating Based on a SiC Material under Exposure to High-Enthalpy Flow. High Temperature, 2017, vol. 55, no. 6, pp. 873–879.
7. Chollacoop N., Alur A.P., Kumar K.S. Microstructural Finite Element Analysis of Mo–Si–B Alloy in High Temperature Applications. Journal of Visualization, 2005, vol. 8, no. 4, p. 292.
8. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
9. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
10. Hönigschmid O. Über das Molydänsilicid MoSi2, das Wolframsilicid WSi2 und das Tantalsilicid TaSi2. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1997, vol. 28, pp. 1017–1028.
11. Vasudevan K., Petrovic J.J. A comparative overview of MoSi2 based composites. Material Science and Engineering A-structural Materials Properties Microstructure and Processing, 1992, vol. 155, pp. 1–17.
12. Oxidation resistant molybdenum: pat. US 6652674-B1; filed 19.07.02; publ. 25.11.03.
13. Jung J.-I., Zhou N., Luo J. Effects of sintering aids on the densification of Mo–Si–B alloys. Journal of Materials Science, 2012, vol. 47, no. 24, pp. 8308–8319.
14. Titov D.D., Kargin Yu.F., Lysenkov A.S. et al. Effect of WSi2 content and additives of magnesium aluminosilicates on the oxidation and strength properties of MoSi2–WSi2 composites. Materialovedenie, 2012, no. 7, pp. 45–49.
15. Batiyenkov R.V., Bolshakova A.N., Efimochkin I.Yu. The problem of low-temperature plasticity of molybdenum and alloys based on it (review). Trudy VIAM, 2018, no. 3 (63), paper no. 02. Available at: http://www.viam-works.ru (accessed: June 28, 2022). DOI: 10.18577/2307-6046-2018-0-3-12-17.
16. Middlemas M.R., Cochran J.K. The microstructural engineering of Mo–Si–B alloys produced by reaction synthesis. JOM, 2010, vol. 62, no. 10, pp. 20–24.
17. Molybdenum: collection of articles. Trans. from Engl. Ed. A.K. Nathanson. Moscow: Publ. House of foreign literature, 1959, 304 p.
18. Lutsenko A.N., Efimochkin I.Yu., Moiseeva N.S. Study mechanism of creation structure on composite material based on molybdenum after high-temperature influence. Trudy VIAM, 2022, no. 4 (110). paper no. 04. Available at: http://www.viam-works.ru (accessed: May 16, 2022). DOI: 10.18577/2307-6046-2022-0-4-32-41.
19. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and pro-perties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
20. Schneider H., Schreuer J., Hildmann B. Structure and properties of mullite – A review. Journal of the European Ceramic Society, 2008, no. 28, pp. 329–344.
The development of composite materials based on aluminum alloys modified with ceramic fillers is one of the most important areas of materials science today. The most promising method for obtaining composite materials based on aluminum is the method of selective laser melting. The purpose of this work is to identify the features of the formation of the microstructure and phase composition of the composite powder in the process of mechanical alloying of aluminum alloy VAS1 and silicon carbide depending on time.
2. Buznik V.M., Kablov E.N. State and prospects of Arctic materials science. Vestnik RAN, 2017, vol. 87, no. 9, pp. 827–839.
3. Kablov E.N. Dominant of the national technology initiative. Problems of accelerating the development of additive technologies in Russia. Metally Evrazii, 2017, no. 3, pp. 2–6.
4. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Fatigue strength of heat-resistant nickel alloys produced by selective laser melting. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
5. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
6. Lukina E.A., Zaitsev D.V., Romanenko V.A. Structure and properties of a composite material based on aluminum alloy with the addition of carbon nanotubes. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 27–34. DOI: 10.18577/2071-9140-2019-0-4-27-34.
7. Kosolapov D.V., Shavnev A.A., Kurbatkina E.I., Nyafkin A.N., Gololobov A.V. Study on structure and properties of dispersion hardened MMC based on aluminium alloy of Al–Mg–Si system. Trudy VIAM, 2020, no. 1, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 15, 2022). DOI: 10.18577/2307-6046-2020-0-1-58-67.
8. Lui K., Jiang X., Chen S., Yuan T. Effect of SiC addition on microstructure and properties of Al–Mg alloy fabricated by powder and wire cold metal transfer process. Journal of Materials Research and Technology, 2022, vol. 17, pp. 310–319.
9. Khodabakhshi F., Gerlich A.P. On the stability, microstructure, and mechanical property of powder metallurgy Al–SiC nanocomposites during similar and dissimilar laser welding. Material Science & Engineering: A, 2019, vol. 759, pp. 688–702.
