Articles
Examines the study of the effect of deformation and subsequent heat treatment on the structure of single-crystal samples from a heat-resistant intermetallic alloy based on the Ni3Al compound. It is shown that at a degree of deformation (upsetting in a closed container) ≤40 %, no cracks are formed in the structure of the material under study. Subsequent thermal annealing after deformation promotes the process of recrystallization and the formation of a grain structure in deformed samples of an intermetallic alloy based on the Ni3Al compound.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
4. Kablov E.N. We really need a breakthrough. Izvestia, 2018. 6 Sept.
5. Kablov E.N. VIAM materials and technologies for Aviadvigatel. Permskiye aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
6. Svetlov I.L. High-temperature Nb–Si-composites. Materialovedenie, 2010, no. 9, pp. 29–38.
7. Svetlov I.L. High-temperature Nb-Si-composites – replacement of single-crystal nickel heat-resistant alloys. Dvigatel, 2010, no. 5 (71). pp. 36–37.
8. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
9. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application. Trudy VIAM, 2013, no. 10, paper no. 01. Available at: http://www.viam-works.ru (accessed: November 23, 2021).
10. Ping Li, Shu-suo Li, Ya-fang Han. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX. Intermetallics, 2011, no. 19, pp. 182–186.
11. Bazyleva O.A., Efimochkin I.Yu., Arginbaeva E.G., Kuptsov R.S., Karashaev M.M. Composite material based on an intermetallic alloy of the VKNA type, reinforced with oxides. Perspektivnye materialy, 2020, no. 10, pp. 19–27.
12. Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al based intermetallic alloys – current stage and potential perceptivities. Materials, 2015, no. 8, pp. 2537–2568. DOI: 10.3390/ma8052537.
13. Bolshakova A.N., Efimochkin I.Yu., Murasheva V.V. Mechanically alloyed dispersion-strengthened composite materials. Konstruktsii iz kompozitsionnykh materialov, 2015, no. 1 (137). pp. 36–40.
14. Intermetallic alloy based on the nickel-aluminum-cobalt system: pat. RU 2603415 C1; filed 15.08.15; publ. 27.11.16.
15. Povarova K.B., Lomberg B.S., Filin S.A., Kazanskaya N.K., Shkolnikov D.Yu., Bespalova M.D. Structure and properties of (β + γ)-alloys of the Ni–Al–Co system. Metally, 1994, no. 3, pp. 77–81.
16. Povarova K.B., Kazanskaya N.K., Lomberg B.S., Shkolnikov D.Yu., Filin S.A., Bespalova M.D. Phase composition and structure of alloys based on NiAl of the Ni–Al–Co–M system, where M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo. Metally, 1996, no. 3, pp. 85–94.
17. Povarova K.B., Filin S.A., Maslenkov S.B. Phase equilibria with the participation of the β-phase in Ni–Al–Me (Me – Co, Fe, Mn, Cu) systems at 900 and 1100 °C. Metally, 1993, no. 1, pp. 191–205.
18. Povarova K.B., Kazanskaya N.K., Lomberg B.S., Bondarenko Yu.A., Shkolnikov D.Yu. Structural heat-resistant (β + γ)-alloys based on NiAl with increased low-temperature plasticity. Metallurg, 1996, no. 5, pp. 1.
19. Kucheryaev V.V., Mironova N.A., Shishkov S.U. Research of technological features of Ni–Al–Co system ingots deformation. Trudy VIAM, 2016, no. 3 (39), paper no. 01. Available at: http://viam-works.ru (accessed: November 23, 2021). DOI: 10.18557/2307-6046-2016-0-3-1-1.
20. Bazyleva O.A., Karashaev M.M., Shestakov A.V., E.G. Arginbaeva. Effect of annealing temperature on the homogeneity of inter-metallic alloy based on Ni3Al compound. Trudy VIAM, 2020, no. 8 (90), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 23, 2021). DOI: 10.18577/2307-6046-2020-0-3-10.
Describes the results of the work performed on the development of technology for the manufacturing of forgings of disk made of heat-resistant nickel alloys by isothermal deformation on air using computer modeling in the QForm software package. The stress-strain state of die tooling was calculated and the technology for producing disk forgings for welded shafts of the TK32 compressor was developed. Information on the of introduction of the developed technology into serial production are presented.
2. History of aviation materials science. VIAM – 75 years of search, creativity, discoveries. Moscow: Nauka, 2007, 343 p.
3. Kablov E.N., Antipov V.V., Sviridov A.V., Gribkov М.S. Features of electron beam welding of heat-resistant alloys EI698-VD and EP718-ID with steel 45. Trudy VIAM, 2020, no. 9 (91), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 9, 2021). DOI: 10.18577/2307-6046-2020-0-9-3-14.
4. Lomberg B.S., Shestakova A.A., Bakradze M.M., Karachevtsev F.N. The investigation of the stability of γ-phase with size below 100 nm in Ni-base superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577 / 2071-9140-2019-0-2-3-11.
6. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
7. Volkov A.M., Vostrikov A.V., Bakradze M.M. Development principles and alloying features of p/m Ni-base superalloys for jet-engine disks application. Trudy VIAM, 2016, no. 8, paper no. 2. Available at: http://www.viam-works.ru (accessed: July 1, 2021). DOI: 10.18577/2307-6046-2016-0-8-2-2.
8. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Efficient technology for manufacturing GTE disks from heat-resistant nickel alloys. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2013, no. 10, pp. 13–17.
9. Polukhin P.I., Gun G.Ya., Galkin A.M. Resistance to plastic deformation of metals and alloys. Moscow: Metallurgiya, 1983, 488 p.
10. Gladkov Yu.A., Mordvintsev P.S. Modeling of technological processes of stamping in solving problems of aircraft and engine building. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2012, no. 5, pp. 8–47.
11. Shpagin A.S., Kucheryaev V.V., Bubnov M.V. Computer simulation of thermomechanical processing of heat-resistant nickel alloys VZh175 and EP742. Trudy VIAM, 2019, No. 8 (80), paper no. 04. Available at: http://www.viam-works.ru (accessed: July 01, 2021). DOI: 10.18577/2307-6046-2019-0-8-27-35.
12. Bakradze M.M., Skugorev A.V., Kucheryayev V.V., Bubnov M.V. Computer modeling of technological metal forming processes as effective instrument for development of new technologies. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 175–185. DOI: 10.18577/2071-9140-2017-0-S-175-185.
13. Stebunov S.A., Bocharov Yu.A. Certification of aviation forgings based on process modeling in the QForm program. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2011, no. 6, pp. 33–35.
14. Stebunov S.A., Biba N.V. QForm – a program designed for technologists. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2004, no. 9, pp. 38–43.
15. Vlasov A.V., Stebunov S.A., Evsyukov S.A. Finite element modeling of technological processes of forging and forging. Moscow: Bauman MSTU, 2019, 383 p.
16. Alimov A., Zabelyan D., Burlakov I., Korotkov I., Gladkov Y. Simulation of Deformation Behavior and Microstructure Evolution during Hot Forging of TC11 Titanium Alloy. Defect and Diffusion Forum, 2018, vol. 385, pp. 449–454. DOI: 10.4028/www.scientific.net/DDF.385.449.
The production of polymer composite materials (PCM) in the twenties and in the future until 2030 will continue to grow, despite the pandemic and other obstacles of modern reality. And although the designs are becoming more integral, manufacturers are still faced with the task of choosing the type of machining. The use of machining with diamond wheels on water-cooled machines allows cutting various composites (fiberglass, carbon fiber, organoplastics and hybrid materials) with the required precision and quality.
2. Kablov E.N. New materials are needed for space exploration. Nauchnaya Rossiya. Available at: https://scientificrussia.ru/interviews/akademik-e-n-kablov-dlya-osvoeniya-kosmosa-nuzhny-novye-materialy (accessed: December 10, 2021).
3. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Raskutin A.E., Khrulkov A.V., Girsh R.I. Technological features of machining of composite materials when manufacturing details of designs (review). Trudy VIAM, 2016, no. 9, paper no. 12. Available at: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2016-0-9-12-12.
6. Integrated development of methods for improving the efficiency of processing hard-to-cut materials by improving cutting tools and the conditions for their use: Report on the research work. Sumy, 2015. Available at: https://pandia.ru/text/80/580/14374-2.php (accessed: December 15, 2021).
