Articles
Deals with the issues of determining and evaluating the crystallographic orientation (CGO) of single-crystal castings from nickel heat-resistant alloys obtained by the method of directed crystallization. The methods of setting the axial and azimuthal CGO in castings using seed crystals (seedings) from alloys of the Ni–W system are described. Presents methods for obtaining castings of turbine blades with a single-crystal structure of a given spatial orientation , which allows significantly reducing the level of thermal stresses for cooled blades.
2. Toloraya V.N., Kablov E.N., Demonis I.M. The technology for obtaining monocrystalline castings of turbine blades of the GTD of a given crystallographic orientation from rinis-containing heat-resistant alloys. Foundry heat-resistant alloys. The effect of S.T. Kishkin. Mosocw: Nauka, 2006, pp. 206–218.
3. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
4. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 24, 2021). DOI: 10.18577/2307-6046-2020-0-3-3-12.
5. Copley S.M., Kear B.H. Temperature and Orientation Dependence of the Flow Stress of Stoichiometric Ni3al (γ'-phase). Materials Science and Engineering, 1972, vol. 10, pp. 87–95.
6. Svetlov I.L., Sukhanov N.N., Krivko A.I. The temperature-oriented dependence of the characteristics of short-term strength, the youth module and the linear expansion of the ZhS6F monocristals. Problemy prochnosti, 1987, no. 4, pp. 51–56.
7. Svetlov I.L., Epishin A.I., Krivko A.I. Anisotropy of the Poisson of the Nickel alloy monocrystals. Dan USSR, 1988, vol. 302, no. 6, pp. 1372–1375.
8. Krivko A.I., Epishin A.I., Svetlov I.L., Samoilov A.I. Calculation of thermal stresses and thermal resistance of anisotropic materials. Message I. Problemy prochnosti, 1989, no. 2, pp. 3–9.
9. Krivko A.I., Epishin A.I., Svetlov I.L., Samoilov A.I. Calculation of thermal stresses and thermal resistance of anisotropic materials. Message II. Problemy prochnosti, 1989, no. 4, pp. 43–48.
10. Dalnev R.A., Svetlov I.L., Bychkov N.G. Orientation dependence of thermal fatigue of nickel
alloy monocrinists. Problemy prochnosti, 1988, no. 11, pp. 3–9.
11. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraya V.N., Gavrilin O.S. Monocrystals of nickel heat-resistant alloys. Moscow: Mashinostroyenie, 1997, pp. 162–166.
12. Toloraya V.N., Kablov E.N., Orekhov N.G., Ostroukhova G.A. The structure and growth defects of the monocristals of nickel heat-resistant alloys. Gorny informatsionno-analiticheskiy byulleten, 2005, no. S5, pp. 190–202.
13. Kuzmina N.A., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Comparative structure control of single-crystal castings of nickel superalloys x-ray diffraction methods of oscillation and Laue. Trudy VIAM, 2019, no. 9 (81), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2019-0-9-15-25.
14. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2019-0-12-11-19.
15. Nazarkin R.M. Small-sized x-ray diffractometers for structure and phase analysis purposes
(review). Trudy VIAM, 2019, no. 9 (81), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 24, 2021). DOI: 10.18577/2307-6046-2019-0-9-89-99.
The article presents the results of a study of the surface quality of cladding sheets made of alloys of the D16ch type. Methods of metallographic and fractographic analyzes have shown that the appearance of bubbles in the investigated sheets is caused by the presence of internal interfaces (in the form of pores in the base of sheets and cladding), as well as defective areas of poor-quality welding of the cladding and production and heat treatment of sheets, diffuses hydrogen dissolved in the metal or formed on the surface of the sheets during the reaction of aluminum with water vapor. A tendency towards a decrease in the relative elongation in sheets with surface bubbles compared to sheets without defects was revealed.
XXI century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
4. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
5. Fridlyander I.N. Aluminum alloys in aircraft in the periods 1970–2000 and 2001–2015. Tekhnologiya legkikh splavov, 2002, no. 4, pp. 1212–1217.
6. Duyunova V.A., Nechaikina T.A., Oglodkov M.S., Yakovlev A.L., Leonov A.A. Perspective developments in the field of light materials for modern aerospace technology. Tekhnologiya legkikh splavov, 2018, no. 4, pp. 28–43.
7. Selivanov A.A., Tkachenko E.A., Popova O.I., Babanov V.V. High-strength wrought aluminum weldable V-1963 alloy for details of primary structure of modern aviation engineering. Trudy VIAM, 2017, no. 2 (50), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 29, 2021). DOI: 10.18577/2307-6046-2017-0-2-1-1.
8. Kishkina S.I. Fracture resistance of aluminum alloys. Moscow: Metallurgiya, 1981, 280 p.
9. Atlas of structures of ingots and semi-finished products from aluminum alloys. Ed. V.I. Dobatkin, V.I. Elagin, L.M. Khitrov. Moscow: Metallurgiya, 1971, 152 p.
10. Aluminum alloys. Structure and properties of semi-finished products from aluminum alloys.
Ed. V.I. Elagin, V.A. Livanov. 2nd ed., rev. and add. Moscow: Metallurgiya, 1984, 408 p.
11. Dobatkin V.I., Gabidullin R.M., Kolachev B.A., Makarov G.S. Gases and oxides in wrought aluminum alloys. Moscow: Metallurgiya, 1976, 264 p.
12. Davydov D.M., Titov V.I., Letov A.F., Lutsenko A.N. Comparative evaluation of methods for determining the content of hydrogen in metal materials. Trudy VIAM, 2019, no. 11 (83), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 29, 2021). DOI: 10.18577/2307-6046-2019-0-11-75-84.
13. Tsukrov S.L. Development of technology for hardening semi-finished products from aluminum alloys. Perspektivnyye tekhnologii legkikh i spetsialnykh splavov. Moscow: Fizmatlit, 2006, pp. 323–338.
14. Kolobnev N.I., Ber L.B., Tsukrov S.L. Thermal treatment of deformable aluminum alloys.
Ed. E.N. Kablov. Moscow: APRAL, 2020, 552 p.
15. Grigorenko V.B., Morozovа L.V. The usage of fractographic analysis to diagnostic the causes of destruction of products from medium-carbon steel. Trudy VIAM, 2018, no. 8 (68), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 29, 2021). DOI: 10.18577/2307-6046-2018-0-8-98-111.
16. Zhegina I.P., Prokhodtseva L.V., Shvanova N.F. Fractographic method for assessing the quality of the material. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 42–61.
A significant reduction in the percolation threshold of carbon-containing particles in thermoplastic composites can be achieved by distributing the functional filler not over the entire volume of the composite, but only in its part. Regulation of the forces of interaction of functional particles with each other and polymer phases, as well as polymer phases among themselves, by choosing a filler, its covalent and non-covalent modification, as well as the composition of the polymer mixture is an effective tool for obtaining thermoplastic composites with a given level of functional properties.
2. Kablov E.N. Materials of a new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
4. Gurenkov V.M., Gorshkov V.О., Chebotarev V.P., Prudskova Т.N., Andreeva Т.I. Comparative analysis of properties of polyetheretherketone of domestic and foreign production. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 41–47. DOI: 10.18577/2071-9140-2019-0-3-41-47.
5. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
6. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
7. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 12, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
8. Joshi S., Rawat K., Karunakaran C. et al. 4D printing of materials for the future: opportunities and challenges. Applied Materials Today, 2020, vol. 18, p. 100490.
9. Khosravani M.R., Reinicke T. Applications of additive manufacturing in fabrication of sensors – A review. Sensors and Actuators A: Physical, 2020, vol. 305, no. 4, pp. 111916.
10. Adohi B.P., Mdarhri A., Prunier C. et al. A comparison between physical properties of carbon black-polymer and carbon nanotubes-polymer composites. Journal of Applied Physics, 2010, vol. 108, no. 7, p. 074108.
11. Zhang Q., Wang J., Zhang B.Y. et al. Improved electrical conductivity of polymer/carbon black composites by simultaneous dispersion and interaction-induced network assembly. Composites Science and Technology, 2019, vol. 179, pp. 106–114.
12. Havlin S., Bunde A. Percolation II. Fractals and disordered systems. Berlin; Heidelberg: Springer, 1991, pp. 97–150.
13. Stauffer D., Aharony A. Introduction to percolation theory. Rev. second ed. London: CRC press, 2014, 192 p.
14. Shevchenko V.G. Fundamentals of physics of polymer composite materials: textbook. Moscow: MGU, 2010, 98 p.
15. Influence of thermo-rheological history on electrical and rheological properties of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites: Preperetion, properties and applications. Ed. T. McNally, P. Pötschke. Woodhead Publising, 2011, pp. 295–328.
16. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites science and technology, 2009, vol. 69, no. 10, pp. 1486–1498.
17. McLachlan D.S., Heaney M.B. Complex ac conductivity of a carbon black composite as a function of frequency, composition, and temperature. Physical Review B, 1999, vol. 60, no. 18, pp. 12746.
