Articles
The article is devoted to the development of technology for smelting and deformation of VNS-74 (05Kh16N5AB) corrosion resistant steel with an increased nitrogen content (more than 0.10 % by weight). The structure and its influence on the hardness and strength characteristics of calibrated bars (different sections from 6 to 16 mm), made of steel VNS-74 by cold and hot deformation, are considered. The high technological plasticity of thin rods in the cold state, which is necessary for carrying out the operation of cold upsetting of the bolt heads, is shown. The mechanical properties and stress corrosion resistance of cold and hot heading bolts with 8° misalignment under the head and under the screw-nut and without misalignment were studied.
2. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
3. Kablov E.N. The key problem is materials. Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
4. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
5. Chizhevsky N.P. Iron and nitrogen. Tomsk: Typolitography of the Siberian Printing Association, 1914. 91 p.
6. Bannykh I.O. Influence of alloying on the strength properties and hardening mechanisms of nitrogen-containing austenitic steels after hot deformation and annealing. Metally, 2017, no. 6, pp. 74–80.
7. Kostina M.V., Bannykh O.A., Blinov V.M. Features of steels alloyed with nitrogen. Metallovedenie i termicheskaya obrabotka metallov, 2000, no. 12, pp. 3–6.
8. Alekseev V.I. Prospects for the use of structural steels with a superequilibrium nitrogen content under conditions of elevated temperatures and hydrogen pressures. Metally, 2000, no. 4, pp. 47–52.
9. Artemeva D.A., Anastasiadi G.P. Influence of alloying with nitrogen on the short-term and long-term mechanical properties of steel 07Kh12NMFB. Metallovedeniye i termicheskaya obrabotka metallov, 2018, no. 1, pp. 39–43.
10. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed structural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
11. Tonysheva O.A., Voznesenskaya N.M., Shestakov I.I., Eliseyev E.A. Influence of modes of high-temperature thermomechanical processing on structure and properties of high-strength corrosion-resistant steel of austenitic-martensitic class 17Х13Н4К6САМ3ч. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 11–16. DOI: 10.18577/2307-6046-2017-0-1-11-16.
12. Bannykh I.O., Bannykh O.A. Current state of research and application of high-nitrogen austenitic steels. Moscow: Nauka i tekhnologii, 2017, 64 p.
13. Bhav Singh B., Sivakumar K., Balakrishna Bhat T. Effect of cold rolling on mechanical properties and ballistic performance of nitrogen-alloyed austenitic steels. International Journal of Impact Engineering, 2009, vol. 36, pp. 611–620.
14. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
15. Rashev Ts.V. High nitrogen steels: Metallurgy under pressure. Sofia: Prof. Marin Drinov, 1995, 268 p.
16. Krylov S.A., Evgenov A.G., Shherbakov A.I., Makarov A.A. New pressure electroslag remelting furnace PESR-0,1: development and prospects for improvement. Trudy VIAM, 2016, no. 5, paper no. 04. Available at: http://www.viam-works.ru (accessed: March 20, 2022). DOI: 10.18577/2307-6046-2016-0-5-4-4.
17. Tonysheva O.A. Features of the formation of the structure and properties during smelting, heat treatment and plastic deformation of corrosion-resistant weldable chromium-nickel steels alloyed with nitrogen: thesis abstract, Cand. Sc. (Tech.). Moscow: VIAM, 2014, 27 p.
18. Potak Ya.M., Sagalevich E.A. Structural diagram of wrought stainless steels. Metallovedeniei termicheskaya obrabotka metallov, 1971, no. 9, pp. 12–16.
19. Goodremont E. Special steels: in 2 vols. Trans. from Germ. 2nd ed., rev. Moscow: Metallurgiya, 1966, vol. 2, p. 1097.
20. Novikov I.I. Theory of heat treatment of metals. 3rd ed. Moscow: Metallurgiya, 1978, p. 47.
The paper defines two groups of defects characteristic of single crystals of NGC: substructure and blockiness. The most common causes of their occurrence are considered. The comparison of the main methods of substructure control: visual, swing and Laue and the results of determining the disorientation of the substructure by the method of swing relative to the longitudinal axis of the casting and the complete disorientation of the substructure determined by lauegrams is given. Based on the comparison, a conclusion is made about the limits of sensitivity during visual inspection of the structure.
2. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Single-crystal nickel-based superalloy of a new generation with low-density. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
3. Visik E.M., Tikhomirova E.A., Petrushin N.V., Ospennikova O.G., Gerasimov V.V., Zhivushkin A.A. Technological testing of a new heat-resistant alloy with low density during casting of single-crystal GTE blades. Metallurg, 2017, no. 2, pp. 80–86.
4. Petrushin N.V., Elyutin E.S., Visik E.M., Golynets S.A. Development of single-crystal heat-resistant nickel alloy of the 5th generation. Metally, 2017, no. 6, pp. 38–51.
5. Visik E.M., Gerasimov V.V., Petrushin N.V., Kolyadov E.V., Filonova E.V. Technological testing of casting of single-crystal blades from heat-resistant nickel alloy VZhL20 of low density. Liteyshchik Rossii, 2018, no. 5, pp. 17–21.
6. Kablov E.N., Petrushin N.V., Sidorov V.V., Demonis I.M. Development of single-crystal high-rhenium heat-resistant nickel alloys by computer design. Aviacionnye materialy i tekhnologii, 2004, no. 1, pp. 22–36.
7. Kolyadov EV, Visik EM, Gerasimov VV, Arginbaeva E.G. The influence of directional solidification parameters on the structure and properties of the intermetallic alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 16, 2022). DOI: 10.18577/2307-6046-2019-0-3-14-26.
8. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Structural-phase characteristics and mechanical properties of single crystals of heat-resistant nickel-rhenium-containing alloys with intermetallic-carbide hardening. Metally, 2016, no. 4, pp. 57–70.
9. Ospennikova O.G., Rassokhina L.I., Bityutskaya O.N., Gamazina M.V. Optimization of technology for the manufacture of ceramic rods to improve the quality of cast blades of gas turbine engines. Novosti materialovedeniya. Nauka i tekhnika, 2017, no. 3–4 (27), paper no. 04. Available at: https://materialsnews.ru (accessed: May 13, 2022).
10. Bondarenko Yu.A., Kablov E.N., Surova V.A., Echin A.B. Influence of high-gradient directional crystallization on the structure and properties of a rhenium-containing single-crystal alloy. Metallovedeniye i termicheskaya obrabotka metallov, 2006, no. 8 (614), pp. 33–35.
11. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
12. Shalin R.E., Svetlov I.L., Kachanov E.B., Tolorayya V.N., Gavrilin O.S. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
13. Echin A.B., Bondarenko Yu.A. Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front. Trudy VIAM, 2015, no. 8, paper no. 01. Available at: http://www.viam-works.ru (accessed: May 13, 2022). DOI: 10.18577/2307-6046-2015-0-8-1-1.
14. Bakradze M.M., Echin A.B. Calculation of temperature fields inside the casting by numerical method and using computer simulation. Tekhnologiya metallov, 2021, no. 6, pp. 31–38.
15. Visik E.M., Kolyadov E.V., Ospennikova O.G., Gerasimov V.V., Filonova E.V. Influence of technological modes of casting on the structure of single-crystal blades from a carbon-free heat-resistant nickel alloy. Tekhnologiya metallov, 2018, no. 1, pp. 19–26.
16. Kolyadov E.V., Gerasimov V.V., Visik E.M., Mezhin Yu.A. Casting by the method of directional crystallization with a controlled temperature gradient at the crystallization front. Liteynoe proizvodstvo, 2016, no. 8, pp. 24–26.