7. Minibaev M.I., Raskutin A.E, Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2019-0-1-105-114.
8. Vavilin V.A., Pasechnik K.A., Pushkarev A.Yu., Amelchenko N.A. Features of mechanical processing of polymer composite materials. Aktualnye problemy aviatsii i kosmonavtiki, 2018, vol. 1, pp. 12–14.
9. Timoshkov P.N., Usacheva M.N., Khrulkov A.V. Stickiness and possibility of using prepregs for automated technologies (review). Trudy VIAM, 2018, no. 8 (68), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 25, 2019). DOI: 10.18577/2307-6046-2018-0-8-38-46.
10. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N., Usacheva M.N. Composite materials for
non-autoclave technology (review). Proceedings of VIAM. 2018, no. 3 (63). Art. 05.
URL: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2018-0-3-37-48.
11. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: December 16, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
12. Huang J.-P., Yudin A.V., Tarasov I.V., Shevtsov S.N. Vacuum infusion technology in the production of composite structures: problems and prospects. Training of engineering personnel in the context of digital transformation: a collection of scientific works. Rostov-on-Don: DSTU, 2019, pp. 118–144.
13. Development of a methodology for modeling the machining of holes in mixed metal/composite packages. Conducting research and development of a model of boundary phenomena in the processing of mixed packages on the example of the drilling process: Report on the research work. Available at: https://pandia.ru/text/80/642/96497-3.php (accessed: December 15, 2021).
14. Grishchenko T.A., Melyukhov N.I., Lyubushkin V.O. The use of waterjet cutting in the processing of parts from polymer composite materials. Vestnik inzhenernoy shkoly DVFU, 2017, no. 2 (31). pp. 49–55.
15. Eliseeva A.V., Rovkin A.M., Timoshenko M.D., Morev D.S. Optimal processing of products from composite materials. Molodoy uchenyy, 2017, no. 52 (186), pp. 41–45.
16. Baurova N.I., Makarov K.A. Machining of machine parts from polymer composite materials. Tekhnologiya metallov, 2017, no. 2, pp. 15–19.
17. Andreev M.V., Shityuk A.A. Features of high-speed processing of polymer composite materials. Polzunovskiy almanakh, 2016, no. 4. S. 89–93.
18. Mityasov L.V. Features of processing carbon fiber. Glavnyy mekhanik, 2018, no. 6, p. 6.
19. Zubarev Yu.M., Priemyshev A.V., Zaostrovsky A.S. Features of the technology of mechanical processing of carbon fiber. Science intensive technologies in mechanical engineering, 2016, no. 5, pp. 30–33.
20. Pripisnov Ya.A., Grishina O.I. Modern methods of mechanical processing of composite materials (review). Trudy VIAM, 2018, no. 10 (70), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 16, 2021). DOI: 10.18577/2307-6046-2018-0-10-53-61.
21. Features of diamond cutting of stone. Available at: https://k-mechanism.ru/osobennosti-proczessa-almaznoj-rezki-kamnya.html (accessed: December 15, 2021).
High-temperature influence on composite material based on molybdenum hardened with dispersed particles of Al2O3 oxide structure and phase composititon is considered. Temperature was change in the range from 1300 to 2050 °C. With scanning electron microscopy application microstructure analysis is carried out, by X-ray microanalysis means local element composition is defined, also by diffraction analysis means samples surface phase composition in an initial condition and after impact is investigated.
2. Trofimenko N.N., Efimochkin I.Yu., Osin I.V., Dvoretskov R.M. The research of the possibility of high entropy alloy VNbMoTaW production by mixing elementary powders with further hybrid spark plasma sintering. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 12–20. DOI: 10.18577/2071-9140-2019-0-2-12-20.
3. Morgunova N.N., Klypin B.A., Boyarshinov V.A. et al. Alloys of molybdenum. Moscow: Metallurgy, 1975, 392 p.
4. Ambartsumyan R.S. Refractory materials in mechanical engineering: reference. Ed. A.T. Tumanov, K.I. Portnoy. Moscow: Mashinostroenie, 1967, 392 p.
5. Molybdenum: collection Articles. Trans. from Engl. Ed. A.K. Nathanson. Moscow: Foreign Literature Publ., 1959, 304 p.
6. Properties of elements: reference. Еd. M.E. Dritz. Moscow: Metallurgy, 1985, 672 p.
7. Middlemas M.R., Cochran J.K. The microstructural engineering of Mo–Si–B alloys produced by reaction synthesis. Journal of the Minerals, Metals and Materials Society, 2010, vol. 62, no. 10, pp. 20–24. DOI: 10.1007/s11837-010-0150-3.
8. Majumdar S., Schliephake D., Gorr B., Christ H.-J., Heilmaier M. Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo–Si–B Alloys. Metallurgical and Materials Transactions A, 2013, vol. 44, no. 5, pp. 2243–2257.
9. Batiyenkov R.V., Bolshakova A.N., Efimochkin I.Yu. The problem of low-temperature plasticity of molybdenum and alloys based on it (review). Trudy VIAM, 2018, no. 3 (63), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 28, 2021). DOI: 10.18577/2307-6046-2018-0-3-12-17.
10. Perepezko J.H., Sakidja R. Environmental Resistance of Mo–Si–B Alloys and Coatings. Oxidation of Metals, 2013, vol. 80, pp. 207–218. DOI: 10.1007/s11085-013-9373-3.
11. Chollacoop N., Alur A.P., Kumar K.S. Microstructural Finite Element Analysis of Mo–Si–B Alloy in High Temperature Applications. Journal of Visualization, 2005, vol. 8, no. 4, pp. 292.
12. Jung J.-I., Zhou N., Luo J. Effects of sintering aids on the densification of Mo–Si–B alloys. Journal of Materials Science, 2012, vol. 47, no. 24, pp. 8308–8319.
13. Karashaev M.M., Bazyleva O.A., Shestakov A.V., Ovsepyan S.V. Technological princi-ples for the development of metal composite materials reinforced with oxide and intermetallic particles. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 29–36. DOI:10.18577/2071-9140-2020-0-3-29-36
14. Jéhanno P., Heilmaier M., Kestler H. et al. Assessment of a Powder Metallurgical Processing Route for Refractory Metal Silicide Alloys. Metallurgical And Materials Transactions A, 2005, vol. 36A, no. 3, pp. 515–523.
15. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
18. Schneider H., Schreuer J., Hildmann B. Structure and properties of mullite – a review. Journal of the European Ceramic Society, 2008, no. 28, pp. 329–344.
Using the method of transmission optical microscopy in polarized light, changes in the internal structure of various oxide ceramic fibers under the influence of high-temperature heats were investigated. Complete restructuring of the structure of all examined fibers in the process of high-temperature exposure was revealed. Significant differences were established during recrystallization between fibers of different types. Mullite compositions showed stabilization of the recrystallization structure at the stage of formation of moderately large grains separated by stable large-angle (up to 90°) borders.
2. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg: 2019, vol. 4, p. 24.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Brautmans L. Modern composite materials. Moscow: Mir, 1970, 670 p.
5. Istomin A.V., Kolyshev S.G. Processing of wastes high-temperature heat-protective material. Trudy VIAM, 2021, no. 1 (95), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 15, 2021). DOI: 10.18577/2307-6046-2021-0-1-97-104.
6. Ermolenko I.N., Ulyanova T.M., Vityaz P.A., Fedorova I.L. Fibrous high temperature materials. Minsk: Nauka i tekhnika, 1991, 255 p.
7. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
8. Babashov V.G., Varrik N.M. Zirconia fibers as a component of high temperature thermal insulation (review). Trudy VIAM, 2021, no. 10 (104). paper no. 08. Available at: http://www.viam-works.ru (accessed: November 18, 2021). DOI: 10.18577/2307-6046-2021-0-10-79-86.
9. Chernyak M.G. Continuous glass fiber. Fundamentals of technology and properties. Moscow: Khimiya, 1965, 320 p.
10. Kostikov V.I., Varenkov A.N. Ultra-high temperature composite materials. Moscow: Intermet Inzhiniring, 2003, 563 p.
11. Shavnev A.A., Babashov V.G., Varrik N.M. Continuous fibers based on alumina (review). Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 27–34. DOI: 10.18577/2071-9140-2020-0-4-27-34.
