Articles
The structure, hardness, and tribotechnical characteristics of beryllium-containing steel VNS32-VI after hardening heat treatment have been studied. Metallographic analysis made it possible to establish that the structure of VNS32-VI consists of martensite, δ-ferrite and strengthening phases: NiBe, Cr23C6 и (Nb, Ti)C2. Based on the results of studies of tribotechnical characteristics, it was found that, compared with bearing steel 95Kh18-Sh, the wear rate of VNS32-VI steel by 15–20 % less when tested under conditions of dry sliding friction in a pair of friction with steel of the martensitic class ShKh15-SHD.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. Russia Needs New Generation Materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
4. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
5. Blinov V.M., Lukin E.I., Blinov E.V. Tensile fracture features of corrosion-resistant austenitic steels with superequilibrium nitrogen content and different vanadium content. Deformatsiya i razrushenie materialov, 2021, no. 4, pp. 10–14. DOI: 10.31044/1814-4632-2021-4-10-14.
6. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1, pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
7. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Krylov S.A. Study of the tribo-technical characteristics of corrosion-resistant steels with different mechanisms of volumetric hardening. Trudy VIAM, 2021, no. 10 (104). paper no. 01. Available at: http://www.viam-works.ru (accessed: 16 October, 2021). DOI: 10.18577/2307-6046-2021-0-10-3-11.
8. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Yazvitsky M.Yu. Influence of the phase composition of austenitic-martensitic trip-steel VNS9-Sh on the characteristics of dry sliding friction in tribocontact with steel ShKh15. Deformatsiya i razrushenie materialov, 2021, no. 10, pp. 20–27. DOI: 10.31044/1814-4632-2021-10-20-27.
9. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
10. Tonysheva O.A., Voznesenskaya N.M., Shestakov I.I., Eliseyev E.A. Influence of modes of high-temperature thermomechanical processing on structure and properties of high-strength corrosion-resistant steel of austenitic-martensitic class 17Х13Н4К6САМ3ч. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 11–16. DOI: 10.18577/2307-6046-2017-0-1-11-16.
11. Voznesenskaya N.M., Tonusheva O.A., Leonov A.V., Dulnev K.V. Hydrogen influence on high-strength corrosion-resistant steel VNS65-Sh properties and ways of elimination of hydrogen embrittlement. Trudy VIAM, 2018, no. 10 (70), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 1, 2022). DOI: 10.18577/2307-6046-2018-0-10-3-9.
12. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
13. Sevalnev G.S., Gromov V.I., E Eliseev.A., Leonov A.V. Influence of heat treatment on the formation of structure and properties in the nickel-beryllium alloy 97NL-VI. Trudy VIAM, 2018, no. 6 (66), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 12, 2021). DOI: 10.18577/2307-6046-2018-0-6-3-11.
14. Papirov I.I. Beryllium in alloys: reference book. Moscow: Energoatomizdat, 1986, 184 p.
15. Fridlyander I.N., Yatsenko K.P., Terenteva T.E., Helkovsky-Sergeev N.A. Beryllium is the material of modern technology. Moscow: Metallurgiya, 1992, 128 p.
16. Shatinskii V.F., Zbozhnaya O.M. The impregation of 1Kh18N8T steel by beryllium and the corrosion resistance of the coating in molten lithium. Material Science, 1974, no. 8, pp. 573–575.
17. Zhubaev A.K., Bekturgan N.B., Kuvatbaeva K.K., Nurtazina A.S. Investigation of the phase-structural state of stainless steel with beryllium // Fundamentalnye problemy radioelektronnogo priborostroyeniya, 2014. vol. 14, no. 3, pp. 70–73.
18. Dvoretskov R.M., Volkova O.S., Radzikovskaya V.N., Burova V.N. Determination of beryllium in modern aviation materials by atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2016, no. 4, paper no. 5. Available at: http://www.viam-works.ru (accessed: December 12, 2021). DOI: 10.18577/2307-6046-2016-0-4-5-5.
19. Naik B.G., Sivasubramanian N. Applications of beryllium and its alloys. Mineral Processing and Extractive Metullargy Review, 1994, vol. 13, no. 1, pp. 243–251.
20. Pastukhova Zh.P., Rakhshtadt A.G. Spring copper alloys. Moscow: Metallurgiya, 1979, 336 p.
21. Rakhshtadt A.G. Spring alloys. Moscow: Metallurgiya, 1965, 363 p.
22. Osintsev O.E., Fedorov V.N. Copper and copper alloys. Domestic and foreign brands: reference book. Moscow: Mashinostroenie, 2004, 336 p.
23. Double and multi-component systems based on copper: reference book. Ed. N.Kh. Abrikosov. Moscow: Nauka, 1979, 248 p.
24. Smiryagin A.P., Smiryagina N.A., Belova A.V. Industrial non-ferrous metals and alloys. Moscow: Metallurgiya, 1974, 488 p.
25. Tikhonov B.S. Low alloys based on copper. Moscow: Tsvetmetinformatsiya, 1977, 75 p.
26. Papirov I.I. Structure and properties of beryllium alloys: reference book. Moscow: Energoizdat, 1981, 368 p.
27. International translator of modern steels and alloys. Moscow: Nauka i tekhnika, 1993, vol. 3: International engineering encyclopedia. Ed. V.L. Kershenbaum. 640 p.
28. Goodremont E. Special steels: in 2 vols. 2nd ed., rev and add. Moscow: Metallurgiya, 1966, vol. 2, 540 p.
29. Cherbakov A.I., Mosolov A.N., Kalicev V.A. Recovery of technology for the beryllium-containing steel VNS-32-VI obtaining. Trudy VIAM, 2014, no. 05, paper no. 01. Available at: http://www.viam-works.ru (accessed: February 1, 2022). DOI: 10.18577/2307-6046-2014-0-5-1-1.
30. High-strength beryllium-containing steel: pat. 2600467 Rus. Federation, no. 2015125065/02; filed 25.06.15; publ. 20.10.16.
Samples of 1.6 mm thick fiberglass plastic sheet with different matrix curing modes were loaded in the elastic region according to the cantilever bending scheme. Both extreme and average values of frequencies and amplitudes of emission signals were recorded, besides, the duration of acoustic emission signals was recorded too. The criteria for evaluating the degree of matrix curing were the value of its microhardness. The acoustic emission signals recorded on various samples were analyzed with the matrix microhardness values taken into account, after which the corresponding dependences were plotted.
2. Nosov V.V., Yamilova A.R. Acoustic emission method. St. Petersburg: Lan, 2017, 304 p.
3. Buylo S.I. Physico-mechanical, statistical and chemical aspects of acoustic emission diagnostics. Rostov-on-Don; Taganrog: Publishing House of the Southern Fed. University, 2017, 184 p.
4. Finogenov G.N., Ritter E.G., Mukhutdinov A.G., Kirillov V.N. Acoustic-emission method for assessing the damage of polymer composite materials. Zavodskaya laboratoriya. Diagnostika materialov, 1995, no. 12, pp. 47–49.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
7. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report XX Mendeleev Congress on General and Applied Chemistry. Eekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
8. Kuritsyna A.D. Application of the microhardness method to determine some properties of polymeric materials. Test methods for microhardness. Moscow: Nauka, 1965, pp. 255–260.
9. State Standard 9450–76. Measurement of microhardness by indentation of diamond tips. Moscow: Publishing house of standards, 1993, 35 p.
10. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
11. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 20, 2022). DOI: 10.18577/2071-9140-2021-0-1-80-94.
12. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Research of microhardness and sclero-metric characteristics of the binding UP-2227N, cured by different regimes. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 39–45. DOI: 10.18577/2071-9140-2018-0-1-39-45.
13. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Patterns of the manifestation of anisotropy of properties in three mutually perpendicular sections of glass-carbon plastic. Plasticheskiye massy, 2020, no. 5–6, pp. 15–19.
14. Platonov A.A., Kogan D.I., Dushin M.I. Production of three-dimensional PCM by the method of impregnation with a film binder. Plasticheskiye massy, 2013, no. 6, pp. 56–61.
15. Veshkin E.A., Postnov V.I., Semenychev V.V. Evaluation of the microhardness of samples based on the binder VST-1210, cured according to various modes, as a testing method. Materialovedenie, 2018, no. 6, pp. 1–3.
16. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
17. Kenuy M.G. Fast statistical calculations. Simplified assessment and verification methods: handbook. Moscow: Statistics, 1979, 69 p.
18. Vulf B.K., Romadin K.P. Aviation materials science. Moscow: Mashinostroenie, 1967, 391 p.
19. Tager A.A. Physico-chemistry of polymers. Moscow: Nauchnyy mir, 2007, 128 p.
20. Kruglova A.N. Acoustic emission method. Study of the destruction of epoxy composites. Izvestiya KazGASU, 2009, no. 1 (11), pp. 273–276.
The article notes the results of a study to determine the permissible storage time interval between the surface treatment of polymer composite materials based on adhesive prepregs by atmospheric pressure plasma and the bonding process. It was found that this time interval is no more than 6 months. At the same time, the surface of VPS-53K fiberglass and VKU-30K.UMT49 carbon fiber remains hydrophilic. Morphological changes are of a similar nature, both on the day of surface treatment of both materials, and after 1, 3 and 6 months of storage. Free surface energy and work of adhesion also remain at the proper high level. It was found that with an increase in the time interval between the APP treatment and the gluing process, a decrease in the strength of the glued joint is observed.