17. Toloraya V.N., Nekrasov S.N., Ostroukhova G.A. Comparative analysis of the structure and properties of castings from heat-resistant alloys obtained on installations such as UVNK and PMP. Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 5–6 (31). paper no. 01. Available at: https://materialsnews.ru (accessed: May 13, 2022).
18. Kolyadov E.V., Gerasimov V.V., Visik E.M. Influence of axial and radial temperature gradients at the crystallization front on the macro- and microstructure of ZhS32 alloy. Liteynoe proizvodstvo, 2014, no. 6, pp. 28–31.
19. Visik E.M., Gerasimov V.V., Kolyadov E.V., Kuzmina N.A. Influence of technological modes of casting on the structure parameters of monocrystals of new heat-resistant alloys. Metallurgiya mashinostroeniya, 2016, no. 5, pp. 27–31.
20. Kuzmina N.A., Petrushin N.V., Visik E.M., Eremin N.N., Naprienko S.A. Application of the Laue method to study the structure of a nickel heat-resistant alloy sample destroyed during mechanical processing. Trudy VIAM, 2020, no. 10 (92), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 13, 2022). DOI: 10.18577/2307-6046-2020-0-10-3-12.
21. Tolorajya V.N., Filonova E.V., Chubarova E.N. i dr. Research of influence of HIP on microporosity in single-crystal casting of carbon-free hot strength alloys. Aviacionnye materialy i tehnologii, 2011, no. 1, pp. 20–26.
22. Kablov E.N., Tolorayya V.N., Ostroukhova G.A., Aleshin I.N. Investigation of growth defects of the banding type in single-crystal castings from carbon-free heat-resistant alloys. Dvigatel, 2010, no. 6 (72). pp. 14–16.
23. Kolyadov E.V., Gerasimov V.V., Visik E.M. About specific defects of castings after directional crystallization. Liteynoe proizvodstvo, 2015, no. 7, pp. 11–13.
24. Sinichkina T.S., Belikov A.V., Visik E.M. The problem of burn formation on castings from ZhS-32 alloy. Liteynoe proizvodstvo, 2015, no. 2, pp. 18–20.
25. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 12, 2022). DOI: 10.18577/2307-6046-2019-0-12-11-19.
26. Khayutin S.G. On misorientation of grains during directional crystallization. Metallovedeniye i termicheskaya obrabotka metallov, 2007, no. 6, pp. 42–43.
27. Sidokhin E.F., Sidokhin F.A., Khayutin S.G. On the substructure of single-crystal GTE blades. Aviatsionnaya promyshlennost, 2009, no. 1, pp. 34–36.
28. Sidokhin F.A., Sidokhin A.F., Sidokhin E.F. On the determination of the crystallographic orientation of single crystals by the Laue method. Zavodskaya laboratoriya. Diagnostika materialov, 2009, vol. 75, no. 1, pp. 35–37.
29. Potrakhov N.N., Khayutin S.G., Lifshits V.A., Oses R. PRDU-KROS setup for express determination of the crystallographic orientation of cubic single crystals from inverse Laue patterns. Zavodskaya laboratoriya. Diagnostika materialov, 2015, vol. 81, no. 8, pp. 27–30.
30. Oses R., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. The program for deciphering the inverse Laue patterns of FCC single crystals to determine the crystallographic orientation of samples (CGO analysis): certificate. about State Reg. Computer programs, no. 201164448. 2011.
31. Kuzmina N.A., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Comparative structure control of single-crystal castings of nickel superalloys x-ray diffraction methods of oscillation and Laue. Trudy VIAM, 2019, no. 9 (81), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 13, 2022). DOI: 10.18577/2307-6046-2019-0-9-15-25.
Properties of not modified fenolformaldegidny adhesives, their structure and assignment are shown. Examples of adhesives on the basis of fenolformaldegidny resins, modified by polyvinylacetals are given. Improvement of properties of adhesives after their updating in such a way is shown. Strength characteristics of the adhesives joints executed with use of phenolopolyvinylacetal adhesives of brands VS-10T-U and VS-350 in initial condition and after artificial factors, simulating the operational are provided. It is shown that adhesives VS-10T-U and VS-350 provide operability of high-temperature tenzorezistors.
2. Potsius A. Adhesives, adhesion, bonding technology. Trans. from Engl. St. Petersburg: Profession, 2007, 376 p.
3. Aronovich D.A., Varlamov V.P., Voitovich V.A. et al. Bonding in mechanical engineering. Ed. G.V. Malysheva. Moscow: Nauka i tekhnologii, 2005, vol. 1, 544 p.
4. Brodsky G.S., Chervinskaya M.A., Radchik L.D., Sheveleva R.A. Phenolic-polyvinyl acetal adhesives. Plasticheskiye massy, 1973, no. 6, pp. 29–30.
5. Sinyakov S.D., Zastrogina O.B., Pavlyuk B.F. Compositions based on phenol-formaldehyde resins modified with polyvinyl acetals (review). Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 1–2 (29), paper no. 08. Available at: http://materialsnews.ru (accessed: February 16, 2022).
6. Shalun G.B., Surzhenko E.M. Laminated plastics. Leningrad: Khimiya, 1978, 232 p.
7. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Evaluation of the influence of significant factors of influence. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16.
8. Lukina N.F., Petrova A.P., Kotova E.V. Heat-resistent adhesives used in aviation and space technique. Trudy VIAM, 2014, no. 3, paper no. 06. Available at: http://www.viam-works.ru (accessed: March 3, 2022). DOI: 10.18577/2307-6046-2014-0-3-6-6.
9. Shuklina O.V., Lukina N.F. Properties of the new heat-resistant adhesive VS-10T-U. Klei. Germetiki. Tekhnologii, 2012, no. 5, pp. 8–9.
10. Aviation materials: a reference book: in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids. Part 1: Adhesives, adhesive prepregs, 276 p.
11. Lukina N.Ph., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. New developments in the field of adhesive aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
12. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
13. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 44–48.
14. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (ассеssed: March 23, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
15. Koloskova O.A., Barkovskaya N.P., Slavkin I.E., Kudryavtsev M.A. Application of high-temperature adhesive VS-350 in tensometry. Klei. Germetiki. Tekhnologii, 2019, no. 4, pp. 42–45.
16. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
17. Murashov V.V. Application of the ultrasonic resonance method for detection of defects of glued constructions. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 88–94. DOI: 10.18577/2071-9140-2018-0-1-88-94.
18. Tsverava V.G., Rusin M.Yu., Nepovinnykh V.I., Himitsaev A.S. Analysis of the influence of accelerated climatic aging on the strength of adhesive joints. Klei. Germetiki. Tekhnologii, 2018, no. 8, pp. 28–31.
This paper presents the technological features of the processing of glass-reinforced plastics based on PMR-type polyimide binders. The main approaches to the manufacture of polymer composite materials (PCM) samples based on glass fillers and polyimide melt binders are demonstrated, taking into account their physicochemical features. It was shown that PCM based on melt-type polyimide binders can be processed according to different modes, providing different levels of characteristics.
2. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Chemistry and chemical technology, 2016, vol. 59, no. 10, pp. 61–71.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and
implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review).
Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
6. Guohua S., Xin Z., Dezhen W., Lianlong H. Research Progress in High-performance Polyimide Composites. China Plastics, 2021, vol. 35 (9), pp. 147–155. DOI: 10.19491/j.issn.1001-9278.2021.09.022.
7. Gouzman I., Grossman E., Verker R. et al. Advances in Polyimide-Based Materials for Space Applications. Advanced materials, 2019, vol. 31 (18), art. 05. Available at: http://onlinelibrary.wiley.com (accessed: March 28, 2022). DOI: 10.1002/adma.201807738.