18. Barrau S., Demont P., Peigney A. et al. DC and AC conductivity of carbon nanotubes – polyepoxy composites. Macromolecules, 2003, vol. 36, no. 14, pp. 5187–5194.
19. Fu Y., Liu L., Zhang J. Manipulating dispersion and distribution of graphene in PLA through novel interface engineering for improved conductive properties. ACS applied materials & interfaces, 2014, vol. 6, no. 16, pp. 14069–14075.
20. Kirkpatrick S. Percolation and conduction. Reviews of modern physics, 1973, vol. 45, no. 4, pp. 574.
21. Dyre J.C., Schrøder T.B. Universality of ac conduction in disordered solids. Reviews of Modern Physics, 2000, vol. 72, no. 3, pp. 873–892.
22. Elastomer–carbon nanotube composites. Polymer–Carbon Nanotube Composites: Preperetion, properties and applications. Ed. T. McNally, P. Pötschke. Woodhead Publising, 2011,
pp. 193–229.
23. Kanbur Y., Küçükyavuz Z. Electrical and mechanical properties of polypropylene/carbon black composites. Journal of Reinforced Plastics and Composites, 2009, vol. 28, no. 18, pp. 2251–2260.
24. Meincke O., Kaempfer D., Weickmann H. et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 2004, vol. 45, no. 3, pp. 739–748.
25. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Sumita M., Sakata K., Asai S. et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polymer bulletin, 1991, vol. 25, no. 2, pp. 265–271.
27. Sumita A., Sakata K., Hayakawa Y. et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid and Polymer Science, 1992, vol. 270, no. 2, pp. 134–139.
28. Gupta S., Ou R., Gerhardt R.A. Effect of the fabrication method on the electrical properties of poly (acrylonitrile-co-butadiene-co-styrene)/carbon black composites. Journal of Electronic Materials, 2006, vol. 35, no. 2, pp. 224–229.
29. Mamunya Y.P., Lebovka N.I., Lisunova M.O. et al. Conductive polymer composites with ultralow percolation threshold containing carbon nanotubes. Journal of Nanostructured Polymers and Nanocomposites, 2008, vol. 4, no. 1, pp. 21–27.
30. Grunlan J., Mehrabi A., Bannon M. et al. Water‐based single‐walled‐nanotube‐filled polymer composite with an exceptionally low percolation threshold. Advanced Materials, 2004, vol. 16, no. 2, pp. 150–153.
31. Grossiord N., Loos J., van Laake L. et al. High‐Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers. Advanced Functional Materials, 2008, vol. 18, no. 20, pp. 3226–3234.
32. Miriyala S.M., Kim Y.S., Liu L. et al. Segregated networks of carbon black in poly(vinyl acetate) latex: influence of clay on the electrical and mechanical behavior. Macromolecular Chemistry and Physics, 2008, vol. 209, no. 23, pp. 2399–2409.
33. Deng H., Lin L., Ji M. et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, vol. 39, no. 4, pp. 627–655.
34. Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites: Preperetion, properties and applications. Ed. T. McNally, P. Pötschke. Woodhead Publising, 2011, pp. 587–620.
35. Pötschke P., Pegel S., Claes M. et al. A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromolecular Rapid Communications, 2008, vol. 29, no. 3, pp. 244–251.
36. Volkov V.A. Colloidal chemistry. Surface phenomena and dispersed systems. St. Petersburg: Lan, 2015, 672 p.
37. Wu S. Polymer interface and adhesion. Routledge, 2017, 630 р.
38. Pan Y. Electrical, Morphological and Rheological Properties of Carbon Black Filled Polymer Blends: Dis. Erlangen: Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), 2017, 123 p.
39. Chen J., Shi Y.Y., Yang J.H. et al. A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. Journal of Materials Chemistry, 2012, vol. 22, no. 42, pp. 22398–22404.
40. Al-Saleh M.H., Sundararaj U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Composites. Part A: Applied Science and Manufacturing, 2008, vol. 39, no. 2, pp. 284–293.
41. Gubbels F., Jеrоme R., Teyssie P. et al. Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules, 1994, vol. 27, no. 7, pp. 1972–1974.
42. Nair S.T., Vijayan P.P., Xavier P. et al. Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Composites Science and Technology, 2015, vol. 116, pp. 9–17.
43. Bose S., Bhattacharyya A.R., Bondre A.P. et al. Rheology, electrical conductivity, and the phase behavior of cocontinuous PA6/ABS blends with MWNT: Correlating the aspect ratio of MWNT with the percolation threshold. Journal of Polymer Science. Part B: Polymer Physics, 2008, vol. 46, no. 15, pp. 1619–1631.
44. Hu J., Zhang H.B., Hong S. et al. Simultaneous improvement in both electrical conductivity and toughness of polyamide 6 nanocomposites filled with elastomer and carbon black particles. Industrial & Engineering Chemistry Research, 2014, vol. 53, no. 6, pp. 2270–2276.
45. Pang H., Xu L., Yan D.X. et al. Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, vol. 39, no. 11, pp. 1908–1933.
46. Garmabi H., Naficy S. Developing electrically conductive polypropylene/polyamide6/carbon black composites with microfibrillar morphology. Journal of applied polymer science, 2007, vol. 106, no. 5, pp. 3461–3467.
47. Fenouillot F., Cassagnau P., Majesté J.C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer, 2009, vol. 50, no. 6, pp. 1333–1350.
48. Gubbels F., Jerome R., Vanlathem E. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chemistry of materials, 1998, vol. 10, no. 5, pp. 1227–1235.
49. Huang J., Mao C., Zhu Y. et al. Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon, 2014, vol. 73, pp. 267–274.
50. Li H., Tuo X., Yan G. et al. Comparison of Three Interfacial Conductive Networks Formed in Carbon Black-Filled PA6/PBT Blends. Polymers, 2021, vol. 13, no. 17, p. 2926.
51. Göldel A., Marmur A., Kasaliwal G.R. et al. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules, 2011, vol. 44, no. 15, pp. 6094–6102.
This paper provides an overview of the development of plant-based epoxy resins. The review presents the main types of plant raw materials; the methods of obtaining epoxy resins based on vegetable raw materials are listed; general factors influencing the yield of the target product are identified: reaction temperature, concentration and type of organic acids. Based on the studied literature data, it can be concluded that the production of plant-based epoxy resins will become a topic for promising research and development of additives for adhesives, paints or composite materials in the future.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of FSUE «VIAM» in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
3. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series, 2020, vol. 1687, p. 012031.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 22, 2022). DOI: 10.18577/2307-6046-2019-0-12-67-79.
6. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 22, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
7. Gotlib E.M., Vdovina T.V., Yamaleeva E.S. Increasing the biodegradability of epoxy materials due to modification with vegetable oils and their oxygen-containing derivatives. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya, 2020, vol. 10, no. 4, pp. 700–707. DOI: 10.21285/2227-2925-2020-10-4-700-707.
8. Kostin A. Bioplastics: prospects in Russia. Plastiks, 2015, no. 3 (143), pp. 44–50.
9. Samarth N.B., Mahanwar P.A. Modified Vegetable Oil Based Additives as a Future Polymeric Material – Review. Open Journal of Organic Polymer Materials, 2015, no. 5, pp. 1–22. DOI: 10.4236/ojopm.2015.5100.
10. Prokhorenko S.V., Ivancheva A.D. State and problems of utilization of polymeric materials. Polymers-money, 2007, no. 4, pp. 27–32.
11. Straathof A.J.J., Bampouli A. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices. Biofuels, Bioproducts and Biorefining, 2017, no. 11 (5), pp. 798–810. DOI: 10.1002/bbb.1786.
12. FDA Regulations on Bisphenol A (BPA). Use in Food Contact Application. Available at: https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application#regulations (accessed: April 26, 2022).
13. Wang S., Wong D.S., Jang S., Huang S. Novel plant-wide process design for producing dichlorohydrin by glycerol hydrochlorination. Journal of the Taiwan Institute of Chemical Engineers, 2017, vol. 73, pp. 50–61. DOI: 10.1016/j.jtice.2016.05.055.
14. Zhu J., Garg A., Mekhissi K., Chandradhekhara K. Curing and mechanical characterization
of a soybased epoxy resin system. Journal of Applied Polymer Science, 2004, vol. 91, no. 6, pp. 3513–3518.
15. Tan S.G., Chow W.S. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 2010, vol. 49, pp. 1581–1590.
16. Latif F.E.A., Zainal A.Z., Cardona F. et al. Bio-Resin Production through Ethylene Unsaturated Carbon Using Vegetable Oils. Processes, 2020, no. 8 (1), pp. 2–15. DOI: 10.3390/pr8010048.
17. Baroncini E.A., Yadav S.K., Palmese G.R., Stanzione J.F. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. Journal of Applied Polymer Science, 2016, vol. 45, pp. 133. DOI: 10.1002/app.44103.
