Articles
Presented an overview of heat-resistant fibers and nonwovens based on them. Their comparative characteristics, description, advantages and disadvantages for use as a basis for the use of afterburner regulators of gas turbine engines as part of air filters. The conclusion is made about the possibility of using nonwovens and the prospects for their application, as well as about a possible way to improve the characteristics of nonwovens to adapt to operating conditions at elevated and lowered temperatures.
2. Kablov E.N. Materials and chemical technologies for aviation equipmen. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
3. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
4. Istomin A.V., Bespalov A.S., Babashov V.G. Adding increased resistance to heat and sound insulation of material based on mixture of inorganic and plant fibers. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 74–78. DOI: 10.18577/2071-9140-2018-0-4-74-78.
5. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
6. Babachov V.G., Stepanova E.V., Zimichev A.M., Basargin O.V. Oxide continuous fibers as a part of flexible high temperature insulation. Aviation materials and technology, 2021. no. 1 (62). paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 2, 2021). DOI: 10.18577/2713-0193-2021-0-1-34-43.
7. Sevostyanov A.G., Osmin N.A., Shcherbakov V.P. Mechanical technology of textile materials. Moscow: Legprombytizdat, 1989, 512 p.
8. Abdullin I.Sh., Igragimov R.G., Muzafarova G.Sh., Samatova E.M. Modern technologies for the production of nonwoven materials. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 19, pp. 114–119.
9. Aviation materials: reference book: in 12 vols. Moscow: VIAM, 2011. Vol. 9: Heat-shielding, heat-insulating and composite materials, high-temperature non-metallic coatings, p. 31.
10. Perepelkin K.E. Modern chemical fibers and prospects for their use in the textile industry. Rossiyskiy khimicheskiy zhurnal (Zhurnal rossiyskogo khimicheskogo obshchestva imeni D.I. Mendeleyeva), 2002, vol. XLVI, no. 1, pp. 31–48.
11. Kukin G.N., Soloviev A.N. Textile materials science (original textile materials): textbook for universities. 2nd ed., rev. and add. Moscow: Legprombytizdat, 1985. 216 p.
12. Budnitsky G.A. New in the field of heat-resistant polymers and fibers. Moscow: NIITEKhIM, 1978, 88 p.
13. Bespalov A.S., Kuzmin V.V., Babashov V.G. Damping fibrous material on basis of heat-resistant synthetic fibers. Trudy VIAM, 2015, no. 1, paper no. 04. Available at: http://www.viam-works.ru (accessed: December 02, 2021). DOI: 10.18577/2307-6046-2015-0-1-4-4.
14. Kondrashov E.K., Kuzmin V.V., Minakov V.T., Ponamoreva E.A. Nonwoven materials on the basis of heat-resistant polymeric fibres and intertiled sealings. Trudy VIAM, 2013, no. 7, paper no. 05. Available at: http://www.viam-works.ru (accessed: December 02, 2021).
15. Lubin J. Handbook of composite materials: in 2 books. Moscow: Mashinostroenie, 1988, book 1, 440 p.
16. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lons-kii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
17. Sergeeva E.A., Kostina K.D. Analysis of the range of aramid fibers and their properties. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, no. 14, pp. 124–125.
18. Doriomedov M.S. Aramid fiber market: types, properties, application. Trudy VIAM, 2020, no. 11 (93), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 02, 2021). DOI: 10.18577/2307-6046-2020-0-11-48-59.
19. Konkin A.A., Kudryavtsev G.I., Shchetinin A.M. Heat-resistant and non-combustible fibres. Moscow: Khimiya, 1978. 424 p.
20. Buhler K.-U. Heat- and heat-resistant polymers: trans. from Germ. Ed. Ya.S. Vygodsky. Moscow: Khimiya, 1984, 1056 p.
21. Andronova N.A., Bessonov M.I., Laius L.A., Rudakov A.P. Polyimides are a new class of heat-resistant polymers. Moscow: Nauka, 1968, 211 p.
22. Perepelkin K.E. Structure and properties of fibers. Moscow: Chemistry, 1985. 208 p.
23. Musina T.K., Volokhina A.V., Shchetinin A.M. Polyimide and aramid fibers and threads with special properties based on them. V mire oborudovaniya, 2010, no. 2 (91). pp. 4–8.
24. Zefirov N.S. Chemical Encyclopedia: in 35 vols. Moscow: Bolshaya rossiyskaya entsiklopediya, 1998, vol. 5. 783 p.
25. Konkin A.A. Carbon and other heat-resistant fibrous materials. Moscow: Khimiya, 1974. 376 p.
26. Dokuchaev V.N. The use of polyoxadiazole and carbon fibers and threads of OAO Svetlogorskkhimvolokno in the production of technical textile materials. Grodno: GIAP, 2015, pp. 13–16.
27. Non-woven material ANAT-FM-T and non-woven arselon material ANAT-FM. Available at: https://termiz.all.biz/my-goods/materialy-netkanye (accessed: December 2, 2021).
28. Kalinowski E., Urbanchik G.V. Chemical fibers. Moscow: Light industry, 1966, 251 p.
29. Timoshkov P.N., Sevastyanov D.V., Usacheva M.N., Khrulkov A.V. Existing and promising technologies for producing PAN fibers (review). Trudy VIAM, 2019, no. 11 (83), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 1, 2021). DOI: 10.18577/2307-6046-2019-0-11-68-74.
30. Ryauzov A.N., Gruzdev V.A., Vaksheev I.P. Technology of production of chemical fibers: textbook for technical schools. 3rd ed. Moscow: Khumiya, 1980, 448 p.
31. Aviation material of needle-punched slow-burning grades "AOM" and "AVIKS-AOM". Available at: https://aviksnpf.ru/goods/24308060/material-igloprobivnoy-trudnogoryuchiy-marki-aom-tu-8276-007-17364404-03 (accessed: December 1, 2021)
32. Ponomareva E.A., Kondrashov E.K., Minakov V.T., Polepkina N.A. Development of hydrophobization technological mode of the needle-punched nonwoven materials on the basis of heat resistant fibers. Aviacionnye materialy i tehnologii, 2014, no. S3. pp. 11–16. DOI: 10.18577/2071-9140-2014-0-s3-11-16.
Products from organic glasses are widely used in aviation engineering for different types of glazing which work in difficult operational conditions, for example, are exposed to influence of low and high temperatures, moisture, ultra-violet radiation, etc. These factors can influence operational reliability of organic glass. Now application of the oriented polymethyl methacrylate AO-120 organic glass is most widespread in designs of aviation glazing. In the real work results of research of microstructure of surfaces of the AO-120 or-ganic glass which has undergone long influence of atmospheric factors in different climatic zones of the USA (Arizona and Florida) are provided.
2. Gudimov M.M. Silver cracks on organic glass. Moscow: TsIPKK AP, 1997, 260 p.
3. Aviation materials: reference book: in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2002, vol. 8, pp. 29–51.
4. Sentyurin E.G., Kuklina L.S., Trigub T.S., Pashkova T.V. Influence of weather resistance on the operational reliability of plexiglass. Aviatsionnaya promyshlennost, 1984, no. 5, pp. 56–58.
5. Gudimov M.M., Sentyurin E.G., Trigub T.S. Silver resistance of organic glass aircraft glazing during its production and operation. Aviatsionnaya promyshlennost, 1995, no. 9–10. pp. 55–60.
6. Kirillov V.N., Kavun N.S., Rakitina V.P. et al. Study of the influence of heat and moisture impact on the properties of epoxy fiberglass. Plasticheskiye massy, 2008, no. 9, pp. 14–18.
7. Startsev O.V., Prokopenko K.O., Litvinov A.A., Krotov A.S., Anikhovskaya V.I., Dement’eva L.A. Investigation of thermal moisture aging of aviation fiberglass. Vse materialy. Entsiklopedicheskiy spravochnik, 2010, no. 1, pp. 21–25.