10. Pei W., Zhengying W., Zhen C. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and behavior. Applied surface science, 2017, vol. 408, pp. 38–50. DOI: 10.1016/j.apsusc.2017.02.215.
11. Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting. The Journal of the Minerals, Metals & Materials Society, 2017, vol. 69, pp. 516–522. DOI: 10.1007/s11837-016-2230-5.
12. Shavnev A.A., Nerush S.V., Kurbatkina E.I., Kosolapov D.V., Medvedev P.N. Investigation of the structure of a metal composite material of the Al–Si–Mg–SiC system obtained using mechanical alloying. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2022, no. 1, pp. 17–25. DOI: 10.17073/1997-308X-2022-1-17-25.
13. Mohanavel V., Rajan K., Kumar S.S. et al. Effect of silicon carbide reinforcement on mechanical and physical properties of aluminum matrix composites. Materials Today: Proceedings, 2018, vol. 5, no. 1, pp. 2938–2944. DOI: 10.1016/j.matpr.2018.01.089.
14. Famodimu O.H., Stanford M., Oduoza C.F., Zhang L. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite. Frontiers of Mechanical Engineering, 2018, vol. 13, pp. 520–527.
15. Riquelme A., Rodrigo P., Escalera-Rodríguez M.D., Rams J. Additively Manufactured Al/SiC Cylindrical Structures by Laser Metal Deposition. Materials, 2020, vol. 13, is. 15, art. 3331.
16. Sulyanov S., Boysen H., Paulmann C. et al. 2θ-scanning 2D-area detector for high quality powder data collection using synchrotron radiation. European Powder Diffraction Conference, 2011, no. 1, pp. 175–180.
17. Nerush S.V., Ermolayev A.S., Rogalev A.M., Vasilenko S.A. Research of retailoring process of the rotor blade feather end of the first stage of high-pressure turbine (HPT) from ZhS32-VI alloy by laser metal deposition with ZhS32-VI metal alloy powder dispersed by atomization. Trudy VIAM, 2016, no. 8, paper no. 4. Available at: http://www.viam-works.ru (accessed: September 15, 2022). DOI: 10.18577/2307-6046-2016-0-8-4-4.
18. Diagrams of the state of binary metal systems: D44: a reference book in 3 vols. Ed. N.P. Lyakishev. Moscow: Mashinostroenie, 1996, vol. 1, 992 p.
The process of mechanical alloying of aluminum alloy BAC1 with silicon carbide particles in a ball mill has been studied. An analysis of the stages of the process of mechanical alloying in the preparation of BAC1–SiC powder compositions was carried out and characteristic microstructures corresponding to each stage were identified. A hypothesis was formulated about the effect of collisions of granule particles on the formation of the structure of composite particles during mechanical alloying of an aluminum alloy BAC1 with silicon carbide SiC, which satisfactorily describes the experimental results obtained.
2. Kablov E.N. Dominant of the national technology initiative. Problems of accelerating the development of additive technologies in Russia. Metally of Evrazii, 2017, no. 3, pp. 2–6.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metalmatrix composite materials on the basis of Al–SiC. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 373–380.
4. Sergeeva A.M., Lovizin N.S., Sosnin A.А. About combined technology of continuous casting of aluminum alloys with synchronous deformation of the metal. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 9–16. DOI: 10.18577/2071-9140-2018-0-2-9-16.
5. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Fatigue strength of heat-resistant nickel alloys produced by selective laser melting. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
6. Bulina N.V., Malikov A.G., Orishich А.М., Klochkov G.G. Research of the structural-phase composition of laser weld joint depending on the thermal processing of the aluminum alloy V-1469. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 31–39. DOI: 10.18577/2071-9140-2019-0-2-31-39.
7. Lukina E.A., Zaitsev D.V., Romanenko V.A. Structure and properties of a composite material based on aluminum alloy with the addition of carbon nanotubes. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 27–34. DOI: 10.18577/2071-9140-2019-0-4-27-34.
8. Astashkin A.I., Babanov V.V., Selivanov A.A., Tkachenko E.A., Gusev D.V., Tsarev M.V. Improving the hardenability of massive forgings from alloys of the Al–Zn–Mg–Cu system by balanced alloying with zinc and magnesium. Aviation materials and technologies, 2021, no. 2 (63), paper no. 04. Available at: http://www.journal.viam.ru (accessed: November 28, 2022). DOI: 10.18577/2713-0193-2021-0-2-35-42.
9. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr IN additive manufacturing (review) Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 28, 2022). DOI: 10.18577/2713-0193-2021-0-3-19-34.