12. Afanasov I.M., Lazoryak B.I. High temperature ceramic fibers. Moscow: Lomonosov Moscow State University, 2010, 51 p.
13. Perepelkin K.E. The fibers are inorganic. Moscow: Bolshaya rossiyskaya entsiklopediya, 2006, vol. 5. 663 p.
14. Fibers from oxide ceramics: pat. no. 2396388 Rus. Federation; filed 10.02.10; publ. 10.08.10.
15. Alumina fiber: pat. US 3808015A; filed. 12.05.72; publ. 30.04.74.
16. Preparation of inorganic oxide monofilaments: pat. US3311689A; filed. 17.01.63; publ. 28.03.68.
17. Pakshver A.B. Physical and chemical bases of technology of chemical fibers. Moscow: Khimiya, 1972, 432 p.
18. Method for producing high-temperature fiber based on aluminum oxide: pat. no. 2212388 Rus. Federation; filed 19.11.01; publ. 20.09.03.
19. Method for obtaining polycrystalline inorganic fibers: pat. no. 2170293 Rus. Federation; filed 16.07.99; publ. 10.07.01.
20. Zimichev A.M., Varrik N.M., Sumin A.V. On the issue of obtaining ceramic threads based on refractory oxides. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 3, paper no. 09. Available at: http://www.materialsnews.ru (accessed: July 7, 2021).
21. Moshnikov V.A., Tairov Yu.M., Khamova T.V., Shilova O.A. Sol-gel technology of micro- and nanocomposites: textbook. Ed. O.A. Shilova. St. Petersburg: Lan, 2013, 304 p.
22. Maksimov A.I., Moshnikov V.A., Tairov Yu.M., Shilova O.A. Fundamentals of sol-gel technology of nanocomposites. St. Petersburg: Elmor, 2007, 255 p.
23. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Ceramic fibers of aluminum oxide and materials based on them. Steklo i keramika, 2012, no. 4, pp. 32–35.
24. Kablov E.N., Shchetanov B.V., Ivakhnenko Yu.A. Obtaining, structure and strength of Al2O3 fibers. International conf. "Theory and practice of technologies for the production of products from composite materials and new metal alloys". Moscow: Znanie, 2003, pp. 194–196.
25. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and properties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
26. Sirotin Yu.I., Shaskolskaya M.P. Fundamentals of crystal physics. Moscow: Nauka, 1979, 24 p.
27. Martakov I.S. Morphology and properties of aluminum and titanium oxides obtained by template synthesis using cellulose and its derivatives: thesis, Cand. Sc. (Chem.). Syktyvkar: Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 2017, 133 p.
28. Ishchenko V.V. Influence of aggregation on the evolution of the microstructure of oxide powders in the processes of synthesis, heat treatment and sintering: thesis, Cand. Sc. (Chem.). Moscow: IONKh RAN, 2000, 111 p.
In this work, we investigated the main physical and mechanical properties of VPZ-24 syntactic foam based on a cyanate ester polymer base with the addition of hollow glass microspheres as a filler. Syntactic foam VPZ-24 is intended for filling sections of multilayer honeycomb heat-loaded structures. The results of the study of the microstructure of syntactic foam are shown. The influence of the effect of elevated temperature on the values of the ultimate strength in compression of a syntactic foam is shown. It was found that the maximum service temperature of syntactic foam VPZ-24 is 320 °C.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Kablov E.N. Materials are the basis of any business. Delovaya Slava Rossii, 2013, no. 2, pp. 4–9.
5. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: January 3, 2021). DOI: 10.18577/2307-6049-2019-0-7-26-33.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Mishkin S.I., Malakhovskiy S.S. Fast curing resins and prepregs: receiving, properties and areas of application (review). Trudy VIAM, 2019, no. 5 (77), paper no. 04. Available at: http://viam-works.ru (accessed: January 3, 2021). DOI: 10.18577/2307-6046-2019-0-5-32-40.
8. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
9. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
10. Sokolov I.I. Spheroplasty based on thermosetting binders for aircraft products: thesis, Cand. Sc. (Tech.). Moscow, 2013, 18 p.
11. Sokolov I.I., Minakov V.T. Spheroplasts for aviation purposes based on epoxy adhesives and dispersed fillers. Klei. Germetiki. Tekhnologii, 2012, no. 5, pp. 22–26.
12. Kovalenko A.V., Sidelnikov N.K., Sokolov I.I., Tundaykin K.O. Spheroplastic with adjustable viscosity for filling sections of honey-comb structures. Trudy VIAM, 2019, no. 11 (83), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 23, 2021). DOI: 10.18577/2307-6046-2019-0-11-37-43.
13. Sokolov I.I., Kogan D.I., Raskutin A.E., Babin A.N., Filatov A.A., Morozov B.B. Multilayer constructions with spheroplast for aircraft products. Konstruktsii iz kompozitsionnykh materialov, 2014, no. 1 (133). pp. 37–42.
14. Berlin A.A., Shutov F.A. Reinforced gas-filled plastics. Syntax foams. Moscow: Khimiya, 1980, pp. 158–215.
15. Panin V.F., Gladkikh Yu.A. Designs with a placeholder: reference. Moscow: Mashinostroenie, 1991, 272 p.
16. Osipchik V.S., Olikhova Yu.V., Nguyen L.Kh. Determination of the glass transition temperature of the epoxysiloxane composition by thermal methods of analysis. Plasticheskiye massy, 2017, no. 7–8. pp. 34–37.
17. Deev I.S., Kobets L.P. Factography of epoxy polymers. Vysokomolekulyarnyye soyedineniya, ser. A. 1996, vol. 38, no. 4, pp. 627–633.
A method for increasing the adhesive interaction at the interface between a carbon fiber reinforcing filler and a polymer matrix in polymer composite materials by modifying the filler surface by electrochemical treatment is considered. The methods used to characterize the surface of the origin and modified fibers are listed. The features of the electrochemical oxidation process of carbon fibers are shown. The main advantages and disadvantages of this modification method are given. An overview of the results of studies of electrochemical oxidation of carbon reinforcing filler use to improve the mechanical characteristics of carbon plastics is given.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 18, 2021). DOI: 10.18577/2713-0193-2021-0-3-105-116.
4. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 8, 2021). DOI: 10.18577/2307-6046-2020-0-12-47-58.
5. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
6. Meleshko A.I., Polovnikov S.P. Carbon, carbon fibers, carbon composites. Moscow: Science-press, 2007, 192 p.
7. Zhelezina G.F., Solovieva N.A., Kulagina G.S., Shuldeshova P.M. Study of the possibility of increasing the impact resistance of thin-sheeted carbon fiber-reinforced plastics due to clading with aramid organoplastics. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 20, 2021). DOI: 10.18577/2713-0193-2021-0-4-35-42.
8. Sidorina A.I., Gunyaeva A.G. Modification of Surface of Reinforsing Carbon Fillers for Polymeric Composite Materials by Plasma Treatment (Review). Fibre Chemistry, 2017, vol. 49, no. 1, pp. 24–27.
9. Mikhailin Yu.A. Structural polymeric composite materials. Moscow: Nauchnye osnovy i tekhnologii, 2008, 822 p.
10. Carbon fibers and carbon composites. Ed. E. Fitzer. Moscow: Mir, 1988, 338 p.
11. Zhang X., Pei X., Jia Q., Wang Q. Effects of CFs surface treatment on the tribological properties of 2D woven carbon fabric/polyimide composites. Applied Physics A, 2009, vol. 95, pp. 793–799.
12. Tiwari S., Bijwe J. Surface treatment of carbon fibers – a review. Procedia Technology, 2014, vol. 14, pp. 505–512.
13. Vautard F., Ozcan S., Meyer H. Properties of thermos-chemically surface treated carbon fibers and their epoxy and vinyl ester composites. Composites: Part A, 2012, vol. 43, pp. 1120–1133.
14. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
15. Zhang J. Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites. Paris, 2012. Available at: https://tel.archives-ouvertes.fr/tel-01146459 (accessed: July 15, 2021).
16. Mahltig B., Kyosev Y. Inorganic and Composite Fibers: Production, Properties, and Applications. Woodhead Publishing, 2018. 343 p.