8. Deev I.S., Kurshev E.V., Lonskii S.L., Zhelezina G.F. Influence of long-term climatic aging on the microstructure of the surface of epoxy organic plastics and the nature of its destruction under bending conditions. Voprosy materialovedeniya, 2016, no. 3 (87). pp. 104–114.
9. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: Octobetr14, 2021). DOI: 10.18577/2307-6046-2019-0-7-84-91.
10. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
11. Lutsenko A.N., Kurs M.G., Laptev A.B. Justification of the timing of full-scale climatic tests of metallic materials in the atmosphere of the Black Sea coast. Analytical review. Voprosy materialovedeniya, 2016, no. 3, pp. 126–137.
12. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58.
13. Mekalina I.V., Aizatulina M.K., Sentjurin E.G., Popov A.A. Features of influence of atmospheric factors on aviation organic glass. Trudy VIAM, 2018, no. 11 (71), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 04, 2021). DOI: 10.18577/2307-6046-2018-0-11-28-34.
14. Deev I.S., Kuklin E.A. Features of the formation of the microphase structure of polymethyl methacrylate organic glasses and its changes under aging conditions. Materialovedenie, 2014, no. 4. S. 43–50.
15. Deev I.S., Kobets L.P. Structure formation in filled thermosetting polymers. Kolloidnyy zhurnal, 1999, vol. 61, no. 5, pp. 650–660.
16. Novikov V.U., Kozitsky D.V., Deev I.S., Ivanova V.S., Kobets L.P. Multifractal analysis of the structure of polymethyl methacrylate studied by scanning electron microscopy. Plasticheskiye massy, 2001, no. 1. S. 7–9.
17. Deev I.S., Kobets L.P. Microstructure of epoxy matrices. Mekhanika kompozitnykh materialov, 1986, no. 1, pp. 3–8.
18. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
19. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, рр. 520–530.
20. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
21. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Renby B., Rabek Y. Photodestruction, photooxidation, photostabilization of polymers. Moscow: Mir, 1978, 676 p.
23. Sentyurin E.G., Gudimov M.M., Rudnev V.P. et al. Aging of organic glass. Aviatsionnaya promyshlennost, 1993, no. 5–6. pp. 50–53.
Presents the main results on the development of glassfiber/epoxy fabric prepregs and composites based on epoxy resin VSR-3М and fiberglass woven fabrics T-25 (VMP)-78, T-10-14 and art. 120. The process of development of prepregs, technology of their manufacture at the impregnation plant, the choice of the main parameters of impregnation are described. Correct selection of impregnation parameters guarantees obtaining materials with the required properties. The results of studying the properties of prepregs obtained according to the selected technological modes and properties of fiberglass compocites are also presented.
2. Composites-intensive helicopter makes commercial debut. Available at: https://www.compositesworld.com/news/composites-intensive-helicopter-makes-commercial-debut (accessed: September 22, 2021).
3. Weber T.A., Ruff-Stahl H.-J.K. Advances in Composite Manufacturing of Helicopter Parts. International Journal of Aviation, Aeronautics and Aerospace, 2017, vol. 4, is. 1, pp. 1–33.
4. Kablov E.N. New generation materials and digital technologies for their processing. Bulletin of the Russian Academy of Sciences, 2020, vol. 90, no. 4, pp. 331–334.
5. Kablov E.N. Formation of domestic space materials science. Vestnik RFBR, 2017, no. 3, pp. 97–105.
6. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
7. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
8. Popov Y.O., Kolokolceva T.V., Gusev Y.A., Gromova A.A. Development of the constructive and technological solution for a sheet fibreglass for tail section skins of helicopter rotor blades. Trudy VIAM, 2016, no. 1 (37), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 13, 2021). DOI: 10.18577/2307-6046-2016-0-1-42-49.
9. Popov Yu.O., Kolokoltseva T.V., Bespalova L.S., Khrulkov A.V., Kogan D.I. Fiberglass VPS-31 and hybrid composite material VKG-5 from unidirectional prepregs based on a melt binder and tow carbon and glass fillers. Aviacionnye materialy i tehnologii, 2006, no. 1, pp. 10–20.
10. Doroshenko N.I., Chursova L.V. Evolution of materials for blades of helicopters. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 16–18.
11. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
12. Elkington M., Bloom D., Ward C. et al. Hand layup: Understanding the manual process. Advanced Manufacturing: Polymer & Composite Science, 2015, vol. 1, pp. 128–141.
13. Mukhametov R.R., Akhmadieva K.R., Chursova L.V. New heat-resistant heterocyclic binders and environmentally friendly technologies for the production of composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 57–62.
14. Kolesnik K.A. Modeling of moisture satura-tion in polymer composites in real climatic environmental conditions. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 77–86. DOI: 10.18577/2071-9140-2017-0-4-77-86.
15. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
16. Composite Materials Handbook-17. SAE International, 2012. Vol. 1: Polymer matrix composites guidelines for characterization of structural materials. P. 96.
Results of work on determination of stickiness of the carbon prepregs developed in Research Center Kurchatovsky institut – VIAM are given. The method and the equipment for determination of stickiness of prepregs is described. The comparative analysis of stickiness of prepregs on different epoxy binders and structures of carbon fillers is carried out. The interrelation between stickiness and short-term impact of temperature on technological properties of semi-finished products is shown. Stickiness of the prepregs used for manufacturing of aviation products, using the automated laying is investigated.
2. Kablov E.N. Materials of new generation and digital technologies of their processing. Vestnik Rossiyskoy akademii nauk. 2020, vol. 90, no. 4, pp. 331–334.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Kablov E.N. Marketing of materials science, aircraft building and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
5. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Abstracts of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
6. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Kinlok E. Adhesion and adhesives, science and technology. Moscow: Mir, 1991, 484 p.
8. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: February 19, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
9. Duchk V., Pisanova E., Zhandarov S., Lauke B. Adhesion and adhesive strength in polymeric fibrous composites. Mekhanika kompozitnykh materialov, 1998, vol. 34, no. 5, pp. 431–446.
10. Postnov V.I., Nikitin K.E., Petukhov V.I., Burkhan O.L., Orzaev V.G. Method and device for determining the stickiness of prepregs. Aviacionnye materialy i tehnologii, 2009, no. 3, pp. 29–33.
11. Timoshkov P.N., Usacheva M.N., Khrulkov A.V. Stickiness and possibility of using prepregs for automated technologies (review). Trudy VIAM, 2018, no. 8 (68), paper no. 04. Availableat: http://www.viam-works.ru (accessed: November 15, 2021). DOI: 10.18577/2307-6046-2018-0-8-38-46.
12. Banks R., Mouritz A.P., John S. et al. Development of a new structural prepreg: characterization of handling, drape and tack properties. Composite Structures, 2004, vol. 66, pp. 169–174. DOI: 10/1016.j.compstruct.2004.04.034.
13. ASTM D2979-01. Standard Test Method for Pressure-Sensitive Tack of Adhesives Using an Inverted Probe Machine, 2001, pp. 1–3.
14. ASTM D3167. Standard Test Method for Floating Roller Peel Resistance of Adhesives, 2017, pp. 1–6.
15. Lizunov D.A. Development of high-strength carbon plastics based on epoxy-containing oligomers: thesis, Cand. Sc. (Chem.). Moscow: RKhTU im. D.I. Mendeleeva, 2014, 237 p.
16. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook. Moscow: Lomonosov Moscow State University, 2010, 68 p.
17. Orlov E.V., Gusev Yu.A., Khrulkov A.V., Korotkov I.A. Comparative analysis of stickiness determination methods of prepreg. Trudy VIAM, 2016, no. 7, paper no. 09. Available at: http://www.viam-works.ru (accessed: November 12, 2021). DOI: 10.18577/2307-6046-2016-0-7-9-9.
18. Budelmann D., Detampel H., Schmidt C., Meiners D. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping process. Composites. Part A: applied science and manufacturing, 2019, vol. 117, pp. 308–316.
19. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
20. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
21. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
On the basis of a number of research works results on heat ageing of silicone sealants VIKSINT were received. Test results after heat ageing of plates of sealants and samples of the sealants brought on metal are presented. Temperature dependences of properties of sealants on speed and duration of thermal ageing are shown. Resources of work of sealants are defined at various temperatures. Ways of increase of operating properties of silicone sealants are considered.
2. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, noo. 1, pp. 3–4.
3. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2020-0-67-38-44.
4. Minasyan R.M. Silicone one-component adhesive-sealants. Vse materialy. Entsiklopedicheskiy spravochnik, 2010, no. 10, pp. 31–34.
5. Sharova I.A., Petrova A.P. Review of world adhesive and sealant conference (WAC-2012, France. Trudy VIAM, 2013, no. 8, paper no. 06. Available at: http://www.viam-works.ru (accessed: November 2, 2021).
6. Kablov E.N. VIAM: materials of new generation for PD-14. Krylya Rodiny. 2019, no. 7–8, pp. 54–58.
7. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
8. Chigorina E.A., Arutyunyantc A.A., Bestaev M.V., Chigorina T.M., Abaev V.T. Organosiloksanovye glues-sealants with the increased physicomechanical properties. Klei. Germetiki. Tekhnologii, 2018, no. 1, pp. 24–27.
9. Gosh D., Khastgir D. Degradation and stability of polymeric high-voltage insulators and prediction of their service life through environmental and accelerated aging processes. ACS Omega, 2018, no. 3, pp. 11317–11330.
10. Savenkova A.V. Sealants with increased heat and frost resistance. Klei. Germetiki. Tekhnologii, 2008, no. 3, pp. 13–15.
11. Startsev V.O. Methods for studying the aging of polymer binders. Klei. Germetiki. Tekhnologii, 2020, no. 9, pp. 16–26.
12. Eliseev O.A., Glazov P.A., Ilyukhina M.A. Study of the kinetics of thermal decomposition of vulcanizates of low molecular weight organosilicon rubbers. Klei. Germetiki. Tekhnologii, 2015, no. 6, pp. 18–21.
13. Shitov R.O., Kitaeva N.S., Shiryakina Yu.M., Kurshev E.V. Research of influence of modifiers of varied nature on the thermo-oxidative stability of a model silicone binder. Trudy VIAM, 2020, no. 6–7 (89), paper no. 03. Available at: http://www.viam-works.ru (accessed: February 10, 2021). DOI: 10.18577/2307-6046-2020-0-67-19-28.
14. Lukina N.F., Petrova A.P., Kotova E.V. Heat-resistent adhesives used in aviation and space technique. Trudy VIAM, 2014, no. 3, paper no. 06. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2014-0-3-6-6.
15. Kireev V.V., Dyachenko B.I., Rybalko V.P. Structure and thermo-oxidative transformations of polymethylsesquioxanes. Vysokomolekulyarnyye soyedineniya. Ser.: A, 2008, vol. 50, no. 4, p. 614.
16. Bonding in mechanical engineering: reference book: in 2 vols. Ed. G.V. Malyshev. Moscow: Nauka i tekhnologii, 2005, vol. 1, pp. 87–97.
17. Khananashvili L.M., Andrianov K.A. Technology of organoelement monomers and polymers. Moscow: Khimiya, 1983, p. 416.
18. Neelova O.V., Gazzaeva R.A. Curing system for polyorganosiloxane compositions. Klei. Germetiki. Tekhnologii, 2016, no. 9, pp. 2–8.
19. Hamdani S., Longuet C., Perrin D., Lopez-cuesta J.-M. Flame retardancy of silicone-based materials: Review. Polymer Fegradation and Stability, 2009, vol. 94, no. 4, pp. 465–495. DOI: 10.1016/j.polymerdegradstab.2008.11.019.
20. Kim Y., Joeng H., Lee K.W. Mechanical and Thermal Properties of Environmentally Benign Silicone Foam Filled with Wollastonite. Elastomers and Composites, 2020, vol. 55, no. 4, pp. 300–305.
21. Wong J.F., Chan J.X., Hassan A., Mohamad Z. Thermal and flammability properties of wollastonite-filled thermoplastic composites: a review. Journal of Materials Science, 2021, vol. 56, no. 2, pp. 1–40.
22. Liao Y., Weng Y., Wang J. Silicone rubber composites with high breakdown strength and dielectric loss based on polydopamine coated mica. Polymers, 2019, vol. 11, no. 12. DOI: 10.3390/polym11122030.
23. Wang J., Ji C., Yan Y., Zhao D. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polymer Degradation and Stability, 2015, no. 121, pp. 149–156.
24. Zubareva A.N., Utkin A.V., Mochalova V.M., Efremov V.P. Experimental study of spall strength of silicon rubber with microspheres under shock-wave action. Journal of Physics Conference Series, 2020, no. 1556, art. 012026. Available at: http://www.iopscience.iop.org (accessed: November 2, 2021). DOI: 10.1088/1742-6596/1556/012026.
25. Montazeri Sh., Ranjbar Z., Osati M. Preparation and characterization of a thermal barrier heat-resistant silicone coating. Progress in Color, Colorants and Coatings, 2020, vol. 15, pp. 65–73.
26. Zhang J., Jiang G., Tianhao H. et al. Synthesis and performance of polyurethane/silicon oxide nano-composite coatings. Science and Engineering of Composite Materials, 2019, vol. 26, is. 1, pp. 301–307.
27. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, No. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
Methods of modifying the structure of knitted fillers for the manufacture of polymer composite materials (PCM) are considered. The specific features of the use of tuck and float loops are described, the issues of the influence of additionally introduced threads of various compositions in the structure of knitwear on the mechanical properties of filler and PCM are considered. Special attention is paid to the rib type of interlacing of knitted fabrics, which, with a low density of filler, contributes to increasing the strength of the PCM.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
5. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
6. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
7. Li C., Zhang R., Jia J. et al. The low-velocity impact and post-impact properties of ultra-high-molecular-weight polyethylene fiber weft plain knitted structural composites. Journal of engineered fibers and fabrics, 2019, vol. 14, pp. 1–10. DOI: 10.1177/1558925019832254.
8. Balea L., Dusserre G., Bernhart G. Mechanical behaviour of plain-knit reinforced injected composites: effect of inlay yarns and fiber type. Composites. Part B, 2014, no. 56, pp. 20–29. DOI: 10.1016/j/compositesb.2013.07.028.
9. Faridul Hasan K.M., Péter György Horváth, Tibor Alpár. Potential fabric-reinforced composites: a comprehensive review. Journal of Materials Science. Review, 2021, vol. 56 (1), pp. 1–7. DOI: 10.1007/s10853-021-06177-6.
10. Dusserre G., Balea L., Bernhart G. Elastic properties prediction of a knitted composite with inlaid yarns subjected to stretching: A coupled semi-analytical model. Composites. Part A: Applied science and manufacturing, 2014, no. 64, pp. 185–193. DOI: 10.1016/j.compositesa.2014.05.007.
11. Bogomolov I.P., Kozlov I.A., Birulya M.A. Review of modern technologies for the manufacture of volume-reinforcing preforms for promising composite materials. Tekhniko-tekhnologicheskie problemy servisa, 2017, no. 1 (39), pp. 22‒27.
12. Truevtsev A.V., Tsobkallo E.S., Moskalyuk O.A. Quasi-continuous reinforcement of the composite with knitwear. Tekhnologiya legkoy promyshlennosti, 2016, no. 1, pp. 64–67.
13. Zilio L., Dias M., Santos T. et al. Characterization and statistical analysis of the mechanical behavior of knitted structures used to reinforce composites: yarn compositions and float stitches. Journal of materials research and technology, 2020, no. 9 (4), p. 8323–8336. DOI: 10.1016/j.jmrt.2020.05.089.