10. Shavnev A.A., Nerush S.V., Kurbatkina E.I., Kosolapov D.V., Medvedev P.N. Investigation of the structure of a metal composite material of the Al–Si–Mg–SiC system obtained using mechanical alloying. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2022, no. 1, pp. 17–25. DOI: 10.17073/1997-308X-2022-1-17-25.
11. Famodimu O.H., Stanford M., Oduoza C.F., Zhang L. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite. Frontiers of Mechanical Engineering, 2018, vol. 13, pp. 520–527.
12. Riquelme A., Rodrigo P., Escalera-Rodríguez M.D., Rams J. Additively Manufactured Al/SiC Cylindrical Structures by Laser Metal Deposition. Materials, 2020, vol. 13, is. 15, art. 3331. DOI: 10.3390/ma13153331.
13. Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting. The Journal of the Minerals, Metals & Materials Society, 2017, vol. 69, pp. 516–522. DOI: 10.1007/s11837-016-2230-5.
14. Diagrams of the state of binary metal systems: D44: a reference book in 3 vols. Ed. N.P. Lyakishev. Moscow: Mashinostroenie, 1996, vol. 1, 992 p.
15. Medvedev P.N., Kashapov O.S., Reshetilo L.P. Investigation of surface layers of titanium alloy VT41 after mechanical processing. Voprosy materialovedeniya, 2022, no. 1 (109), pp. 54–63.
Presents the results of studying the microstructure features of the ceramic composite material «mullite–zirconium dioxide». It is confirmed that the crystals of mullite, as in traditional mullite ceramics, have the habit of a long four-sided prism. Zirconium dioxide crystals provide hardening of the material by the mechanism of turning the crack to the interface, which, in combination with the specific habitus of the crystals of the main phase, leads to the formation of a characteristic highly developed fracture surface and improves the resistance of the material to cracking.
2. Kablov E.N. Marketing of materials science, aircraft building and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
3. Popov R.Yu., Dyatlova E.M., Sergievich O.A., Pogrebenkov V.M. Influence of modifying refractory and high-strength additives on the physical and technical characteristics of mullite-cordierite ceramics. Trudy Kolskogo nauchnogo tsentra RAN, 2018, no. 2-2, pp. 889–894. DOI: 10.25702/KSC.2307-5252.2018.9.1.889-894.
4. Sadik C., El Amranib I.-E., Albizane A. Recent advances in silica-alumina refractory: A review. Journal of Asian Ceramic Societies, 2014, vol. 2, pp. 83–96.
5. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Solntcev S.S. Al2O3 and ZrO2 ceramic materials obtained by sol-gel method. Trudy VIAM, 2021, no. 4 (98), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 1, 2022). DOI: 10.18577/2307-6046-2021-0-4-61-73.
6. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Kovaleva V.S., Chainikova A.S. Effect of modifying zirconium oxide additive on the properties of ceramic materials of the Y2O3–Al2O3–SiO2 system obtained by the sol-gel method. Trudy VIAM, 2021, no. 10 (104), paper no. 07. Available at: http://www.viam-works.ru (accessed: July 07, 2022). DOI: 10.18577/2307-6046-2021-0-10-67-78.
7. Shchegoleva N.E., Chainikova A.S., Orlova L.A. Sintering process analysis in the manufacture of strontiumalumi-nosilicate glass ceramics by power-pressed method. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 55–62. DOI: 10.18577/2071-9140-2018-0-4-55-62.
8. Lavrov A.V., Yakovlev N.O., Erasov V.S. Destruction of ceramic materials under the influence of high-speed indenter. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 88–94. DOI: 10.18577/2071-9140-2018-0-2-88-94.
9. Dyatlova E.M., Minenkova G.Ya., Kolontaeva T.V. Intensification of sintering of mullite-cordierite ceramics using mineralizers. Glass and Ceramics, 2000, no. 12, p. 21.
10. Osawa C.C., Bertran C.A. Mullite Formation from Mixtures of Alumina and Silica Sols: Mechanism and pH Effect. Journal of the Brazilian Chemical Society, 2005, vol. 16, no. 2, pp. 251–258.
11. Sedmale G., Grace L., Zalite I. et al. Microstructure and properties of mullite–ZrO2(Y2O3)–Si3N4 ceramics sintered by various methods. Novye ogneupory, 2018, no. 7, pp. 49–54.
12. Orgaz F. Densification and crystalization kinetics of mullite diphasic gels from non-isothermal dilatometry experiments. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2008, vol. 47, no. 6, pp. 358–365.
13. Chen Yi, Lu Z., Wan W. et al. Effect of Urchin-Like Mullite Whiskers on the High-Temperature Performance of Porous SiO2-Based Ceramic Molds. Materials, 2019, no. 12, art. 1181. DOI: 10.3390/ma12071181.