8. Fernberg P., Gong G., Mannberg P. Processing and properties of new polyimide composites withhigh temperature ability. ECCM16 – 16th European Conference on Composite Materials (Seville, June 22–26, 2014). Available at: http://www.escm.eu.org/eccm16/assets/0600.pdf (accessed: November 17, 2021).
9. Yang S.-Y., Ji M. Polyimide matrices for carbon fiber composites. Advanced Polyimide Materials. Synthesis, Characterization and Applications. Elsevier 2018, pp. 93–136. DOI: 10.1016/B978-0-12-812640-0.00003-2.
10. Boychuk A.S., Generalov A.S., Dikov I.A. FRP parts and structures testing by phased array technique. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 45–50. DOI: 10.18577/2071-9140-2017-0-1-45-50.
11. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
12. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
13. Mikhailin Yu.A. Heat-resistant polymers and polymer materials based on them. Polimernye materialy, 2005, no. 8, pp. 23–26.
14. Aleksandrov N.A., Malysheva G.V., Nelyub V.A. Investigation of fracture surfaces of carbon fiber plastics made using melt and mortar technologies. Vse materialy. Entsiklopedicheskiĭ spravochnik, 2011, no. 3, p. 7.
15. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 28, 2022). DOI: 10.18577/2307-6046-2018-0-12-46-53.
Polymer composite materials (PCM) are increasingly replacing traditional materials. New PCMs are constantly being developed, which are more economical and at the same time provide high-quality manufacturing of parts and structures from them. The infusion process has a well-established position among such processes as automated winding and automated prepreg lay-up followed by autoclaving. However, when using autoclave technology, there are restrictions on the dimensions of the molded parts, in addition, this method is quite expensive to operate. Therefore, the infusion process is increasingly used in the manufacture of parts in aircraft and shipbuilding, the construction industry, etc.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Kablov E.N. VIAM: New generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
5. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
6. Epoxy binder: pat. 2754399 Rus. Federation; filed 02.11.20; publ. 01.09.21.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 10, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
8. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
9. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Composite materials in automotive industry (review). Trudy VIAM, 2017, no. 6 (54), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2017-0-6-7-7.
10. Borshchev A.V., Gusev Y.A. Development and implementation of PCM in automotive industry, varieties of HP-RTM processes. Aviacionnye materialy i tehnologii, 2014, no. 4, pp. 48–52. DOI: 10.18577/2071-9140-2014-0-4-48-52.
11. Doriomedov M.S. Russian and world market of polymer composites (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2020-67-29-37.
12. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 24–28. DOI: 10.18577/2071-9140-2014-0-s2-24-28.
13. Heider D., Simacek P., Dominauskas A. et al. Infusion design methodology for thick-section, low-permeability preforms using inter-laminar flow media. Composites. Part A: Applied Science and Manufacturing, 2007, vol. 38 (2), pp. 525–534.
14. Plastic transfer molding techniques for the production of fiber reinforced plastic structures: pat. US4902215A; filed 08.06.88; publ. 20.02.90.
15. Vacuum-forming fibre reinforced resin composites: pat. GB2257938A; filed 08.06.88; publ. 27.01.93.
16. Vacuum-forming method and apparatus for vacuum-forming fibre reinforced resin composites: pat. EP0525263B1; filed 01.08.91; publ. 27.03.96.
17. Process for manufacturing resin-impregnated, reinforced articles without the presence of resin fumes: pat. US 4132755A; filed 22.07.77; publ. 02.01.79.
18. High-performance infusion system for VARTM fabrication: pat. US6964561B2; filed 23.04.02; publ. 15.11.05.
19. Takeda F., Hayashi K., Yasuo S. et al. Research in the application of the VaRTM technique to the fabrication of primary aircraft composite structures. Mitsubishi Heavy Industries Technical Review, 2005, no. 42. P. 1–6.
20. Vacuum resin impregnation process: pat. US4942013A; filed 27.03.89; publ. 17.07.90.
21. Jokhan O.M., Kostenko O.P. Methods for manufacturing parts from composite materials by impregnation in tooling. Part 2. Methods of vacuum impregnation. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov, 2012, no. 1, pp. 80–92.
22. Method of laminating reinforced plastics: pat. US3309450A; filed 05.07.61; publ. 14.03.67.
23. Cole C. Guide for low cost design and manufacturing of composite general aviation aircraft, techreport. National Institute for Aviation Research, Wichita State University, 2001. 103 p.
24. Loving D.A., Loving J., Sargent R., Sudduth R.D. Resin transfer molding involving center injection using a new production-oriented process for composites. ICCE6 Conference Proceedings. Orlando, 1999, pp. 513–514.
25. Process for fiberglass molding using a vacuum: pat. US6508974B1; filed 15.02.96; publ. 21.03.03.
26. Method of liquid resin infusion of a composite preform: pat. US20150102535A1; filed 11.10.13; publ. 16.04.15.
27. Controlled atmospheric pressure resin infusion process: pat. EP1507647B1; filed 29.05.02; publ. 12.09.12.
28. Plant molding fibre-reinforced plastic by injection under vacuum: pat. FR2771960A1; filed 09.12.97; publ. 11.06.99.
29. Ricciardi M.R., Antonucci V., Durante M. et al. A new cost-saving vacuum infusion process for fiber-reinforced composites: pulsed infusion. Journal of Composite Materials, 2014, vol. 48 (11), pp. 365–373.
30. A bagging blanket and method for forming a fibre reinforced resin composite component: pat. GB2316036A; filed 05.08.96; publ. 18.02.98.
31. Alms J.B., Advani S.G., Glancey J.L. Liquid composite molding control methodologies using vacuum induced preform relaxation. Composites. Part A: Applied Science and Manufacturing, 2011, vol. 42 (1), pp. 57–65.
32. Double bag vacuum infusion process: pat. US7413694B2; filed 07.12.99; publ. 19.08.08.
33. How wings are made for the MS-21 aircraft. Available at: https://zen.yandex.ru/media/alexio_marziano/kak-delaiut-krylia-dlia-samoleta-ms21-5aa1849677d0e6cf2df9614a (accessed: April 10, 2022).
34. A method for manufacturing fibrous composites by vacuum infusion and a device for implementing the method: pat. RU2480335C1. Rus. Federation; filed 07.02.12; publ. 27.04.13.
Presents the results of a study of the resistance to oxidation of various types and manufacturers carbon fibers by exposure to a given temperature for a certain time. High-strength carbon fibers with standard and intermediate Young’s modulus were investigated. The obtained results of short-term and long-term tests correlate with the results of thermogravimetric analysis. It is shown that among the studied fibers, high-strength carbon fibers with intermediate Young’s modulus have the greatest thermal oxidative resistance.
2. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 1, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
3. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
4. Park S.-J. Carbon Fibers. Singapore: Springer Verlag, 2019, 358 p.
5. Varshavsky V.Ya. Carbon fibres. Moscow: Varshavsky V.Ya., 2007, 496 p.
6. Mikhailin Yu.A. Structural polymeric composite materials. Moscow: Nauchnye osnovy i tekhnologii, 2008, 822 p.
7. Carbon fibers and carbon composites. Ed. E. Fitzer. Moscow: Mir, 1988, 338 p.
8. Govorov A.V., Galiguzov A.A., Tikhonov N.A. et al. Investigation of the kinetics of oxidation of carbon fibers of various types. Novye ogneupory, 2015, no. 11, pp. 34–39.
9. Comprehensive Composite Materials. Ed. A. Kelly, C. Zweben. Oxford: Pergamon Press, 2000, 6000 p.
10. Tagawa M., Ohmae N., Umeno M. et al. Surface Characterization of Carbon Fibers Exposed to 5 eV Energetic Atomic Oxygen Beam Studied by Wetting Force Measurements. Japanese Journal of Applied Physics, 1991, vol. 30, pp. 2134–2138.
11. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
12. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
13. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
14. Tong Y., Wang X., Su H., Xu L. Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties. Corrosion Science, 2011, vol. 53, pp. 2484–2488.
15. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
16. Wang Z.M., Yamashita N., Wang Z.X. et al. Air oxidation effects on microporosity, surface property, and CH4 adsorptivity of pitch-based activated carbon fibers. Journal of Colloid Interface Science, 2004, vol. 276, is. 1, pp. 143–150.
17. Rong H., Ryu Z., Zheng J., Zhang Y. Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde. Carbon, 2002, vol. 40, pp. 2291–2300.
18. Poila E.J., Serra J.L. Oxidation of Carbon Fiber-Reinforced Silicon Carbide Matrix Composites at Reduced Oxygen Partial Pressures. Journal of the American Ceramic Society, 2011, vol. 94, is. 7, pp. 2185–2192.
19. Hosokai S., Kishimoto K., Norinaga K. et al. Characteristics of Gas-Phase Partial Oxidation of Nascent Tar from the Rapid Pyrolysis of Cedar Sawdust at 700–800 °C. Energy & Fuels, 2010, vol. 24, pp. 2900–2009.
20. Gourdin C. Ageing of carbon fibres of various origins. 4th Int. SAMPE Conference. Bourdeaux, 1983, pp. 49–61.
21. Morgan P. Carbon Fibers and Their Composites. Florida: CRC Press, 2005, 1200 p.
The article describes the most technologically advanced methods of preparation of the surface of aluminum alloy 1163-AT samples before the application of electrolytic coatings. Information about the influence of the selected methods of sample surface preparation on the adhesion strength of the electrolytic nickel coating to the substrate is provided. It is shown that the use of a sublayer can affect the smoothing of the microtopology and cause a decrease in surface roughness after the deposition of an electrolytic nickel coating 12 μm thick.
2. Kablov E.N. The main directions of development of materials for aerospace technology of the XXI century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Composites: today and tomorrow. Metally Yevrazii, 2015, no. 1, pp. 36–39.
5. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
6. Pavlovskaya T.G., Volkov I.A., Kozlov I.A., Naprienko S.A. Ecologically improved technology of aluminum alloys surface treatment. Trudy VIAM, 2016, no. 7, paper no. 02. Available at: http://viam-works.ru (accessed: April 14, 2022). DOI: 10.18577/2307-6046-2016-0-7-2-2.
7. Antipov V.V., Petrova A.P., Kozlov I.A., Fomina M.A., Volkov I.A. Influence of technological heatings and ways of surface preparation under pasting on mechanical properties of aluminum foil from alloy AMg2N. Trudy VIAM, 2018, no. 7 (67), paper no. 02. Available at: http://www.viam-works.ru (accessed: April 14, 2022). DOI: 10.18577/2307-6046-2018-0-7-10-24.
8. Duyunova V.A., Kozlov I.A., Oglodkov M.S., Kozlova A.A. Modern trends in the anodic oxidation of aluminum-lithium and aluminum alloys (review). Trudy VIAM, 2019, no. 8 (80), paper no. Art. 09. Available at: http://www.viam-works.ru (accessed: April 17, 2022). DOI: 10.18577/2307-6046-2019-0-8-79-89.
9. Khmeleva K.M., Kozlov I.A., Nikitin Ya.Yu., Nikiforov A.A. Modern trends of protective galvanic coatings working at high temperatures (review). Trudy VIAM, 2020, no. 12 (94), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 15, 2022). DOI: 10.18577/2307-6046-2020-0-12-75-86.
10. Solodkova L.N., Kudryavtsev V.N. Electrolytic chromium plating: textbook. Moscow: Globus, 2007, 191 p.
11. Galvanic coatings in mechanical engineering: reference. Ed. M.A. Schluger. Moscow: Mashinostroenie, 1985, vol. 1, 2. 240 p.
12. Mamaev V.I., Kudryavtsev V.N. Nickel plating: textbook. Moscow: Mendeleev University of Chemical Technology, 2014, 192 p.
13. Court S.W., Barker B.D., Walsh F.C. Electrochemical Measurements of Electroless Nickel Coatings on Zincated Aluminium Substrates. Transactions of the Institute of Metal Finishing, 2000, vol. 78, no. 4, pp. 157–162. DOI: 10.1080/00202967.2000.11871330.
14. Kravchenko D.V., Kozlov I.A., Nikiforov A.A. Methods for preparing the surface of aluminum alloys for electroplating (review). Trudy VIAM, 2021, no. 6 (100), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 17, 2022). DOI: 10.18577/2307-6046-2021-0-6-82-99.
15. Court S., Kerr C., Ponce de León C. et al. Monitoring of zincate pre-treatment of aluminium prior to electroless nickel plating. Transactions of the Institute of Metal Finishing, 2017, vol. 95, no. 2, pp. 97–105. DOI: 10.1080/00202967.2016.1236573.
16. Pearson T., Wake S.J. Improvements in the Pretreatment of Aluminium as a Substrate for Electrodeposition. Transactions of the Institute of Metal Finishing, 1997, vol. 75, no. 3, pp. 93–97. DOI: 10.1080/00202967.1997.11871150.
17. Pearson T. Pretreatment of aluminium for electrodeposition. Transactions of the Institute of Metal Finishing, 2006, vol. 84, no. 3, pp. 121–123.
18. Electroplated aluminum parts and process for production: pat. US 6692630 B2; filed 09.08.01; publ. 17.02.04.
19. Wernick S., Pinner R. Chemical and electrolytic treatment of aluminum and its alloys. Leningrad: State Union Publishing House Shipbuilding Industry, 1960, 389 p.
20. Electroplated aluminium parts and process of production thereof: pat. CN 1498288 A; filed 17.08.01; publ. 19.05.04.
21. Robertson S.G., Ritchie I.M. The role of iron (III) and tartrate in the zincate immersion process for plating aluminium. Journal of Applied Electrochemistry, 1997, vol. 27 (7), pp. 799–804.
22. Takács D., Sziráki L., Török T.I. et al. Effects of pre-treatments on the corrosion properties of electroless Ni–P layers deposited on AlMg2 alloy. Surface and Coatings Technology, 2007, vol. 201, pp. 4526–4535.
23. Delaunois F., Petitjean J.P., Lienard P., Jacob-Duliere M. Autocatalytic electroless nickel-boron plating on light alloys. Surface and Coatings Technology, 2000, vol. 124, pp. 201–209. DOI: 10.1016/S0257-8972(99)00621-0.
24. Thurlow K.P. Electroless nickel plating on aluminium connectors. Transactions of the Institute of Metal Finishing, 1989, vol. 67, no. 1, pp. 82–86. DOI: 10.1080/00202967.1989.11870847.
25. Sharma A.K. Gold plating on aluminium alloys for space applications. Transactions of the Institute of Metal Finishing, 1989, vol. 67, no. 1, pp. 87–88. DOI: 10.1080/00202967.1989.11870848.
26. Electroplating on aluminium and its alloys: pat. GB 1007252A; filed 12.09.61; publ. 13.10.65.
27. Wyszynski A.E. An Immersion Alloy Pretreatment for Electroplating on Aluminium. Transactions of the Institute of Metal Finishing, 1967, vol. 45, no. 1, pp. 147–154. DOI: 10.1080/00202967.1967.11870032.
28. Burgess J. Electroplating onto aluminium and its alloys. Transactions of the Institute of Metal Finishing, 2019, vol. 97, no. 6, pp. 285–288. DOI: 10.1080/00202967.2019.1675280.