2. Kablov E.N. In the history of VIAM, Petr Dementiev occupies a special place. Krylya Rodiny, 2017, no. 1, pp. 1–2.
3. Kablov E.N., Petrova A.P., Narsky A.R. Alexei Tikhonovich Tumanov is the founder of new scientific directions in materials science. Available at: http://www.viam.ru/public (accessed: December 07, 2021).
4. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
6. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
7. Vilnave Zh.Zh. Adhesive connections. Moscow: Technosfera, 2007, 384 p.
8. Cagle Ch. Adhesive connections. Ed. Kardashov D.A. Moscow: Mir, 1971, 295 p.
9. Composite materials handbook. Vol. 3: Polymer matrix composites materials usage, design, and analysis. US Department of Defense handbook, 2002, 734 p.
10. Peters S.T. Handbook of Composites. Second Ed. Chapman & Hall, 1998, 1120 p.
11. Barannikov A.A., Postnov V.I., Veshkin E.A., Strelnikov S.V. The role of fiberglass surface preparation for gluing. Klei. Germetiki. Tekhnologii, 2019, no. 6, pp. 19–27. DOI: 10.31044/1813-7008-2019-0-6-19-27.
12. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook. allowance. Moscow: Lomonosov Moscow State University, 2010, 68 p.
13. Barannikov A.A., Рostnov V.I., Veshkin E.A., Starostina I.V. Link between the energy characteristics of the surface of fiberglass of the VPS-53К brand and the strength of the adhesive joint based on it. Trudy VIAM, 2020, no. 10 (92), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2020-0-10-40-50.
14. Barannikov A.A., Satdinov R.A., Veshkin E.A., Kurshev E.V. The effect of atmospheric pressure plasma on the strength of an adhesive bond based on CFPR. Trudy VIAM, 2021, no. 12 (106), paper no. 01. Available at: http://www.viam-works.ru (accessed: 12 January, 2022). DOI: 10.18577/2307-6046-2021-0-12-47-54.
15. Barannikov A.A., Postnova M.V., Krasheninnikova E.V., Vasyukov A.N. Application of new technologies in the production of helicopter main rotor blades. Trudy VIAM, 2021, no. 11 (105), paper no. 09. Available at: http://www.viam-works.ru (accessed: 12 January, 2022). DOI: 10.18577/2307-6046-2021-0-11-91-102.
16. Tracey A.C. Effect of Atmospheric Pressure Plasma Treatment on Surface Characteristics and Adhesive Bond Quality of Peel Ply Prepared Composites. Available at: https://digital.lib.washington.edu/researchworks/handle/1773/27522 (accessed: November 12, 2021).
17. Takeda T., Yasuoka T., Hoshi H. et al. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 119, pp. 30–37.
18. Zaldivar R.J., Nokes J., Steckel G.L. et al. The Effect of Atmospheric Plasma Treatment on the Chemistry, Morphology and Resultant Bonding Behavior of a Pan-Based Carbon Fiber-Reinforced Epoxy Composite. Journal of Composite Materials, 2009, vol. 44, is. 2, pp. 137–156. DOI: 10.1177/0021998309345343.
19. Dighton C., Rezai A., Ogin S.L., Watts J.F. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques. International Journal of Adhesion and Adhesives, 2019, vol. 91, pp. 142–149. DOI: 10.1016/j.ijadhadh.2019.03.010.
20. Zaldivar R.J., Steckel G.L, Morgan B.A. et al. Bonding Optimization on Composite Surfaces using Atmospheric Plasma Treatment. Journal of Adhesion Science and Technology, 2012, vol. 26, is. 1–3, pp. 381–401.
21. Hansen W. Plasma for Aviation and Aerospace Industries. Available at: https://www.plasmatreat.com/downloads/english/15-04_IST_aerospace.pdf (accessed: July 12, 2021).
22. Langer M., Otto D. Methods for studying the surface characteristics of polymers after plasma treatment. Comparative analysis. Analiz i kontrol: tekhnologii, pribory, resheniya, 2018, no. 2 (39), pp. 2–7.
23. Williams T., Yu H., Hicks R. Atmospheric pressure plasma activation of polymers and composites for adhesive bonding: A Critical Review. Reviews of Adhesion and Adhesives, 2013, vol. 1, no. 1, pp. 46–87. DOI: 10.7569/RAA.2013.097302.
24. Serrano J.S. Surface modifications of composite materials by atmospheric pressure plasma treatment: PhD-Thesis. Madrid: Universidad Rey Juan Carlos, 2011, 302 p. Available at: https://eciencia.urjc.es/bitstream/10115/11379/1/Thesis_June%202011%20JSS-SLU-AUF_v5.pdf (accessed: July 12, 2021).
25. Gleich H. Zusammenhang zwischen Oberflächenenergie und Adhäsionsvermögen von Polymer werkstoffen am Beispiel von PP und PBT und deren Beeinflussung durch die Niederdruck-Plasmatechnologie: dis. Universtät Duisburg-Essen, 2004, 103 p. Available at: https://duepublico2.unidue.de/servlets/MCRFileNodeServlet/duepublico_derivate_00005593/gleichdiss.pdf (accessed: July 12, 2021).
26. Rodríguez B.N. Pre-Treatment for adhesive bonding of aerospace composite components: PhM-Thesis. London: Brunel University, 2016, 133 p. Available at: https://bura.brunel.ac.uk/bitstream/ 2438/14669/1/FulltextThesis.pdf (accessed: November 12, 2021).
27. Al-Maliki H.L.R. Adhesive and tribological behaviour of cold atmospheric plasma-treated polymer surfaces: PhD Dissertation. Gödöllő: Szent István University, 2018, 115 p. Available at: https://szie.hu/sites/default/files/hayder_lateef_dissertation.pdf (accessed: November 12, 2021).
28. Lisco F., Shaw A., Wright A. et al. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Solar Energy, 2017, vol. 146, pp. 287–297.
29. Kostova K.G., Nishimea T.M.C., Castroa A.H.R. et al. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 2014, vol. 314, pp. 367–375.
30. Akiyama H., Hasegawa K., Sekigawa T., Yamazaki N. Atmospheric pressure plasma treatment for composites bonding. Mitsubishi Heavy Industries Technical Review, 2018, vol. 55, no. 2, pp. 1–5.
31. Lucchetta G. Experimental analysis of atmospheric plasma treatment and resin optimization for adhesive bonding of carbon fiber/epoxy composites. Available at: http://tesi.cab.unipd.it/48832/1/Tesi_ANTONELLO_Julien.pdf (accessed: November 12, 2021).
32. Calomfirescu M., Neumaier R., Maier A. et al. Certification Concept and Development of a Bonded Eurofighter Airbrake Flight Demonstrator. Available at: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-AVT-266/MP-AVT-266-07.pdf (accessed: November 12, 2021).
33. Gardiner G. The future of CFRP aerostructures assembly. Available at:https://www.compositesworld.com/articles/the-future-of-cfrp-aerostructures-assembly (accessed: November 12, 2021).
34. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
35. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Gluing materials in the design of blades of helicopters. Trudy VIAM, 2016, no. 7, paper no. 07. Available at: http://www.viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2016-0-7-7-7.
36. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu. Development of adhesive composite material based on UMT49S-12K-EP alternative carbon filler and VSK-14-3 adhesive binder. Trudy VIAM, 2020, no. 6–7 (89), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2020-0-67-62-71.
37. Sharova I. A. Domestic and foreign experience in area of cold curing epoxy adhesive development. Trudy VIAM, 2014, no. 7, paper no. 05. Available at: http://viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2014-0-7-5-5.
38. Isaev A.Yu., Pavlyuk B.Ph., Petrova A.P., Lukina N.Ph., Balabanova O.S. Effect of modification of cold cured epoxy adhesives with elastomers on the resource strength of adhesive joint. Trudy VIAM, 2020, no. 9 (91), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2020-0-9-27-34.
The paper considers the application of adhesive prepregs with reduced flammability for the manufacture of aircraft floor panels. The effect of different types of flame retardants is shown, properties of adhesive binder VSK-14-6 with reduced flammability, adhesive prepregs on its basis and PCM with reduced flammability with different types of fillers ‒ fiberglass VPS-68 and carbon fiber plastic BCU-59 are given. Data on physical and mechanical properties of samples of three-layered honeycomb floor panels with cladding made of adhesive carbon and glass-reinforced plastics are presented. A comparative weight estimation with the existing floor panels is given Il-114, Il-96, Tu-204, Tu-214 products.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
4. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Evaluation of fire safety of polymeric materials for aviation purposes. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
5. Barbotko S.L., Dement'eva L.A., Serezhenkov A.A. Combustibility of glass and carbon plastics based on adhesive prepregs. Klei. Germetiki. Tekhnologii, 2008, no. 7, pp. 29–31.
6. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Gluing materials in the design of blades of helicopters. Trudy VIAM, 2016, no. 7, paper no. 07. Available at: http://www.viam-works.ru (accessed: May 29, 2021). DOI: 10.18577/2307-6046-2016-0-7-7-7.