14. Barrientos-Hernґandez F.R., Pґerez-Labra M., Lobo-Guerrero A. et al. Effect of Particle Size and Sintering Temperature on the Formation of Mullite from Kyanite and Aluminum Mixtures. Advances in Materials Science and Engineering, 2021, vol. 2021, art. 6678297. DOI: 10.1155/2021/6678297.
15. Pletnev P.M., Tyulkin D.S. Physical and chemical principles of obtaining refractories for the production of technical ceramics. Bulletin of the Siberian State University of Communications, 2016, no. 1, pp. 21–26.
16. Lian J., Zhu B., Li X., Chen P. In-situ Synthesis of Column-like Mullite and SiC Whiskers and its Effect on Al2O3–SiC–C Refractory Properties. Journal of the Chinesse Ceramic Society, 2016, vol. 44, no. 9. Available at: http://www.gxyb.cbpt.cnki.net (accessed: July 01, 2022). DOI: 10.14062/j.issn.0454-5648.2016.09.21.
17. Method for obtaining a powder of a ceramic composite material: pat. 2292320 Rus. Federation; filed 15.08.05; publ. 27.01.07.
18. Varrik N.M., Maksimov V.G. Synthesis of the initial powder for obtaining mullite ceramics modified with zirconium dioxide. Ogneupory i tekhnicheskaya keramika, 2021, no. 5–6, р. 3.
19. Method for producing a ceramic product: pat. 2486159 Rus. Federation; filed 22.06.11; publ. 27.06.13.
20. Babashov V.G., Maksimov V.G., Varrik N.M. On the question of mullite crystallization in a ceramic composite material. Steklo i keramika, 2021, no. 12, pp. 9–14.
21. Gulyaev A.P., Gulyaev A.A. Metallurgy: textbook for universities. Ed. 7th, rev. and add. Moscow: Alliance, 2011, 644 p.
At present, additive technologies, including layer-by-layer synthesis technologies, are currently one of the most dynamically developing areas of modern materials science. Since raw materials for the production of products by additive technologies are an important component of the process, the development of methods for spheroidizing powder compositions is relevant and has practical significance. The priority goal of additive technologies has always been the manufacture of products from metals with certain physical and mechanical properties, in particular, metals and alloys for high-temperature applications.
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
4. Wohlers T. Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report. Wohlers Associates Inc., 2014, 275 p.
5. Uriondo A., Esperon-Miguez M., Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects: Proceedings of the Institution of Mechanical Engineers. Part G. Journal of Aerospace Engineering, 2015, vol. 229, no. 11, pp. 2132–2147.
6. Zlenko M.A., Popovich A.A., Mutylina I.N. Additive technologies in mechanical engineering. St. Petersburg: Polytech. Univ., 2013, 222 p.
7. Frazier W.E. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014, vol. 23, no. 6, pp. 1917–1928.
8. Lopatin A.N., Zverkov I.D. Shaping molding tools production for composite parts by means of additive technologies. Aviacionnye materialy i tehnologii, 2019, no. 2 (55). pp. 53–59. DOI: 10.18577/2071-9140-2019-0-2-53-59.
9. Chekhovich A. Technology of selective laser melting. Available at: https://blog.iqb.ru/slm-technology (accessed: August 27, 2021).
10. Dudikhin D.V. Plasma spheroidization of metal powders for additive technologies. Tomsk: National Research Tomsk Polytech. Univ., 2018, 53 p.
11. Grigoriev A.V., Razumov N.G., Popovich A.A., Samokhin A.V. Plasma spheroidization of powders based on Nb–Si alloys obtained by mechanical alloying. Nauchno-tekhnicheskie vedomosti SpbGPU, 2017, vol. 23, no. 1, pp. 247–255. DOI: 10.18721/JEST.230125.
12. Gao W., Zhang Y., Ramanujan D. et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 2015, vol. 69, pp. 65–89.
13. Dovbysh V.M., Zabednov P.V., Zlenko M.A. Additive technologies and metal products. Available at: https://nami.ru/uploads/docs/centr_technology_docs/55a62fc89524bAT_metall.pdf (accessed: August 27, 2021).
14. Baskoro A.S., Supriadi S., Dharmanto. Review on Plasma Atomizer Technology for Metal Powder. MATEC Web of Conferences, 2019, vol. 269, pp. 1–9. DOI: 10.1051/matecconf/201926905004.
15. Rodionov A.I., Efimochkin I.Ju., Bujakina A.A., Letnikov M.N. Sphereidizatsiya of metal powders (review). Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 60–64. DOI: 10.18577/2071-9140-2016-0-S1-60-64.
