Articles
Technological parameters of removal of ceramic cores based on fused quartz from the inner cavity of turbine blade castings are selected and investigated. The results of studies of technological parameters of removal of ceramic cores based on fused quartz are presented, according to the results of which optimal technological parameters are selected and a technology for removing ceramic rods from fused quartz from the inner cavity of turbine blade castings is developed.
2. Kablov E.N., Folomeikin Yu.I., Demonis I.M. Highly refractory ceramic molds and cores for casting cooled blades of gas turbine engines. Intern. scientific-practical conf. «Science and technology of silicate materials – present and future». St. Petersburg: Information of Education, 2003, vol. II. pp. 49–56.
3. Belyakov A.V., Razumnova I.V., Demonis I.M., Folomeikin Yu.I. Easy-to-remove ceramic cores for investment casting of GTE blades. Steklo i keramika, 2012, no. 4, pp. 26–31.
4. Landa M.I., Kopytov N.N. Influence of the grain composition of the powder composition on the properties of porous corundum ceramics of increased strength. Ogneupory, 1984, no. 4, pp. 21–25.
5. Bakunov V.S., Balkevich V.L., Vlasov A.S. et al. Ceramics from high-refractory oxides. Moscow: Metallurgiya, 1977, 304 p.
6. Strelov K.K. Structure and properties of refractories. Moscow: Metallurgy, 1982, 208 p.
7. Folomeikin Yu.I. Formation of the structure of a porous highly refractory ceramic material with a granular structure. Steklo i keramika, 2015, no. 8, pp. 30–35.
8. A mixture for the manufacture of foundry ceramic cores of hollow blades from heat-resistant alloys by investment casting: pat. 2691435 Rus. Federation; filed 23.07.18; publ. 13.06.19.
9. Mixture for the manufacture of foundry ceramic rods: pat. 2273543 Rus. Federation; filed 01.09.04; publ. 10.04.06.
10. Loshchinin Yu.V., Shorstov S.Yu., Kuzmina I.G. Research of influence of technology factors on thermal conductivity of ceramic casting molds. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 89–94. DOI: 10.18577 / 2071-9140-2019-0-2-89-94.
11. Kablov E.N., Ospennikova O.G., Svetlov I.L. Highly efficient cooling of GTE hot section blades. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
12. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Computational and experimental investigations of thermophysical properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.
13. Loshchinin Yu.V., Folomeikin Yu.I., Rykova T.P., Marakhovsky P.S., Pahomkin S.I. Thermophysical properties of ceramic materials of molds and rods for casting gas turbine engine blades from heat-resistant alloys. Materialovedenie, 2014, no. 3 (204). pp. 47–52.
14. Ospennikova O.G., Rassokhina L.I., Bityutskaya O.N., Gamazina M.V. Optimization of technology for the manufacture of ceramic rods to improve the quality of cast blades of gas turbine engines. Novosti materialovedeniya. Nauka i tekhnologiya, 2017, no. 3–4, paper no. 04. Available at: http://www.materialsnews.ru (accessed: November 30, 2020).
15. Ospennikova O.G., Rassohina L.I., Bitjuckaja O.N., Gamazina M.V. Development of technology for production of castings by the method of directional solidification of GTE blades made of alloys based on Nb–Si composite. Trudy VIAM, 2017, no. 4 (52), paper no. 01 Available at: http://www.viam-works.ru (accessed: November 30, 2020). DOI: 10.18577/2307-6046-2017-0-4-1-1.
16. Rassokhina L.I., Bityutskaya O.N., Gamazina M.V., Avdeev V.V. Research of compositions of ceramic rods based on fused quartz and their manufacturing technology. Trudy VIAM, 2021, no. 1 (95), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 11, 2021). DOI: 10.18577/2307-6046-2021-0-1-34-42.