17. Garifullin A.R., Abdullin I.Sh. The current state of the problem of surface treatment of carbon fibers for their subsequent use in polymer composites as a reinforcing element. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, no. 7. Available at: https://cyberleninka.ru/article/sovremennoe-sostoyanie-problemy-poverhnostnoy-obrabotki-uglerodnyh-volokon-dlya-posleduyushego-ih-prime-neniya-v-polimernyh (accessed: June 08, 2021).
18. Eyckens D.J., Arnold C.L., Simon Z. et al. Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fiber-epoxy composites. Composites: Part A, 2021, vol. 140, pp. 1–7.
19. Yuan X., Zhu B., Cai X. et al. Influence of different surface treatments on the interfacial adhesion of graphene oxide/carbon fiber/epoxy composites. Applied Surface Science, 2018, vol. 458, pp. 996–1005.
20. Park S.-J., Kim M.-H. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. Journal of Material Science, 2000, vol. 35, pp. 1901–1905.
21. Comprehensive Composite Materials. Еd. T.-W. Chow. Oxford: Pergamon Press, 2000, vol. 1: Fiber reinforcements and general theory of composite, 824 p.
22. Ma Y.J., Wang J.L., Cai X.P. The Effect of Electrolyte on Surface Composite and Microstructure of Carbon Fiber by Electrochemical Treatment. International Journal of Electrochemical Science, 2013, vol. 8, pp. 2806–2815.
23. Gulyas J., Foldes E., Lazar A., Pukanszky B. Electrochemical oxidation of carbon fibers: surface chemistry and adhesion. Composites: Part A, 2001, vol. 32, pp. 353–360.
24. Wang Y.Q., Zhang F.Q., Sherwood P.M. Interfacial interactions between polyvinyl alcohol and carbon fiber electrochemically oxidized in nitric acid solution. Chemistry of Materials, 1999, vol. 11, pp. 2573–2583.
25. Bismarck A., Kumru M.E., Springer J., Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. Applied Surface Science, 1999, vol. 143, pp. 45–55.
26. Qian X., Zhi J., Chen L. et al. Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites. Surface and Interface Analysis, 2012, vol. 45, pp. 937–942.
27. Waseem S.F., Gardner S.D., He G.R. et al. Adhesion and surface analysis of carbon fibres electrochemically oxidized in aqueous potassium nitrate. Journal of Materials Science, 1998, vol. 33, pp. 3151–3162.
28. Gubanov A.A. Development of the process of electrochemical modification of the surface of carbon fiber in order to increase the strength of carbon fiber: thesis, Cand. Sc. (Tech.). Moscow, 2015. Available at: https://diss.muctr.ru/author/82/ (аccessed: September 8, 2021).
29. Liu J., Tian Y., Chen Y., Liang J. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution. Applied Surface Science, 2010, vol. 256, pp. 6199–6204.
30. Guo Y., Liu J., Liang J. Surface state of carbon fibers modified by electrochemical oxidation. Journal of Materials Science and Technology, 2005, vol. 21, pp. 371–375.
31. Bondaletova L.I., Bondaletov V.G. Polymer composite materials: textbook. Tomsk: Tomsk Publishing House Polytechnic University, 2013, part 1, 118 p.
32. Moshonov A., Li H., Muzzy J.D. Electrochemical surface treatment of carbon fibers. 36th Int. SAMPE Symposium, 1991, vol. 36, pp. 1787–1801.
33. Donnet J.B., Bansal R.C. Carbon Fibers. 2nd ed. New York: Marcel Dekker, 1990. 470 p.
34. Borman V.D., Varshavsky V.Ya., Kvanin A.L. Segregation of impurities on the surface of carbon fiber during electrochemical processing. Kompozity i nanostruktury, 2011, no. 3, pp. 24–35.
35. Ma Q., Gu Y., Li M., Wang S., Zhang Z. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite. Applied Surface Science, 2016, vol. 379, pp. 199–205.
36. Raphael N., Namratha K., Chandrashekar B.N. et al. Surface modification and grafting of carbon fibers: A route to better interface. Progress in Crystal Growth and Characterization of Materials, 2018, vol. 64, pp. 75–101.
37. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
38. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
The article is devoted to the creation of radio-absorbing polymer composite materials of a dielectric type of reduced density. The main characteristics of a number of developed domestic and foreign foamed radio-absorbing materials are given, the technologies for their production, the scope of application are described and the features of radio-absorbing materials for use in anechoic camera are considered. The characteristics of the reduced density radio-absorbing materials developed at the Kurchatov Institute Research Center – VIAM are given.
2. Kablov E.N. Trends and guidelines for Russia's innovative development: Collection scientific-inform. materials. Moscow: VIAM, 2015, pp. 530–538.
3. Devin K.L., Agafonova A.S., Sokolov I.I. Prospects for the use of radio-absorbing materials to ensure electromagnetic compatibility of avionics. Trudy VIAM, 2020, no. 8 (90), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 22, 2021). DOI: 10.18577/2307-6046-2020-0-8-94-100.
4. Mikhailin Yu.A. Special polymer composite materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2014, pp. 171–450.
5. Boiprav O.V., Lobunov V.V., Lynkov L.M., Al-Mashat E.A.A. Research of interaction of infrared wave-length range electromagnetic radiation with radio-absorbent materials based on metal-containing elements. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 89–94. DOI: 10.18577/2071-9140-2020-0-2-89-94.
6. Bespalova E.E., Belyaev A.A., Shirokov V.V. Radar-absorbing materials for protection against high power microwave radiation. Trudy VIAM, 2015, no. 3, paper no. 07. Available at: http://www.viam-works.ru (accessed: March 17, 2022). DOI: 10.18577/2307-6046-2015-0-3-7-7.
7. Kovneristy Yu.K., Lazareva I.Yu., Ravaev A.A. Materials that absorb microwave radiation. Moscow: Nauka, 1982, 164 p.
8. Belyaev A.A., Bespalova E.E., Romanov A.M. Fireproof radio absorbing materials for anechoic cameras. Aviacionnye materialy i tehnologii, 2013, no. 1, pp. 53–55.
9. Belyaev A.A., Agafonova A.S., Antipova E.A., Botanogova E.D. Constructional radio absorbing material of three-layered structure with approval layer. Trudy VIAM, 2013, no. 7, paper no. 02. Available at: http://www.viam-works.ru (accessed: November 22, 2021).
10. Bespalova E.E., Kondrashov E.K. Features of updating of a composition of a fireproof material for anechoic chambers when changed of parameters radio absorbing filler. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 48–52. DOI: 10.18577/2071-9140-2014-0-2-48-52.
11. Mikhailin Yu.A. Fibrous polymeric composite materials in engineering. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013. 720 p.
12. Mitsmakher M. Yu., Torgovanov V.A. Anechoic microwave chambers. Moscow: Radio i svyaz, 1982, pp. 89–95.
13. Bogush V.A., Borbotko T.V., Gusinsky A.V. etc. Electromagnetic radiation. Methods and means of protection. Minsk: Bestprint, 2003, 401 p.
14. Miychenko I.P. Technology of semi-finished products of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2012, 373 p.
15. Volkov V.P., Zelenetsky A.N., Sizova M.D. Obtaining radioprotective polymeric materials of low combustibility. Plasticheskiye massy, 2008, no. 6, pp. 42–46.
16. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers. Aviacionnye materialy i tehnologii, 2011, no. 4, pp. 8‒14.
17. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
18. Polymer composite materials: structure, properties, technology: textbook. Ed. A.A. Berlin. 3rd ed. St. Petersburg: Professiya, 2011, pp. 298–301.
19. Bibikov S.B., Smolnikova O.N., Prokofiev M.V. Dielectric properties and microwave conductivity of porous radio-absorbing materials. Radiotekhnika, 2011, no. 3, pp. 62–76.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
22. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy, ser.: Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, no. 10, pp. 61–71.
23. Lushina M.V., Parshin S.G., Rzhevsky A.A. Modern shielding and radio-absorbing materials. Sistemy upravleniya i obrabotka informatsii, 2011, no. 22, pp. 208–214, 223.
24. Radar-absorbing materials like "Moss". Available at: http://www.radiostrim.ru/220-moh.htm (accessed: November 27, 2020).
25. Radio-absorbing material. Available at: http://https://tesart.ru/products/item/amp/ (accessed: November 27, 2020).
26. Emerson and Cuming_Microwave products. Available at: http://eltm.ru/editor/upload-files/Cuming_Microwave.pdf (accessed: November 27, 2020).