14. Nermin M. Aly. A review on utilization of textile composites in transportation towards sustainability. 17th World textile conference AUTEX 2017, 2017, no. 254, pp. 1–7. DOI: 10.1088/1757-899X/254/4/042002.
15. Hu H., Zhang M., Fangueiro R., De Araujo M. Mechanical properties of composite materials made of 3D stitched woven-knitted preforms. Journal of composite materials, 2010, vol. 44, no. 14, pp. 1753–1767. DOI: 10.1177/0021998309359211.
16. Bhosale N., Jadhav B. Weft Knitted Fabrics. 2017. Available at: http://texnote.blogspot.com/2017/01/weft-knitted-fabrics.html (accessed: October 05, 2021).
17. Molossov K.A. Development of knitted webs for reinforcement of composite materials: thesis abstract, Cand. Sc. (Techn.). St. Petersburg, 2013, 17 p.
18. Ishmael N., Fernando A. Textile tehnologies for the manufacture of three-dimensional textile preforms. Research Journal of Textile and Apparel, 2017, vol. 21, no. 4, pp. 342–362. DOI: 10.1108/RJTA-06-2017-0034.
19. Bezsmertna V., Mazna O., Kohanyiy V. et al. Multifunctional polymer-based composite materials with weft-knitted carbon fibrous fillers. MATEC Web of Conferences EASN 2019, 2019, no. 304, art. 01012. DOI: 10.1051/matecconf/201930401012.
20. Xue D., Hu H. Mechanical properties of biaxial weft-knitted flax composites. Materials and design, 2012, no. 46, p. 264–269. DOI: 10.1016/j.matdes.2012.10.019.
21. Dalidovich A.S. Fundamentals of the theory of knitting. Moscow: Legkaya industriya, 1970. 432 p.
22. Aisyah H.A., Paridah M.T., Sapuan S.M. et al. A comprehensive review on advanced sustainable woven natural fiber polymer composites. Polymers, 2021, vol. 13, no. 471, pp. 15–45. DOI: 10.3390/polym13030471.
23. Liu D., Christe D., Shakibajahromi B. et al. On the role of material architecture in the mechanical behavior of knitted textiles. International Journal of Solids and Structures, 2017, no. 109, pp. 101–111. DOI: 10.1016/j.ijsolstr.2017.01.011.
24. Tohidi Sh.D., Rocha A.M., Dencheva N.V., Denchev Z. Microstructutal-mechanical properties relationship in single polymer laminate composites based on polyamide 6. Composites. Part B, 2018, no. 153, pp. 315–324. DOI: 10.1016/j.compositesb.2018.08.106.
25. Ravandi M., Ahlquist S., Banu M. Numerical modeling of mechanical behavior of weft-knitted carbon fiber composites. 8th European conference for aeronautics and space science (EUCASS), 2019, pp. 1–8. DOI: 10.13009/EUCASS2019-811.
26. Haijun D., Jialu L., Ying S. et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites. Acta Materiae Compositae Sinica, 2020, vol. 37, no. 8, pp. 1997–2004. DOI: 10.13801/j.cnki.fhclxb.20191129.001.
27. Truevtsev A.V., Tsobkallo E.S., Moskalyuk O.A. Polymer composite materials with knitted filler. Modern trends in the development of chemistry and technology of polymer materials: reports IV Intern. scientific conf. St. Petersburg, 2018, pp. 57–59.
28. Bazanova E.A., Truevtsev A.V. On the possibility of using knitwear as a filler for composites. Young scientists – the development of the national technological initiative (POISK), 2020, no. 1, pp. 21–23.
29. Truevtsev A.V., Tsobkallo E.S., Moskalyuk O.A. Structure and properties of composites with sunken-loop knit fabric filler. Fibre Chemistry, 2018, vol. 50, no. 4, pp. 325–331. DOI: 10.1007/s10692-019-09984-5.
30. Gunes K.S., Ince M.E., Icoglu H.I. Compressibility of weft knitted reinforcement fabrics from glass yarn. IOP Conference Series: Materials Science and Engineering, 2018, no. 460, pp. 1–6. DOI: 10.1088/1757 899X/460/1/012029.
Composite dispersion-strengthened materials of the Mo–Ti–Zr–C and Mo–Hf–C systems were investigated in this work. Samples were obtained by powder metallurgy methods using mechanical alloying with subsequent compaction of as-received powder by a spark plasma sintering. It was found that the main strengthening phase in the obtained material of the Mo–Ti–Zr–C system is molybdenum oxide with titanium, zirconium and molybdenum dissolved in it. The material of the Mo–Hf–C system contains two types of reinforcing phase: molybdenum oxides and hafnium oxides. An increase in the sintering temperature by 200 °C did not lead to an increase in the density of materials, but led to the growth of grains and a carbide layer on the surface of the samples.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4, pp. 64–78.
4. Lebedeva Yu.E., Afanasev-Hodikin A.N., Prokopchenko G.M., Shavnev A.A., Serebryakov D.I. Obtaining of experimental constructionally similar sample of the nozzle assembly sector and carrying out its tests at temperature of 1500 °С. Trudy VIAM, 2020, no. 10 (92), paper no. 06. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2020-0-10-51-62.
5. Fan J., Lu M., Cheng H. et al. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum. International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, no. 1, pp. 78–82. DOI: 10.1016/j.ijrmhm.2008.03.006.
6. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Refractory alloys for innovative equipment. Trudy VIAM, 2016, no. 10, paper no. 5. Available at: http://www.viam-works.ru (accessed: August 25, 2021). DOI: 10.18577/2307-6046-2016-0-10-5-5.
7. Kucher A.M. Metal technology. 4th ed., rev. and add. Leningrad: Mashinostroenie, 1987, 214 p.
8. Kapustin V.I., Korzhaviy A.P. Drift spectrometry: traditional methods and development prospects. Rossiyskiy tekhnologicheskiy zhurnal, 2016, vol. 4, no. 2, pp. 3–24.
9. Ohser-Wiedemann R., Weck C., Martin U. et al. Spark plasma sintering of TiC particlereinforced molybdenum composites. International Journal of Refractory Metals and Hard Material, 2012, vol. 32, pp. 1–6. DOI:10.1016/j.ijrmhm.2011.12.001.
10. Yavas B., Goller G. Investigation the effect of B4C addition on properties of TZM alloy prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2016, vol. 58, pp. 182–188. DOI: 10.1016/j.ijrmhm.2016.04.020.
11. Majumdar S., Sharma I.G., Raveendra S. et al. In situ chemical vapour co-deposition of Al and Si to form diffusion coatings on TZM. Materials Science and Engineering: A, 2008, vol. 492, no. 1–2, pp. 211–217. DOI: 10.1016/j.msea.2008.03.020.
12. Nagae M., Yoshio T., Takada J., Hiraoka Y. Improvement in recrystallization temperature and mechanical properties of a commercial TZM alloy through microstructure control by multi-step internal nitriding. Materials transactions, 2005, vol. 46, no. 10, pp. 2129–2134. DOI: 10.2320/matertrans.46.2129.
13. Mazalov I.S., Mazalov P.B., Suhov D.I., Sulyanova E.A. Influence of hot isostatic pressing parameters on structure and properties of cobalt-based alloys obtained by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 25, 2021). DOI: 10.18577/2713-0193-2021-0-2-3-14.
14. Majumdar S., Sharma I.G. Development of Mo base TZM (Mo–0.5Ti–0.1Zr–0.02C) alloy and its shapes. BARC Newsletter, 2010, vol. 312, pp. 21–27.
15. Sharma I.G., Chakraborty S.P., Suri A.K. Preparation of TZM alloy by aluminothermic smelting and its characterization. Journal of Alloys and Compounds, 2005, vol. 393, no. 1–2, pp. 122–127.
16. Yavas B., Sahin F., Yucel O., Goller G. Preparation of Pre-Alloyed TZM Alloy with Addition of B4C by Using Spark Plasma Sintering. 6th International Conference on Materials Science and Technologies, 2016, pp. 75–76.