16. Dudikhin D.V., Saprykin A.A. Methods for obtaining spherical powders for additive laser technologies. Masterʹs Journal, 2016, no. 1, pp. 51–55.
17. Tong J.B., Lu X., Liu C.C. et al. Fabrication of Micro-fine Spherical High Nb Containing Plasma Spheroidization TiAl Alloy Powder Based on Reaction Synthesis and RF. Powder Technology, 2015, vol. 283, pp. 9–15. DOI: 10.1016/j.powtec.2015.04.062.
18. Goncharov I.S., Razumov N.G., Silin A.O. et al. Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing. Materials Letters, 2019, vol. 245, pp. 188–191.
19. Sheng Y.W., Guo Z.M., Hao J.J. et al. Preparation of micro-spherical titanium powder by RF plasma. Rare metal materials and engineering, 2013, vol. 42, no. 6, pp. 1291–1297.
20. Zhang H.B., Bai L.Y., Hu P. et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma. International Journal of Refractory Metals and Hard Materials, 2012, vol. 31, pp. 33–38.
21. Bai L.Y., Fan J.M., Hu P. et al. RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate. Journal of Alloys and Compounds, 2009, vol. 481, no. 1–2, pp. 563–568.
22. Hu P., Yan S.K., Yuan F.L. et al. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles. Plasma Science and Technology, 2007, vol. 9, no. 5, pp. 611–617.
23. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
24. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 2. Available at: http://www.viam-works.ru (accessed: November 22, 2021). DOI: 10.18577/2307-6046-2020-0-11-11-20.
25. Liu X., Wang K., Hu P. et al. Spheroidization of molybdenum powder by radio frequency thermal plasma. International Journal of Minerals, Metallurgy and Materials, 2015, vol. 22, no. 11. pp. 1212–1218. DOI: 10.1007/s12613-015-1187-7.
26. Saheb N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy and Materials, 2013, vol. 20, no. 2, pp. 152–159.
27. Lu X., Sun B., Zhao T.F. et al. Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications. International Journal of Minerals, Metallurgy and Materials, 2014, vol. 21, no. 5, pp. 479–486.
28. Kersten H., Rohde D., Berndt J. et al. Investigations on the energy influx at plasma processes by means of a simple thermal probe. Thin Solid Films, 2000, vol. 377–378, pp. 585–591.
29. Belmonte M., Osendi M.I., Miranzo P. Modeling the effect of pulsing on the spark plasma sintering of silicon nitride materials. Scripta Materialia, 2011, vol. 65, no. 3, pp. 273–276.
30. Ryu T., Sohn H.Y., Hwang K.S. et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, no. 1, pp. 149–154.
31. Boulos M. Plasma power can make better powders. Metal Powder Report, 2004, vol. 59, no. 5, pp. 16–21.
32. Ko T.S., Yang S., Hsu H.C. et al. ZnO nanopowders fabricated by dc thermal plasma synthesis. Materials Science and Engineering B, 2006, vol. 134, no. 1, pp. 54–58.
33. Kumar S., Selvarajan V., Padmanabhan P.V.A. et al. Spheroidization of metal and ceramic powders in thermal plasma jet: comparison between experimental results and theoretical estimation. Journal of Materials Processing Technology, 2006, vol. 176, no. 1–3, pp. 87–94.
34. Jiang X.L., Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Transactions of Nonferrous Metals Society of China, 2000, vol. 16, no. 1, pp. 13–17.
35. Peiquan Z. Application and Processing Method of Molybdenum and Molybdenum Alloy. China Molybdenum Industry, 2000, vol. 24, no. 5, pp. 15–16.
36. Qiua S., Chen B., Xiang C. Preparation and Properties of Spherical Mo Powders by Plasma Rotating Electrode Process for Additive Manufacturing. Materials Science Forum, 2019, vol. 993, pp. 391–397. DOI: 10.4028/www.scientific.net/MSF.993.391.
The publication is a continuation of the review of application of cyanate ester materials. This article provides information about prospects for the useing of cyanate ester resins in microelectronics, as well as in relatively new applications for these resins, such as the insulation of superconducting magnets and additive technologies. The main advantages of cyanate esters polymers (polytriazines) are described and examples of commercial foreign materials are given.
2. Fang T., Shimp D.A. Polycyanate Esters: Science and Applications. Progress in Polymer Science, 1995, vol. 20, pp. 61–118.
3. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
4. The Chemistry and Technology of Cyanate Esters. Ed. I.A. Hamerton. Glasgow; London: Blackie Academic & Professional UK, 1994, 357 p.