7. Dulnev G.N., Zarichnyak Yu.P. Thermal conductivity of mixtures and composite materials: reference book. Leningrad: Energiya, 1974, 264 p.
8. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
9. Prepreg based on low flammability adhesive binder and fiberglass, carbon fiber based on it: pat. 2676634 Rus. Federation; filed 19.04.18; publ. 09.01.19.
10. Polymer binder, composite material based on it and method for its manufacture: pat. 2223988 Rus. Federation; filed 19.11.01; publ. 20.02.04.
11. Composite material and product made from it: pat. 2276638 Rus. Federation; filed 14.12.04; publ. 20.05.06.
12. Fire-resistant polymer composition and product made from it: pat. 2254349 Rus. Federation; filed 30.12.03; publ. 20.06.05.
13. Fire-resistant polyamide composition: pat. 2200744 Rus. Federation; filed 27.06.00; publ. 20.03.03.
14. Brominated polymers as FR additives and polymer systems containing the same: pat. US 8242183; filed 30.01.09; publ. 14.08.12.
15. Ignition resistant carbonate polymer composition: pat. US 8357441; filed 29.07.09; publ. 22.01.13.
16. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Komarov V.A. Development of composite materials based on adhesive prepregs of reduced flammability and requirements for the mechanical characteristics of PCM, taking into account the scope. All-Rus. Sc-tech. conf. "Polymer composite materials of a new generation and technologies for their processing". Moscow: VIAM, 2020, pp. 69–81.
17. Dushin M.I., Ermolaev A.M., Kotyrev I.Ya. et al. CFRP in floor panels of a three-layer structure. Aviatsionnaya promyshlennost, 1978, no. 6, pp. 8–12.
18. Shokin G.I., Shershak P.V., Andryunina M.A. Experience in the development and development of the production of honeycomb floor panels from domestic materials. Aviatsionnaya promyshlennost, 2017, no. 1, pp. 32–40.
19. Shershak P.V., Kosarev V.A., Ryabovol D.Yu. Hybrid facings in sandwich-construction of aviation floor panels. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 35–41. DOI: 10.18577/2071-9140-2018-0-3-35-41.
20. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the issue of production of floor panels from PCM for aircraft. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, vol. 19, no. 4, pp. 198–213.
21. Komarov V.A., Kutsevich K.E., Pavlova S.A., Tyumeneva T.Yu. Optimization of three-layer honeycomb floor panels from polymer composite materials of low flammability based on high-strength carbon and glass fibers and adhesive binder. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyenie, 2020, vol. 19, no. 3, pp. 51–72. DOI: 10.18287/2541-7533-2020-19-3-51-72.
22. Kablov E.N. Aviation materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
23. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
24. Komarov V.A. Theoretical basis for design of load-bearing structures produced using additive technologies. Ontology of Designing, 2017, vol. 7, no. 2 (24), pp. 191–206. DOI: 10.18287/2223-9537-2017-7-2-191-206.
25. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
26. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 29, 2021). DOI: 10.18577/2307-6049-2019-0-7-26-33.
Values of linear factors of weakening of radiation by polymeric composite material depending on anode voltage on x-ray tube are experimentally established. Optimum verification regimes are defined when using as the converter of the radiation image in optical film and digital detector systems. By rated way it is established that when using digital detector systems anode voltage has to be higher, than at film radiography. The reason is that digital detector systems are devices with high level of intrinsic noise.
2. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 31, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Troitsky V.A., Karmanov M.N., Troitskaya N.V. Non-destructive quality control of composite materials. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol, 2014, no. 3, pp. 20–33.
5. Vorobey V.V., Markin V.B. Quality control of manufacturing and technological repair of composite structures. Novosibirsk: Nauka, 2006, 189 p.
6. Kartashova E.D., Muizemnek A.Yu. Technological defects in polymeric layered composite materials. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki, 2017, no. 2 (42). pp. 79–89.
7. State Standard 20426–82. The control is non-destructive. Radiation flaw detection methods. Application area. Moscow: Publishing House of Standards, 1991, 24 p.
8. Klyuev V.V., Sosnin F.R. Theory and practice of radiation control: textbook. Moscow: Mashinostroenie, 1998, 170 p.
9. Artemiev B.V., Bukley A.A. Radiation control: textbook. 2nd ed. Moscow: Spektr, 2013, 1291 p.
10. Boychuk A.S., Dikov I.A., Generalov A.S. The increase of sensitivity and resolution of FRP solid samples nondestructive ultrasonic testing using the ultrasonic phased array. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 83–88. DOI: 10.18577/2071-9140-2019-0-3-83-88.
11. Gnedin M.M., Shablov S.V. Radiographic control. Requirements for the choice of radiographic film. V mire nerazrushayushchego kontrolya, 2019, no. 2, pp. 14–18.
12. Chulichkov A.I., Pytev Yu.P., Falomkina O.V., Zubyuk A.V. Methods of morphological data analysis and their applications. Uchenye zapiski fizicheskogo fakul'teta moskovskogo universiteta, 2017, no. 4, pp. 1740607-1–1740607-7.
13. Demidov A.A., Stepanov A.V., Turbin Ye.M., Krupnina O.A. The х-ray testing modes providing with radiation imaging with predetermined contrast. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 80–85. DOI: 10.18577/2071-9140-2016-0-4-80-85.
14. Naumenko A.V. Introduction to technical diagnostics and non-destructive testing: textbook. Omsk: OmGTU. 2019, 152 p.
15. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
. With the help of continuous IR laser exposure, periodic magnetically modulated structures were created from amorphous microwires. Local laser annealing leads to the formation of regions of nanocrystalline phases 2-14-1, 1-4-1, 2-1 alternating with amorphous regions, thereby creating a pattern on the sample surface with a given magnetization distribution. In amorphous samples without laser irradiation, chaotic domains are observed, disappearing after two hours of annealing at 900 °C. In the samples profiled by a «fast» laser, local annealing leads to further transformation of phases only in the very center of the laser «notches», which is expressed in a change in the slope of the profile line near the domain boundary.
2. Walther A., Marcoux C., Desloges B. et al. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems. Journal of Magnetism and Magnetic Materials, 2008, vol. 321, pp. 590–594.
3. Ning H., Zhang Y., Zhu H. et al. Geometry Design, Principles and Assembly of Micromotors. Journal of Micromachines, 2018, vol. 9, no. 75, pp. 35.
4. Peng H.-X., Qin F., Phan M.-H. Ferromagnetic microwire composites. From Sensors to Microwire applications. Springer, 2016. 245 p.
5. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 15, 2021). DOI: 10.18577/2307-6046-2019-0-7-67-75.
6. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 15, 2021). DOI: 10.18577/2307-6046-2019-0-11-60-67.
7. Croat J.J., Chraplyvy A.R., Herbst J.F. Crystallization of amorphous Pr0.27Co0.73: Magnetic properties and laser induced coercivity. Journal of Applied Physics Letters, 1980, vol. 37, pp. 962–964.
8. Ünal A.A., Parabas A., Arora A. et al. Laser-driven formation of transient local ferromagnetism in FeRh thin films. Ultramicroscopy, 2017, vol. 183, pp. 104–108.
9. Molian R., Molian P. Pulsed laser deposition and annealing of Dy–Fe–B thin films on melt-spun Nd–Fe–B ribbons for improved magnetic performance. Journal of Magnetism and Magnetic materials, 2009, vol. 321, pp. 241–246.
10. Guo B. Chinese Materials Conference, Effect of processing method on the microstructure of Nd4.5Fe77B18.5 magnetic alloy. Procedia Engineering, 2011, vol. 27, pp. 671–679.
11. Guo-hau Tu, Aitounian Z., Ryan D.H., Strom-Olsen J.O. Crystallization and texturing in rapidly quenched Nd2Fe14B1 and Nd15Fe77B8. Journal of Applied Physics, 1988, vol. 63, no. 8, pp. 3330–3332.
12. Harada T., Fujita M., Kuji T. Laser annealing of an amorphous Nd–Fe–B alloy. Nuclear Instruments and Methods in Physics Research B, 1997, vol. 12, no. 1, pp. 383–386.
13. Takashima H., Ueda K., Itoh M. Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition. Journal of Applied Physics Letters, 2006, vol. 89, аrt. 261915.
14. Chu K., Jin Z.Q., Chakka V.M., Liu J.P. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites. Journal of Physics D: Applied Physics, 2005, vol. 38, pp. 4009–4014.
15. Koplak O.V., Sidorov V.L., Dvoretskaya E.V., Shashkov I.V., Valeev R.A., Korolev D.V., Morgunov R.B. Radial domains in Dy–Pr–FeCo–B microwires. Fizika tverdogo tela, 2021, vol. 63, no. 2, pp. 242–247.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Materials of a new generation and digital technologies for their processing. Bulletin of the Russian Academy of Sciences, 2020, vol. 90, no. 4, pp. 331–334.
18. Kablov E.N. Russia Needs New Generation Materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
19. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
20. Kabanov Yu., Zhukov A., Zhukova V., Gonzalez G. Magnetic domain structure of wires studied by using the magneto-optical indicator film method. Applied Physics Letters, 2005, vol. 87, art. 142507.