17. Efimochkin I.Yu., Kuzmina N.A., Grashchenkov D.V., Svetlov I.L., Bobrovsky A.P. Niobium silicide synthesis by spark plasma sintering of composite powders. Trudy VIAM, 2018, no. 11 (71), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 25, 2021). DOI: 10.18577/2307-6046-2018-0-11-35-44.
18. Torrecillas S.M.R., Solis P.N., Okunkova A.A., Peretyagin P.Yu. Fundamentals of spark plasma sintering of nanopowders. Moscow: Technosfera, 2014, 96 p.
19. Akin I., Hotta M., Sahin F.C. et al. Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. Journal of the European Ceramic Society, 2009, vol. 29, no. 11, pp. 2379–2385.
20. Morgunova N.N., Klypin B.A., Boyarshinov V.A. еt al. Alloys of molybdenum. Moscow: Metallurgy, 1975. 392 p.
21. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Development of powder metallurgy of heat-resistant materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2011, no. 6, pp. 10–22.
22. Batienkov R.V., Bolshakova A.N., Khudnev A.A., Kuznetsov B.Yu. Investigation of mechanical alloying of powder materials of the Mo–Ti–Zr–C and Mo–Hf–C systems. Metallurg, 2020, no. 11, pp. 93–99.
23. Dudina D.V. Electrospark sintering of mixtures of metal powders and composites with metal matrices: peculiarities of structure formation and properties of sintered materials. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty), 2017, no. 2, pp. 45–54. DOI: 10.17212/1994-6309-2017-2-45-54.
Аnalyzes the physico-chemical processes in the laser processing of magnetic materials. It is shown that not only the duration of the laser pulse and its power (the main parameters usually taken into account when laser modification of the microstructure of the material), but also the wavelength, polarization of light can affect the result of laser processing. The local temperature caused by laser irradiation depends both on the size of the irradiated object, its chemical composition, heat capacity and thermal conductivity of the material, and on the rate of energy exchange between thermal reservoirs associated with the atomic, electron and spin subsystems of the magnet.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Kablov E.N. Russia Needs New Generation Materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
5. Bäuerle D. Laser Processing and Chemistry. 4th ed. Berlin, Heidelberg: Springer-Verlag, 2011, p. 12. DOI: 10.1007/978-3-642-17613-5_1.
6. Palneedi H., Park J. H., Maurya D. et al. Laser Irradiation of Metal Oxide Films and Nanostructure Applications and Advances. Advanced Materials Review, 2018, pp. 1–38.
7. Yap C.Y., Chua C.K., Dong Z.L. et al. Review of selective laser melting Materials and applications. Applied Physics Reviews – Focused Review, 2015, vol. 2, pp. 1–21.
8. Sridharan N., Cakmak E., List F.A. et al. Rationalization of solidification mechanism of Nd–Fe–B magnets during laser directed-energy deposition. Journal of Material Science, 2018, vol. 53, pp. 8619–8626.
9. Huber C., Sepehri-Amin H., Goertler M. et al. Сoercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration. Acta Materialia, 2019, vol. 172, рр. 66–77.
10. Perigo E.A., Jacimovic J., García Ferré F., Scherf L.M. Additive Manufacturing of Magnetic Materials. Additive Manufacturing, 2019, vol. 30, рр. 1–48.
11. Chaudhary V., Mantri S.A., Ramanujan R.V., Banerjee R. Additive Manufacturing of Magnetic Materials. Progress in Materials Science, 2020, vol. 114, рр. 1–81.
12. Bittner F., Thielsch J., Drossel1 W. Laser powder bed fusion of Nd–Fe–B permanent magnets. Progress in Additive Manufacturing, 2020, vol. 5, no. 3, pp. 1–9. DOI: 10.1007/s40964-020-00117-7.
13. Volegov A.S., Andreev S.V., Selezneva N.V. et al. Additive manufacturing of heavy rare earth free high-coercivity. Acta Materialia, 2020, vol. 188, рр. 733–739.
14. Hopkinson D., Cockburn A., O’Neill W. Fiber laser processing of amorphous rare earth NeFeB magnetic materials. Conference: ICALEO® 2011: 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, 2011, pp. 1233. DOI: 10.2351/1.5062208.
15. Korolev D.V., Piskorsky V.P., Valeev R.A., Koplak O.V., Morgunov R.B. Local crystallization under the action of a single laser pulse in amorphous PrDyFeCoB microwires. Fizika tverdogo tela, 2021, vol. 63, no. 8, pp. 1105–1114.
16. Xu Y., Wang R., Ma S. et al. Theoretical analysis and simulation of pulsed laser heating at interface. Journal of Applied Physics, 2018, vol. 123, pp. 025301. DOI: 10.1063/1.5008963.
17. Croat J., Chraply A.R., Herbst J.F. Crystallization of amorphous Pr0.27Co0.73: Magnetic properties and laser induced coercivity. Applied Physics Letters, 1980, vol. 37, pp. 962. DOI: 10.1063/1.91777.
18. Molian R., Molian P. Pulsed laser deposition and annealing of Dy–Fe–B thin films on melt-spun Nd–Fe–B ribbons for improved magnetic performance. Journal of Magnetism and Magnetic Materials, 2009, vol. 321, vol. 4, pp. 241–246. DOI: 10.1016/j.jmmm.
19. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 11, 2021). DOI: 10.18577/2307-6046-2019-0-7-67-75.
20. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 7. Available at: http://www.viam-works.ru (accessed: October 11, 2021). DOI: 10.18577/2307-6046-2019-0-11-60-67.
21. Korolev D.V., Stolyankov Yu.V., Piskorsky V.P., Valeev R.A., Bahmetiev M.V., Dvorez-kaya E.V., Koplak O.V., Morgunov R.B. Magnetic properties and magnetic strip domains in micro stripes PrDyFeCoB. Aviation materials and technologies, 2021, no. 3 (64), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 11, 2021). ). DOI: 10.18577/2713-0193-2021-0-3-86-93.
22. Gerrits Th., Van den Berg M.H.A., Hohlfeld J. et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature, 2002, vol. 418, pp. 509–512.
23. Mangin S., Gottwald M., Lambert C.-H. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nature Materials, 2014, vol. 13, no. 3, pp. 286–292. DOI: 10.1038/nmat3864.
24. Xu Y., Hehn M., Zhao W. et al. From single to multiple pulse all-optical switching in GdFeCo thin films. Physics Review B, 2019, vol. 100, pp. 064424.
25. Ovcharenko S.V., Yakushenkova P.O., Ilyina N.A., Brekhova K.A., Semenova E.M., Vus Ankhua, Mishina E.D. Ultrafast switching of the magnetic state of a medium by a single femtosecond laser pulse in DyFeCo films. Fizika metallov i metallovedenie, 2019, vol. 120, no. 9, pp. 899–904.
26. Kalashnikova A.M., Kozub V.I. Exchange scattering as the driving force for ultrafast all-optical and bias-controlled reversal in ferrimagnetic metallic structures. Physics Review B, 2016, vol. 93, pp. 054424.
27. Shelukhin L.A., Pertsev N.A., Scherbakov A.V. et al. Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic Co40Fe40B20/BaTiO3 Composite. Physical Review Applied, 2020, vol. 14, pp. 034061.
28. Ellis O.A.M., Fullerton E.E., Chantrell R.W. All-optical switching in granular ferromagnets caused by magnetic circular dichroism. Scientific Reports, 2016, vol. 6, p. 30522.
29. Davies C.S., Janssen T., Mentink J.H. et al. Pathways for Single-Shot All-Optical Switching of Magnetization in Ferrimagnets. Physical Review Applied, 2002, vol. 13, p. 024064.
30. Wang C., Liu Y. Ultrafast optical manipulation of magnetic order in ferromagnetic materials. Nano Convergence, 2020, vol. 7, p. 35. DOI: 10.1186/s40580-020-00246-3.