29. Yin Z., Chen F. Effect of nickel immersion pretreatment on the corrosion performance of electroless deposited Ni–P alloys on aluminum. Surface and Coatings Technology, 2013, vol. 228, pp. 34–40. DOI: 10.1016/j.surfcoat.2013.04.001.
30. Laughton R.W. Recent Developments for Electroless Nickel Plating onto Aluminium, their Basis and Implications. Transactions of the Institute of Metal Finishing, 1992, vol. 70, no. 3, pp. 120–122. DOI: 10.1080/00202967.1992.11870957.
31. Vijayanand M., Elansezhian R. Effect of Different Pretreatments and Heat Treatment on Wear Properties of Electroless Ni–B Coatings on 7075-T6 Aluminum Alloy. Procedia Engineering, 2014, vol. 97, pp. 1707–1717.
32. Popilov L.Ya. Advice to the factory technologist. Leningrad: Lenizdat, 1975, 264 p.
33. Devyatkina T.I., Luchneva S.I., Vasin E.N. Surface preparation of aluminum alloys for electroplating. Journal of Applied Chemistry, 2020, vol. 93, is. 9, pp. 1323–1331. DOI: 10.31857/S0044461820090091.
34. Digby R.P., Paekham D.E. Pretreatment of aluminium: topography, surface chemistry and adhesive bond durability. International Jornal Adhesion and Adhesives, 1995, vol. 15, pp. 61–71.
35. Spooner R.C., Seraphim D.P. Phosphoric Acid Anodizing of Aluminium and its Application to Electroplating. Transactions of the Institute of Metal Finishing, 1954, vol. 31, no. 1, pp. 29–51. DOI: 10.1080/00202967.1954.11869627.
36. Yazdi S.S., Ashrafizadeh F., Hakimizad A. Improving the grain structure and adhesion of Ni–P coating to 3004 aluminum substrate by nanostructured anodic film interlayer. Surface and Coatings Technology, 2013, vol. 232, pp. 561–566.
In mechanical engineering, coating by cold gas-dynamic spraying (CGN) is most often used to eliminate mechanical damage (cracks, scratches) and defects, as well as to provide corrosion protection on steel parts. Improving the effectiveness of protective coatings applied by the CGN method by creating new powder materials is the main task of research in this area.
2. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 12, 2022). DOI: 10.18577/2713-0193-2021-0-4-3-13.
5. Konovalov V.V., Dubinskiy S.V., Makarov A.D., Dotsenko A.M. Research of correlation dependencies between mechanical properties of aviation materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 40–46. DOI: 10.18577/2071-9140-2018-0-2-40-46.
6. Plokhikh A.I., Safonov M.D., Kolesnikov A.G., Karpukhin S.D. Mechanism of interlaminar stress relaxation in multilayer steel materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 26–32. DOI: 10.18577/2071-9140-2018-0-2-26-32.
7. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
8. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
9. Kozlov I.A., Leshchev K.A., Nikiforov A.A., Demin S.A. Cold spray coatings (review). Trudy VIAM, 2020, no. 8 (90), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 4, 2022). DOI: 10.18577/2307-6046-2020-0-8-77-93.
10. Abiev R.Sh., Bibik E.E., Vlasov E.A. et al. New reference book of a chemist and technologist. Electrode processes. Chemical kinetics and diffusion. colloidal chemistry. St. Petersburg: Professional, 2004, 838 p.
11. Kosarev V.F., Alkhimov A.P. Technology, equipment, tools. Obrabotka metallov, 2003, no. 3, pp. 28–30.
12. Alkhimov A.P., Gulidov A.I., Kosarev V.F., Nesterovich N.I. Peculiarities of deformation of microparticles upon impact with a solid barrier. Prikladnaya mekhanika i tekhnicheskaya fizika, 2000, vol. 41, no. 1, pp. 204–209.
13. Alkhimov A.P., Klinkov S.V., Kosarev V.F., Fomin V.M. Cold gas-dynamic spraying. Theory and practice. Moscow: Fizmatlit, 2010, 536 p.
14. Alkhimov A.P., Kosarev V.F., Papyrin A.N. The method of "cold" gas-dynamic. DAN SSSR, 1990, vol. 315, no. 5, pp. 1062–1065.
15. Baranov A.N., Guseva E.A., Komova E.M. Investigation of the corrosion resistance of steels used for the manufacture of dredge equipment for gold mining. Sistemy. Metody. Tekhnologii, 2014, no. 1 (21), pp. 102–106.
16. Roslyakov V.I. Improving the corrosion resistance and reliability of household appliances during operation. Tekhniko-tekhnologicheskiye problemy servisa, 2012, no. 4 (22), pp. 29–32.
17. Zamaletdinov I.I. Corrosion and protection of metals. Corrosion of powder materials: textbook. Perm: Perm. State Tech. University, 2007, pp. 18–19.
18. Rossina N.G., Popov N.A., Zhilyakova M.A., Korelin A.V. Corrosion and protection of metals: textbook in 2 parts. Ekaterinburg: Ural University, 2019, part 1: Methods for studying corrosion processes, p. 108.
The article covers the problem of transformation of hydrophilic-lipophilic properties (HLP) of various surfaces as a way to improve the functionality and increase the duration of their maintenance. A quantitative assessment of the relevance of the topic according to the Internet platform sciencedirect.com is presented. The main provisions and concepts related to HLP materials are briefly described. The types of amphiphilic molecules, types and classes of systems for hydrophobization are considered. A predictive analysis of the modern market was performed.
2. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Salakhova R.K., Tikhoobrazov A.B. Thermal resistance of electrolytic chromium coatings. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 60–67. DOI: 10.18577/2071-9140-2019-0-2-60-67.
6. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of creation, properties and applications. Uspekhi khimii, 2008, no. 7, vol. 77, pp. 619–638. DOI: 10.1070/RC2008v07707ABEH003775.
7. Frolov Yu.G. Course of colloid chemistry. Surface phenomena and disperse systems: textbook for universities. 2nd ed., rev. and add. Moscow: Khimiya, 1988, 464 p.
8. Karpichev E.A. Study of the influence of the chain length of the carboxylate counterion on the polarity of the micellar microenvironment of dimeric surfactants. Voprosy khimii i khimicheskoy tekhnologii, 2009, no. 5, pp. 140–145.
9. Holmberg Ed.K. Handbook of applied surface and colloid chemistry. New Jersey: Willey, 2001, 1100 p.
10. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Kulichkova S.I. Revisiting the ecotoxicity and efficiency of different classes of industrial nonionic surfaces used for cleaning metal surfaces in the process of capillary control of details of the aviation technology (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: March 16, 22). DOI: 10.18577/2713-0193-2021-0-4-98-106.
11. Drioli E., Giorno L. Encyclopedia of Membranes. Berlin: Springer, 2016, 1419 p.
12. Nachinkin O.I. Polymer microfilters. Moscow: Khimiya, 1985, 216 p.
13. Huang X., Tepylo N., Pommier-Budinger V. et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Progress in Aerospace Sciences, 2019, no. 105, pp. 74–97. DOI: 10.1016/j.paerosci.2019.01.002.
14. Gao L., McCarthy Th.J. A Perfectly Hydrophobic Surface. Journal of the American Chemical Society, 2006, no. 128, pp. 9052–9053. DOI: 10.1021/ja062943n.
15. Piscitelli F., Chiariello A., Dabkowski D. et al. Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace, 2020, no. 7. Available at: https://www.mdpi.com/2226-4310/7/1/2/htm (accessed: March 16, 2022). DOI: 10.3390/aerospace7010002.