21. Nikitenko V.I., Gornakov V.S., Dedukh L.M. et al. Magnetooptical indicator film (MOIF) microscopy of granular and layer structures (abstract). Journal of Applied Physics, 1996, vol. 79, pp. 6073.
22. Yue M., Liu R.M., Liu W.Q. et al. Ternary DyFeB Nanoparticles and Nanoflakes With High Coercivity and Magnetic Anisotropy. IEEE Transactions on Nanotechnology, 2012, vol. 11, pp. 651–654.
23. Yang J., Han J., Tian H. et al. Structural and Magnetic Properties of Nanocomposite Nd–Fe–B Prepared by Rapid Thermal Processing. Engineering, 2020, vol. 6, no. 2, pp. 132–140.
24. Ozawa S., Saito T., Motegi T. Effects of cooling rate on microstructures and magnetic properties of Nd–Fe–B alloys. Journal of Alloys and Compounds, 2004, vol. 363, pp. 263–270.
25. Wang C., Yan M., Zhang W.Y. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd, Pr)2Fe14B/α-Fe alloys. Journal of Magnetism and Magnetic Materials, 2006, vol. 306, pp. 195–198.
26. Liu Z.W., Davies H.A. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions. Journal of Magnetism and Magnetic Materials, 2007, vol. 313, pp. 337–341.
Considers the main achievements in the field of obtaining ceramic materials with a predominant crystallographic orientation of grains. It is shown that ceramics, which is characterized by the presence of a crystallographic texture, has increased properties in specific directions in comparison with non-textural materials. The development of fundamental research aimed at identifying the processes of texture formation contributes to the obtaining of ceramics with adjustable properties, which are in demand in many areas of industry
2. Buznik V.M., Kablov E.N. State and prospects of Arctic materials science. Vestnik RAN, 2017, vol. 87, no. 9, pp. 827–839.
3. Kablov E.N. Dominant of the national technology initiative. Problems of accelerating the development of additive technologies in Russia. Metally of Evrazii, 2017, no. 3, pp. 2–6.
4. Lavrov A.V., Yakovlev N.O., Erasov V.S. Destruction of ceramic materials under the influence of high-speed indenter. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 88–94. DOI: 10.18577/2071-9140-2018-0-2-88-94.
5. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
6. Voronov Vs.A., Lebedeva Yu.E., Sorokin O.Yu., Vaganova M.L. Investigation of the high-temperature coatings properties on the basis of an yttrium-alumosilicate system for the protection of SiC materials from the action of an oxidizing environment. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 63–73. DOI: 10.18577/2071-9140-2018-0-4-63-73.
7. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and pro-perties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
8. Messing G.L., Poterala S., Chang Y. et al. Texture-engineered ceramics – Property enhancements through crystallographic tailoring. Journal of Material Research, 2017, vol. 32, pp. 3219–3241.
9. Seabaugh M.M., Kerscht I.H., Messing G.L. Texture development by templated grain growth in liquid-phase-sintered α-alumina. Journal of the American Ceramic Society, 1997, no. 80, pp. 1181–1188.
10. Tani T. Texture engineering of electronic ceramics by the reactive-templated grain growth method. Journal of the Ceramic Society of Japan, 2006, no. 114, pp. 363–370.
11. Yilmaz H., Messing G.L., Trolier-McKinstry S. (Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics processing. Journal of Electroceramics, 2003, no. 11, pp. 207–215.
12. Jin S., Sherwood R.C. et al. High TC superconductors-composite wire fabrication. Applied Physics Letters, 1987, no. 51, pp. 203–204.
13. Goyal A., Feenstra R., List F.A. et al. Using RABiTS to fabricate high-temperature superconducting wire. The Journal of The Minerals, Metals & Materials Society, 1999, no. 51, pp. 19–23.
14. Sakka Y., Suzuki T.S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. Journal of the Ceramic Society of Japan, 2005, vol. 113, pp. 26–36.
15. Messing G.L., Trolier-McKinstry T., Sabolsky E.M. et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Material Sciences, 2004, no. 29, pp. 45–96.
16. Kabirova D.B. Evolution of the microstructure and texture upon annealing and deformation of superconducting YBa2Cu3O7–x ceramics: thesis, Cand. Sc. (Phys. & Math.). Ufa: Institute for Problems of Superplasticity of Metals of the Russian Academy of Sciences, 2020, 190 p.
17. Lotgering F.K.J. Topotactical reactions with ferromagnetic oxides having hexagonal crystal structures. Journal of Inorganic and Nuclear Chemistry, 1959, no. 9, pp. 113–123.
18. Kingery W.D. Introduction to ceramics: trans. from Engl. Moscow: Stroyizdat, 1967, 499 p.
19. Stuijts A.L., Rathenau G.W., Weber G.H. Ferroxdure II and III, anisotropic permanent magnet materials. Philips Technical Review, 1954, vol. 16, no. 5–6, pp. 141–180.
20. Chen Y., Daigle A., Fitchorov T. et al. Electronic tuning of magnetic permeability in Co2Z hexaferrite toward high frequency electromagnetic device miniaturization. Applied Physics Letters, 2011, no. 98, art. 202502.
21. Jian G., Meng F., Zhou D. et al. Fabrication of textured CoFe2O4 ceramics by novel RTGG method using rod-like α-FeOOH particles as templates. Materials Chemistry and Physics, 2015, vol. 162, pp. 380–385.
22. Chang P., He L., Wei D. et al. Textured Z-type hexaferrite Ba3Co2Fe24O41 ceramics with high permeability by reactive template grain growth method. Journal of European Ceramic Society, 2016, vol. 36, pp. 2519–2524.
23. Desgardin G., Monot I., Raveau B. Texturing of high–TC superconductors. Superconductors science and technology, 1999, vol. 12, no. 7, pp. 115–133.
24. Susner M.A., Daniels T.W., Sumption M.D. et al. Drawing induced texture and the evolution of superconductive properties with heat treatment in powder-in-tube in situ MgB2 strands. Superconductors science and technology, 2012, vol. 25, art. 065002.
25. Shi Y., Durrell J.H., Dennis A.R. et al. Multiple seeding for the growth of bulk GdBCO–Ag superconductors with single grain behavior. Superconductors science and technology, 2017, vol. 30, art. 015003.
26. Miwa Y., Kawada S., Kimura M. et al. Processing and enhanced piezoelectric properties of highly oriented compositionally modified Pb(Zr, Ti)O3 ceramics fabricated by magnetic alignment. Applied Physics Express, 2015, no. 8, art. 041501.
27. Yan Y., Wang Y.U., Priya S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Applied Physics Letters, 2012, vol. 100, art. 192905.
28. Chang Y., Wu J., Sun Y. et al. Enhanced electromechanical properties and phase transition temperatures in [001]-textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. Applied Physics Letters, 2015, vol. 107, art. 082902.
29. Yan Y., Zhou J.E., Maurya D. et al. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nature Communications, 2016, no. 7, art. 13089.
30. Yan Y., Cho K., Maurya D. et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, vol. 102, art. 042903.
31. Wei D., Yuan Q., Zhang G. et al. Templated grain growth and piezoelectric properties of <001>-textured PIN–PMN–PT ceramics. Journal of Material Research, 2015, vol. 30, no. 14, pp. 2144–2150.
32. Yan Y., Priya S. Strong piezoelectric anisotropy d15/d33 in <111> textured Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics. Applied Physics Letters, 2015, vol. 107, art. 082909.
33. Haugen A.B., Henning G., Madaro F. et al. Piezoelectric K0,5Na0,5NbO3 ceramics textured using needlelike K0,5Na0,5NbO3 templates. Journal of the American Ceramic Society, 2014, vol. 97, pp. 3818–3825.
34. Hussain A., Kim J.S., Song T.K. et al. Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Current Applied Physics, 2013, vol. 13, pp. 1055–1059.
35. Li Y., Hui C., Wu M. et al. Textured (K0,5Na0,5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceramics International, 2012, vol. 38, pp. 283–286.
36. Zhang H., Xu P., Patterson E. et al. Preparation and enhanced electrical properties of grain–oriented (Bi1/2Na1/2)TiO3–based lead–free incipient piezoceramics. Journal of the European Ceramic Society, 2015, vol. 35, pp. 2501–2512.
37. Maurya D., Zhou Y., Yan Y. et al. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0,5Bi0,5TiO3–BaTiO3 ceramics with giant piezoelectric response. Journal of Materials Chemistry C, 2013, no. 1, pp. 2102–2111.
38. Bai W., Hao J., Fu F. et al. Structure and strain behavior of <001> textured BNT-based ceramics by template grain growth. Materials Letters, 2013, vol. 97, pp. 137–140.
39. Ma S., Zhang Y., Liu Z. et al. Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method. Journal of Materials Science: Materials in Electronics, 2016, vol. 27, pp. 3076–3081.
40. Deng M., Li X., Zhao Z. et al. Crystallographic textured evolution in 0,85Na0,5Bi0,5TiO3–0,04BaTiO3–0,11K0,5Bi0,5TiO3 ceramics prepared by reactive-templated grain growth method. Journal of Materials Science: Materials in Electronics, 2014, vol. 25, pp. 1873–1879.