31. Chu K., Jin Z .Q., Chakka V.M., Liu J.P. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites. Journal of Physics D: Applied Physics, 2005, vol. 38, no. 22, pp. 4009–4014.
32. Kolb T., Huber F., Akbulut B. et al. Laser Beam Melting of NdFeB for the production of rare-earth magnets. 6th International Electric Drives Production Conference (EDPC), 2016, pp. 34–40. DOI: 10.1109/EDPC.2016.7851311.
The influence of climatic factors, water and industrial fluids on the strength of the connection of antifriction organic plastics with a metal base is investigated. It was found that the preservation of the shear strength of the binder AFK-101 and the strength when peeling the organic plastics from the metal substrate are 60–82 % after prolonged exposure in these environments, which indicates the reliability of the connection of the antifriction organic plastics with the metal substrate in the composition of heavily loaded plain bearings during operation under the influence of environmental factors
2. Mukhametov R.R., Petrova A.P., Ponomarenko S.A. Anti-adhesive coatings and their properties. Trudy VIAM, 2018, no. 12 (72), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 16, 2021). DOI: 10.18577/2307-6046-2018-0-12-88-96.
3. Silaeva A.A., Kuznetsova V.A., Zheleznyak V.G., Kurshev E.V. Research of adhesion and adhesive durability of functional paint coatings for protection of polimer composite surface. Trudy VIAM, 2021, no. 9 (103), paper no. 06. Available at: http://www.viam-works.ru (accessed: November 16, 2021). DOI: 10.18577/2307-6046-2021-0-9-59-66.
4. Kulagina G.S., Korobova A.V., Ilichev A.V., Zhelezina G.F. Physical and physico-mechanical properties of antifriction organoplastics based on combined fabric filler and epoxy binder. Trudy VIAM, 2017, no. 10 (58), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 16, 2021). DOI: 10.18577/2307-6046-2017-0-10-8-8.
5. Solomentseva A.V., Fadeeva V.M., Zhelezina G.F. Antifriction organoplastics for heavy loaded sliding friction units of aircraft structures. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 30–34. DOI: 10.18577/2071-9140-2016-0-2-30-34.
6. Mashkov Yu.K., Ovchar Z.N., Baibaratskaya M.Yu., Mamaev O.A. Polymer composite materials in tribotechnics. Moscow: Nedra-Businesscenter, 2004, 262 p.
7. Voronkov B.D. Dry friction bearings. Leningrad: Mashinostroenie, 1979, 224 p.
8. Yudin A.S. Development of wear-resistant, anti-friction organo-textolites based on polyoxadiazole fabrics and polymer-mineral modifiers: thesis abstract, Cand. Sc. (Tech.). Moscow: INEOS RAN, 2013. 20 p.
9. Adamenko N.A., Agafonova G.V. Tribotechnical polymeric materials. Volgograd: VolgGTU, 2013, 107 p.
10. Bobarikin Yu.L., Shishkov S.V. Method for manufacturing a strip antifriction metal-fluoroplastic material. Vestnik Gomelskogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo, 2011, no. 3, pp. 3–9.
11. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
12. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58.
13. Kablov E.N., Startsev V.O., Krotov A.S., Kirillov V.N. Climatic aging of aviation composite materials. III. Significant factors of aging. Deformatsiya i razrusheniye materialov, 2011, no. 1, pp. 34–40.
14. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017. 472 p.
15. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp 7–27.
16. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
17. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
18. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
19. Anisimov A.V., Bakhareva V.E., Balyshko I.V. et al. Characteristics of organoplastics based on a phenol matrix and oxolane fiber. Voprosy materialovedeniya, 2006, no. 2, pp. 113–118.
20. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
Polymer composite materials (PCM) are increasingly being used in various industries. At the same time, knowledge of PCM processing is needed in order not to negate these advantages. An overview of traditional PCM processing methods is presented: cutting with abrasive wheels with and without cooling, milling on a numerically controlled machine, as well as such unconventional methods as: abrasive water jet cutting (AWG) and electrical discharge machining (EDM). Technological features, comparison of cutting modes are described and technological techniques are disclosed.
2. Kablov E.N. Materials and chemical technologies for Aircraft Engineering. Herald of the Russian Academy of Sciences, 2012, vol. 82, no. 3, pp. 158–167.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Study of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Encyklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9.
5. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: December 1, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
6. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
7. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: October 5, 2021). DOI: 10.18577/2713-0193-2021-0-2-51-61.
8. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 11, 2021). DOI: 10.18577/2713-0193-2021-0-3-105-106.
9. Bolshakov V.A., Solodilov V.I., Korokhin R.A., Kondrashov S.V., Merkulova Yu.I., Dyachkova T.P. Research of crack resistance of polymeric composite materials fabricated by infusion using various concentrates on the basis of modified CNT. Trudy VIAM, 2017, no. 7 (55), paper no. 9. Available at: http://www.viam-works.ru (accessed: December 1, 2021). DOI: 10.18577/2307-6046-2017-0-7-9-9.
10. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. St. Petersburg: Professiya, 2008, 560 p.
11. Bataev A.A., Bataev V.A. Composite materials: structure, production, application: textbook. Novosibirsk: NGTU, 2002, 384 p.
12. Vashukov Yu.A. Technology of rocket and aerospace structures from composite materials:a multimedia educational module. Electronic, text and graph. dates (3766 KB, printed version 185 pages). Samara, 2012. CD-R.
13. Stepanov A.A., Shemelov Yu.Yu. Cutting organoplastic with circles of diamonds and electrocorundum. Sverkhtverdye materily, 1980, no. 3, pp. 37–41.
14. Tokarev D.I., Matygulina E.V. Machining of plastics: textbook. Perm: Publishing House Perm Nat. Research Polytech. University, 2019, 71 p.
15. Vorobey V.V. Technology for the production of structures from composite materials. Moscow: MAI publishing house, 1996, 178 p.
16. Tikhomirov R.A., Nikolaev V.I. Mechanical processing of plastics. Leningrad: Mashinostroenie, 1975, 208 p.
17. Piece B.P. Machining of plastics: handbook. Moscow: Mashinostroenie, 1987, 152 p.
18. Yaroslavtsev V.M. Machining of polymer composite materials: textbook. Moscow: Publ. house of MSTU im. N.E. Bauman, 2012, pp. 32–58.
19. Minibaev M.I., Raskutin A.E, Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), paper no. 11. Available at: http://www.viam-works.ru (accessed: October 11, 2021). DOI: 10.18577/2307-6046-2019-0-1-105-114.
20. Sheikh-Ahmad J.Y. Machining of Polymer Composites. Springer Science Business Media, 2009, 307 p.
21. Zeng J., Kim T.J. Development of an abrasive water jet kerf cutting model for brittle materials // Jet Cutting Technology. Fluid Mechanics and Its Applications. Dordrecht: Springer, 1992, vol. 13. pp. 483–501. DOI: 10.1007/978-94-011-2678-6_33.
22. Dyshenko V.S., Raskutin A.E., Donetskskii K.I., Karavaev R.Yu. Hydroabrasive cutting of carbon plastic based on woven preforms. Tekhnologii i kachestvo, 2018, no. 2 (40), pp. 32–36.
23. Ablyaz T.R., Shlykov E.S., Muratov K.R. Improving the Efficiency of Electrical Discharge
Machining of Special-Purpose Products with Composite Electrode Tools. Materials, 2021, vol. 14, is. 20, art. 6105. DOI: 10.3390/ma14206105.
24. Ablyaz T.R., Shlykov E.S., Muratov K.R., Sidhu S.S. Analysis of Wire-Cut Electro Discharge Machining of Polymer Composite Materials. Micromachines, 2021. vol. 12, is. 5, art. 571. DOI: 10.3390/mi12050571.