16. Houvenaghel G., Carmeliet J. Dinamic contact angles, wettability and capillary suction of hydrophobic porous materials. Hydrophobe III – 3rd International Conference on Surface Technology with Water Repellent Agents. 2001, pp. 191–200. Available at: http://hydrophobe.org/pdf/hannover/III_15.pdf (accessed: March 16, 2022).
17. Doehne E., Price C.A. Stone Conservation. An Overview of Current Research. Second ed. Los Angeles: Getty Conservation Institute, 2011, 164 p.
18. Silander A. Hydrophobic impregnation of concrete structures – effects on concrete properties: doctoral thesis. Available at: https://www.dissertations.se/dissertation/000758f867/ (accessed: March 16, 2022).
19. Grabowska K., Koniorczyk M. Internal hydrophobization of cement mortar by addition of siloxanes. MATEC: Web of Conferences. 2019, vol. 282, no. 02030. Available at: https://www.matec-conferences.org/articles/matecconf/abs/2019/31/matecconf_cesbp2019_02030/matecconf_cesbp2019_02030.html (accessed: March 16, 2022). DOI: 10.1051/matecconf/201928202030.
20. Ruffolo S.A., La Russa M.F. Nanostructured Coatings for Stone Protection: An Overview. Frontiers Materials, 2019, vol. 6, no. 147. Available at: https://www.frontiersin.org/articles/10.3389/fmats.2019.00147/full (accessed: March 16, 2022). DOI: 10.3389/fmats.2019.00147.
21. Siegesmund S., Snethlage R. Stone in Architecture. Berlin: Springer, 2014, 550 p.
22. Medeiros M., Helene P. Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures, 2008, no. 41, pp. 59–71. DOI: 10.1617/s11527-006-9218-5.
23. Cappelletti G., Fermo P. Hydrophobic and superhydrophobic coatings for limestone and marble conservation. Smart Composition Coatings and Membranes, 2016, no. 15, pp. 421–452. DOI: 10.1016/B978-1-78242-283-9.00015-4.
24. Buznik V.M. Superwaterproof materials on the basis of fluoropolymers. Aviacionnye materialy i tehnologii, 2013, no. 1, pp. 29–34.
25. Hydrophobic porous ceramic material and method for its production: pat. 2630523С1 Rus. Federation; filed 28.06.16; publ. 11.09.17.
26. Nefedov N.I. Hydrophobic coatings based on fluoroligomers for the protection of structural elements: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2017, 142 p.
27. Shchetanov B.V., Ivakhnenko Yu.A., Babashov V.G. Thermal protection materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 12–19.
28. Lermontov S.A., Sipyagina N.A., Malkova A.N. Technology of hydrophobization of highly porous heat-shielding materials using supercritical alcohols. Khimicheskaya tekhnologiya, 2018, vol. 19, no. 3, pp. 119–124.
29. Method for applying a hydrophobic and oleophobic coating on a textile material and a textile material with a hydrophobic and oleophobic coating: pat. 2642775C1 Rus. Federation; filed 09.09.16; publ 25.01.18.
30. Bazhant V., Chvalovski V., Ratouski I. Silicones. Organosilicon compounds, their production, properties and applications. Moscow: Goshimizdat, 1960, 760 p.
31. Voronkov M.G., Lasskaya E.A., Pashchenko A.A. On the nature of the connection of water-repellent organosilicon coatings with the surface of hydrophobized materials. Zhurnal prikladnoy khimii, 1965, vol. 38, no. 7, pp. 1483–1487.
32. Lasskaya E.A., Voronkov M.G. Silicone water-repellent coatings. Kyiv: Budivelnik, 1968. 92 p.
33. Tang C., Liu W., Ma S. et al. Synthesis of UV-curable polysiloxanes containing methacryloxy/fluorinated side groups and the performances of their cured composite coatings. Progress in Organic Coatings, 2010, vol. 69, no. 4, pp. 359–365. DOI: 10.1016/j.porgcoat.2010.07.009.
34. Hsieh C., Wu F. Super water- and oil-repellencies from silica-based nanocoatings. ChenSurface & Coatings Technology, 2009, no. 203, pp. 3377–3384. DOI: 10.1016/j.surfcoat.2009.04.025.
35. Hsieh C., Chang B., Lin J. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Applied Surface Science, 2011, no. 257, pp. 7997–8002. DOI: 10.1016/j.apsusc.2011.04.071.
36. Hikita M., Tanaka K., Nakamura T. et al. Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups. Langmuir, 2005, no. 21, pp. 7299–7302. DOI: 10.1021/la050901r.
37. Li X., Yang B., Gu G. et al. A study on superhydrophobic coating in anti-icing of glass/porcelain insulator. Journal of Sol-Gel Science and Technology, 2014, no. 69, pp. 441–447. DOI: 10.1007/s10971-013-3243-y.
38. Xue C., Zhang P., Ma J. et al. Long-lived superhydrophobic colorful surfaces. Chemical Communications, 2013, no. 49, pp. 3588–3590. DOI: 10.1039/C3CC40895G.
39. Hayase G., Kanamori K., Fukuchi M. et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angewandte Chemie International Edition, 2013, no. 52, pp. 1986–1989. DOI: 0.1002/anie.201207969.
40. Boinovich L.B., Emelyanenko A.M., Muzafarov A.M. Creation of coatings for imparting superhydrophobic properties to the surface of silicone rubber. Rossiyskiye nanotekhnologii, 2008, vol. 3, no. 9–10, pp. 100–105.
41. Voronkov M.G., Shorokhov N.V. Water-repellent coatings in construction. Riga: Publishing House of the Academy of Sciences of the Latvian SSR, 1963, 190 p.
42. Lettieri M., Masieri M. Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentration on a Highly Porous Stone. Coatings, 2016, vol. 6, no. 60. Available at: https://www.mdpi.com/2079-6412/6/4/60 (accessed: March 16, 2022). DOI: 103390/coatings6040060.
43. Pashchenko A.A., Voronkov M.G. Silicone protective coatings. Kyiv: Tekhnika, 1969. 259 p.
44. Pashchenko A.A., Voronkov M.G., Mikhailenko M.A. et al. Hydrophobization. Kyiv: Naukova Dumka, 1973. 239 p.
45. Grinevich K.P. Hydrophobic organosilicon liquids. Plasticheskiye massy, 1960 no. 3, pp. 24–27.
46. Sobolevsky M.V., Muzovskaya O.A., Popeleva G.S. Hydrophobic finish. Properties and applications of organosilicon products. Moscow: Khimiya, 1975. 296 р.
47. Voronkov M.G., Makarskaya V.M. Finishing textile materials with organosilicon monomers and oligomers. Novosibirsk: Nauka, 1978, pp. 30–50.
48. Hydrophobic coatings market statistics – 2030. Available at: https://www.alliedmarketresearch.com/hydrophobic-coatings-market (accessed: March 16, 2022).
49. The global market for hydrophobic, superhydrophobic, oleophobic and omniphobic coatings. Available at: https://www.researchandmarkets.com/reports/5185542/the-global-market-for-hydrophobic (accessed: March 16, 2022).
The content of impurities of 33 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb , Sr, Zr, Mo, Cd, Cs, Ba, Re, Tl, Pb, Bi, Th, U) in a praseodymium sample by inductively coupled plasma mass spectrometry (ICP-MS). The technique of sample dissolution and its preparation for analysis is given. Spectral interferences are eliminated by applying mathematical correction equations, a reaction-collision cell, and by adjusting the plasma power.
2. Korolev D.V., Stolyankov Yu.V., Piskorsky V.P., Valeev R.A., Bahmetiev M.V., Dvorezkaya E.V., Koplak O.V., Morgunov R.B. Magnetic properties and magnetic strip domains in micro stripes PrDyFeCoB. Aviation materials and technologies, 2021, no. 3 (64), paper no. 08. Available at: http://www.journal.viam.ru (accessed: June 06, 2021). DOI: 10.18577/2713-0193-2021-0-3-86-93.