41. Zou H., Sui Y., Zhu X. et al. Texture development and enhanced electromechanical properties in <001>-textured BNT-based materials. Materials Letters, 2016, vol. 184, pp. 139–142.
42. Maurya D., Zhou Y., Wang Y. et al. Giant strain with ultralow hysteresis and high temperature stability in grain oriented lead-free K0,5Bi0,5TiO3–BaTiO3–Na0,5Bi0,5TiO3 piezoelectric materials. Scientific Reports, 2015, no. 5, art. 8595.
43. Hu D., Mori K., Kong X. et al. Fabrication of [100]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. Journal of the European Ceramic Society, 2014, vol. 34, pp. 1169–1180.
44. Vriami D., Damjanovic D., Vleugels J. et al. Textured BaTiO3 by templated grain growth and electrophoretic deposition. Journal of Materials Science, 2015, vol. 50, pp. 7896–7907.
45. Fu F., Shen B., Xu Z. et al. Electric properties of BaTiO3 lead-free textured piezoelectric thick film by screen printing method. Journal of Electroceramics, 2014, vol. 33, pp. 208–213.
46. Chemical technology of ceramics. Ed. I.Ya. Guzman. Moscow: Stroymaterialy, 2003, 496 p.
47. Suzuki T.S., Sakka Y. Preparation of oriented bulk 5 wt. % Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scripta Materialia, 2005, vol. 52, pp. 583–586.
48. Zhu X.W., Sakka Y., Zhou Y. et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity. Journal of the European Ceramic Society, 2014, vol. 34, pp. 2585–2589.
49. Nikova M.S. Synthesis and study of oxide compositions with a garnet structure in the Y2O3–Yb2O3–Sc2O3–Al2O3 system for optical ceramics: thesis, Cand. Sc. (Cand.). Stavropol: North Caucasian Federal University, 2020, 175 p.
50. Liu P., Yi H., Zhou G. et al. HIP and pressureless sintering of transparent alumina shaped by magnetic field assisted slip casting. Optical Materials Express, 2015, vol. 5, pp. 441–446.
51. Pringuet A., Takahashi T., Baba S. et al. Fabrication of transparent grain-oriented polycrystalline alumina by colloidal processing. Journal of the American Ceramic Society, 2016, vol. 99, pp. 3217–3219.
52. Tanaka S., Takahashi T., Uematsu K. Fabrication of transparent crystal-oriented polycrystalline strontium barium niobate ceramics for electro-optical application. Journal of the European Ceramic Society, 2014, vol. 34, pp. 3723–3728.
53. Sato Y., Arzakantsyan M., Akiyama J. et al. Anisotropic Yb:FAP laser ceramics by micro-domain control. Optical Materials Express, 2014, vol. 4, pp. 2006–2015.
54. Akiyama J., Sato Y., Taira T. Laser demonstration of diod-pumped Nd3+-doped fluorapatite anisotropic ceramics. Applied Physics Express, 2011, vol. 4, art. 022703.
55. Lee S., Lee Y., Kim Y. et al. Mechanical properties of hot-forged silicon carbide ceramics. Scripta Materialia, 2005, vol. 52, pp. 153–156.
56. Nakamura M., Hirao K., Yamauchi Y. et al. Tribological properties of unidirectionally aligned silicon nitride. Journal of the American Ceramic Society, 2001, vol. 84, pp. 2579–2584.
57. Zhang H.B., Hu C.F., Sato K. et al. Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. Journal of the European Ceramic Society, 2015, vol. 35, pp. 393–397.
58. Medvedev P.N., Muboyadzhyan S.A. X-ray diffraction studies of electron beam ceramic thermal barrier coating layer based on ZrO2·Y2O3. Trudy VIAM, 2017, no. 1 (49), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2017-0-1-3-3.
59. Lee S., Dursun S., Duran C. et al. Thermoelectric power factor enhancement of textured ferroelectric SrxBa1–xNb2O6–δ ceramics. Journal of Materials Research, 2011, vol. 26, pp. 26–30.
60. Fukuda K., Okabe M., Asaka T. Microtexture of c-axis-oriented polycrystalline lanthanum silicate oxyapatite formed by reactive diffusion. Journal of the American Ceramic Society, 2016, vol. 99, pp. 2816–2822.
The overview on application of carbon fiber plastics in different constructions of pilotless devices is carried out. The main requirements to constructions, such as rigidity, durability, shock resistance, cost, etc. are provided. The analysis of scientific publications on advantages of application of carbon fiber plastics is provided in tail plumage, wings, the body and blades of pilotless devices screws. Are given the recommendation about application developed in Research Center Kurchatovsky institut – VIAM of carbon fiber plastics in constructive parts of pilotless devices.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Kablov E.N. Marketing of materials science, aircraft building and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
5. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Abstracts of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
6. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Senyushkin N.S., Yamaliev R.R., Yalchibaeva L.R. The use of composite materials in the construction of UAVs. Molodoy uchenyy, 2011, vol. 1, no. 4 (27), pp. 59–61. Available at: https://moluch.ru/archive/27/2963/ (accessed: February 07, 2022).
8. Kuprikova E.Yu., Aseeva T.P., Razina G.M., Stepanov N.V. Technological aspects of manufacturing a truss rib from composite materials for the wing of an unmanned aerial vehicle using a truss and a rubber element. Konstruktsii iz kompozitsionnykh materialov, 2016, no. 1, pp. 30–33.
9. Pavlov M.S., Karavatsky A.K., Kostyushin K.V. et al. Optimal design of the body of an unmanned aerial vehicle. Vestnik Tomskogo gosudarstvennogo universiteta, 2021, no. 73, pp. 71–80.
10. Lazorin A.E., Degtyarev A.A., Polikarpov A.A. Numerical study of the strength characteristics of the V-shaped tail of an unmanned aerial vehicle based on composite materials. Vestnik Kontserna VKO «Almaz-Antey», 2020, no. 3, pp. 54–61. DOI: 10.38013/2542-0542-2020-3-54-61.
11. Kakhanchik-Pilinoga E., Svistunova A., Luzan M., Bakaev A. Application of promising composite materials in unmanned aerial systems. Nauka i innovatsii, 2017, no. 6 (172), pp. 34–38.
12. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2020-0-67-38-44.
13. Nagornov A.Yu. Flutter of an unmanned aerial vehicle made of composite materials with two-beam plumage. Trudy MAI, 2020, no. 113. Available at: http://www.trudymai.ru (accessed: December 16, 2021). DOI: 10.34759/trd-2020-113-19.
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM. Aviacionnye materialyi tekhnologii, 2011, no. 2, pp. 38–42.
15. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 19, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
16. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
17. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
18. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
In this work the analysis of experience of application of different approaches for achievement of necessary characteristics of coatings on the basis of epoxy film-forming at the expense of component modification of film-forming system is carried out. Ways of modification of hardeners for epoxy film-forming and epoxy resins are considered, influence of modifying agents on properties of coatings is described. The great attention is given in particular to amine hardeners, as to the most widespread hardeners of epoxies. Among modifiers of epoxy oligomers for receiving coatings uretan-containing, organic silicon oligomer products and rubbers are allocated.
2. Yakovlev A.D. Chemistry and technology of paint coatings. St. Petersburg: Khimizdat, 2010, 445 p.
3. Kondrashov E.K. Paint and varnish materials and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, 255 p.
4. Kablov E.N. Aviation materials science: results and prospects. Vestnik Rossiyskoy akademii nauk, 2002, vol. 72, no. 1, pp. 3–12.
5. Kablov E.N. Chemistry in Aviation Materials Science. Russian Journal of General Chemistry, 2011, vol. 81, no. 5, pp. 967–969.
6. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. The main directions of improving the operational properties, technological and environmental characteristics of paint coatings for aviation equipment. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
7. Eselev A.D., Bobylev V.A. Epoxy resins and hardeners for the production of paints and varnishes. Paints and varnishes and their application, 2005, no. 10, pp. 16–25.
8. Moshinsky L.Ya. Epoxy resins and hardeners. Tel Aviv: Arkadia Press Ltd, 1995, pp. 40–142.
9. Filichkina V.N. Modern state and trends in the development of production and consumption of epoxy resins. Chemical industry abroad. Moscow: NIITEKhIM, 1988, is. 8, 18 p.
10. Kochnova Z.A., Zhavoronok E.S., Chalykh A.E. Epoxy resins and hardeners: industrial products. Moscow: Paint media, 2006, 200 p.
11. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
12. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: October 17, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
13. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Paint and varnish materials and coatings. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 315–327.
14. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
15. Problems of protective paints and varnish coatings. Review of materials of the European conference "Protective coatings" (Protective coating), Düsseldorf. Lakokrasochnye materialy i ikh primenenie, 2013, no. 9, pp. 33–35.
16. Eselev A.D., Bobylev V.A. Epoxy resins: yesterday, today, tomorrow. Lakokrasochnaya promyshlennost, 2009, no. 9, pp. 15–17.
17. Shakhmaliev A.M., Ying Shen Kang, Bilalov Ya.M. et al. Modification of an epoxy oligomer with a reactive oligomer. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 7–9.