25. Hsissou R., Benhiba F., Echihi S. et al. New epoxy polymer composites as a potential anticorrosive coatings for carbon steel in 3.5 % NaCl solution: Experimental and computational approa-ches. Chemical Data Collections, 2021, vol. 31, art. 100619. DOI: 10.1016/j.cdc.2020.100619.
26. Hsissou R., Bekhta A., Dagdag O. et al. Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 2020, vol. 6, is. 6, art. e04187. DOI: 10.1016/j.heliyon.2020.e04187.
27. Thomason J. A review of the analysis and characterization of polymeric glass fibresizings. Polymer Testing, 2020, vol. 85, art. 106421. DOI: 10.1016/j.polymertesting.2020.106421.
28. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
In this paper, we consider the issues of the mechanism of hot corrosion. The analysis of modern methods of laboratory research of corrosion processes occurring at elevated temperatures is carried out. A significant part of the work is devoted to modern technology of protection against corrosion of metallic materials. The development of technologies for slurry, chemical, pyrochemical, electrochemical and sol-gel coatings, as well as methods of diffusion saturation of the surface, is relevant today. Nevertheless, the technology of ion-plasma treatment is the most effective method of applying protective coatings.
2. Reid W.T. External corrosion and deposits: boilers and gas turbines. New York: Elesevier, 1971, 199 p.
3. Lai G.Y. High-temperature corrosion and materials applications. ASM International, 2007, 461 p.
4. Rapp R.A. Hot corrosion of materials: a fluxing mechanism? Corrosion science, 2002, vol. 44, no. 2, pp. 209–221.
5. Tschinkel J.G. Formation of sodium sulfate in gas turbine combustors. Corrosion, 1972, vol. 28, no. 5, pp. 161–169.
6. Stringer J. High-temperature corrosion of superalloys. Materials Science and Technology, 1987, vol. 3, no. 7, pp. 482–493.
7. Eliaz N., Shemesh G., Latanision R.M. Hot corrosion in gas turbine components. Engineering failure analysis, 2002, vol. 9, no. 1, pp. 31–43.
8. Gupta D.K., Rapp R.A. The Solubilities of NiO, Co3O4, and Ternary Oxides in Fused Na2SO4 at 1200 K. Journal of the Electrochemical Society, 1980, vol. 127, no. 10, pp. 2194–2201.
9. Zhang Y.S., Rapp R.A. Solubility of α‐Fe2O3 in Fused Na2SO4 at 1200 K. Journal of the Electrochemical Society, 1985, vol. 132, no. 3, pp. 734.
10. Zhang Y.S. Solubilities of Cr2O3 in Fused Na2SO4 at 1200 K. Journal of the Electrochemical Society, 1986, vol. 133, no. 3, pp. 655.
11. Jose P.D., Gupta D.K., Rapp R.A. Solubility of α‐Al2O3 in Fused Na2SO4 at 1200 K. Journal of the Electrochemical Society, 1985, vol. 132, no. 3, pp. 735.
12. Spengler C.J., Viswanathan R. Effect of sequential sulfidation and oxidation on the propagation of sulfur in an 85 Ni–15 Cr alloy. Metallurgical and Materials Transactions B, 1972, vol. 3, no. 1, pp. 161–166.
13. El-Dahshan M.E., Whittle D.P., Stringer J. Effect of presulfidation on the oxidation behavior of Co-based alloys. Part I. Presulfidation at sulfur partial pressures above the dissociation pressure of cobalt sulfide. Oxidation of metals, 1974, vol. 8, no. 4, pp. 179–209.
14. Hancock P. Vanadic and chloride attack of superalloys. Materials Science and Technology, 1987, vol. 3, no. 7, pp. 536–544.
15. Rapp R.A., Goto K.S. The hot corrosion of metals by molten salts. ECS Proceedings Volumes, 1981, vol. 10, pp. 159–177.
16. Otsuka N., Rapp R.A. Hot Corrosion of Preoxidized Ni by a Thin Fused Na2SO4 Film at 900 °C. Journal of the Electrochemical Society, 1990, vol. 137, no. 1, pp. 46–52.
17. Zhang X., Rapp R.A. Electrochemical Impedance of a Platinum Electrode in Fused Na2SO4 Melts in SO2‒O2 Environments. Journal of the Electrochemical Society, 1993, vol. 140, no. 10, pp. 2857–2862.
18. Numata H., Nishikata A., Haruyama S. Electrochemical studies of corrosion of iron, nickel and nickel alloys in alkali sulfate melt. Transactions of the Japan Institute of Metals, 1983, vol. 24, pp. 303–310.
19. Fang W.C., Rapp R.A. Electrochemical Reactions in a Pure Na2SO4 Melt. Journal of the Electrochemical Society, 1983, vol. 130, no. 12, pp. 2335–2340.
20. McKee D.W., Romeo G. Carbon deposition and the role of reducing agents in hot-corrosion processes. Metallurgical Transactions, 1973, vol. 4, no. 8, pp. 1877–1885.
21. Barklow R.H., Goebel J.A., Pettit F.S. Erosion-corrosion of coatings and superalloys in high-velocity hot gases. ASTM special technical publication, 1979, no. 664, pp. 163–192.
22. Kameswari S. The role of NaCl in the hot-corrosion behavior of nimonic alloy 90. Oxidation of metals, 1986, vol. 26, no. 1, pp. 33‒44.
23. Hancock P.J., Hancock H.A., Caley W.F. et al. A review of recent studies of the role of zinc as an inhibitor of hot corrosion from molten sulphates. Materials Science and Engineering A, 1989, vol. 120, pp. 313–318.
24. Donachie M.J.Jr., Sprague R.A., Russell R.N. et al. Sulfidation of Hot Section Alloys in Gas Turbine Engines. ASTM Special Technical Publication, 1967, no. 421, pp. 85–105.
25. Shubin I.Yu., Nikitin Ya.Yu., Puchkov Yu.A. et al. Investigation of resistance to high-temperature gas and salt corrosion of high-temperature intermetallic titanium alloy VTI-4. Vestnik MGTU im. N.E. Bauman. Ser.: Mechanical engineering, 2020, no. 6, pp. 84–106.
26. Goward G.W. Progress in coatings for gas turbine airfoils. Surface and coatings technology, 1998, vol. 108, pp. 73–79.
27. Nicholls J.R. Designing oxidation-resistant coatings. JOM, 2000, vol. 52, no. 1, pp. 28–35.
28. Narushko E.O. Protective coatings against high-temperature gas corrosion of axial compressor blades in the aircraft industry. BNTU repository, 2011, pp. 110–115. Available at: https://rep.bntu.by (accessed: December 03, 2021).
29. Longa-Nava Y., Zhang Y.S., Takemoto M. et al. Hot corrosion of nickel-chromium and nickel-chromium-aluminum thermal-spray coatings by sodium sulfate-sodium metavanadate salt. Corrosion, 1996, vol. 52, no. 09, pp. 680–689.
30. Muboyadzhyan S.A., Budinovsky S.A. Condensed and condensation-diffusion coatings for turbine blades from heat-resistant alloys with a directional crystal structure. Metallovedenie i termicheskaya obrabotka metallov, 1996, no. 4, pp. 15–18.
31. Kablov E.N., Muboyadzhyan S.A., Budinovsky S.A., Lutsenko A.N. Ion-plasma protective coatings for blades of gas turbine engines. Metally, 2007, no. 5, pp. 23–34.
32. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
33. Solncev S.S., Denisova V.S., Rozenenkova V.A. Reaction cure – the new direction in technology ofhigh-temperature composite coatings and materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 329–343. DOI: 10.18577/2071-9140-2017-0-S-329-343.
34. Goncharov B.E., Sipatov A.M., Cherkashneva N.N., Pleskan A.Yu., Samokhvalov N.Yu., Vaganova M.L., Sorokin O.Yu., Solntsev St.S., Evdokimov S.A. Studies of thermal shock resistance of an anti-oxidation coating for a multi-layered ceramic composite. Aviation materials and technologies, 2021, no. 4 (65), paper no. 06 (accessed: December 3, 2021). DOI: 10.18577/2713-0193-2021-0-51-58.