17. Folomeikin Yu.I., Kablov E.N., Demonis I.M. Highly refractory ceramics of rods and molds for casting blades with directional and single-crystal structures. Aviatsionnaya promyshlennost, 2000, no. 2, pp. 41–44.
18. Method for removing ceramic material from casting parts: pat. 2557119 Rus. Federation; filed 12.03.14; publ. 20.07.15.
19. Poklad V.A., Ospennikova O.G., Orlov M.R., Sudinin M.A. Technology for removal of ceramic rods from cooled blades of gas turbine engines. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2006, no. 9, pp. 24–30.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Presents the microstructure and mechanical properties of bars and blade forgings made of new heat resistant titanium alloy. A typical microstructures of studied industrial alloys were demonstrated. The main clue of the article is noted to fatigue stability of bars and forgings material. The analysis of strength and impact toughness of bars and blade forgings made of industrial titanium alloys VT3-1, VT8, VT8M-1, VT9, VT20 were carried out in comparison with new heat-resistant titanium near-a alloy.
2. Sutyagin A.N. Modern problems of aircraft engine production technology: lecture notes. Rybinsk: RGATU, 2016, 142 p.
3. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
4. Boguslaev V.A., Muravchenko F.M., Zhemanyuk P.D. et al. Technological support of operational characteristics of gas turbine engine parts. Zaporozhe: Motor Sich, 2003, part 1, 396 p.
5. Kachan A.Ya., Ulanov S.A. Patterns of formation of residual stresses in the shoulder blades by technological methods, taking into account technological heredity. Vestnik dvigatelestroeniya, 2019, no. 1, pp. 61–67.
6. Bagmet M.N., Zhdanov I.A., Koltun S.K. Metallographic studies of the blade material after cold rolling. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2005, no. 9 (25). pp. 28–31.
7. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Kondrateva A.R. Research of influence of alloying elements content on properties of high strength near alpha heat resistance titanium alloy VT46. Trudy VIAM, 2016, no. 9, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 9, 2021). DOI: 10.18577/2307-6046-2016-0-9-6-6.
8. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
9. Zhang R., Zhao S., Ophus C. et al. Direct imaging of short-range order and its impact on deformation in Ti–6Al. Science Advances, 2019, vol. 5, no. 12. DOI: 10.1126/sciadv.aax2799.
10. Popov A.A., Popova M.A. Isothermal diagrams of precipitation of silicide and aluminide phases in heat-resistant titanium alloys. Metallovedenie i termicheskaya obrabotka metallov, 2016, no. 11, pp. 23–28.
11. Davies P., Pederson R., Coleman M., Birosca S. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air. Acta Materialia, 2016, vol. 117, pp. 51–67. DOI: 10.1016/j.actamat.2016.07.015.
12. Sabry S.Y., Zheng X., Ma Y. et al. Characterization of α2 Precipitates in Ti–6Al and Ti–8Al Binary Alloys: A Comparative Investigation. Acta Metallurgica Sinica (English Letters), 2021, vol. 34, pp. 710–718. Available at: http://link.springer.com/journal/40195 (accessed: October 05, 2021). DOI: 10.1007/s40195-020-01149-2.
13. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. The phenomenon of formation and low-temperature diffusion transformation of metastable solid solutions with the release of dispersed particles of intragranular Widmanstatten alpha phase in heat-resistant titanium. Trudy VIAM, 2018, no. 8 (68), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 10, 2021). DOI: 10.18577/2307-6046-2018-0-8-3-22.
14. Ospennikova O.G., Napriyenko S.A., Lukina E.A. Study of operational destruction of the GTP compressordisk of alloy VT8. Trudy VIAM, 2018, no. 12 (72), paper no. 11. Available at: http://www.viam-works.ru (accessed: October 10, 2021). DOI: 10.18577/2307-6046-2018-0-12-97-106.
15. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Development of a pilot industrial technology for the manufacture of semi-finished products from pseudo-α titanium alloy VT41. Titan, 2016, no. 2 (52). pp. 33–42.