27. RPM Frankonia PF foam type. Available at: http://radio.vilcom.ru/products/radiopogloshaushie_ materialy/549 (accessed: November 27, 2020).
Considers the question of the influence on the structure of the PEO coating of the time ratio of exposure to the polarizing voltage in the anodic and cathodic half-periods during the oxidation process in a silicate-phosphate electrolyte. A linear dependence of the time of cathodic polarization and the thickness of the coating formed on a cast magnesium alloy in a silicate-phosphate electrolyte has been revealed. When using anodic pulses of short duration, the coating has numerous defects in the form of pores, which negatively affects the protective properties.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260). pp. 3–16.
4. Mostyaev I.V., Akinina M.V. Features and development trends in the field of heat treatment of magnesium alloys (review). Trudy VIAM, 2018, no. 7 (67), paper no. 5. Available at: http://www.viam-works.ru (accessed: December 9, 2021). DOI: 10.18577/2307-6046-2018-0-7-41-48.
5. Mukhina I.Yu., Uridiya Z.P., Trofimov N.V. Сorrosion-resistant casting magnesium alloys. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 15–23. DOI: 10.18577/2071-9140-2017-0-2-15-23.
6. Liu L.J., Schlesinger M. Corrosion of magnesium and its alloys. Corrosion Science, 2009, vol. 51, no. 8, pp. 1733–1737. DOI: 10.1016/j.corsci.2009.04.025.
7. Song G., Atrens A., John D.S. et al. The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 1997, vol. 39, no. 10–11, pp. 1981–2004. DOI: 10.1016/S0010-938X(97)00090-5.
8. Hornberger H., Virtanen S., Boccaccini A.R. Biomedical coatings on magnesium alloys – A review. Acta Biomaterialia, 2012, vol. 8, no. 7, pp. 2442–2455. DOI: 10.1016/j.actbio.2012.04.012.
9. Kozlov I.A., Vinogradov S.S., Uridiya Z.P., Duyunova V.A., Manchenko V.A. Effekt predvaritelnogo travleniya splava ML5 pered plazmennym elektroliticheskim oksidirovaniyem [Effect of preliminary etching of alloy ML5 before plasma electrolytic oxidation]. Trudy VIAM, 2018, no. 9 (69), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 9, 2021). DOI: 10.18577/2307-6046-2018-0-9-32-42.
10. Blawert C., Dietzel W., Ghali E., Song G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 2006, vol. 8, no. 6, pp. 511–533. DOI: 10.1002/adem.200500257.
11. Wang L.I., Chen L.I., Yan Z., Fu W. Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes. Surface and Coatings Technology, 2010, vol. 205, no. 6, pp. 1651–1658. DOI: 10.1016/j.surfcoat.2010.10.022.
12. Erokhin A.L., Nie X., Leyland A. et al. Plasma electrolysis for surface engineering. Surface and Coatings Technology, vol. 122, no. 2–3, pp. 73–93. DOI: 10.1016/S0257-8972(99)00441-7.
13. Kuhn A. Plasma anodizing of magnesium alloys. Metal Finishing, 2003, vol. 101, no. 9, pp. 44–50. DOI: 10.1016/S0026-0576(03)90261-3.
14. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
15. Barati Darband G.H., Aliofkhazraei M., Hamghalam P., Valizade N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 2017, vol. 5, no. 1, pp. 74–132. DOI: 10.1016/j.jma.2017.02.004.
16. Lu X., Mohedano M., Blawert C. et al. Plasma electrolytic oxidation coatings with particle additions – A review. Surface and Coatings Technology, 2016, vol. 307, pp. 1165–1182. DOI: 10.1016/j.surfcoat.2016.08.055.
17. Oh Y.-J., Mun J.-I., Kim J.-H. Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis. Surface and Coatings Technology, 2009, vol. 204, no. 1–2, pp. 141–148. DOI: 10.1016/j.surfcoat.2009.07.002.
18. Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V. et al. Oxide coatings with ferromagnetic characteristics on Al, Ti, Zr and Nb. Surface and Coatings Technology, 2020, vol. 381, art. 125180. DOI: 10.1016/j. surfcoat.2019.125180.
19. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V. et al. Electrochemical and hydrophobic properties of composite PEO coatings formed using TFE telomeric solution. Vestnik Dalnevostochnogo otdeleniya Rossiyskoy akademii nauk, 2015, no. 4, pp. 20–27.
20. Song G.-L., Xu Z. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta, 2010, vol. 55, no. 13, pp. 4148–4161. DOI: 10.1016/j.electacta.2010.02.068.
21. Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 2011, vol. 176, pp. 1600–1608. DOI: 10.1016/j.mseb.2011.05.028.
22. Kannan M.B. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surface and Coatings Technology, 2016, vol. 301, pp. 36–41. DOI: 10.1016/j.surfcoat.2015.12.044.
23. DeGarmo E.P., Black J.T., Kohser R.A. Materials and processes in engineering. Available at: https://www.worldcat.org/title/degarmos-materials-andprocesses-in-engineering/oclc/76935847 (accessed: December 30, 2021).
24. Kockar H., Meydan T. The rotation and clamping effect on the magnetic properties of iron films deposited onto a rotating substrate. Physica B: Condensed Matters, 2002, vol. 321, no. 1–4, pp. 124–128. DOI: 10.1016/S0921-4526(02)00836-0.
25. Karpuz A., Kockar H., Alper M. The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films. Applied Surface Science, 2011, vol. 257, no. 8, pp. 3632–3635. DOI: 10.1016/j.apsusc.2010.11.092.
26. Kockar H., Bayirli M., Alper M. A new example of the diffusion-limited aggregation: Ni–Cu film patterns. Applied Surface Science, 2010, vol. 256, no. 9, pp. 2995–2999. DOI: 10.1016/j.apsusc.2009.11.063.
27. DeLong H.K. Electroplating on Magnesium. Transactions of The Institute of Metal Finishing, 1952, vol. 29, no. 1, pp. 201–226. DOI: 10.1080/00202967.1952.11869600.
28. Chen X.B., Yang H.Y., Abbott T.B. et al. Magnesium: Engineering the Surface. JOM, 2012, vol. 64, no. 6, pp. 650–656. DOI: 10.1007/s11837-012-0331-3.
29. Wu X., Su P., Jiang Z., Meng S. Influences of current density on tribological characteristics of ceramic coatings on ZK60 Mg alloy by plasma electrolytic oxidation. ACS Applied Materials & Interfaces, 2010, vol. 2, no. 3, pp. 808–812. DOI: 10.1021/am900802x.
30. Ono S., Moronuki S., Mori Y. et al. Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation. Electrochimica Acta, 2017, vol. 240, pp. 415–423. DOI: 10.1016/j.electacta.2017.04.110.
31. Shi Z., Song G., Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corrosion Science, 2006, vol. 48, no. 8, pp. 1939–1959. DOI: 10.1016/j.corsci.2005.08.004.
32. Asoh H., Matsuoka S., Sayama H., Ono S. Anodizing under sparking of AZ31B magnesium alloy in Na3PO4 solution. Journal of the Japan Institute of Light Metals, 2010, vol. 60, pp. 608–614.
33. Kozlov I.A., Vinogradov S.S., Naprienko S.A. Structure and properties of a PEO coating formed on an ML5 alloy in an electrolyte containing silicates and phosphates. Korroziya: materialy, zashchita, 2017, no. 8, pp. 35–41.
34. Kozlov I.A., Vinogradov S.S., Kulyushina N.V., Kutyrev A.E., Pastukhov A.S. Influence of the polarizing current amplitude ratio on the protective properties of the PEO coating formed on the ML5 alloy. Korroziya: materialy, zashchita, 2016, no. 11, pp. 40–48.
A method is proposed for the determination of scandium, yttrium, cerium, lanthanum, neodymium, and praseodymium by inductively coupled plasma atomic emission spectrometry in aluminum alloys. Analytical REM lines free from significant spectral overlaps are selected. The selection of the sample preparation method was carried out, namely, dissolution in a mixture of hydrochloric and nitric acids. The accuracy indicator of the developed technique is not more than 4% rel. for the content of rare-earth metals from 0.05 to 6 wt. %, which fully ensures the control of the content of rare-earth metals in products made of aluminum alloys.