5. Fink J.K. Cyanate Ester Resins. Reactive Polymers: Fundamentals and Applications, 2018, pp. 345–366. DOI: 10.1016/B978-0-12-814509-8.00010-5.
6. Dolgova E.V., Lavrova K.S. Application of cyanate ester materials (review). Part 1. Aviation and space structures. Trudy VIAM, 2021, no. 4 (98), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 19, 2022). DOI: 10.18577/2307-6046-2021-0-4-48-60.
7. Licari J.J., Swanson D.W. Applications. Adhesives Technology for Electronic Applications, 2011, pp. 217–288. DOI: 10.1016/b978-1-4377-7889-2.10005-1.
8. Reghunadhan Nair C.P., Mathew D., Ninan K.N. Cyanate Ester Resins, Recent Developments. Advances in Polymer Science, 2001, vol. 155, pp. 1–99.
9. Ajaja J., Barthelat F. Damage accumulation in a carbon fiber fabric reinforced cyanate ester composite subjected to mechanical loading and thermal cycling. Composites. Part B, 2016, vol. 90, pp. 523–529. DOI: 10.1016/j.compositesb.2015.09.054.
10. Toldy A., Szlancsik A., Szolnoki B. Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites. Polymer Degradation and Stability, 2016, vol. 128, pp. 29–38. DOI: 10.1016/j.polymdegradstab.2016.02.015.
11. Ren P., Liang G., Zhang Z. Epoxy-modified cyanate ester resin and its high-modulus carbon-fiber composites. Polymer Composites, 2006, vol. 27, pp. 402–409. DOI: 10.1002/pc.20207.
12. Multilayer printed circuit boards: through metallization. Available at: https://rezonit.ru/directory/baza-znaniy/tekhnologiya-izgotovleniya-pechatnykh-plat-v-kartinkakh/mnogosloynye-pechatnye-platy-skvoznaya-metallizatsiya/ (accessed: June 16, 2022).
13. Rogers J.K., Gabriele M.C. Composite Resins, Fibers Machinery Debut at SAMPE. Conference. Plastics Technology, 1989, pp. 25–31.
14. Cyanate ester microwave circuit material: pat. WO9317860 (A1); filed 13.03.92; publ. 16.09.93.
15. Ultra low loss dielectric thermosetting resin compositions and high performance laminates manufactured therefrom: pat. US 9,332,637 B2; filed 04.11.13; publ. 03.05.16.
16. Low dielectric halogen-free resin composition and circuit board using the same: pat. US 9,428,646 B2; filed 23.07.13; publ. 30.08.16.
17. Halogen-free resin composition, and copper clad laminate and printed circuit board using same: pat. US 2013/0115472 (A1); filed 19.11.12; publ. 09.05.13.
18. Thermoset resin composition, and prepreg and laminate for printed circuit board manufactured therefrom: pat. US 0159016 (A1); filed 29.12.11; publ. 11.06.15.
19. Thermosetting resin composition and application thereof in millimeter wave circuit substrate: pat. CN 111454539 (A); filed 17.04.20; publ. 28.07.20.
20. Cyanate ester resin composition, and a prepreg, a laminated material and a metal clad laminated material made therefrom: pat. US 2014/113151 (A1); filed 15.03.13; publ. 24.04.14.
21. Resin composition and preparation methods of prepreg, composite substrate and PCB (printed circuit board) substrate: pat. CN 104559054 (A); filed 25.10.13; publ. 29.04.15.
22. Mylov G.V. Printed circuit boards: selection of base materials. Moscow: Goryachaya liniya – Telecom, 2015, 176 p.
23. Shiao J., Nguyen D. Performance modeling of a cache system with three interconnect technologies: cyanate ester PCB, chip-on-board and Cu/PI MCM. Proceedings. IEEE Multi-Chip Module Conference MCMC-92. 1992. DOI: 10.1109/mcmc.1992.201467.
24. Method of manufacture multichip module substrate: pat. US 5287619 (A); filed 09.03.92; publ. 22.02.94.
25. Licari J.J., Swanson D.W. Chemistry, Formulation, and Properties of Adhesives. Adhesives Technology for Electronic Applications. Published by Elsevier Inc., 2011. DOI: 10.1016/B978-1-4377-7889-2.10003-8.
26. Rabilloud G. Adhesives in Electronic. Handbook of Adhesives and Surface Preparation. Ed. S. Ebnesajjad. Elsevier Inc., 2011, pp. 259–299. DOI: 10.1016/B978-1-4377-4461-3.10012-4.
27. Silicone-based cyanate-ester cross-linkable die attach adhesive: pat. US 2005/0159573 (A1); filed 25.06.03; publ. 21.07.05.