16. Kablov E.N., Putyrsky S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Investigation of resistance to fatigue failure of forgings from high-strength titanium alloy VT22M, manufactured with final deformation in (α + β)- and β-regions. Titan, 2021, no. 1 (70). pp. 26–33.
17. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
18. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Compound. Structure. Properties. Moscow: VILS-MATI, 2009, 520 p.
19. Luthering G., Williams J.C. Titanium. 2nd ed. Springer, 2007. 442 p.
20. Shanyavskiy A.A., Soldatenkov A.P. Scales of Metal Fatigue Limit. Physical Mesomechanics, 2020, vol. 23, pp. 120–127. DOI: 10.1134/S1029959920020034.
21. Naimark O.B., Matveenko V.P., Krommer M. et al. Multiscale Dynamics of Damage-Failure Transitions and Structures Control Under Intensive Loading. Dynamics and Control of Advanced Structures and Machines: Contributions from the 3rd International Workshop (Perm, Russia). Springer, 2019, pp. 117–126. DOI: 10.1007/978-3-319-90884-7_13.
22. Belousov G.G., Nikitin A.D., Shanyavsky A.A. Model of fatigue failure in operation of the titanium disk of the TA12-60 engine fan. Nauchnyy vestnik MGTUGA, 2013, no. 187, pp. 103–107.
23. High-strength alpha-beta titanium alloy: pat. US 2018/0340249 A1; filed 02.08.18; publ. 29.11.18.
24. Tetyukhin V.V., Leder M.O., Kropotov V.A. et al. Status and Progress in wrought processing of titanium. Proceedings of the 13th World Conference on Titanium. Metals & Materials Society, 2016, pp. 249–256.
25. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
26. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Technological capabilities of specialized isothermal presses with a force of 6.3 and 16 MN in the production of aircraft parts. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka metallov davleniyem, 2015, no. 9, pp. 36–40.
27. Egorova Yu.B., Davydenko L.V., Mamonov I.M., Shmyrova A.V. Prediction of the mechanical properties of bars from the Ti–6Al–4V alloy depending on the strength equivalents for aluminum and molybdenum. Titan, 2021, no. 2 (71). pp. 25–33.
28. Moiseyev V.N. Titanium Alloys: Russian Aircraft and Aerospace Applications. CRC Press, 2005. 216 p. DOI: 10.1201/9781420037678.
29. Tetyukhin V.V., Shibanov A.S., Puzakov I.Yu. et al. Development of manufacturing technology for semi-finished products of titanium alloys, which excludes defect formation and increases the testability of the material. Collection of reports VI All-Russia. conf. on testing and research of the properties of materials "TestMat" (Moscow, February 12–13, 2015). Moscow: VIAM, 2015, p. 47.
30. Solonina O.P., Glazunov S.G. Modern heat-resistant titanium alloys and prospects for their use in engines. Moscow: Metallurgiya, 1974. 448 p.
31. Gorbovets M.A., Khodinev I.A., Karanov V.A., Yushin V.D. Influence of the type of loading on high-cycle fatigue of heat-resistant alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 09, 2020). DOI: 10.18577/2307-6046-2019-0-3-96-104.
32. Soldatenko I.V. Express method for quantitative assessment of the microstructure of (α + β)-titanium alloys. Tekhnologiya legkikh splavov, 2017, no. 2, pp. 73–85.
33. Anoshkin N.F., Brun M.Ya., Shakhanova G.V. Requirements for a bimodal structure with an optimal set of mechanical properties and modes of its production. Titan, 1998, no. 1 (10). pp. 35–41.