35. Bianco R., Rapp R.A. Pack cementation diffusion coatings. Metallurgical and ceramic protective coatings, 1996, pp. 236–260.
36. Sánchez L., Bolivar F.J., Hierro M.P. et al. Effect of Ce and La additions in low temperature aluminization process by CVD–FBR on 12 % Cr ferritic/martensitic steel and behaviour in steam oxidation. Corrosion science, 2008, vol. 50, no. 8, pp. 2318–2326.
37. Jiang C.Y., Yang Y.F., Zhang Z.Y. et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance. Corrosion Science, 2018, vol. 133, pp. 406–416.
38. Xu Z., Dai J., Niu J. et al. Isothermal oxidation and hot corrosion behaviors of diffusion aluminide coatings deposited by chemical vapor deposition. Journal of Alloys and Compounds, 2015, vol. 637, pp. 343–349.
39. Picas J.A., Menargues S., Martin E. et al. Characterization of duplex coating system (HVOF + PVD) on light alloy substrates. Surface and coatings technology, 2017, vol. 318, pp. 326–331.
40. Wänstrand O., Larsson M., Kassman-Rudolphi А. An experimental method for evaluation of the load-carrying capacity of coated aluminium: the influence of coating stiffness, hardness and thickness. Surface and Coatings Technology, 2000, vol. 127, no. 2–3, pp. 107–113.
41. Tang P., He D., Li W. et al. Achieving superior hot corrosion resistance by PVD/HVOF duplex design. Corrosion Science, 2020, vol. 175, art. 108845. DOI: 10.1016/j.corsci.2020.108845.
42. Doleker K.M., Ozgurluk Y., Kahraman Y. et al. Oxidation and hot corrosion resistance of HVOF/EB-PVD thermal barrier coating system. Surface and Coatings Technology, 2021, vol. 409, art. 126862. DOI: 10.1016/j.surfcoat.2021.126862.
43. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
44. Muboyadzhyan S.A., Kablov E.N. Vacuum Plasma Technique of Protective Coatings Production of Complex Alloys. Metallovedenie i termicheskaya obrabotka metallov, 1995, no. 2, pp. 15–18.
45. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Kosmin A.A. Development and research of the combined heat resisting ion-plasma coverings for the heat resisting nickel alloys alloyed by a reniye. Aviacionnye materialy i tehnologii, 2008, no. 3 (8), pp. 3–11.
46. Kablov E.N., Muboyadzhyan S.A. Erosion-Resistant Coatings for Gas Turbine Engine Compressor Blades. Russian metallurgy (Metally), 2017, vol. 2017, no. 6, pp. 494–504.
47. Smirnov A.A., Budinovsky S.A. Improvement of heat resistance of condensation and diffusion coatings for turbine blades from ZhS32 alloy. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 3–10. DOI: 10.18577/2071-9140-2016-0-2-3-10.
48. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. The research of erosion resistance and heat resistance of the ion-plasma damping coatings. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 11–17. DOI: 10.18577/2071-9140-2016-0-2-11-17.
49. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
50. Goyal K., Singh H., Bhatia R. Hot corrosion behaviour of carbon nanotubes reinforced chromium oxide composite coatings at elevated temperature. Materials Research Express, 2018, vol. 5, no. 11, art. 116408. DOI: 10.1088/2053-1591/aadc34.
The main purpose of this work was to simulate the temperatures of maximum heating of PVC-profile samples in the climatic conditions of the city of Gelendzhik and their modeling in other climatic conditions (the city of Moscow). The work evaluates the maximum heating temperatures of the surface of PVC-profile samples having a complex spatial shape, evaluates various approaches to its modeling and forecasting in other climatic conditions. The possible influence of the shape of the samples on the processes of their heat exchange with the environment is noted.
2. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
3. Startsev O.V., Medvedev I.M., Kurs M.G. Hardness as the indicator of corrosion of aluminum alloys in sea conditions. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 16–19.
4. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
5. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of aviation composite materials. I. Mechanisms of aging. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 19–26.
6. Startsev V.O., Medvedev I.M., Startsev O.V. Рrognostication of surface temperature of epoxy coatings on aluminum alloy subjected to long exposure in natural climate conditions. Trudy VIAM, 2016, no. 10, paper no. 12. Available at: http://www.viam-works.ru (accessed: November 26, 2021). DOI: 10.18577/2307-6046-2016-0-10-12-12.
7. Guedes Soares C., Garbatov Y., Zayed A., Wang G. Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corrosion Science, 2009, vol. 51, no. 9, pp. 2014–2026.
8. Grossman P.R. Investigation of atmospheric exposure factors that determine time of wetness of outdoor structures. ASTM International, 1978, pp. 5–16.
9. Gardiner C.P., Melchers R.E. Enclosed atmospheric corrosion in ship spaces. British Corrosion Journal, 2003, vol. 6, no. 4, pp. 272–276.
10. Al-Rawahi N.Z., Zurigat Y.H., Al-Azri N.A. Prediction of hourly solar radiation on horizontal and inclined surfaces for Muscat/Oman. The Journal of Engineering Research, 2011, vol. 8, no. 2, pp. 19–31.
11. Bijl P. Modelling of sample surface temperature in an outdoor weathering test. Polymer Testing, 2011, vol. 30, no. 5, pp. 485–492.
12. Burch D.M., Martin J.W. Predicting the Temperature and Relative Humidity of Polymer Coatings in the Field. Service Life Prediction of Organic Coatings ACS Symposium Series. American Chemical Society, 1999, pp. 85–107.
13. Burch D., Martin J., Van Landingham M. Computer analysis of a polymer coating exposed to field weather conditions. Journal of Coatings Technology, 2002, vol. 74, no. 924, pp. 75–86.
14. Pickett J.E., Sargent J.R. Sample temperatures during outdoor and laboratory weathering exposures. Polymer Degradation and Stability, 2009, vol. 94, no. 2, pp. 189–195.
15. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
Polymer materials
Obraztsova E.P., Titkova Yu.M., Donskikh I.N. Heat-resistant fibers and non-woven materials based on them for use in filter elements of gas turbine engines (review)
Kurshev E.V., Lonskii S.L., Mekalina I.V. Influence of long climatic aging on microstructure of surface of organic glass in semi-arid and subtropical climate
Composite materials
Kolokoltseva T.V., Popov Yu.O., Usacheva M.N., Gromova A.A. Prepregs and fiberglass based on VSR-3М binder and fiberglass fabrics for use in helicopter blades
Mishkin S.I., Klimenko O.N., Kutcevich K.E. Determination of stickiness of prepregs on the basis of carbon fillers the sounding method
Ilyukhina M.A., Timonin V.V. Research of operating properties of RTV silicone sealants at elevated temperatures (up to +400 °C) and ways of their increase
Ponomarenko L.A.About ways of structure modification of a knitted fillers for polymeric composite materials (review)
Khudnev A.A., Batienkov R.V., Bolshakova A.N., Dvoretskov R.M. Study of the features of compaction of powder composite materials based on molybdenum using spark plasma sintering
Morgunov R.B., Korolev D.V., Valeev R.A., Piskorsky V.P. Laser modification of rare earth magnetic alloys (review)
Kan A.Ch., Kulagina G.S., Ayupov T.R., Zhelezina G.F. The influence of environmental factors on the characteristics of antifriction organoplasty Orgalon AF-1M
Dyshenko V.S., Donetskiy K.I., Minibaev M.I., Ablyaz T.R., Shlykov E.S., Shiryaev V.V. Methods of mechanical and electrical discharge machining of polymer composite materials (review)
Protective and functional
coatings
Zavarzin S.V., Oglodkov M.S., Chesnokov D.V., Kozlov I.A. Hot corrosion and protection of materials of gas turbine engines (review)
Material tests
Panin S.V. Modeling and prediction of overheating temperatures of PVC profile samples