18. Salimon J., Haron M.D.J., Jahangirian H. et al. Lipase Epoxidation Optimizing of Jatropha Curcas Oil Using Perlauric Acid. Digest Journal of Nanomaterials and Biostructures, 2014, vol. 9, pp. 1159–1169.
19. Dodiuk H., Goodman S.H. Handbook of Thermoset Plastics. San Diego: William Andrew, 2014, 768 p.
20. Markets M.A. Epoxidized Soybean Oil Market by Raw Material, by Applications, by End-Use Industry, by Region-Global Trends and Forecast to 2020: Markets and Markets. 2015. Available
at: https://www.prnewswire.com/news-releases/epoxidized-soybean-oil-market-by-raw-materialby-
application-by-end-use-industry-by-region---global-trends-and-forecasts-to-2020-300142755.html
(accessed: April 27, 2022).
21. Thermoplastic composites: recyclable materials. Available at: https://www.arkema.com/en/
markets-and-solutions/solutions/biobased (accessed: April 27, 2022).
22. Samper M.D., Petrucci R., Sanchez-Nacher L. et al. New Environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Composites. Part B: Engineering, 2015, vol. 71, pp. 203–209.
23. Cavusoglu J., Cayli G. Polymerization reactions of epoxidized soybean oil and maleate esters of oil-soluble resoles. Journal of Applied Polymer Science, 2015, vol. 7, p. 132. DOI: 10.1002/app.41457.
24. Benyahya S., Aouf C., Caillol S. et al. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Industrial Crops and Products, 2014, vol. 53, pp. 296–307.
25. Fache M., Boutevin B., Caillol S. Epoxy thermosets from model mixtures of the lignin-to-vanillin process. Green Chemistry, 2016, no. 18, pp. 712–725.
26. Ding J., Ur Rahman O., Peng W. et al. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings. Applied Surface Science, 2018, vol. 427, pp. 981–991. DOI: 10.1016/J.APSUSC.2017.08.224.
27. Czub P. Kompozycje epoksydowe z wykorzystaniem modyfikowanych olejów rooelinnych. Polimery, 2008, vol. 53, pp. 182–189.
28. Lari G.M., Pastore G., Mondelli C., Pérez-Ramírez J. Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides. Green Chemistry, 2018, no. 20 (1), pp. 148–159.
29. Wang M., Zhou J., Mao G., Zheng X. Synthesis of TS-1 from an inorganic reactant system and its catalytic properties for allyl chloride epoxidation. Industrial & Engineering Chemistry Research, 2012, vol. 51 (39), pp. 12730–12738.
30. Almena A., Martín M. Technoeconomic Analysis of the Production of Epichlorohydrin from Glycerol. Industrial & Engineering Chemistry Research, 2016, vol. 55 (12), pp. 3226–3238.
31. Lukin P.M., Saveliev A.N., Saveliev N.I. Low-waste technology for the production of epichlorohydrin from glycerin. Ekologiya i promyshlennostʹ Rossii, 2016, no. 20 (6), pp. 8–13. DOI: 10.18412/1816-0395-2016-6-8-13.
32. Dmitriev G.S., Khaustov E.N., Zanaveskin L.N. Synthesis of epichlorohydrin from biodiesel production waste. Available at: http://refdb.ru/look/1174105-p3.html (accessed: April 28, 2022).
33. Manthey N.W., Cardona F., Aravinthan T. Cure kinetic study of epoxidized hemp oil cured with a multiple catalytic system. Journal of Applied Polymer Science, 2012, vol. 125, pp. 511–517.
34. Cai S., Wang L. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Bronsted Acidic Ionic Liquid as Catalyst. Chinese Journal of Chemical Engineering, 2011, vol. 19, pp. 57–63.
35. Sinadinovi´c-Fišer S., Jankovi´c M., Borota O.M. Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion-exchange resin. Chemical Engineering and Processing, 2012, vol. 62, pp. 106–113.
36. Leveneur S., Zheng J., Taouk B. et al. Interaction of thermal and kinetic parameters for a liquid-liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. Journal of the Taiwan Institute of Chemical Engineers, 2014, vol. 45, pp. 1449–1458.
37. Zeleke T.D., Ayana Y.M. Epoxidation of Vernonia Oil in Acidic Ion Exchange Resin. American Journal of Applied Chemistry, 2017, no. 5 (1), pp. 1–6.
38. Manthey N.W., Cardona F., Aravinthan T. Cure kinetic study of epoxidized hemp oil cured with a multiple catalytic system. Journal of Applied Polymer Science, 2012, vol. 125, pp. 511–517.
39. Mungroo R., Pradhan N.C., Goud V., Dalai A.K. Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. Journal of the American Oil Chemists' Society, 2008, vol. 85 (9), pp. 887–896. DOI: 10.1007/s11746-008-1277-z.
40. Abdullah B.M., Salimon J. Epoxidation of Vegetable Oils and Fatty Acids: Catalysts, Methods and Advantages. Journal of Applied Sciences, 2010, vol. 10, pp. 1545–1553. DOI: 10.3923/jas.2010.1545.1553.
41. Uyama H., Kuwabara M., Tsujimoto T., Kobayashi S. Enzymatic synthesis and curing of biodegradable epoxidecontaining polyesters from renewable resources. Biomacromolecules, 2003, vol. 4 (2), pp. 211–215. DOI: 10.1021/bm0256092.
42. Eitner J., Kraft M. Eco-friendly formulations based on vegetable oils. Available at: https://renewable-carbon.eu/news/eco-friendly-formulations-based-on-vegetable-oils (accessed: April 28, 2022).
43. Saurab T., Patnaik M., Bhagt S.L., Renge V.C. Epoxidation of Vegetable Oils: A Review. International Journal of Emerging Technology and Advanced, 2011, vol. 2, pp. 491–501.
44. Goud V.V., Dinda S., Paatwardhan A.V., Pradhan N.C. Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. Asia-Pacific Journal of Chemical Engineering, 2010, vol. 5, pp. 346–354.
45. Mushtaq M., Tan I.B., Devi C. et al. Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil. Proceedings of the 2011 National Postgraduate Conference (Kuala Lumpur, Malaysia, 19–20 September 2011), 2011, vol. 11, pp. 1–4.
46. Oyama S.T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis. Blacksburg: Elsevier, 2008. Available at: http://www.elsevier.com (accessed: April 29, 2022).
47. Goud V.V., Patwardhan A.V., Dinda S., Pradhan N.C. Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chemical Engineering Science, 2007, vol. 62, pp. 4065–4076.
The article contains information about hydraulic fluids used in the foreign and Russian aviation at the present time. Brief information about hydraulic systems is given. Information is provided on foreign hydraulic fluids such as Skydrol™ and Hyjet™ and domestic working fluids named NGZh-5u, LZ-MG-2, 7-50S-3 and hydraulic oils of the MGE-10A, AMG-10 brands. The main Russian enterprises engaged in the production of hydraulic fluids over the past 40 years are indicated. Information on modern developments of hydraulic fluid compositions in the Russian Federation is presented.
2. Buznik V.M., Kablov E.N. State and prospects of Arctic materials science. Vestnik RAN, 2017, vol. 87, no. 9, pp. 827–839.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Tez. report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
4. Sukhotin A.M., Zotikov V.S., Kazankina A.F. et al. Non-flammable coolants and hydraulic fluids: reference guide. Leningrad: Khimiya, 1979, 235 p.
5. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 21, 2021). DOI: 10.18577/2713-0193-2021-0-4-3-13.
6. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
7. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy
i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
8. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
9. What Types of Hydraulic Fluids are Used in Aircraft? Available at: https://blog.brennaninc.com/
what-types-of-hydraulic-fluids-might-you-find-in-an-aircraft (accessed: December 12, 2021).
10. Aviation hydraulic fluids and preservatives. Available at: https://www.shell.com/business-customers/aviation/aeroshell/aeroshell-hydraulic-fluid.html (accessed: December 12, 2021).
11. MOP-1313500-01–2021. Cross-industry restrictive list of fuels, oils, lubricants, special liquids, preservative materials and additives permitted for use in weapons, military and special equipment: Moscow, 2021, pp. 46–50. Available at: https://ens.mil.ru/files/MOP-2021.pdf (accessed: December 12, 2021).
12. RTM Ts2–2009. List of foreign fuels and lubricants recommended for use in domestic aircraft.
8th ed. Moscow: TsIAM, 2009, p. 17.
13. State Standard 20734–75. Fluid working 7-50S-3. Specifications. Moscow: Gosstandart of the USSR, 1975, 4 p.
14. Interdepartmental standard NVZ-71. Oils, lubricants, special fluids for Air Force facilities.
Moscow: VNIIKI, 1971, pp. 52–54.
15. State Standard 6794–2017. Oil AMG-10. Specifications. Moscow: Standartinform, 2019, 14 p.
16. Working fluid for hydraulic systems of aviation equipment: pat. 2347803 Rus. Federation; filed 16.11.07; publ. 27.02.09.