28. Shah T., Danziger S., Moores K., Joshi Y. (n.d.). Cyanate ester die attach material for radiation hardened electronic packages. Proceedings of 3rd International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing. 1998, cat, no. 98EX180. DOI: 10.1109/adhes.1998.742002.
29. Die Attach Process. Available at: https://www.goldenaltos.com/assembly-services/die-attach-process (accessed: April 19, 2022).
30. Description for Henkel QMI301. Available at: https://www.gluespec.com/Materials/adhesive/henkel/qmi301 (accessed: April 19, 2022).
31. Former Lonza business LSI rebrands as Arxada. Available at: https://www.cosmeticsbusiness.com/news/article_page/Former_Lonza_business_LSI_rebrands_as_Arxada/179472 (accessed: April 16, 2022).
32. Lonza Specialty Ingredients rebrands as Arxada. Available at: https://www.chemengonline.com/lonza-specialty-igredients-rebrands-as-arxada/?printmode=1 (accessed: April 16, 2022).
33. Our products. Arxada Ltd. Available at: https://agro.arxada.com/composite-materials (accessed: April 16, 2022).
34. Our products. Novoset, LLC. Available at: https://www.novoset.com/copy-of-our-market (accessed: April 16, 2022).
35. Novoset, LLC and Lonza introduce new, ultra-low dielectric loss and high temperature materials. Semiconductor-digest. Available at: https://sst.semiconductor-digest.com/2014/01/novoset-llc-and-lonza-introduce-new-ultra-low-dielectric-loss-and-high-temperature-materials/# (accessed: April 16, 2022).
36. Arxada and Novoset Agree Global License to Develop Next Generation Composite Materials. Available at: https://www.arxada.com/en/media/2022/May-03.html (accessed: June 18, 2022).
37. Fabian P.E., Munshi N.A., Denis R.J. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation. Advances in Cryogenic Engineering-Materials, 2002, vol. 48, pp. 295–302. DOI: 10.1063/1.1472555.
38. Fabian P.E., Rice J.A., Munshi N.A. et al. Nowel radiation-resistant insulation systems for fusion magnets. Fusion Engineering and Design, 2002, vol. 61–62, pp. 795–799.
39. Hooker M.W., Arzberger S.A., Grandlienard S.D. et al. Industrialization of Radiation-Resistant Cyanate Ester Magnet Insulation. IEEE Transactions on Applied Superconductivity, 2009, vol. 19, no. 3, pp. 2367–2370.
40. Hooker M.W., Walsh J.K., Haynes M.W., Munshi N.A. Design and Testing of ITER TF Coil Insulations. IEEE Transactions on Applied Superconductivity, 2011, vol. 21, no. 3, pp. 3127–3131.
41. Hill J., Munshi N., Tupper M. et al. Risk Mitigation for Cyanate Ester Insulation of Large Magnets Through Cure Optimization. IEEE Transactions on Applied Superconductivity, 2015, vol. 25, no. 3, p. 7700105.
42. Davis S.R., Voss G.M. Manufacture and test of a prototype cyanate ester coil. IEEE Transactions on Applied Superconductivity, 2010, vol. 20, no. 3, pp. 1479–1483.
43. Fabian P., Haynes M., Babcock H. Сharacterization and Qualification of Cyanate Ester/Epoxy Insulation for NSTX-U Fusion Magnets. IEEE Transsactions on Applied Superconductivity, 2013, vol. 23, no. 3, p. 7700204.
44. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
45. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
46. Lopatin A.N., Zverkov I.D. Shaping molding tools production for composite parts by means of additive technologies. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 53–59. DOI: 10.18577/2071-9140-2019-0-2-53-59.
47. Vnuk V.V., Kamayev S.V., Markov M.A., Cherebylo S.A. Features of parts fabrication by using multicomponent resins by laser stereolithography. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 31–36. DOI: 10.18577/2071-9140-2018-0-4-31-36.
48. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108). paper no. 03. Available at: http://www.viam-works.ru (accessed: April 16, 2022). DOI: 10.18577/2307-6046-2022-0-2-32-51.
49. Chandrasekaran S., Duoss E.B., Worsley M.A., Lewicki J.P. 3D printing of high performance cyanate ester thermoset polymers. Journal of Materials Chemistry. A, 2018, vol. 6 (3), pp. 853–858. DOI: 10.1039/C7TA09466C.
50. Lee J.-Y., An J., Chua Ch.K. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, vol. 7, pp. 120–133. DOI: 10.1016/j.apmt.2017.02.004.