18. Amosova Z.V. Synthesis and study of epoxy oligomers and polymers. Moscow: NIITEKhIM, 1979, 97 p.
19. Moshinsky L.Ya., Belaya E.S. Epoxy resin hardeners. Moscow: NIITEKhIM, 1983, 62 p.
20. Katnov V.E., Stepin S.N. Influence of the hardener on the properties of epoxy coatings. Proceedings of the scientific session of Kazan State Technical University. Kazan, 2009, p. 25.
21. Smekhov F.M., Kardash N.S., Shode L.V. et al. Properties of epoxy coatings with various amine-type hardeners. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 9–11.
22. Finkelstein M.I. Industrial application of epoxy paints and varnishes. Leningrad: Khimiya, 1983, 120 p.
23. Epoxy resin hardeners: review inform. Moscow: NIITEKHIM, 1976, 47 p.
24. Sorokin M.V., Kochnova Z.A., Shode L.G. Chemistry and technology of film-forming substances. Moscow: Khimiya, 1989, 477 p.
25. Mirer E.V., Shode L.G., Tartakovskaya A.M., Kuzina S.I. Heterophase hydrolysis of ketimine adducts of epoxy oligomers. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 9–11.
26. Smekhov F.M., Kardash N.S., Shode L.G. et al. Properties of epoxy coatings with various amine-type hardeners. Lakokrasochnye materialy i ikh primenenie, 1989, no. 5, pp. 36–39.
27. Sorokin M.F., Onosova L.A., Tarasov A.V., Shode L.G. Epoxy materials based on modified amine hardeners. Lakokrasochnye materialy i ikh primeneniye, 1988, no. 3, pp. 4–6.
28. Vedyakin S.V., Shode L.G., Smekhov G.M., Zeitlin G.M. Modification of epoxyamine systems with organosilicon epoxyurethanes. Lakokrasochnye materialy i ikh primenenie, 1991, no. 2, pp. 1–3.
29. Aleksashina O.F., Molotov I.Yu., Shigorin V.G. et al. Properties of epoxy-ketimine coatings and experience with the use of KI-1 hardener. Lakokrasochnye materialy i ikh primenenie, 1990, no. 5, pp. 13–16.
30. Shode L.G., Sinitsina O.V., Voloshchuk K.A. Peculiarities of curing epoxy coatings with blocked hardeners (ketimines). Lakokrasochnye materialy i ikh primenenie, 1989, no. 6, pp. 9–12.
31. Shode L.G., Dudina L.V., Miroshnik V.M. Hardeners for epoxy oligomers of the EPAM type. Lakokrasochnye materialy i ikh primenenie, 1989, no. 5, pp. 16–19.
32. Sorokin M.F., Shode L.G., Dudina L.V. etc. New hardeners of epoxy oligomers based on epoxy oligomers and ammonia. Lakokrasochnye materialy i ikh primenenie, 1989, no. 2, pp. 13–15.
33. Shode L.G., Smekhov F.M., Kuzina S.I. Modified polyethylenepolyamines as hardeners for epoxy oligomers. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 4–6.
34. Sorokin M.F., Kochnova Z.A., Zakharova A.A., Golova N.A. Curing of epoxy oligomers with aminoalkoxysilanes. Lakokrasochnye materialy i ikh primenenie, 1986, no. 5, pp. 19–20.
35. Kochnova Z.A., Belyaev A.V., Zeitlin G.M. Curing of epoxy oligomers with the participation of aminopropyltriethoxysilanes. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 24–27.
36. Akopova T.A., Ponomarenko O.P., Olikhova Yu.V., Osipchik V.S. Study of the effect of organosilicon modifiers on the properties of epoxy-containing binders. Uspekhi khimii i khimicheskoy tekhnologii, 2012, vol. XXVI, no. 3 (32), pp. 70–72.
37. Arvan A.S., Kovalenko V.M., Sheshukov A.V., Shreiner S.A. Improving the properties of epoxy coatings by curing them with amino esters. Lakokrasochnye materialy i ikh primenenie, 1974, no. 4, pp. 53–54.
38. Sukhareva L.A., Mironova T.A., Fedyakova N.V. et al. Properties and structure of modified epoxy-polyamine coatings. Lakokrasochnye materialy i ikh primenenie, 1989, no. 5, pp. 50–52.
39. Zhavoronok E.S., Senchikhin I.N., Kolesnikova E.F. Peculiarities of curing mixtures of dianoic and aliphatic epoxy oligomers with different reactivity. Vysokomolekulyarnye soyedineniya. Series B, 2010, vol. 52, no. 4, pp. 706–714.
40. Petrova I.A., Kobozeva I.A., Savrasova E.M. The mechanism of curing epoxy oligomers by aluminum chelates in thin films. Lakokrasochnye materialy i ikh primenenie, 1990, no. 1, pp. 30–33.
41. Kirillov A.N., Garipov R.M., Deberdeev R.Ya. Application of organoelement epoxyurethane oligomers for modification of epoxyamine coatings. VIII Intern. conf. on chemistry and physicochemistry of oligomers "Oligomers-2002". Chernogolovka, 2002, p. 248.
42. Kochnova Z.A., Shode L.G. Hardeners for epoxy film formers. Lakokrasochnye materialy i ikh primenenie, 1995, no. 3–4, pp. 42–47.
43. Mostovoy A.S., Panova L.G. Investigation of the possibility of using low molecular weight polyamide grade PO-300 as a "cold" curing hardener for epoxy oligomers. Plasticheskiye massy, 2016, no. 1–2, pp. 16–18.
44. Kondrashov E.K., Vladimirsky V.N., Beider E.Ya. Erosion resistant coatings. Moscow: Khimiya, 1989, 135 p.
45. Shibalovich V.V., Yakovlev A.D. The use of amino acid hardeners in epoxy paint and varnish compositions. Lakokrasochnye materialy i ikh primenenie, 1979, no. 5, pp. 30–32.
46. Mikheev V.V., Ivanova R.R. Curing of epoxy oligomers by urethane-containing polyamines. Lakokrasochnye materialy i ikh primenenie, 2003, no. 12, pp. 8–11.
47. Logunov G.I., Nikolaev V.N. Epoxy oligomers cured with oligourethane acrylate and oligouretananallylate. Lakokrasochnye materialy i ikh primenenie, 1982, no. 3, pp. 19–20.
48. Kirillov A.N., Sof’ina S.Yu., Garipov R.M., Deberdeev R.Ya. Modification of epoxyamine compositions with epoxyurethane oligomers. Lakokrasochnye materialy i ikh primenenie, 2003, no. 4, pp. 25–28.
49. Kirillov A.N., Garipov R.M., Deberdeev R.Ya. Influence of epoxyurethane modifiers on the properties of epoxy lacquer coatings. IX All-Rus. conf. "Structure and dynamics of molecular systems". Yoshkar-Ola, 2002, pp. 236–239.
50. Prilutskaya N.V., Smekhov F.M., Shuster S.V. Modification of epoxy compositions with epoxy esters for coatings. Lakokrasochnye materialy i ikh primenenie, 1985, no. 1, pp. 30–32.
51. Lipson G.Ya. Colloidal-chemical properties of heterogeneous systems based on epoxy oligomer and reactive modifiers: thesis abstract, Cand. Sc. (Tech.). Moscow, 1985, pp. 13–18.
52. Mochalova E.N. Formation of the structure and properties of epoxyamine compositions in the presence of reactive and inert modifiers: thesis abstract, Cand Sc. (Tech.). Moscow, 1999, 15 p.
53. Parshina M.S., Soldatov M.A., Makarova V.A. Influence of the chemical structure of organofluorine copolymer modifiers on the moisture resistance of amine-cured epoxy resin. Lakokrasochnye materialy i ikh primenenie, 2018, no. 3, pp. 15–19.
54. Kurbatov V.G., Ilyin A.A., Indeikin E.A. Influence of polyaniline additive on the physical and mechanical properties of epoxy coatings. Lakokrasochnye materialy i ikh primenenie, 2011, no. 1–2, pp. 49–51.
55. Snopkov A.Yu., Glezer E.A., Yakovlev A.D. Coatings based on epoxy resins modified with rubber. Lakokrasochnye materialy i ikh primenenie, 1989, no. 3, pp. 66–71.
56. Ternovykh A.M. Development and study of protective polymer coatings based on epoxy and rubber oligomers with increased adhesive resistance: thesis abstract, Cand. Sc. (Tech.). Moscow, 1985, pp. 3–15.
57. Kablov V.F. System technology rubber-oligomeric compositions. X Int. conf. on chemistry and physicochemistry of polymers. Volgograd: Volgograd State Tech. University, 2009, pp. 162–19.
58. Chalykh A.E., Zhavoronok E.S., Kochnova Z.A., Kiselev M.R. Structure formation in binary mixtures of carboxyl-containing rubber–epoxy oligomer. Khimicheskaya fizika, 2009, vol. 28, no. 6, pp. 91–96.
59. Kochnova Z.A., Zhavoronok E.S., Kotova A.V. Features of obtaining epoxy-rubber compositions based on liquid butadiene-nitrile rubbers and epoxy oligomers. Lakokrasochnye materialy i ikh primenenie, 1998, no. 11, pp. 27–28.