3. Cherednichenko I.V., Ospennikova O.G., Piskorsky V.P., Valeev R.A., Buzenkov A.V. Economic aspects of the production of permanent magnets. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 4 (22). Art. 06. Available at: http://www.materialsnews.ru (accessed: June 06, 2021).
4. Korolev D.V., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Morgunov R.B. The method of hot deformation for the manufacture of the permanent magnets of REM–Fe–B by the spark plasma sintering (review). Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 11–18. DOI: 10.18577/2071-9140-2017-0-4-11-18.
5. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems. Aviacionnye materialy i tehnologii, 2015, no. S2 (39), pp. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
6. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters. Aviacionnye materialy i tehnologii, 2015, no. S2 (39), pp. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
7. Lutsenko A.N., Perov N.S., Chabina E.B. The new stages of development of Testing Center. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
8. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
9. State Standard 23862.20–79. Rare earth metals and their oxides. Methods for the determination of vanadium. Moscow: Gosstandart of the USSR, 1979, pp. 1–3.
10. State Standard 23862.21–79. Rare earth metals and their oxides. Methods for the determination of chromium. Moscow: Gosstandart of the USSR, 1979, pp. 1–2.
11. State Standard 23862.4–79. Rare earth metals and their oxides. Spectral method for the determination of vanadium, iron, cobalt, silicon, manganese, copper, nickel, lead, titanium, chromium. Moscow: Gosstandart of the USSR, 1979, pp. 1–4.
12. Zhernokleeva K.V., Baranovskaya V.B. Analysis of Pure Scandium, Yttrium, and Their Oxides Using Methods of Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Inorganic Materials, 2011, vol. 47, no. 15, pp. 1627–1634.
13. Shu-Xiu Z., Murachi S., Imasaka T., Watanabe M. Determination of Rare Earth Impurities in Ultrapure Europium Oxide by Inductively-Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 1995, vol. 314, no. 4, pp. 193–201.
14. Pupyshev A.A., Epova E.N. Spectral noise of polyatomic ions in the method of mass spectrometry with inductively coupled plasma. Analytics and control, 2001, vol. 5, no. 4, pp. 335–369.
15. Leikin A.Yu., Karandashev V.K., Lisovsky S.V., Volkov I.A. The use of a reaction-collision cell for the determination of impurity elements in rare earth metals using the ICP-MS method. Zavodskaya laboratoriya. Diagnostika materialov, 2014, vol. 80, no. 5, pp. 6–9.
16. Yakimovich P.V., Alekseev A.V., Min P.G. Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method. Trudy VIAM, 2014, no. 10, paper no. 02. Available at: http://viam-works.ru (accessed: June 06, 2021). DOI: 10.18577/2307-6046-2014-0-10-2-2.
17. Karandashev V.K., Zhernokleeva K.V., Karpov Yu.A. The use of doubly charged ions in the determination of some rare earth elements in neodymium, samarium, europium and their compounds by inductively coupled plasma mass spectrometry. Zavodskaya laboratoriya. Diagnostika materialov, 2012, vol. 78, no. 12, pp. 5–10.
Estimation of impact damages area in CFRP specimens after impact is described at the article. It is shown that nondestructive testing and damages sizes estimation can be carried out by ultrasonic through transmission, echo and mechanical impedance analysis techniques. A comparative analysis of the estimation of impact damages areas by these techniques was carried out. The best accuracy in estimation of impact damages sizes can be obtained by using an automated ultrasonic echo technique in combination with focused transducers, as well as ultrasonic phased arrays.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing - the basis of innovation.Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Kablov E.N., Gunyaev G.M., Ilchenko S.I., Krivonos V.V. Structural carbon plastics with increased conductivity.Aviacionnye materialy i tehnologii, 2004, no. 2, pp. 25–36.
5. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 13, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
6. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: March 13, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-23.
8. Non-destructive testing: reference in 7 vols. Ed. V.V. Klyuev. Moscow: Mashinostroenie, 2004, vol. 3: Ultrasonic testing. Eds. I.N. Ermolov, Yu.V. Lange, 864 p.
9. Boychuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. Inspection of monolithic parts and structures of aviation equipment made from PCM by ultrasonic non-destructive testing using phased arrays. tr. X All-Russian. conf. TestMat "Main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry". Moscow: VIAM, 2018, pp. 18–31. Available at: https://https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (дата обращения: 08.02.2022).
10. Papa I., Lopresto V., Langella A. Ultrasonic inspection of composites materials: Application to detect impact damage.International Journal of Lightweight Materials and Manufacture, 2021, vol. 4, is. 1, pp. 37–42. Available at: https://www.sciencedirect.com/science/article/pii/S2588840420300342 (accessed: February 10, 2022).
11. Starikovsky G.P., Karabutov A.A., Kuryatin A.A. Non-destructive testing of integral structures made of polymer composite materials.V mire nerazrushayushchego kontrolya, 2011, no. 4 (54). pp. 61–65.
12. Taheri H., Hassen A.A. Nondestructive Ultrasonic Inspection of Composite Materials: A Comparative Advantage of Phased Array Ultrasonic. Applied Sciences, 2019, vol. 9 (8). DOI: 10.3390/app9081628.
13. Troitsky V.A., Karmanov M.N., Troitskaya N.V. Non-destructive quality control of composite materials.Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol, 2014, no. 3, pp. 29–33.
14. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
15. Boychuk A.S. Development of technologies for non-destructive testing of monolithic structures made of carbon fiber using ultrasonic antenna arrays: thesis, Cand. Sc. (Tech.). Moscow, 2016, 203 p.
Presents the results of studies of the fire safety parameters of high-temperature carbon fiber reinforced plastics made on the basis of various heat-resistant polymer binders, conducted in order to determine the possibility of their potential application in the designs of aircraft products, from the point of view of compliance with the requirements of regulatory documents in the field of aviation fire safety. It is shown that the considered carbon plastics have high values of fire safety characteristics and can be used in aircraft products.
2. Certification Specifications for Large Aeroplanes – CS-25. European Aviation Safety Agency, 2003, 473 p.
3. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
4. Mouritz A.P., Gibson A.G. Fire Properties of Polymer Composite Materials. Springer, 2006, 398 p.
5. Bychikhina L.V., Vorobyov V.N., Groshev Yu.M., Monastyrskaya E.V. Methods for studying the combustibility and fire safety of polymeric materials. Methods of testing and research of polymeric materials for aircraft construction. Moscow: VIAM, 1977, pp. 11.
6. Airworthiness standards for very light aircraft: AP-OLS: approved by Resolution of the 25th session of the Council on Aviation and the Use of Airspace 05/12/2006. St. Petersburg: SZ RCAI, 2006, 100 p.
7. Airworthiness standards for civil light aircraft: AP-23: approved by Decree of the 38th session of the Council on Aviation and the Use of Airspace on December 16, 2021. 4th ed. St. Petersburg: SZ RCAI, 2021, 216 p.
8. Airworthiness standards for transport category aircraft: AP-25: approved by Resolution of the 37th session of the Council on Aviation and the Use of Airspace on April 27, 2020. 6th ed. St. Petersburg: SZ RCAI, 2020, 328 p.
9. Airworthiness standards for rotorcraft of normal category: AP-27: approved by Resolution of the 37th session of the Council on Aviation and the Use of Airspace on April 27, 2020. 3rd ed. St. Petersburg: SZ RCAI, 2020, 129 p.