2. Aluminum alloys. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, pp. 143–156.
3. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
4. Korgin A.V., Romanets V.A., Ermakov V.A., Zeid Kilani L.Z. Perspectives and problems of using aluminum alloys in the construction of bridges in the Russian Federation // Vestnik BSTU im. V.G. Shukhova, 2018, no. 9, pp. 42–48.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare-earth elements are materials for modern and future high technologies. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 3–10.
6. Lukin V.I., Skupov A.A., Panteleev M.D., Ioda E.N. Influence of scandium additives on the weldability of aluminum alloys of the Al–Mg system // Svarka i diagnostika, 2016, no. 1, pp. 13–15.
7. Ryabov D.K., Kolobnev N.I., Kochubej A.Ya., Zavodov A.V. Changing of mechanical properties of 1913 alloy sheets after scandium addition. Aviacionnye materialy i tehnologii, 2014, no. 4, pp. 3–8.
8. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr IN additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 27, 2021). DOI: 10.18577/2713-0193-2021-0-3-19-34.
9. Antipov V.V. Strategy of development of titanium, magnesium, beryllium and aluminum alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 157–167.
10. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. The efficiency of rare earth metals for filler materials alloying. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 14–19. DOI: 10.18577/2071-9140-2017-0-3-14-19.
11. Savitsky V.M., Terekhova V.F., Burov I.V. et al. Alloys of rare earth metals. Moscow: Publishing House of the Academy of Sciences of the USSR, 1962, 266 p.
12. Savitsky V.M., Terekhova V.F., Markova I.A., Torchinov R.S. Rare earth metals, alloys and compounds. Moscow: Nauka, 1973, 356 p.
13. Rokhlin L.L., Dobatkina T.V., Eskin D.G. et al. Physico-chemical studies of new aluminum and magnesium alloys. Institutu metallurgii i materialovedeniya im. A.A. Baykov 60 years old: collection. Ed. N.P. Lyakishev. Moscow: ELIS, 1998, pp. 235–242.
14. Smirnov A.A., Budinovskij S.A., Matveev P.V., Chubarov D.A. The development of thermal barrier coatings for turbine blades of single-crystal nickel alloys VZhM4, VZhM5U. Trudy VIAM, 2016, no. 1 (37), paper no. 3. Available at: http://www.viam-works.ru (accessed: December 27, 2021). DOI: 10.18577/2307-6046-2016-0-1-17-24.
15. State Standard 11739.25–90. Alloys aluminum casting and deformable. Scandium determination method. Moscow: Publishing house of standards, 1990, 7 p.
16. State Standard 11739.22–90. Alloys aluminum casting and deformable. Method for the determination of rare earth elements and yttrium. Moscow: Publishing house of standards, 1990, 7 p.
17. Ryabchikov D.I., Ryabukhin V.A. Analytical chemistry of rare earth elements and yttrium. Moscow: Nauka, 1966, 380 p.
18. State Standard 7727–81. Aluminum alloys. Methods of spectral analysis. Moscow: Publishing house of standards, 2002, 26 p.
19. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of material diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
20. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M., Yakimova M.S. Determination of silicon content in aluminium alloys by ICP-AES method in combination with microwave pre-treatment. Trudy VIAM, 2014, no. 12, paper no. 10. Available at: http://www.viam-works.ru (accessed: December 27, 2021). DOI: 10.18577/2307-6046-2014-0-12-10-10.
21. Karachevtsev F.N., Dvoretskov R.M., Zagvozdkina T.N., Slavin А.V. Determination of titanium and zirconium in aluminum alloys by atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2021, no. 10 (104), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 27, 2021). DOI: 10.18577/2307-6046-2021-0-10-108-116.
22. Molchan N.V., Konkevich V.Yu., Fertikov V.I. Control of structural changes in aluminum alloy 1379p, obtained by granular technology, by atomic emission spectroscopy // Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 2, pp. 42–45.
23. Karpov Yu.A., Baranovskaya V.B. Problems of standardization of methods of chemical analysis in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5–14.
24. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgy, 1995, pp. 97–107.
25. Otto M. Modern methods of analytical chemistry: in 2 vols. Moscow: Technosfera, 2003, vol. 1, 416 p.
26. Dvoretskov R.M., Uridia Z.P., Karachevtsev F.N., Zagvozdkina T.N. Determination of the chemical composition of magnesium alloys by the atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2019, no. 12 (84), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 27, 2021). DOI: 10.18577/2307-6046-2019-0-12-88-98.
27. RMG 61-2010. State system for ensuring the uniformity of measurements. Indicators of accuracy, correctness, precision of methods of quantitative chemical analysis. Assessment methods. Moscow: Publishing house of standards, 2010, 41 p.
Was investigated by the effect of using yttrium on the properties of the sintered Magnets Nd–Dy–Y–Fe–Co–B. It is shown that the coercive force on the magnetization and induction is decreased with an increase in the content of yttrium. The magnitude of the rectangulation of the clarification curve slightly increases. The value of residual induction and the magnetization of saturation changes not significantly, but tend to increase with the content of yttria. Thus yttrium is not desirable impurity in thermostable magnets for navigation instruments.
2. Xinyuan T., Podchezertsev V.P. Algorithms for certification of a dynamically tuned gyroscope in conditions of real orientation relative to the geographic coordinate system. Engineering Journal: Science and Innovations, 2017, no. 10 (70), art. 14. DOI: 10.18698/2308-6033-2017-10-1691.
3. Dynamically adjustable gyroscope: pat. RU 2687169 C1; filed 17.04.18; publ. 07.05.19.
4. Kablov E.N., Piskorskiy V.P., Burkhanov G.S., Valeyev R.A., Moiseyeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Thermostable ring magnets with radial texture based on Nd(Pr)–Dy–Fe–Co–B. Fizika i khimiya obrabotki materialov, 2012, no. 3, pp. 43–47
5. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 15, 2021). DOI: 10.18577/2307-6046-2019-0-7-59-66.
6. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
7. Min P.G., Vadeev V.E., Piskorskiy V.P., Kramer V.V. Development of melting technology of high pure REM–Fe–Co–B alloys for temperature-stable magnets. Trudy VIAM, 2016, no. 1 (37), paper no. 1 Available at: http://www.viam-works.ru (accessed: October 15, 2021). DOI: 10.18557/2307-6046-2016-0-1-1-1.
8. Korolev D.V., Stolyankov Yu.V., Piskorsky V.P., Valeev R.A., Bahmetiev M.V., Dvorezkaya E.V., Koplak O.V., Morgunov R.B. Magnetic properties and magnetic strip domains in micro stripes PrDyFeCoB. Aviation materials and technologies, 2021, no. 3 (64), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 15, 2021). DOI: 10.18577/2713-0193-2021-0-3-86-93.
9. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63, no. 4, pp. 819–898.
10. Martynenko Yu.G. Trends in the development of modern gyroscopy. Soros Educational Journal, 1997, no. 11, pp. 120–127.
11. Blazhnov B., Nesenyuk L., Peshekhonov V., Staroseltsev L. Miniature integrated systems. Electronics: Science, Technology, Business, 2001, no. 5, pp. 56–59.
12. Korolev M.N. Study of the technical characteristics of modern types of angular velocity sensors. Abstracts of the 12th Intern. sci.-tech. conf. "Instrument making-2019". Moscow, 2019, pp. 21–23.
13. Golovanov V.A. Gyroscopic orientation. St. Petersburg: St. Petersburg State Mining Institute, 2004. 92 p.
14. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Determination of the density of bodies by hydrostatic weighing: recommendations. Irkutsk: Irkutsk. state un-t, 2003, pp. 1–9.
16. Lapteva K.A., Tolmachev I.I. Calculation of the demagnetizing factor during longitudinal magnetization in magnetic particle flaw detection. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, vol. 321, no. 2, pp. 140–144.
17. Sato M., Ishii Y. Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. Journal of Applied Physics, 1989, vol. 66, no. 2, pp. 983–985.
18. Chen Du-Xing, Brug J.A., Goldfarb R.B. Demagnetizing factor for cylinder. IEEE Transactions on Magnetics, 1991, vol. 27, no. 4, pp. 3601–3619.
19. Faria R.N., Takiishi H., Lima L.F.C.P., Costa I. Praseodymium-based HD-sintered magnets produced using a mixture of cast alloys. Journal of Magnetism and Magnetic Materials, 2001, vol. 237, pp. 261–266.