17. Aviation synthetic hydraulic oil ASGIM. Available at: http://snp-gsm.ru/products/asgim/ (accessed: April 19, 2022).
18. Yanovskii L.S., Ezhov V.M., Molokanov A.A. et al. A synthetic aviation hydraulic fluid of new ge-neration. Russian Aeronautics. 2014, vol. 57(2), pp. 193–197. DOI: 10.3103/S1068799814020147.
19. Working fluid for hydraulic systems: pat. 2659393 Rus. Federation; filed 24.11.17; publ. 02.07.18.
20. Lubricating composition of a non-flammable working fluid for aviation equipment: pat. 2476586C2 Rus. Federation; filed 12.11.10; publ. 27.02.13.
21. Explosion and fireproof working fluid: pat 2547729C2 Rus. Federation; filed 03.06.13; publ. 10.04.15.
The article is devoted to the analysis of current trends necessary in the creation of rubber compound formulations for special-purpose rubber products, operable under conditions of prolonged exposure to low temperatures. The main operational characteristics of rubbers based on polar and non-polar rubbers are given. The results of new research by scientists from the National research center «Kurchatov institute» state research center of the Russian Federation on the creation of elastomeric materials for work under conditions of prolonged exposure to negative temperatures are systematized, the features of creating frost-resistant rubber are described, and an analysis of the main options for choosing the required ratio of rubbers and ingredients is carried out.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of XX Mendeleevsky Congress for General and Applied Chemistry: in 5 vols. Ekaterinburg: UB of RAS, 2016, vol. 3, pp. 25–26.
3. Kablov E.N. The sixth technological way. Nauka i zhizn, 2010, no. 4, pp. 2–7.
4. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. M.: VIAM, 2012, pp. 346–348.
5. Kablov E.N. Airospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
6. The Big Reference Book for Specialist in Rubbers: in 2 parts. Moscow: Tekhinform, 2012. 1385 p.
7. Technology of rubber: recipe and testing: trans. from Engl. Ed. J.S. Dik. St. Petersburg: Scientific foundations and technologies, 2010, 620 p.
8. Fedyukin D.P., Makhlis F.A. Technical and technological properties of razin. Moscow: Khimiya, 1985, 240 p.
9. Makhlis F.A., Fedyukin D.L. Terminological reference for rubber. Moscow: Khimiya, 1989, 400 p.
10. Kornev A.E., Bukanov A.M., Sheverdaev O.N. Technology of elastomeric materials. Moscow: East, 2009, 502 p.
11. Agayants I.M. Five centuries of rubber and rubber. Moscow: Modern-A, 2002, 432 p.
12. Koshelev F.F., Kornev A.E., Bukanov A.M. General technology of rubber. 4th ed. Moscow: Khimiya, 1978, 528 p.
13. Ososhnik I.A., Shutilin Yu.F., Karmanova O.V. Production of rubber technical products. Voronezh: Voronezh State Technology Academy, 2007, 972 p.
14. Grishin B.S. Materials of the rubber industry (information and analytical database): in 2 vols. Kazan: KSTU, 2010, vol. 1, 596 p.
15. Rubber and resin. Science and technology. Ed. J. Mark, B. Erman, F. Eirich; trans. from English. Ed. A.A. Berlin, Yu.L. Morozova. Dolgoprudny: Intelligence, 2011, 768 p.
16. Nudelman Z.N. Poftorcacus: basics, processing, application. Moscow: RIAS, 2007, 383 p.
17. Semenova S.N., Chaykun A.M., Suleymanov R.R. Ethylene-propylene-diene rubber and its use in rubber materials for special purposes (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 23–30. DOI: 10.18577/2071-9140-2019-0-3-23-30.
18. Semenova S.N., Suleymanov R.R., Chaykun A.M. Mixing ethylene-propylene-diene and methylphenylsiloxane rubbers in the formulation of cold and ozone resistant rubber. Trudy VIAM, 2019, no. 9 (81), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2019-0-9-64-72.
19. Shuldeshov E.M. Sound-proof properties of aviation heatsound-proof materials. Trudy VIAM, 2019, no. 12 (84), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2019-0-12-37-45.
20. Semenova S.N., Chaikun A.M., Suleimanov R.R. The influence of the vulcanizing system on the temperature properties of rubber based on ethylenepropylene rubber. Kauchuk i rezina, 2020, vol. 79, no. 4, pp. 210–213.
21. Semenova S.N., Chaykun A.M. Highly heat-resistant silicone rubber compositions (review). Trudy VIAM, 2020, no. 11 (93), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2020-0-11-31-37.
22. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Compounding principles in the field of frost resistant rubbers. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 53–55.
23. The norms of flight fit of the transport category aircraft: AP-25: approved by a resolution of the 28th session of the Council for Aviation and the use of airspace on 11.12.2008. 3rd ed. with amendments 1–6. Moscow: Aviazdat, 2009, 267 p.
24. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions. Trudy VIAM, 2013, no. 1, paper no. 05. Available at: http://viam-works.ru (accessed: June 14, 2022).
25. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskiye nanotekhnologii, 2013, vol. 8,
no. 3-4, pp. 24–42.
26. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climate aging of composite aviation materials. III. Significant aging factors. Deformatsiya i razrusheniye materialov, 2011, no. 1, pp. 34–40.
27. Zemsky D.N., Chirkova Yu.N. New ingredients of rubber mixtures. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 12, pp. 143–145.
28. Compositional oil- and gas-resistant, frozen-resistant material: pat. 2437903 Rus. Federation; filed 114.04.08; publ. 27.12.11.
29. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
30. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Development and modifying of elastomeric materials for application in all weather conditions. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 309–314.
31. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Features of old-resistant rubbers on the basis on different unvulcanized rubbers. Trudy VIAM, no. 12, paper no. 04. Available at: http://www.viam-works.ru (accessed: June 14, 2022).
32. Erasov V.S., Kotova E.A. Erosion resistance of aviation materials to influence of solid (dust) particles. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 30–36.
33. Kablov E.N. Chemistry in aviation material science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
34. Chernsky I.N., Popov S.N., Goldstrakh I.Z. Design and calculation of frost-resistant mobile seals. Novosibirsk: Nauka, 1992, 123 p.
35. Technology of rubber: recipe and testing. Ed. J.S. Savage; trans. from English. Ed. V.A. Shershnev. St. Petersburg: Scientific foundations and technologies, 2010, 620 p.
36. Kargin V.A. Encyclopedia of polymers: in 3 vols. Moscow: Sovetskaya Entsiklopediya, 1972, vol. 1: A–K, 609 p.
37. Petrova N.N., Portnyagina V.V., Fedotova E.S. The prospects for the use of a new plasticizer of diboxyeladipinate for the production of rubberous intelligence with increased frost resistance. Kauchuk i rezina, 2008, no. 2, pp. 18–22.
38. Portnyagina V.V., Sokolova M.D., Petrova N.N. et al. Modification of rubberizes by natural zeolites when creating frost-resistant seals of the mining technique of the North. Gorny informatsionno-analiticheskiy byulleten, 2012, no. 11, pp. 392–401.
39. Sokolova M.D., Davydova M.L., Shadrinov N.V., Morova L.Ya. Development of elastomeric nanocomposites for sealing for the technique of the North. Izvestiya Samarskogo nauchnogo
tsentra RAN, 2011, vol. 13, no. 1 (2), pp. 397–401.
40. Wound-resistant mixture based on propylene radiation rubber: pat. 2294346 Rus. Federation; filed 20.05.05; publ. 27.02.07.
41. Tseolithic frost -resistant rubber mixture: pat. 2326903 Rus. Federation; filed 31.08.06; publ. 20.06.08.
42. A rubber mixture modified by the composition of super-molecular weight polyethylene and magnesium nanoshpinel: pat. 2425851 Rus. Federation; filed 09.03.11; publ. 10.08.11.
43. Savelyev A.V., Vrukova V.G. The effect of fillers on adhesive strength of incompatible polymers. Kauchuk i rezina, 1986, no. 9, p. 31.
44. Zaikin A.E., Galikhanov M.F., Archireev V.P. The effect of the filler on the thermodynamic stability of polymer mixtures. Vysokomolekulyarnyye soyedineniya, Ser.: B, 1997, vol. 39, no. 6, pp. 1060–1063.
45. Davydova M.L., Sokolova M.D. A promising technological method for obtaining polymer –elastomeric material. Voprosy materialovedeniya, 2013, no. 3 (75), pp. 41–47.
46. Shadrinov N.V., Sokolova M.D., Okhlopkova A.A. et al. Enhancement of compatibility between ultrahigh-Molecular-Weight polyethylene particles and butadiene-Nitrile rubber matrix with nanoscale ceramic particles and characterization of evolving layer. Bulletin of the Korean Chemical Society, 2013, vol. 34, no. 12, pp. 3762–3766.
47. Shadrinov N.V., Sokolova D.D. A study of the influence of activated zeolite on the deformation of polymerialstomeric composites by the method of atomic-power microscopy. Materialovedenie, 2014, no. 7, pp. 17–22.