60. Kuznetsova V.А., Zheleznyak V.G., Kurshev E.V., Yemelyanov V.V. Research of fuel- and water resistance of coatings based on the filled epoxy-thiokol polymeric compositions. Aviation materials and technologies, 2021, no. 2 (63), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 24, 2021). DOI: 10.18577/2713-0193-2021-0-2-93-102.
61. Zhavoronok E.S. Multicomponent polymer networks based on epoxy oligomers with active polyfunctional groups: thesis abstract, Dr. Sc. (Chem.). Moscow, 2019, pp. 35–39.
62. Composition for protective coating: pat. 2290421 Rus. Federation, no. 2005124341/04; filed 01.08.05; publ. 27.12.06.
63. Composition for protective coating of polymer composite materials: pat. 2480499 Rus. Federation, no. 2011127312/05; filed 04.07.11; publ. 27.04.13.
64. Storozhuk I.P., Pavlyukovich N.G. Modified thiokol compositions and their use as waterproofing and protective paintwork materials. Lakokrasochnye materialy i ikh primenenie, 2017, no. 5, pp. 29–33.
65. Chalykh A.E., Kochnova Z.A., Zhavoronok E.S. Compatibility and diffusion in the systems epoxy oligomers–liquid carboxylate rubbers. Vysokomolekulyarnye soyedineniya. Ser. A. 2001, vol. 43, no. 12, pp. 1–9.
66. Van Ngan N., Kostromina N.V., Osipchik V.S. et al. Polysiloxane-containing epoxyurethane oligomers and coatings based on them. Plasticheskiye massy, 2019, no. 3–4, pp. 3–6.
67. Kuznetsova V.A. Erosion-resistant composition based on the three-phase polymer system "epoxy oligomer-rubber-reinforcing filler": thesis abstract, Cand. Sc. (Tech.). Moscow, 1999, 24 p.
68. Strekachinskaya L.S., Verkholantsev V.V., Grozinskaya Z.P. Patterns of stratification of solutions of polymer mixtures. Lakokrasochnye materialy i ikh primenenie, 1980, no. 4, pp. 13–15.
69. Grozinskaya Z.P., Strekachinskaya L.S., Verkholantsev V.V. Improvement of some characteristics of coatings due to delamination of the film former. Lakokrasochnye materialy i ikh primenenie, 1979, no. 5, pp. 30–32.
70. Shleomenzon Yu.B., Morozova I.I., Pavlova V.P. et al. Structure of epoxy-rubber composition. Lakokrasochnye materialy i ikh primenenie, 1979, no. 2, pp. 8–10.
71. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
72. Kuznetsova V.A., Deev I.S., Semenova L.V. Influence of modification of epoxy film-forming compositions on their phase microstructure and adgesion to aluminium alloy. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 72–78. DOI: 10.18577/2071-9140-2016-0-1-72-78.
73. Yakovlev A.D., Yakovlev S.A. Paint and varnish functional coatings. St. Petersburg: Khimizdat, 2016, 265 p.
The structure of the SiGe material used to create memristive structures has been studied by x-ray diffractometry and transmission electron microscopy. The phase composition of the material has been determined. Revealed the inhomogeneity of the SiGe solid solution. The lattice periods, the degree of lattice microstrain, and the volume fractions of the solid solution phases are calculated. Using transmission electron microscopy, the following have been investigated: grain structure, distribution of phases and defects in the volume of grains. The defects of the crystal lattice have been investigated, and the character of the inhomogeneity of the SiGe solid solution has been refined using local x-ray microanalysis.
2. Joshi G., Lee H., Lan Y. et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys. Nano Letters, 2008, vol. 8, is. 12, pp. 4670–4674. DOI: 10.1021/nl8026795.
3. Wang X.W., Lee H., Lan Y.C. et al. Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy. Applied Physics Letters, 2008, vol. 93, is. 19, pp. 3121. DOI: 10.1063/1.3027060.
4. Harame D.L., Meyerson B.S. The early history of IBM's SiGe mixed signal technology. IEEE Transactions on Electron Devices, 2001, vol. 48, no. 11, pp. 2555–2567. DOI: 10.1109/16.960383.
5. Chevalier P., Gianesello F., Pallotta A. et al. PD-SOI CMOS and SiGe BiCMOS Technologies for 5G and 6G communications. 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 34.4.1–34.4.4. DOI: 10.1109/IEDM13553.2020.9371954.
6. Hofmann A., Jirovec D., Borovkov M. et al. Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits. Available at: https://arxiv.org/pdf/1910.05841.pdf (accessed: January 24, 2022). DOI: 10.48550/arXiv.1910.05841.
7. Martin S., Vivekananda P.A., Markus B. et al. Investigating microwave loss of SiGe using superconducting transmon qubits. Applied Physics Letters, 2021, vol. 118, is. 12, pp. 4001. DOI: 10.1063/5.0038087.
8. Ventra M.D., Pershin Y.V. Memcomputing: a computing paradigm to store and process information on the same physical platform. Nature Physics, 2013, vol. 9, pp. 200–202. DOI: 10.48550/arXiv.1304.1675.
9. Choi S., Tan S.H., Li Z. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nature Materials, 2018, vol. 17, pp. 335–340. DOI: 10.1038/s41563-017-0001-5.
10. Keonhee K., Dae K., Yeonjoo J. et al. Ion Beam-Assisted Solid Phase Epitaxy of SiGe and its Application for Analog Memristors. Journal of Alloys and Compounds, 2021, vol. 884, pp. 161086. DOI: 10.1016/j.jallcom.2021.161086.
11. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
12. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
13. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
14. Kablov E.N., Lukina E.A., Zavodov A.V., Efimochkin I.Yu. The formation of structure in ultrafine WC–Cо carbide material in the presence of inhibitory additives. Trudy VIAM, 2020, no. 4–5 (88), paper no. 10. Available at: http://www.viam-works.ru (accessed: January 24, 2021). DOI: 10.18577/2307-6046-2020-0-45-89-99.
15. Benarieb I., Ber L.B., Antipov K.V., Sbitneva S.V. Trends in development of wrought alloys of Al–Mg–Si–(Cu) system. Part 1 (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 14–22. DOI: 10.18577/2071-9140-2019-0-3-14-22.
16. Treninkov I.A., Zavodov A.V., Petrushin N.V. Research of crystal structure and microstructure of the ZhS32-VI nickel-base superalloy synthesized by selective laser fusion method, after high-temperature mechanical tests. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 57–65. DOI: 10.18577/2071-9140-2019-0-1-57-65.
A review of the methods for testing dwell low-cycle fatigue is carried out and the results of tests of nickel heat-resistant alloys and steels are presented. The description of models for calculating damage in the interaction of fatigue and creep is presented. The requirements for specimens, equipment and test results for metallic materials are analyzed. The fractographic features of fracture due to high-temperature dwell fatigue of heat-resistant nickel alloys and steels are considered.
2. Inozemtsev A.A., Nikhhamkin M.A., Sandratsky V.L. Gas turbine engines. Moscow: Mashinostroenie, 2007, 204 p.
3. Kogaev V.P. Calculations for strength at stresses that are variable in time. Moscow: Mashinostroenie, 1993, 364 p.
4. Kablov E.N. Materials of a new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14). pp. 16–21.
5. Makhutov N.A. Strength and safety. Fundamental and applied research. Novosibirsk: Nauka, 2008, 528 p.
6. Sulak I., Obrtlík K. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behavior of cast superalloy MAR-M247. Engineering Fracture Mechanics, 2017, vol. 185, pp. 92–100. DOI: 10.1016/j.engfracmech.2017.04.002.
7. Sun L., Bao X.-G., Guo S.-G. et al. The creep-fatigue behavior of a nickel-based superalloy: Experiments study and cyclic plastic analysis. International Journal of Fatigue, 2021, vol. 147. DOI: 10.1016/j.ijfatigue.2021.106187.
8. Goswami T., Hanninen H. Dwell effects on high temperature fatigue behavior. Part I. Materials and Design, 2001, vol. 22, is. 3, pp. 199–215.
9. Bukaty S.A., Okrugin A.A. Study of the cyclic durability of the material under conditions of low-cycle fatigue and long-term strength. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 5 (47), part 4, pp. 142–150.
10. Manson S.S., Halford G.R., Hirschberg M.H. Creep-fatigue analysis by strain-range partitioning. Technical paper. National Pressure Vessel and Piping Conference. San Francisco, 1971, pp. 1–17.
11. Inozemtsev A.A., Ratchiev A.M., Nikhamkin M.Sh. Low-cycle fatigue and cyclic crack resistance of a nickel alloy under loading characteristic of turbine disks. Tyazheloe mashinostroenie, 2011, no. 4, pp. 30–33.
12. ASTM E2714-13. Standard Test Method for Creep-Fatigue Testing. ASTM International, 2020. DOI: 10.15.20/E2714-13R13.
13. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Elsevier Publishing Resource Database. Available at: https://www.sciencedirect.com (accessed: October 20, 2021).
16. National Aeronautics and Space Administration (NASA) Technical Reports Database. Available at: https://ntrs.nasa.gov (accessed: October 20, 2021).