20. Périgo E.A., Takiishi H., Motta C.C., Faria R.N. On the squareness factor behavior of RE–FeB (RE = Nd or Pr) magnets above room temperature. IEEE Transactions on Magnetics, 2009, vol. 45, no. 10, pp. 4431–4434.
21. Angelo J.D., Motta C.C., Barbosa L.P. et al. The effect of niobium and boron content on magnetic properties and corrosion resistance of Pr–Fe–Co–B–Nb HD magnets. Material Science Forum, 2008, vol. 591–593, pp. 96–101.
22. Corfield M.R., Williams A.J., Harris I.R. The effects of long term annealing at 10008C for 24 h on the microstructure and magnetic properties of Pr–Fe–B/Nd–Fe–B magnets based on Nd16Fe76 B8 and Pr16Fe76B8. Journal of Alloys and Compounds, 2000, vol. 296, pp. 138–147
23. Zhang Y., Ma T., Jin J. et al. Effect of REFe2 on microstructure and magnetic properties of Nd–Ce–Fe–B sintered magnets. Acta Materialia, 2017, vol. 128, pp. 22–30.
24. Sinnema S., Franse J.J.M., Radwanski R.J. et al. Magnetic measurements on R2Fe14B and R2Co14B compounds in high fields. Journal de Physique, 1985, vol. 46, pp. C6-301–C6-304.
25. Kakol Z., Kapusta C., Figiel H. The Nd contribution to the magnetocrystalline anisotropy of (Y1–xNdx)2Co14B compounds. Journal of Magnetism and Magnetic Materials, 1988, vol. 75, pp. 141–148.
Considers the main stages of the process of formation of protective passive films on steel in a hydrogen sulfide-containing environment and the destruction of metal materials under the simultaneous influence of a corrosive environment and mechanical loads. The main theories and practical results of determining changes in the mechanical characteristics of steel under the influence of a corrosive environment and mechanical loads are presented. The values of relative constriction, elongation, and tensile strength at slow stretching are accepted as the main criteria for the corrosion destruction of materials.
2. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
3. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series, 2020, pp. 012029.
4. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2019-0-7-84-91.
5. Getsov L.B., Laptev A.B., Puzanov A.I., Balandina M.Yu., Dobina N.I. Strength of powder material for GTE disks under the aggressive action of a mixture of sodium chlorides and sulfates. Aviatsionnaya tekhnika, 2019, no. 12, pp. 14–25.
6. Gutman E.M. Mechanochemistry of metals and corrosion protection. Moscow: Metallurgiya, 1974, 232 p.
7. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
8. Erasov V.S., Oreshko E.I., Lutsenko A.N. Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development. Trudy VIAM, 2018, no. 2, paper no. 12. Available at: http://www.viam-works.ru (accessed: July 4, 2021). DOI: 10.18577/2307-6046-2018-0-2-12-12.
9. Kushnarenko V.M., Grintsov A.S., Obolentsev N.V. Control of the interaction of metal with the working environment of the OGCF. Moscow: VNIIEgazprom, 1989. 49 p.
10. Method for determining the concentration of diffusion-mobile hydrogen in the metal of the structure: certificate of authorship 1193562 USSR; filed 26.03.83; publ. 21.11.85.
11. Method for assessing the corrosion resistance of materials: certificate of authorship 1027585 USSR; filed 14.06.82; publ. 07.07.83.
12. Koval V.P. Influence of hydrogen sulfide and low temperatures on the tendency to corrosion-mechanical destruction of carbon steels. Zashchita metallov, 1979, no. 1, pp. 87–89.
13. Kopey B.V. Influence of hydrogen sulfide-containing oils on corrosion-mechanical destruction of structural steels. Korroziya i zashchita v neftegazovoy promyshlennosti, 1983, no. 10, pp. 2–3.
14. Calculations and strength tests. Test methods for the tendency to corrosion cracking of steels and alloys in liquid media: guidelines 185–86. Moscow: VNIINMASH, 1986, 51 p.
15. Stefanova S., Rachev X. Handbook of corrosion. Ed. N.I. Isaev. Moscow: Mir, 1982, 519 p.
16. Fot A.P. Development of a complex of experimental equipment and methods of corrosion-mechanical testing: thesis, Dr. Sc. (Tech.). Kurgan: Kurgan State University, 1998, 460 p.
17. Poperling R., Schwenk W. Wasserstoff – induzierte spannungs Korrosion von Stahlen durch dynamisch plastische Beanspruchung in Promotor freien Electrolytlosungen. Werkstoffe und Korrosion, 1985, no. 9, pp. 389–400.
18. Riecke E., Johnen B. Wasserstoffinduzirende Spannungs-Korosion in unverzinkten und verringten Bausthlen. Werkstoffe und Korrosion, 1986, bd. 37, no. 6, pp. 310–317.
19. Roogen D., Bulischeck T.S. Stress corrosion cracking of alloy 600 using the constant strain rate test. Corrosion, 1981, vol. 37, no. 10, pp. 597–607.
20. Scully J.C. Mechanism of dissolution controlled cracking. Corrosion Science, 1978, vol. 12, no. 6, pp. 290–300.
21. Shreir L.L. Vebersicht der. electrochemischen Mothoden zur Unersuchung von Wasser Stevfsvepruedung ung Spannungsrisskorrosion. Werstoffe und Korrosion, 1970, bd. 21, no. 5, 8, pp. 613–629.
22. Weeks I.R., Vyas B., Isaacs H.S. Environmental factors influencing stress corrosion cracing in boiling water reactor. Corrosion Science, 1985, vol. 5, no. 8, pp. 757–768.
23. Ikeda A. Development of high-strength tubular products for the oil and gas industry with high resistance to sulfide stress corrosion cracking. Tokyo: Sumitomo Metal Industries Ltd, 1978, 57 p.
24. Steklov O.I. Stress corrosion resistance of materials and structures. Moscow: Mashinostroenie, 1990, 384 p.
25. Bohni H. Wasserstoffversprodung bei Spannstahlen. Wersoffe und Korrosion, 1975, no. 3, pp. 199–207.
26. Nakasaws K., Fukutomi M., Kawabe Y. Effect of ion – plated aluminium coationg on hydrogen embrettlement of ultrahigh strenght maraging stell. Tetsu to hagane, 1982, vol. 46, no. 112, pp. 1163–1167.
27. Nenk F., de Long. Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminium Alloys. Corrosion, 1978, vol. 34, no. 1, pp. 32–36.
28. Page R.A. Stress corrosion of 1–182 weld meld metal in high temperature water – the effect of a carbon steel couple. Corrosion, 1985, vol. 41, no. 6, pp. 338–341.
29. Rakova T.M., Kozlova A.A., Nefedov N.I., Laptev A.B. The study of influence organic and inorganic corrosion inhibitors on the stress-corrosion cracking high-strength steels. Trudy VIAM, 2017, no. 6 (54), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2017-0-6-12-12.
30. Shtremel M.A. On unity in diverse fatigue processes. Deformatsiya i razrusheniye materialov, 2011, no. 6, pp. 1–12.
31. Dyakov V.G., Medvedeva M.L., Stepanov I.A., Filinovskiy V.Yu. Method of testing steels for resistance to hydrogen sulfide corrosion cracking. Khimicheskoye i neftyanoye mashinostroyenie, 1986, no. 12, pp. 19–20.
32. NACE Standards TM-01-77. Test Method. Testing of Metals for Resistance to Sulfide Stress Cracking at Ambient Temperature Approved. Housten: NACE Standards, 1977, pp. 1–8.
33. Parkins R.N. Methods de ensayo de la corrosion baio tension. Revista de Metalurgia, 1972, vol. 8, no. 1, pp. 117–132.
34. Perunov B.V., Kushnarenko V.M., Paul A.I. Quality and reliability of welded joints in pipelines transporting hydrogen sulfide-containing products. Korroziya i zashchita v neftegazovoy promyshlennosti, 1980, no. 6, pp. 19–21.
35. Difon W., Huiying P. Slow loading rate fracture mechanics mrthod for stress corrosion test. International Congress Metals Corrosion (Toronto, June 3, 1984). Ottawa, 1984, vol. 3, pp. 573–577.
36. Hoey G.R., Revie R.W., Pamsingh R.R. Comparison of the slow stroin rate technigue and the NACE TM 01-77 tensile test for determining sulfide stress cracking resistance. Materials Performance, 1987, vol. 26, no. 10, pp. 42–45.