48. Portnyagina V.V., Petrova N.N., Sibiryakova E.M. Study of the influence of bentonites on the structure and properties of razin based on propylenexide rubber. Works of the IV Eurasian Symposium on the problems of the strength of materials and machines for the regions of the cold climate. Yakutsk, 2008, 1 CD.
49. Frost-resistant rubber mixture based on propyilentic rubber: pat. 2294341 Rus. Federation; filed 20.05.05; publ. 27.02.07.
50. Lysova G.A., Dontsov A.A. Hydrated butadien-nitrile rubber. Properties. Recipe. Application: thematic review. Moscow: TsNIITEneftekhim, 1991, 58 p.
51. Anisimov B.Yu., Dukman A.S., Namnitov N.S., Polyakov S.A. Hydrination of butadien-nitrile rubber. Kauchuk i rezina, 2007, no. 2, p. 32.
The effect of graphene content on the physical and mechanical properties and oxidative resistance of samples of ceramic composite material (CCM) obtained by hot pressing has been studied. The introduction of graphene in an amount of 1–2 vol. % led to an increase in the microhardness of CMC from 24,8 to 26,5 GPa, a decrease in open porosity from 0,8 to 0,2 %, and an increase in oxidation resistance at a temperature of 1500 °C by 63 %. . The structure of graphene with a hexagonal crystal lattice was studied by scanning and transmission electron microscopy: graphene has a scaly fragmentation structure with agglomerate sizes from 1 to 8 μm.
2. Nguyen V.-H., Delbari S.A., Shahedi Asl M. et al. Mohammadreza Shokouhimehr Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics. Ceramics International, 2021, vol. 47, pp. 12459–12466.
3. Cheng Y., Hu P., Zhou Sh. et al. Using macroporous graphene networks to toughen ZrC–SiC ceramic. Journal of the European Ceramic Society, 2018, vol. 38, is. 11, pp. 3752–3758.
4. Balak Z., Azizieh M., Kafashan H. Optimization of effective parameters on thermal shock resistance of ZrB2–SiC-based composites prepared by SPS: using Taguchi design. Materials Chemistry and Physics, 2017, vol. 196, pp. 333–3340.
5. Vafa N.P., Nayebi B., Shahedi Asl M. Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part II: mechanical behavior. Ceramics International, 2016, vol. 42, no. 2, pp. 2724–2733.
6. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. High-temperature structural composite materials based on glass and ceramics for promising aircraft products. Steklo i keramika, 2012, no. 4, pp. 7–11.
7. Shahedi Asl M., Farahbakhsh I., Nayebi B. Characteristics of multi–walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceramics International, 2016, vol. 42, is. 1, pp. 1950–1958.
8. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Grashchenkov D.V., Solntsev S.St., Ermakova G.V., Prokopchenko G.M., Kablov E.N., Kuznetsov N.T. Obtaining filamentous silicon carbide crystals using the method of the method in the volume of sic-curamika. Kompozity i nanostruktury, 2014, vol. 6, no. 4, pp. 198–211.
9. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for
the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
10. Belyachenkov I.O., Schegoleva N.E., Chainikova A.S., Vaganova M.L., Shavnev A.A. The influ-ence of sintering and modifying additives on the sintering process and the properties of silicon nitride ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 70–78. DOI: 10.18577/2071-9140-2020-0-1-70-78.
11. Babashov V.G., Varrik N.M., Maksimov V.G., Samorodova O.N. Oxide fiber coated with silicon carbide for producing composite materials. Aviation materials and technologies, 2021, no. 3 (64), paper no. 09. Available at: http://www.journal.viam.ru (accessed: April 07, 2022). DOI: 10.18577/2713-0193-2021-0-3-94-104.
12. Zhitnyuk S.V. Oxygen-free ceramic materials for the space technics (review). Trudy VIAM, 2018, no. 8 (68), paper no. 8. Available at: http://www.viam-works.ru (accessed: April 07, 2022). DOI: 10.18577/2307-6046-2018-0-8-81-88.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Wang X., Zhao J., Cui E. et al. Nano/microstructures and mechanical properties of Al2O3–WC–TiC ceramic composites incorporating graphene with different sizes. Materials Science & Engineering A, 2021, vol. 812, art. 141132.
15. Ahmad I., Islam M., Habis N.A., Parves S. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics. Journal Materials Science and Technology, 2020, vol. 40, pp. 135–145.
16. Feng Y.H., Fang J.H., Wu J. et al. Mechanical and tribological properties of plasma sprayed graphene nanosheets/Al2O3 + 13 % TiO2 composite coating. Tribology International, 2020, no. 146, аrt. 106233.
17. Li Z.L., Zhao J., Sun J.L. Reinforcement of Al2O3/TiC ceramic tool material by multi-layer grapheme. Ceramic International, 2017, vol. 43, pp. 11421–11427.
18. Wang X.C., Zhao J., Cui E.Z. Microstructure, mechanical properties and toughening mechanisms of graphene reinforced Al2O3–WC–TiC composite ceramic tool material. Ceramic International, 2019, vol. 45, pp. 10321–10329.
19. Liu Y.Z., Jiang X.S., Shi J.L. Research on the interface properties and strengthening-toughening mechanism of nanocarbon-toughened ceramic matrix composites. Nanotechnology Revews, 2020, vol. 9, pp. 190–208.
20. Sun J.L., Zhao J., Huang Z.F. Preparation and properties of multilayer graphene reinforced binderless TiC nanocomposite cemented carbide through twostep sintering. Materials & Design, 2020, no. 188, art. 108495.
21. Rezaie A., Fahrenholtz W.G., Hilmas G.E. The effect of a graphite addition on oxidation of ZrB2–SiC in air at 1500 °C. Journal of European Ceramic Society, 2013, vol. 33, pp. 413–421.
22. Jin H., Meng S., Xinghong Z. et al. Oxidation of ZrB2–SiC-Graphite composites under low oxygen partial pressures of 500 and 1500 Pa at 1800 °C. Journal of American Ceramic Society, 2016, vol. 99, pp. 2474–2480.
The influence of aviation fuels, oils and technical fluids on the mechanical properties of polymer composite materials is considered. Regularities of aging in water and aqueous solutions of acids, bases, salts are analyzed. It is shown that the reasons for the change in properties are the processes of plasticization, destruction and post-curing of polymer matrices, chemical destruction of reinforcing fillers and adhesive interaction at the «matrix–filler» interface, the formation of microcracks under the action of internal stresses, enhanced by the action of water and aqueous solutions of acids, salts and bases.
2. State Standard 12020–2018. Plastics. Methods for determining the resistance to the action of chemical media. Moscow: Standartinform, 2018, 21 p.
3. Mishurov K.S., Mishkin S.I. Environmental effect on properties of CFRP (Carbon Fiber Reinforced Plastic) VKU-39. Trudy VIAM, 2016, no. 12 (48), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2016-0-12-8-8.
4. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.Sh. fiber reinforced plastic VKU-27L. Trudy VIAM, 2018, no. 3 (63), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2018-0-3-60-67.
5. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry. Trudy VIAM, 2015, no. 8, paper no. 08. Available at: http://viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2015-0-8-8-8.
6. Voynov S.I., Zhelezina G.F., Solovyeva N.A., Yamshchikova G.A. Environmental effects on properties of aramid fiber reinforced plastic manufactured by RTM method. Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 72–78. DOI: 10.18577/2071-9140-2015-0-4-72-78.
7. Kan A.Ch., Kulagina G.S., Ayupov T.R., Zhelezina G.F. The influence of environmental factors on the characteristics of antifriction organoplasty Orgalon AF-1M. Trudy VIAM, 2018, no. 3 (109), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 5, 2022). DOI: 10.18577/2307-6046-2022-0-3-91-101.
8. ASTM D 543-21. Standard practices for evaluating the resistance of plastics to chemical reagents. ASTM International, 2021, 8 p.
9. ISO 175:2010. Plastics – Methods of test for the determination of the effects of immersion in liquid chemicals. International Organization for Standardization, 2021, 20 p.
10. ISO 4599:1986. Plastics – Determination of resistance to environmental stress cracking (ESC) – Bent strip method. International Organization for Standardization, 1986, 6 pp.
11. Kim G., He Y., Kulkarni S., Sterkenburg R. The influence of aircraft fluid ingression on tensile properties of aramid fiber composites. Advanced Composite Materials, 2021, vol. 30, no. 4, pp. 365–379.
12. Kumarasamy S., Mazlan N.M., Abidin M.S.Z., Anjang A. Influence of Fuel Absorption on the Mechanical Properties of Glass-Fiber-Reinforced Epoxy Laminates. Journal of King Saud University – Engineering Sciences, 2020, vol. 32, no. 8, pp. 548–554.
13. Ren G., Zhu X., Men X. et al. The effect of oil fouling on the mechanical and tribological properties of nomex fabric/phenolic composite. Journal of Composite Materials, 2016, vol. 50, no. 3, pp. 427–432.