51. Wang B., Zhang Z., Pei Zh. et al. Current progress on the 3D printing of thermosets. Advanced Composites and Hybrid Materials, 2020, vol. 3, pp. 462–472. DOI: 10.1007/s42114-020-00183-z.
52. Quan Z., Wu A., Keefe M. et al. Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Materials Today, 2015, vol. 18, pp. 503–512. DOI: 10.1016/j.mattod.2015.05.001.
53. Lewis J.A. Direct Ink Writing of 3D Functional Materials. Advanced Functional Materials, 2006, vol. 16, pp. 2193–2204. DOI: 10.1002/adfm.200600434.
54. Cyanate ester dual cure resins for additive manufacturing: pat. WO 2017/040883 (А1); filed 02.09.16, publ. 09.03.17.
55. Zhou Zh.-X., Li Y., Zhong J. et al. High-Performance Cyanate Ester Resins with Interpenetration Networks for 3D Printing. ACS Applied Materials and Interfaces, 2020, vol. 12, pp. 38682−38689. DOI: 10.1021/acsami.0c10909.
56. Carbon uses DLS™ technology to optimize fluid manifold designs. Available at: https://www.carbon3d.com/resources/whitepaper/carbon-dls-optimizes-fluid-manifold-designs?utm_
referrer=https%3A%2F%2Fwww.google.com%2F (accessed: April 16, 2022).
57. What is Carbon Digital Light Synthesis™? Available at: https://www.carbon3d.com/carbon-dls-technology?utm_referrer=https%3A%2F%2Fwww.google.com%2F (accessed: April 16, 2022).
58. Duoss E.B., Weisgraber T.H., Hearon K. et al. Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness. Advanced Functional Materials, 2014, vol. 24, pp. 4905–4913. DOI: 10.1002/adfm.201400451.
59. CE 221. High temperature resistance, stiff, and proven chemical resistance. Available at: https://www.carbon3d.com/materials/ce-221 (accessed: April 16, 2022).
60. Improving MRI Diagnostics with Custom Patient Guides at UC Berkeley. Available at: https://www.carbon3d.com/resources/case-study/improving-mri-diagnostics-with-custom-patient-guides-at-uc-berkeley (accessed: April 16, 2022).
61. Envisiontec E-CE (Cyan Ester). Available at: https://vektorus.ru/materiali/envisiontec-e-ce-cyan-ester.html (accessed: April 22, 2022).
Heat-resistant alloys and steels
Sevalnev G.S., Nefedkin D.Y., Druzhinina M.E., Mosolov A.N., Samoylova I.I., Maksimov A.V. Kinetics of diffusion saturation of beryllium-containing steel VNS32-VI at various types of thermochemical treatment
Sukhov D.I., Kaplansky Yu.Yu., Rogalev A.M., Kurkin S.E. The features of processing Cr-rich nickel based alloy by selective laser melting
Peskova A.V., Bakradze M.M., Tikhonov M.M., Kuko I.S. Investigation of the influence of the oxide layer on the surface of particles metal-powder compositions of copper-chromium alloys on their technological properties
Light-metal alloys
Lukina E.A., Naprienko S.A., Gorbovets M.A., Zaitsev D.V., Oglodkova Yu.S. Changes in the structural and phase state of cold-formed semi-finished products from Al–Li- alloys after various low-temperature effects
Nerush S.V., Kaplanskii Yu.Yu., Dynin N.V., Benarieb I., Savichev I.D. Development of laser powder bed fusion parameters, structure and mechanical properties of a high-strength aluminum alloy Al–Ce–Cu
Sbitneva S.V., Lukina E.А., Benarieb I. Some structural features of aluminum alloys obtained by selective laser melting (review)
Composite materials
Lucenko A.N., Efimochkin I.Yu., Moiseeva N.S. Study mechanism formation a surface layer metal composite material based on Mo–Si–B system after high-temperature influence at different angles of attack
Zhitnyuk S.V., Medvedev P.N. Investigation of microstructure and phase composition of the metallic composite material Al–Si–Mg system modified by silicon carbide particles by mechanical alloying. Part 1
Zhitnyuk S.V., Medvedev P.N. Investigation of microstructure and phase composition of the metallic composite material Al–Si–Mg system modified by silicon carbide particles by mechanical alloying. Part 2
Maksimov V.G., Babashov V.G., Varrik N.M., Lyulyukina G.Yu. Study of the habitus of mullite crystals in composite ceramics «mullite–zirconium dioxide»
Burkovskaya N.P., Bobrovsky A.P., Efimochkin I.Yu., Bolshakova A.N. Spheroidization of powder compositions based on refractory metals (review). Part 1
Dolgova E.V. Application of cyanate ester materials. Part 2. Microelectronics, 3D printing, radiation protection