Based on a review of scientific and technical literature, the main directions of using functional materials obtained by the FDM printing method in the development of sensors for various purposes and polymer actuators are identified. It is shown that to date, significant progress has been achieved in the field of printing sensors for various purposes: materials have been selected, a conceptual appearance of products has been developed, their characteristics have been investigated. The possibilities of using polymeric materials with shape memory for the manufacture of actuators obtained by the 3D printing method are demonstrated. It is noted that the uniqueness of this method of manufacturing actuators is associated with the ability to lay the stress diagram necessary for the operation of the device during the printing process.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
4. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
5. Terekhov I.V., Shlenskiy V.A., Kurshev E.V., Lonskiy S.L., Dyatlov V.A. Researches of factors affecting the formation of epoxy-containing microcapsules for the self-healing compositions. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 27–34. DOI: 10.18577/2071-9140-2018-0-3-27-34.
6. Elinson V.M., Shchur P.A., Uvarov S.I. Formation of antimicrobial carbon and fluorocarbon coatings using predictive modeling of their properties. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2021, vol. 4, pp. 17–23. DOI: 10.1615/HighTempMatProc. 2021041784.
7. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecu-lar mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
8. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
9. Kondrashov S.V., Pykhtin A.A., Larionov S.A. FDM-printed functional materials (review). Trudy VIAM, 2021, no. 3 (97), paper no. 04. Available at: http://viam-works.ru (accessed: September 4, 2021). DOI: 10.18577/2307-6046-2021-0-3-44-57.
10. All about sensors, measuring instruments. Available at: https://osensorax.ru (accessed: September 25, 2021).
11. Khosravani M.R., Reinicke T. Applications of additive manufacturing in fabrication of sensors – A review. Sensors and Actuators A: Physical, 2020, vol. 111916.
12. Christ J.F., Hohimer C.J., Aliheidari N. et al. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2017, vol. 10168, pp. 101680E.
13. Xiang D., Zhang X., Li Y. et al. Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Composites Part B: Engineering, 2019, vol. 176, pp. 107250.
14. Beckwith T.G., Marangoni R.D., Lienhard J.H. Mechanical measurements. Reading, Mass.: Addison-Wesley, 1995, vol. 5, 345 p.
15. Xiang D., Zhang X., Harkin-Jones E. et al. Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors. Composites Part A: Applied Science and Manufacturing, 2020, vol. 129, pp. 105730.
16. Lin L., Liu S., Zhang Q. et al. Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS applied materials & interfaces, 2013, vol. 5, no. 12, pp. 5815–5824.
17. Taherkhani B., Azizkhani M.B., Kadkhodapour J. et al. Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values. Sensors and Actuators A: Physical, 2020, vol. 305, pp. 111939.
18. Ali M.M., Maddipatla D., Narakathu B.B. et al. Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sensors and Actuators A: Physical, 2018, vol. 274, pp. 109–115.
19. Kwok S.W., Goh K.H.H., Tan Z.D. et al. Electrically conductive filament for 3D-printed circuits and sensors. Applied Materials Today, 2017, vol. 9, pp. 167–175.
20. Tarbuttona J., Leb T., Helfrichb G. et al. Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manufacturing, 2017, vol. 10, pp. 982–989.
21. Leigh S.J., Bradley R.J., Purssell C.P. et al. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS one, 2012, vol. 7, no. 11, pp. e49365.
22. Shemelya C., Cedillos F., Aguilera E. et al. Encapsulated copper wire and copper mesh capacitive sensing for 3D printing applications. IEEE Sensors Journal, 2014, vol. 15, no. 2, pp. 1280–1286.
23. Kim K., Park J., Suh J.H. et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sensors and Actuators A: Physical, 2017, vol. 263, pp. 493–500.
24. Yang Y., Hong C., Abro Z.A. et al. A new Fiber Bragg Grating sensor based circumferential strain sensor fabricated using 3D printing method. Sensors and Actuators A: Physical, 2019, vol. 295, pp. 663–670.
25. Hong C., Yuan Y., Yang Y. et al. A simple FBG pressure sensor fabricated using fused deposition modelling process. Sensors and Actuators A: Physical, 2019, vol. 285, pp. 269–274.