17. Database of RSCI resources. Available at: https://www.elibrary.ru (accessed: October 20, 2021).
18. Manson S.S., Halford G.R. Fatigue and Durability of Structural Materials. ASM International, 2006. 456 p.
19. Morishita M., Asada Y., Ispikawa A. An Evaluation of Creep-Fatigue of 304 Stainless Steel in Very Vacuum Environment. Bulletin of ASME, 1985, vol. 6, no. 235, pp. 7–12.
20. Miller D.A., Priest R.H., Ellison E.G. A Review of Material response and life prediction techniques under fatigue creep loading conditions. Journal of High Temperature and Process, 1984, vol. 6, no. 3, 4, pp. 155–194.
21. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing. Trudy VIAM, 2014, no. 9, paper no. 11. Available at: http://www.viam-works.ru (accessed: November 21, 2021). DOI: 10.18577/2307-6046-2014-0-9-11-11.
22. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DO1: 10.18577/2071-9140-2020-0-4-59-70.
23. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021. no. 1 (62). paper no. 08. Available at: http://www.journal.viam.ru (accessed: December 12, 2021). DOI: 10.18577/2071-9140-2021-0-1-80-94.
24. Gorbovets M.A., Khodinev I.A., Ryzhkov P.V. Equipment for testing carrying out the strain-controlled low-cycle fatigue. Trudy VIAM, 2018, no. 9 (69), paper no. 06. Available at: http://www.viam-works.ru (accessed: November 3, 2020). DOI: 10.18577/2307-6046-2018-0-9-51-60.
25. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Strength tests and researches of aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
26. Carroll L.J., Cabet C., Carroll M.C., Wright R.N. The development of microstructural damage during high temperature creep – fatigue of a nickel alloy. International Journal of Fatigue, 2013, vol. 47, pp. 115–125. DOI: 10.1016/j.ijfatigue.2012.07.016.
Considers the main stages of the process of formation of protective passive films on steel in a hydrogen sulfide-containing environment and the destruction of metal materials under the simultaneous influence of a corrosive environment and mechanical loads. The main theories and practical results of determining changes in the mechanical characteristics of steel under the influence of a corrosive environment and mechanical loads are presented. As the main criteria for corrosion destruction of materials taken values relative narrowing, relative elongation, and the strength limit during slow tension.
2. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
3. Kablov E.N., Erofeev V.T., Dergunova A.V. et al. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series, 2020, pр. 012029. DOI: 10.1088/1742-6596/1687/1/012029.
4. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2019-0-7-84-91.
5. Gonik A.A. Hydrogen sulfide corrosion and measures to prevent it. Moscow: Nedra, 1966, 167 p.
6. Getsov L.B., Laptev A.B., Puzanov A.I. et al. Strength of powder material for GTE disks under the aggressive action of a mixture of sodium chlorides and sulfates. Aviatsionnaya tekhnika, 2019, no. 12, pp. 14–25.
7. Gutman E.M. Mechanochemistry of metals and corrosion protection. Moscow: Metallurgiya, 1974, 232 p.
8. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
9. Burran J., Geretta E., Veini L. et al. Contribute to the interpretation of the Strain Rate Effect on type 304 stainless steel ingranular Stress Corrosion Cracking. Corrosion Science, 1985, no. 8, pp. 805–813.
10. Ebtehai K., Hardie D., Parkins R.N. The Stress Corrosion and preexposure embrittelement of Titanium in Methanolic Solutions of hydrochlorioal acid. Corrosion Science, 1985, no. 6, pp. 415–429.
11. Zhang K., Zhang J., Jin W. et al. Characterization of fatigue crack propagation of pitting-corroded rebars using weak magnetic signals. Engineering Fracture Mechanics, 2021, vol. 257, art. 108033.
12. Kasahara K., Sato T. Environ mental factors that influence the susceptibility of line pipe steels to external stress corrosion cracking. Tetsu to hagane, Iron and steel Inst. 1983, vol. 69, no. 11, pp. 1463–1470.
13. Fot A.P. Development of a complex of experimental equipment and methods of corrosion-mechanical testing: thesis, Dr. Sc. (Tech.). Kurgan: Kurgan State University, 1998, 460 p.
14. Nenk F., de Long. Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys. Corrosion, 1978, vol. 34, no. 1, pp. 32–36.
15. Roogen D., Bulischeck T.S. Stress corrosion cracking of alloy 600 using the constant strain rate test. Corrosion, 1981, vol. 37, no. 10, pp. 597–607.
16. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matrix strength characteristics for the assessment of limit states of structural metallic materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
17. Deegan D.C., Wilde B.E. Stress Corrosion Cracking Behavior of ASTM A517 Grade F Steel in Liquid Ammonia Environments. Corrosion – NACE, 1973, vol. 29, no. 8, pp. 310–315.
18. Xasahara K., Haruhiko A. Effect of Catodic Protection Conditions on the Stress Corrosion Cracking of Line Pipe Steels. Teysu to hagane, Iron and Steel Institution, 1983, vol. 69, no. 14, pp. 1630–1637.
19. Andresen P., Duguette D. Slow streln rate Stress Corrosion Testing at Elevated Temperatures and High Pressures. Corrosion Science, 1980, vol. 20, pp. 211–223.
20. Pan Y., Wang Y., Guo F. et al. Stress corrosion behavior of friction stir welding joint of 7N01 aluminum alloy. Journal of Materials Research and Technology, 2021, vol. 15, pp. 1130–1144.
21. Turn I.E., Wilde B.E., Troiano C.A. On the Sulfide Stress Cracking of line pipe steels. Corrosion, 1983, vol. 39, no. 9, pp. 364–370.
22. Rajasekaran R., Lakshminarayanan A.K. Probing the stress corrosion cracking resistance of laser beam welded AISI 316LN austenitic stainless steel. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, 2021, vol. 235 (17), pp. 3299–3317.
23. Fot A.P. Experimental Equipment and Methods for Corrosion-Mechanical Testing: An Analytical Review of Research Results on Objects Exposed to Hydrogen Sulfide-Containing Environments. Orenburg: OGU, 1997, 77 p.
24. Physical metallurgy. Ed. R.U. Kahn, P. Haazen. 3rd ed., revised. and ad. Moscow: Metallurgiya, 1987, vol. 1: Atomic structure of metals and alloys, 640 p.
25. Erasov V.S., Oreshko E.I., Lutsenko A.N. Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development. Trudy VIAM, 2018, no. 2, paper no. 12. Available at: http://www.viam-works.ru (accessed: July 4, 2021). DOI: 10.18577/2307-6046-2018-0-2-12-12.
26. Fot A.P., Mullabaev A.A., Kushnarenko V.M., Reshetov S.Yu. Force analysis of multi-position loaders. Zavodskaya laboratoriya. Diagnostika materialov, 1993, no. 6, pp. 55–57.
27. Laurent P.J. Approximation and optimization. Moscow: Mir, 1975, 357 p.
28. API Specification 51X for High-Test Line Pipe. Dallas, 1987, p. 9.
29. Levina Z.M., Reshetov D.N. Contact stiffness of machines. Moscow: Mashinostroenie, 1971, 264 p.
Heat-resistant alloys and steels
Mosolov A.N., Sevalnev G.S., Krylov S.A., Skugorev A.V., Chirkov I.A. Study of the structure and properties of beryllium-containing steel VNS32-VI
Composite materials
Veshkin E.A., Istyagin S.E., Kirilin S.G., Semenychev V.V. Acoustic emission characteristics in deformable fiberglass samples with different curing modes
Barannikov A.A., Sudyin Yu.I., Veshkin E.A., Satdinov R.A. Determination of the permissible storage time of polymeric composite materials after surface treatment with atmospheric pressure plasma before bonding
Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb structures aircraft technology
Slavin A.V., Demidov A.A., Kosarina E.I., Suvorov P.V. Definition of factors of weakening of x-ray emission with the broad range of energy polymeric composite material
Dvoretskaya E.V., Koplak O.V., Korolev D.V., Valeev R.A., Sidorov V.L., Piskorsky V.P., Morgunov R.B. Influence of mode of local laser annealing on the domain structure in microwires PrDyFeCoB
Zhitnyuk S.V., Medvedev P.N., Sorokin O.Yu., Kachaev A.A. Formation of crystallographic texture in polycryctalline ceramics as a way to enhance properties (review)
Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review)
Protective and functional
coatings
Kuznetsova V.A., Silaeva A.A., Zheleznyak V.G., Marchenko S.A. Modification of epoxy film-forming and the hardeners for coatings (review)
Material tests
Zaitsev D.V., Medvedev P.N., Lukina E.A.
SiGe structure investigation using me-thods of x-ray diffraction and transmission electron microscopy
Gorbovets M.A., Hodinev I.A., Karashaev M.M., Ryzhkov P.V. Low cycle dwell fatigue testing of heat resistant metallic materials (review)
Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R., Gorbovets M.A. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 2. Formation
of passive films and hydrogen sulfide cracking of steels
Conferences of
NRC «Kurchatov Institute» – VIAM
The solution of the III All-Russian Scientific and Technical Conference «Modern achievements in the field of development of advanced light alloys and coatings for aviation and space engineering», devoted to the Day of the astronautics