14. Sala G. Composite degradation due to fluid absorption. Composites. Part B: Engineering, 2000, vol. 31, no. 5, pp. 357–373.
15. Khagendra K., Yadav S., Lohchab D. Influence of Aviation Fuel on Mechanical properties of Glass Fiber-Reinforced Plastic Composite. International Advanced Research Journal in Science, Engineering and Technology, 2016, vol. 3, no. 4, pp. 58–65.
16. Kim G., Sterkenburg R. Investigating the effects aviation fluids have on the flatwise compressive strength of Nomex® honeycomb core material. Journal of Sandwich Structures and Materials, 2021, vol. 23, no. 1, pp. 365–382.
17. De Souza L.R., Marques A.T., D’Almeida J.R.M. Effects of aging on water and lubricating oil on the creep behavior of a GFRP matrix composite. Composite Structures, 2017, vol. 168, pp. 285–291.
18. Condruz M., Paraschiv A., Puşcaşu C., Sebastian Vintilǎ I. Tensile behavior of humid aged advanced composites for helicopter external fuel tank development. MATEC Web of Conferences, 2018, vol. 145, art. 02004.
19. Sugita Y., Winkelmann C., La Saponara V. Environmental and chemical degradation of car-bon/epoxy lap joints for aerospace applications, and effects on their mechanical performance. Composites Science and Technology, 2010, vol. 70, no. 5, pp. 829–839.
20. Rider A., Yeo E. The Chemical Resistance of Epoxy Adhesive Joints Exposed to Aviation Fuel and its Additives. New York: Sciences, 2005, 29 p.
21. Genanu M.H.B.H. Study the Effect of Immersion in Gasoline and Kerosene on Fatigue Behavior for Epoxy Composites Reinforcement with Glass Fiber. The Fifth Scientific Conference of University of Wasit, October 18–19, 2011, pp. 1–10.
22. Kablov E.N., Startsev V.O. Climatic Aging of Aviation Polymer Composite Materials: I. Influence of Significant Factors. Russian Metallurgy (Metally), 2020, vol. 2020, no. 4, pp. 364–372.
23. Kablov E.N., Startsev V.O. Climatic Aging of Aviation Polymer Composite Materials: II. Development of Methods for Studying the Early Stages of Aging. Russian Metallurgy (Metally), 2020, vol. 2020, no. 10, pp. 1088–1094.
24. Startsev V.O., Lebedev M.P., Frolov A.S., Nizina T.A. Relationship between the deformability and fractographic characteristics of fracture surfaces of epoxy polymers. Doklady Physical Chemistry, 2017, vol. 476, no. 1, pp. 149–152.
25. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
26. Petrov M.G., Lebedev M.P., Startsev O.V., Kopyrin M.M. Effect of Low Temperatures and Moisture on the Strength Performance of Carbon Fiber Reinforced Plastic. Doklady Physical Chemistry, 2021, vol. 500, no. 1, pp. 85–91.
27. Kablov E.N., Startsev V.O. The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576.
28. Nikolaev E.V., Slavin A.V., Startsev V.O., Laptev A.B. Modern approaches to assessing the impact of external factors on materials and complex technical systems (to the 120th anniversary of G.V. Akimov). Trudy VIAM, 2021, no. 9 (103), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2021-0-9-117-130.
29. Amaro A.M., Reis P.N.B., Neto M.A., Louro C. Effects of alkaline and acid solutions on glass/epoxy composites. Polymer Degradation and Stability, 2013, vol. 98, no. 4, pp. 853–862.
30. Amaro A.M., Reis P.N.B., Neto M.A., Louro C. Effect of different acid solutions on glass/epoxy composites. Journal of Reinforced Plastics and Composites, 2013, vol. 32, no. 14, pp. 1018–1029.
31. Cabral-Fonseca S., Nunes J.P., Rodrigues M.P., Eusébio M.I. Durability of carbon fibre reinforced polymer laminates used to reinforced concrete structures. Science and Engineering of Composite Materials, 2011, vol. 18, no. 4, pp. 201–207.
32. Uthaman A., Xian G., Thomas S. et al. Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers, 2020, vol. 12, no. 3, аrt. 614.
33. Kattaguri R., Fulmali A.O., Prusty R.K., Ray B.C. Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. Journal of Applied Polymer Science, 2020, vol. 137, no. 10, аrt. 48434.
34. Ji Y., Kim Y.J. Effects of Sulfuric Acid on Durability Characteristics of CFRP Composite Sheets. Journal of Materials in Civil Engineering, 2017, vol. 29, no. 10, аrt. 04017159.
35. Bazli M., Ashrafi H., Oskouei A.V. Effect of harsh environments on mechanical properties of GFRP pultruded profiles. Composites. Part B: Engineering, 2016, vol. 99, pp. 203–215.
36. Benmokrane B., Elgabbas F., Ahmed E.A., Cousin P. Characterization and Comparative Durability Study of Glass/Vinylester, Basalt/Vinylester, and Basalt/Epoxy FRP Bars. Journal of Composites for Construction, 2015, vol. 19, no. 6, art. 04015008.
37. Li H., Xian G., Wu J. Durability and Fatigue Performances of Basalt Fiber/Epoxy Reinforcing Bars. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, 2012, pp. 1–8.
38. Garg M., Sharma S., Mehta R. Carbon nanotube-reinforced glass fiber epoxy composite laminates exposed to hygrothermal conditioning. Journal of Materials Science, 2016, vol. 51, no. 18, pp. 8562–8578.
39. Jain N., Singh V.K., Chauhan S. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites. Journal of the Mechanical Behavior of Materials, 2017, vol. 26, no. 5–6, pp. 205–211.
40. Wei B., Cao H., Song S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials and Design, 2010, vol. 31, no. 9, pp. 4244–4250.
41. Coricciati A., Corvaglia P., Mosheyev G. Durability of fibers in aggressive alkaline environment. ICCM International Conferences on Composite Materials, 2009, pp. 1–10.
42. Dhand V., Mittal G., Rhee K.Y. et al. A short review on basalt fiber reinforced polymer composites. Composites. Part B: Engineering, 2015, vol. 73, pp. 166–180.
43. Lu Z., Xian G. Resistance of basalt fibers to elevated temperatures and water or alkaline solution immersion. Polymer Composites, 2018, vol. 39, no. 7, pp. 2385–2393.
44. Wang M., Zhang Z., Li Y. et al. Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 2008, vol. 27, no. 4, pp. 393–407.
45. Quagliarini E., Monni F., Bondioli F., Lenci S. Basalt fiber ropes and rods: Durability tests for their use in building engineering. Journal of Building Engineering, 2016, vol. 5, pp. 142–150.
46. Arias J.P.M., Bernal C., Vázquez A., Escobar M.M. Aging in Water and in an Alkaline Medium of Unsaturated Polyester and Epoxy Resins: Experimental Study and Modeling. Advances in Polymer Technology, 2018, vol. 37, no. 2, pp. 450–460.
47. Pan W., Zhang D., Lu M. et al. Study on the Morphology Characteristics of Epoxy Resin of Composite Insulator under Acid-heat Condition. Journal of Physics: Conference Series, 2022, vol. 2213, no. 1, art. 012010.
48. Cousin P., Hassan M., Vijay P.V. et al. Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars. Journal of Composite Materials, 2019, vol. 53, no. 26–27, pp. 3651–3670.
49. Lebedev M.P., Startsev O.V., Kychkin A.K. The effects of aggressive environments on the mechanical properties of basalt plastics. Heliyon, 2020, vol. 6, no. 3, аrt. e03481.
50. Manikandan V., Winowlin Jappes J.T., Suresh Kumar S.M., Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Composites. Part B: Engineering, 2012, vol. 43, no. 2, pp. 812–818.
51. Wu G., Wang X., Wu Z. et al. Durability of basalt fibers and composites in corrosive environments. Journal of Composite Materials, 2015, vol. 49, no. 7, pp. 873–887.
52. Slavin A.V., Startsev O.V. Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering. Trudy VIAM, 2018, no. 9 (69), paper no. 8. Available at: http://www.viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2018-0-9-71-82.
53. Kablov E.N., Startsev O.V., Panin S.V. Moisture transfer in carbon-fiber-reinforced plastic with degraded surface. Doklady Physical Chemistry, 2015, vol. 461, no. 2, pp. 80–83.
54. Sidorina A.I. Modification of the surface of carbon reinforcing fillers for polymer composite materials by electrochemical treatment (review). Trudy VIAM, 2022, no. 4 (110). paper no. 07. Available at: http://www.viam-works.ru (accessed: May 31, 2022). DOI: 10.18577/2307-6046-2022-0-4-61-74.
55. Pandian A., Vairavan M., Jebbas Thangaiah W.J., Uthayakumar M. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites. Journal of Composites, 2014, vol. 2014, art. ID 587980.