37. Erasov V.S., Oreshko E.I., Lucenko A.N. Area of a free surface as criterion of brittle fracture.Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
38. Alcantar-Modragón N., García-García V., Reyes-Calderón F., Villalobos-Brito J.C., Vergara-Hernández H.J. Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model. International Journal of Advanced Manufacturing Technology, 2021, vol. 116, no. 7–8, pp. 2661–2686.
39. Bulischek T.S., Van Rooyen D. Stress corrosion cracking of alloy 600 using the constant strain rate test. Corrosion, 1981, no. 10 (37), pp. 597–607.
40. Kushnarenko V.M., Ilyichev P.L., Pismenyuk S.P., Ukhanov B.C. Protective properties of titanium nitride coating in hydrogen sulfide-containing environments. Zashchita metallov, 1986, no. 5, pp. 811–813.
41. Moneuron K., Seferien D. Contribution al'etude de L'Infaence de L'hydrogene sur la resilience du metal deponseen soudage electrique a l'arc avec electrodes entrebees. Soudage et Techiques Commerces, 1959, no. 11, pp. 183–189.
42. Shein A.B., Petukhov I.V. Hydrogen embrittlement of deformable high-carbon steel and the effectiveness of inhibitor protection. Zashchita metallov, 1985, no. 4, pp. 628–631.
43. Frignani A., Тrabanelli G., Zucci F. The use of slow Strain Rate technique for studying stress corrosion cracking inhibitions. Corrosion Science, 1984, no. 11, pp. 917–927.
44. State Standard 9.90-1.1–89. Metals and alloys. General requirements for test methods for corrosion cracking. Moscow: Publishing house of standards, 1989, 11 p.
45. Hinton B.R., Procten R.M. The effect of Strain – rate and cathodic potential on the tensile dictility of X-65 pipeline steel. Corrosion Science, 1983, no. 2, pp. 101–123.
46. Lawley D.N. The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, Section AA. 1940, pp. 64–82. Available at: http://acronymsandslang.com/definition/5917093/PROC+R+SOC+EDINB+A-meaning.html (accessed: March 12, 2022).
47. Rajasekaran R., Lakshminarayanan A.K. Probing the stress corrosion cracking resistance of laser beam welded AISI 316LN austenitic stainless steel. Journal of Mechanical Engineering Science, Part C. 2021, vol. 235 (17), pp. 3299–3317.
48. Turn I.Е., Wilde B.E., Troiano C.A. On the Sulfide Stress Cracking of line pipe steels. Corrosion, 1983, vol. 39, no. 9, pp. 364–370.
49. Vakhromeev A.M. Determination of the cyclic durability of materials and structures of vehicles: instructions. Moscow: MADI, 2015. 64 p.
50. State Standard 6032–2017. Steels and alloys are corrosion resistant. Test methods for resistance to intergranular corrosion. Moscow: Publishing house of standards, 2018, 75 p.
51. Malkin V.I. Express method for assessing the propensity of steel to hydrogen embrittlement. Zavodskaya laboratoriya. Diagnostika materialov, 1984, vol. 50, no. 3, pp. 26–29.
52. Xasahara K., Haruhiko A. Effect of Catodic Protection Conditions on the Stress Corrosion Cracking of Line Pipe Steels. Teysu to hagane, Iron and Steel Inst., 1983, vol. 69, no. 14, pp. 1630–1637.
53. Kadyrbekov B.A. Methods for assessing the tendency of steels to stress corrosion cracking. Zavodskaya laboratoriya. Diagnostika materialov, 1986, vol. 52, no. 8, pp. 65–68.
54. Andreikin A.E., Panasyuk V.V. Mechanics of hydrogen embrittlement of metals and calculation of structural elements for strength. Lvov: AN UkrSSR, Physical and mechanical university, 1987. 50 p.
55. Grinevich A.V., Lutsenko A.N., Karimova S.A. Durability of products and corrosion fatigue of structural materials. Voprosy materialovedeniya, 2013, no. 1 (73). pp. 220–229.
56. NACE TM0177 – Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments. Housten: NACE Standards, 2006, pp. 1–38.
57. Laptev A.B. Inhibitors based on acetals and their derivatives for the protection of steels from corrosion-mechanical destruction: thesis, Cand. Sc. (Tech.). Ufa: Ufa State University Oil Tech. University, 1995. 125 c.
58. Krishtal M.A. Mechanism of diffusion in iron alloys. Moscow: Metallurgiya, 1972. 400 p.
59. Levina I.N. Influence of hydrogen and strain rate on the nature of fracture of steel 12Kh18N10T. Moscow: VINITI, 1983, 5 p.
60. Ebtehai K., Hardie D., Parkins R.N. The Stress Corrosion and preexposure embrittelement of Titanium in Metanolic Solutions of hydrochlorioal acid. Corrosion Science, 1985, no. 6, pp. 415–429.
61. Adler Yu.P., Granovsky M.V. Planning an experiment in the search for optimal conditions. Moscow: Nauka, 1971. 357 p.
62. State Standard 8.207–76. Direct measurements with multiple observations. Methods for processing the results of observations. Moscow: Publishing house of standards, 1976, 34 p.
63. Katkovnin V.Ya. Nonparametric identification and data smoothing. Moscow: Nauka, 1985. 335 p.
64. Pollard D. Handbook of Computational Methods of Statistics. Moscow: Finance and statistics, 1982. 344 p.
65. Kushnarenko V.M., Steklov O.I., Gutman E.M. et al. Test method for corrosion cracking with a constant strain rate: R 50-54-37-88. Moscow: VNIINMASH, 1988, 20 p.
66. Kushnarenko V.M., Fot A.P., Ukhanov B.C. Accelerated testing of materials for corrosion cracking. Report All-Union. Sci.-Tech. Conf. "Constructive-technological methods for improving reliability and their standardization". Tula: TPI, 1988, p. 100.
67. Kushnarenko V.M., Klimov M.I., Ukhanov B.C. To methods for assessing the resistance of materials to corrosion cracking. . Zavodskaya laboratoriya. Diagnostika materialov, 1989, no. 10, pp. 59–62.
68. Draper N., Smith G. Applied regression analysis. Moscow: Statistics, 1973. 260 p.
Heat-resistant alloys and steels
Bazyleva O.A., Karashaev M.M., Shestakov A.V., Dmitriev N.S. Structure of a single crystalline intermetallic alloy based on Ni3Al after deformatoin-heat treatment
Kapitanenko D.V., Moiseev N.V., Bazhenov A.R., Gladkov Yu.A.Development of the isothermaldeformation on air technology of production turbocharger disks using computer modeling
Polymer materials
Khrulkov I.A., Gulyaev I.N., Mishkin S.I. Features of cutting polymer composite mate-rials with diamond wheels (review)
Composite materials
Lutsenko A.N., Efimochkin I.Yu., Moiseeva N.S. Study mechanism of creation structure on composite material based on molybdenum after high-temperature influence
Stepanova E.V., Maksimov V.G., Ivakhnenko Yu.A.Changes in the structure of oxide ceramic fibers when exposed to high temperature heats
Mishurov K.S., Payarel S.M., Kurnosov A.O., Bokov V.V. Physical and mechanical properties of syntactic foam VPZ-24 with a maximum service temperature up to 320 °С
Sidorina A.I. Modification of the surface of carbon reinforcing fillers for polymer composite materials by electrochemical treatment (review)
Bespalova E.E., Belyaev A.A., Devin K.L. Low density radio engineering materials (review)
Protective and functional
coatings
Kozlov I.A., Zavarzin S.V., Fomina M.A., Kurshev E.V., Lavrov N.S. Influence of the ratio of the anodic and cathodic impulse active times on the properties of the plasma electrolitic coating on the ML5 alloy
Material tests
Karachevtsev F.N., Dvoretskov R.M., Nikolaev E.V. Determination of rare earth metals in aluminum alloys by atomic emission spectrometry with inductively coupled plasma
Buzenkov A.V., Valeev R.A., Piskorsky V.P.,Morgunov R.B. The effect of the content of yttrium on the properties of the sintered Magnets Nd–Dy–Y–Fe–Co–B
Laptev A.B., Zakirova L.I. Zagorskikh O.A., Pavlov M.R. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 1. Investigation of corrosion-mechanical destruction of steels