10. Airworthiness standards for transport category rotorcraft: AP-29: approved by Resolution of the 37th session of the Council on Aviation and the Use of Airspace on April 27, 2020. 4th ed. St. Petersburg: SZ RCAI, 2020, 186 p.
11. Airworthiness standards for aircraft engines: AP-33: approved by Resolution of the 36th session of the Council on Aviation and the Use of Airspace on March 15, 2018. 4th ed. with amendments 1–3. St. Petersburg: SZ RCAI, 2020, 81 p.
12. Fire Safety Aspects of Polymeric Material. Vol. 6. Aircraft: Civil and Military. Washington D.C.: Publication NMAB 318-6, National Materials Advisory Board, 1977, 268 p.
13. Barbotko S.L., Volny O.S., Bochenkov M.M. Analysis of the US Federal Aviation Administration proposals for the reform of aviation standards regarding the fire safety of used materials (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 11. Available at: http://www.viam-works.ru (accessed: February 7, 2022). DOI: 10.18577/2307-6046-2020-0-67-101-117.
14. 1/4 Scale fire penetration testing of composite fuselage. Sixth triennial international fire & cabin safety research conference. Atlantic City, 2010. 22 p.
15. Lyon R.E. Nongalogen fire-resistant plastics for aircraft interiors: technical report. DOT/FAA/AR-TN08/5. Springfield, Virginia: U.S. Department of Transportation Federal Aviation Administration, 2008, 33p.
16. Sohel R., Fangueiro R. Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications. Woodhead Publishing; Elsevier, 2016, 474 p.
17. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
18. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Grigoreva K.N. Research of the influence of the modifying additives nature on the rheological and thermomechanical properties of a photopolymer composition based on epoxy vinyl ester resin. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 31–40. DOI: 10.18577/2071-9140-2019-0-3-31-40.
19. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 11, 2025). DOI: 10.18577/2713-0193-2021-0-3-105-116.
20. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Evaluation of the fire safety of polymeric materials for aviation purposes: state analysis, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
21. Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means of ensuring the required indicators of fire safety of structures made of polymer composites (review). Pozharovzryvobezopasnost, 2019, vol. 28, no. 2, pp. 9–30.
22. Flame Retardant Chemicals: Technologies and Global Markets. BCC Research, 2018, 128 p.
23. Barbotko S.L., Volny O.S., Bochenkov M.M. Analysis of the US Federal Aviation Administration proposals for the reform of aviation standards regarding the fire safety of used materials (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 11. Available at: http://www.viam-works.ru (accessed: February 7, 2022). DOI: 10.18577/2307-6046-2020-0-67-101-117.
24. Buravov B.A., Bochkarev E.S., Al-Khamzawi A. et al. Current trends in the development of flame retardants for polymer compositions. Composition, properties, application. Izvestiya Volgogradskogo Gosudarstvennogo Tehnicheskogo Universiteta, 2020, no. 12 (247), pp. 7–24.
25. Aseeva R.M., Zaikov G.E. Combustion of polymeric materials. Moscow: Khimiya, 1981. 280 p.
26. Mikhailin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 416 p.
27. Berlin A.A. Combustion of polymers and low flammability polymeric materials. Sorosovskiy obrazovatelnyy zhurnal, 1996, no. 9, рр. 57–63.
28. Mittal K.L. Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications. Utrecht: VSP, 2005, 570 p.
29. Global Forecast for High Temperature Composite Resin (2023–2028 Outlook) – High Tech & Emerging Markets Report. Available at: https://www.marketresearch.com/Barnes-Reports-v2737/Global-Forecast-High-Temperature-Composite-30844419/ (accessed: February 10, 2022).
30. Valueva M.I., Zelenina I.V., Zharinov M.A., Khaskov M.A. High-temperature carbon plastics based on thermosetting polyimide binder. Voprosy materialovedeniya, 2020, no. 3 (103), pp. 89–102.
31. Sastri S.B., Armistead J.P., Keller T.M. Flame resistant phthalonitrile composites. Washington, DC: Naval Research Lab., International Aircraft fire and cabin safety research conference, 1998, 12 р. Available at: http://www.semanticscolar.org/paper/FLAME-RESISTANT-PHTALONITRILE-COMPOSITES-Sastri-Armistead/70a8302ea6967bb346122bcc16a8dd54ff17bd77 (дата обращения: 07.02.2022).
32. Raskutin A.E. Heat-resistant carbon plastics for aircraft structures operating at temperatures up to 400 °C: thesis, Cand. Sc. (Tech.). Moscow, 2007, 166 p.
33. Zelenina I.V., Gulyayev I.N., Kucherovskiy A.I., Mukhametov R.R. Heat-resistant CFRP for the impulse wheel of the centrifugal compressor. Trudy VIAM, 2016, no. 2 (38), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 7, 2022). DOI: 10.18577/2307-6046-2016-0-2-8-8.
34. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: February 7, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
35. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 7, 2022). DOI: 10.18577/2307-6046-2021-0-1-43-53.
36. Ishida H., Froimowicz P. Advanced and Emerging Polybenzoxazine Science and Technology. Elsevier, 2017. 1126 p.
37. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
38. Chand S. Review Carbon fibers for composites. Journal of Materials Science, 2000, no. 35, pp. 1303–1313.
39. Constantin L., Fan L., Pouey M. et al. Spontaneous formation of multilayer refractory carbide coatings in a molten salt media. Proceedings of the National Academy of Sciences of the United States of America, 2021, no. 118 (18). Available at: https://www.researchgate.net/publication/351245744 (accessed: February 07, 2022).
40. Airworthiness standards for civil aircraft of the USSR. Ed. 3rd. Moscow: TsAGI, 1984, 464 p.
41. ISO 13344:2015. Estimation of the lethal toxic potency of fire effluents. International Organization for Standardization. 2015. 20 p.
42. Methods for determining compliance with the Federal Aviation Rules “Instance of an aircraft. Requirements and certification procedure”: approved by Order of the Ministry of Transport of the Russian Federation No. 132 of May 16, 2003. Moscow, 2004, 53 p.
Heat-resistant alloys and steels
Tonysheva O.A., Voznesenskaya N.M., Gromov V.I., Leonov A.V. High strength corrosion resistant steel VNS-74 as applied to aircraft fasteners
Kuzmina N.A., Ostroukhova G.A. Blockiness and substructure in single-crystal castings of nickel heat-resistant alloys
Polymer materials
Lukina N.F., Kotova Е.V., Petrova A.P., Isaev A.Yu. Improvement of properties of fenolformaldegidny adhesives when updating by their polyvinylacetals
Composite materials
Kolpachkov E.D., Kurnosov A.O., Papina S.N., Petrova A.P. Specificity of the formation of fiberglass based on PMR-polyimides
Khrulkov A.V., Donetskiy K.I., Usacheva M.N., Goryansky A.N. Infusion methods for the manufacture of polymer composite materials (review). Part 2
Sidorina A.I., Safronov A.M. Study of the resistance of carbon fibers to oxidation
Protective and functional
coatings
Kravchenko D.V., Kozlov I.A., Nikiforov A.A., Tolmachev Y.V. The influence of 1163-AT aluminium alloy surface preparation on the adhesion of electroplated coatings
Kozlov I.A., Nikiforov A.A., Demin S.A., Vdovin A.I. Use of metal powder composition of the zinc–aluminum system for application of a protective coating by the method of cold gas-dynamic spraying
Shiriakina Yu.M., Kitaeva N.S., Afanaseva E.A., Butuzov A.V. Amphiphilic compounds and hydrophobization (review)
Material tests
Alekseev A.V., Yakimovich P.V. Analysis of praseodyme by the ICP-MS method
Boychuk A.S., Dikov I.A., Generalov A.S. Estimation of impact damages area in FRP by various ultrasonic techniques
Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review)