56. Lipatov Y.V., Gutnikov S.I., Manylov M.S. et al. High alkali-resistant basalt fiber for reinforcing concrete. Materials and Design, 2015, vol. 73, pp. 60–66.
57. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
Considers composite materials with a 3D-reinforced structure. A review of the main options for materials according to the manufacturing method was carried out: woven, knitted, braided and with through reinforcement, as well as woven with a multiaxial fabric and woven with a distance. 3D-reinforcement allows you to increase the shear strength, resistance to delamination and impact. However, it also reduces other mechanical properties by damaging or distorting the horizontal fibers. The most promising for use in load-bearing structures are 3D-woven composite materials due to the least destruction of fibers.
2. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Study of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 7, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
6. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru
(accessed: July 5, 2022). DOI: 10.18577/2307-6046-2019-0-7-92-111.
7. Saleh M.N., Soutis C. Recent advancements in mechanical characterisation of 3D woven composites. Mechanics of Advanced Materials and Modern Processes, 2017, nо. 3, pp. 1–17. DOI: 10.1186/s40759-017-0027-z.
8. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
9. Tong L., Mouritz A.P., Bannister M.K. 3D Fibre Reinforced Polymer Composites. Elsevier
Science, 2002. 254 p.
10. Muller J., Zulliger A., Dorn M. Economic production of composite beams with 3D fabric tapes. Textile Month, 1994, September, pp. 9–13.
11. Mouritz A.P., Bannister M.K., Falzon P.J., Leong K.H. Review of applications for advanced three-dimensional fibre textile composites. Composites. Part A: Applied Science and Manufacturing, 1999, vol. 30, is. 12, pp. 1445–1461. DOI: 10.1016/S1359-835X(99)00034-2.
12. Labanieh A.R., Legrand X., Koncar V., Soulat D. Development in the multiaxis 3D weaving technology. Textile Research Journal, 2015, nо. 86, pp. 1–16. DOI: 10.1177/0040517515612365.
13. Curiskis J.I., Durie A., Nicolaidis A., Herszberg I. Developments in multiaxial weaving for advanced composite materials. Proceedings of ICCM–11, 1997, vol. 5, pp. 86–96.
14. Labanieh A.R., Legrand X., Koncar V., Soulat D. Novel optimization method to estimate the geometrical properties of a multiaxial 3D woven preform. Journal of Reinforced Plastics and Composites, 2013, nо. 32, pp. 3–16. DOI: 10.1177/0731684412472746.
15. 3D Weaving. Available at: https://www.3dweaving.com/en/products/distance-fabrics/constant-height (accessed: July 05, 2022).
16. Li X., He X., Liang J. et al. Research Status of 3D Braiding Technology. Applied Composite Materials, 2022, nо. 29, pp. 147–157. DOI: 10.1007/s10443-021-09963-2.
17. Khayale J. Development of 3D Braiding Concept for Multi-Axial Textile Preforms: PhD Thesis. Textile Composite Group School of Materials. 2015. 188 p. Available at: https://www.researchgate.net/publication/354561676_Research_Status_of_3D_Braiding_Technology (accessed: July 05, 2022).
18. Zhang M., Sun B., Hu H., Gu B. Dynamic Behavior of 3D Biaxial Spacer Weft-Knitted Composite T-Beam Under Transverse Impact. Mechanics of Advanced Materials and Structures, 2009, nо. 16 (5), pp. 356–370. DOI: 10.1080/15376490802710761.
19. Tanaka K., Ushiyama R., Katayama T. et al. Formability evaluation of carbon fiber NCF by a non-contact 3D strain measurement system and the effects of blank folder force on its formability. High Performance and Optimum Design of Structures and Materials, 2014, vol. 137, pp. 317–326.
20. Beckworth S.W., Hyland C.R. Resin transfer moulding: a decade of technology advances. Society for the Advancement of Material and Process Engineering Journal, 1998, nо. 34, pp. 7–19.
21. Schornstein B., Staschko R., Fuchs N., Glück N. Manufacturing Principles for Z-Pin Reinforced FRP Composite Laminates in the Case of Bolted Joints. Lightweight Design Worldwide, 2017, nо. 10 (3), pp. 28–33. DOI: 10.1007/s41777-017-0025-1.
22. Klopp K., Moll K.-U., Wulfhorst B. Stitching process with one-sided approach of the textile for the production of reinforcing textiles for composites and other technical textiles. The 5th International Conference on Textile Composites, 2000, pp. 67–70.
23. Mouritz A.P. Review of z-pinned composite laminates. Composites. Part A: Applied Science and Manufacturing, 2007, nо. 38, pp. 2383–2397.
24. Chang P., Mouritz A.P., Cox B.N. Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension. Composites. Part A: Applied Science and Manufacturing, 2006, nо. 37 (10), pp. 1501–1513. DOI: 10.1016/j.compositesa.2005.11.013.
25. Chang P., Mouritz A.P., Cox B.N. Flexural properties of z-pinned laminates. Composites. Part A: Applied Science and Manufacturing, 2007, nо. 38 (2), pp. 244–251. DOI: 10.1016/j.compositesa.2006.05.004.
Currently, interest in carbon fibers and polymer composite materials based on them, which are promising materials, is quite high. The article discusses the emergence of carbon fiber technology and its development. Technologies for obtaining a precursor from polyacrylonitrile, from which carbon fibers are produced, are described. The main directions of their improvement are shown, as well as possible ways of developing carbon-based fibers and their main manufacturers.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3,
pp 97–105.
4. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: June 1, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
5. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
6. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 1, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
7. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
8. Bacon R. Growth, structure, and properties of graphite whiskers. Zhurnal fizicheskoy khimii, 1960, p. 283–290.
9. Radushkevich L.V., Lukyanovich V.M. On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact. Journal of Physical Chemistry, 1952, vol. 26, no. 1, pp. 88–95.
10. Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition. Journal of crystal growth, 1976, vol. 1, no. 32 (3), p. 335.
11. Kolobkov A.S. S-shaped curve of development of technology for the production of carbon fibers. Kompozitnyy mir, 2018, no. 3 (78), pp. 24–25.
12. Gladunova I.O., Lysenko A.A. The market of polymer composite materials. Trends and prospects. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizajna. Ser. 1: Natural and technical sciences, 2021, no. 2, pp 96–100.
13. Wang Y., Tong Y., Zhang B. et al. Formation of surface morphology in polyacrylonitrile (PAN) fibers during wet-spinning. Journal of Engineered Fibers and Fabrics, 2018, no. 13, pp. 52–55.
14. Udakhe J. Melt Processing of Polyacrylonitrile (PAN) Polymers. Journal of the Textile Association, 2011, no. 71, pp. 233–241.
15. Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer, 2008, no. 13, pp. 425.
16. Zussman E., Chen X., Ding W. et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 2005, no. 43, pp. 2175–2185.
17. Zhou Z., Lai C., Zhang L. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009, no. 50, pp. 2999–3006.
18. Arshad S.N., Naraghi M., Chasiotis I. Strong carbon nanofibers from electrospun Polyacrylonitrile. Carbon, 2011, vol. 1, no. 49 (5), pp. 1710–1719.
19. Rogalski J.J., Bastiaansen C.W., Peijs T. Rotary jet spinning review – a potential high yield future for polymer nanofibers. Nanocomposites, 2017, vol. 2, no. 3 (4), pp. 97–121.
20. Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition. Journal of crystal growth, 1976, vol. 1, no. 32 (3), pp. 335.
21. Hayashi Y., Chiba Y., Inoue H. et al. A review of dry spun carbon nanotube yarns and their potential applications in energy and mechanical devices. Journal of Fiber Science and Technology, 2020, no. 76 (2), pp. 72–78.
22. Zhang M., Atkinson K.R., Baughman R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, no. 306 (5700), pp. 1358–1361.
In this work technological coatings based on glass-forming systems K2O–BaO–SiO2 and Na2O–BaO–SiO2, used to protect zirconium alloys from oxidation during hot deformation was studied. Among 12 synthesized compositions a composition was selected with such a ratio of base glass components and modifying additives that provides a dense glassy visible coating on samples of zirconium alloys, prevents rapid increase in microhardness in near-surface layer of metal and effectively protects material from changes in mass during heating for deformation and prolonged excerpts.
2. Gavrilov G.N., Kablov E.N., Erofeev V.T. et al. Material science. Theory and technology of heat treatment: textbook. Saransk: Ogarev Mordovian State University, 2019, 276 p.
3. Zaimovsky A.S., Nikulina A.V., Reshetnikov N.G. Zirconium alloys in nuclear power engineering. 2nd ed., rev. and add. Mosocw: Energoatomizdat, 1994, 252 p.
4. Borisova O.A., Kolomytsev K.A. Obtaining zirconium tubes from an ingot for shells of a fuel element for nuclear reactors. Collection of scientific papers of the XXX International Scientific-Practical Conference "The current state and prospects for the development of science and education" (Anapa, January 7, 2022). Anapa, 2022, pp. 19–24.
5. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of defor-mation of metal materials. Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: March 16, 22). DOI: 10.18577/2713-0193-2021-0-4-98-106.
6. Mosbacher M., Holzinger M., Galetz M. et al. The influence of oxide color on the surface characteristics of zirconium alloy ZrNb7 (wt. %) after different heat treatments. Oxidation of Metals, 2021, vol. 95, no. 5, pp. 377–388. DOI: 10.1007/s11085-021-10030-1.
7. Yang S., Guo Z., Zhao L. et al. Surface microstructure and high-temperature high-pressure corrosion behavior of N18 zirconium alloy induced by high current pulsed electron beam irradiation. Applied Surface Science, 2019, vol. 484, pp. 453–460. DOI: 10.1006/J.APSUSC.2019.04.124.
8. Kablov E.N., Muboyadzhan S.A. Erosion-resistant coatings for compressor blades of gas turbine engines. Elektrometallurgiya, 2016, no. 10, pp. 23–38.
9. Petelguzov I.A. Influence of protective coatings from aluminum and chromium on the oxidation of zirconium and its alloys. Voprosy atomnoy nauki i tekhniki, 2012, no. 2 (78), pp. 114–119.
10. Ruchkin S.E., Pirozhkov A.V. Protective multilayer ZrO2/Cr coatings for E110 zirconium alloy. Modern problems of mechanical engineering: collection of works of the XIV International Scientific-Technologies Conference (Tomsk, October 25–30, 2021). Tomsk, 2021, pp. 179–180.
11. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
12. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
13. Gorlov D.S., Shchepilov A.V. Study of the damping capacity of the «alloy–coating» composition after tests on heat resistance and corrosion resistance. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 62–69. DOI: 10.18577/2071-9140-2017-0-4-62-69.
14. Bashkova I.O., Kharanzhevsky E.V. Laser synthesis of anticorrosive coatings on zirconium.
20th All-Russian Scientific Conference Physics Students and Young Scientists «VNKSF-20» (Izhevsk, March 27 – April 3, 2014). Izhevsk, 2014, 401 p.
15. Mamaeva A.I., Chubenko A.K., Mamaeva V.A. Formation of non-metallic inorganic nanostructured coatings on zirconium by microplasma oxidation. Nauchno-tekhnicheskiy vestnik Povolzhya, 2013, no. 4, pp. 75–78.
16. Malayoğlu U., Tekin K.C., Malayoğlu U. et al. Mechanical and electrochemical properties of PEO coatings on zirconium alloy. Surface Engineering, 2020, vol. 36, no. 8, pp. 800–808. DOI: 10.1080/02670844.2019.1706233.
17. Kashkarov E.B., Sidelev D.V., Syrtanov M.S. et al. Oxidation kinetics of Cr-coated zirconium alloy: Effect of coating thickness and microstructure. Corrosion Science, 2020, vol. 175, p. 108883. DOI: 10.1016/j.corsci.2020.108883.
18. Kuprin A.S., Belous V.A., Voyevodin V.N. et al. Irradiation resistance of vacuum arc chromium coatings for zirconium alloy fuel claddings. Journal of Nuclear Materials, 2018, vol. 510, pp. 163–167. DOI: 10.1016/j.jnucmat.2018.07.063.
19. Li Z.Y., Cai Z.B., Cui X.J. et al. Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy. Surface and Coatings Technology, 2021, vol. 410, p. 126949. DOI: 10.1016/j.surfcoat.2021.126949.
The application of the method of single-factor analysis of variance is considered on the example of evaluating the results of mechanical tests of a metallic structural material (aluminum alloy). Analysis of variance is proposed to be used as a simple but effective method for the rapid assessment and/or control of the levels of material properties based on the results of physical and mechanical tests, as well as for the assessment and control of the uniformity and stability of experimental data obtained during circular interlaboratory or qualification tests.
2. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. On the need to create a unified information and analytical center for aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019, no. 3, pp. 28–34.
3. Kablov E.N., Grinevich A.V., Erasov V.S. Characteristics of the strength of metallic aviation materials and their calculated values. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 370–379.
4. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
5. Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Erasov V.S., Yakovlev N.O. Numerical modeling and experimental study of deformation of elastoplastic plates under collapse. Matematicheskoye modelirovaniye i chislennye metody, 2015, no. 1 (5), pp. 67–82.
6. Oreshko E.I., Erasov V.S., Yastrebov A.S. Prediction of strength and deformation characteristics of materials during tensile and creep tests. Materialovedenie, 2019, no. 2, pp. 3–8.
7. Yakovlev N.O., Erasov V.S., Petrova A.P. Comparison of the normative bases of various countries for testing adhesive joints of materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 7, pp. 2–8.
8. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matrix strength characteristics for the assessment of limit states of structural metallic materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
9. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru (accessed: February 25, 2022). DOI: 10.18577/2307-6046-2019-0-7-92-111.
10. Yakovlev N.O., Gulyaev A.I., Krylov V.D., Shurtakov S.V. Microstructure and properties of structural composite materials during testing for static interlayer crack resistance. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 1 (19), paper no. 09. Available at: http://www.materialsnews.ru (accessed: February 7, 2022).
11. Makhsidov V.V., Yakovlev N.O., Ilichev A.V. et al. Determination of the deformation of the material of a PCM structure using integrated fiber-optic sensors. Mekhanika kompozitsionnykh materialov i konstruktsii, 2016, vol. 22, no. 3, pp. 402–413.
12. Yakovlev N.O., Grinevich D.V., Mazalov P.B. Mathematical modeling of the stress-strain state in compression of a mesh structure synthesized by the method of selective laser fusion. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Natural sciences, 2018, no. 6 (81), pp. 113–127.
13. Podzhivotov N.Yu. Express method of a comparative assessment properties levels of materials. Trudy VIAM, 2019, no. 10 (82), paper no. 11. Available at: http://www.viam-works.ru (accessed: February 25, 2022). DOI: 10.18577/2307-6046-2019-0-10-111-124.
14. Podzhivotov N.Yu. On the optimization of the approach to substantiation of the minimum volume of testing of aviation structural materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2021, no. 1, pp. 28–35.
15. Konovalov V.V., Dubinskiy S.V., Makarov A.D., Dotsenko A.M. Research of correlation dependencies between mechanical properties of aviation materials. Aviacionnye materialy
i tehnologii, 2018, no. 2 (51), pp. 40–46. DOI: 10.18577/2071-9140-2018-0-2-40-46.
16. Erasov V.S., Avtaev V.V., Oreshko E.I., Yakovlev N.O. Strain-controlled testing advantages at static tension and repeated-static tension. Trudy VIAM, 2018, no. 9 (69), paper no. 10. Available at: http://www.viam-works.ru (accessed: February 25, 2022). DOI: 10.18577/2307-6046-2018-0-9-92-104.
17. Pachurin G.V., Gushchin A.N., Galkin V.V., Pachurin V.G. Theoretical foundations for increasing the operational durability of stamped metal products: textbook. Nizhny Novgorod: NSTU, 2006, 176 p.
18. Stepnov M.N. Statistical methods for processing the results of mechanical tests: a reference book. Moscow: Mashinostroenie, 1985, 232 p.
19. Gmurman V.E. Guide to solving problems in probability theory and mathematical statistics: textbook for students of higher educational institutions. 3rd ed., rev. and add. Moscow: Vysshaya shkola, 1979, 400 p.
Heat-resistant alloys and steels
Toloraya V.N., Ostroukhova G.A. Production of single-crystal castings with a given axial and azimuthal orientations
Light-metal alloys
Selivanov A.A., Tkachenko E.A., Babanov V.V., Astashkin A.I. Investigation of the surface quality of sheets made of alloys of the
Al–Cu–Mg system
Polymer materials
Kondrashov S.V., Solovyanchik L.V., Mina-eva L.A. Self-organization of conductive networks in thermoplastic materials (review)
Tkachuk A.I., Lyubimova A.S., Kuznetcova P.A. Opportunities of the development of plant-based epoxy resins (review)
Sedova L.S., Dolgova E.V. Production of hydroliquids for aviation engineering in Russia (review)
Vahrusheva Jа.A., Yumashev O.B., Chay-
kun A.М. The basic principles of creation of formula cold-resistant rubbers stock for the products maintained in the conditions of the arctic climate (review)
Composite materials
Lebedeva Yu.E., Shchegoleva N.E., Gulyaev A.I., Turchenko M.V. Study of the influence of different graphene contents on the properties of a ceramic composite material
Startsev V.O. Effect of aggressive liquids on properties of polymer composite materials (review)
Slavin А.V., Silkin A.N., Grinevich D.V., Yakov-lev N.O. Composite materials with a
3D-reinforced structure (review)
Kolobkov A.S. Growth of carbon fiber production technologies (review)
Protective and functional
coatings
Vlasova O.V., Solntsev S.S., Denisova V.S., Lepschikov V.G. Protective technological coating for zirconium alloys
Material tests
Podzhivotov N.Yu. Assessment of results by means of the analysis of variance method