26. Leigh S.J., Purssell C.P., Billson D.R. et al. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors. Smart materials and structures, 2014, vol. 23, no. 9, pp. 095039.
27. Bulat P. On the way to the fifth and sixth generation. Part VI. Available at: http://otvaga2004.ru/kaleydoskop/kaleydoskop-air/5-6-pokoleniye-6/ (accessed: September 25, 2021).
28. Larionova A.V., Chumak P.I. Progress in the design and manufacture of small-sized wind turbines. Russian civilization: past, present and future P76. Collection Scientific works of III Scientific-Practical Conf. Stavropol: Mir dannykh, 2010, pp. 356–358.
29. Sogokon A.B. Why do you need a solar energy concentrator? Or what is a solar concentrator capable of?. Scientific-practical conf. "Energy and resource efficiency of low-rise residential buildings" (Novosibirsk, March 19–20, 2013). Novosibirsk: Institute of Thermal Physics SB RAS, 2013, pp. 19–20.
30. Momeni F., Ni J. Nature-inspired smart solar concentrators by 4D printing. Renewable Energy, 2018, vol. 122, pp. 35–44.
31. Bacha C.B., Bourbia F. Effect of kinetic facades on energy efficiency in office buildings-hot dry climates. 11th Conference on advanced building skins, 2016, vol. 1, pp. 458–468.
32. Yi H., Kim D., Kim Y. et al. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Automation in Construction, 2020, vol. 114, pp. 103151.
33. Joshi S., Rawat K., Karunakaran C. et al. 4D printing of materials for the future: opportunities and challenges. Applied Materials Today, 2020, vol. 18, pp. 100490.
34. Zolfagharian A., Kouzani A.Z., Khoo S.Y. et al. Evolution of 3D printed soft actuators. Sensors and Actuators A: Physical, 2016, vol. 250, pp. 258–272.
35. Pinho A.C., Buga C.S., Piedade A.P. The chemistry behind 4D printing. Applied Materials Today, 2020, vol. 19, pp. 100611.
36. Hu J., Zhu Y., Huang H. et al. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 2012, vol. 37, no. 12, pp. 1720–1763.
37. Beloshenko V.A., Varyukhin V.N., Vozniak Yu.V. Shape memory effect in polymers. Uspekhi khimii, 2005, vol. 74, no. 3, pp. 285–306.
38. Hu J., Chen S. A review of actively moving polymers in textile applications. Journal of Materials Chemistry, 2010, vol. 20, no. 17, pp. 3346–3355.
39. Ge Q., Dunn C.K., Qi H.J. et al. Active origami by 4D printing. Smart Materials and Structures, 2014, vol. 23, no. 9, pp. 094007.
40. Ge Q., Qi H.J., Dunn M.L. Active materials by four-dimension printing. Applied Physics Letters, 2013, vol. 103, no. 13, pp. 131901.
41. Yu K., Ritchie A., Mao Y. et al. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia Iutam, 2015, vol. 12, no. 1, pp. 193–203.
42. Liu Y., Boyles J.K., Genzer J. et al. Self-folding of polymer sheets using local light absorption. Soft matter, 2012, vol. 8, no. 6, pp. 1764–1769.
43. Akbari S., Sakhaei A.H., Kowsari K. et al. Enhanced multimaterial 4D printing with active hinges. Smart Materials and Structures, 2018, vol. 27, no. 6, pp. 065027.
44. Ding Z., Yuan C., Peng X. et al. Direct 4D printing via active composite materials. Science advances, 2017, vol. 3, no. 4, pp. e1602890.
45. Wu J., Yuan C., Ding Z. et al. Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific reports, 2016, vol. 6, pp. 24224.
46. Mao Y., Ding Z., Yuan C. et al. 3D printed reversible shape changing components with stimuli responsive materials. Scientific reports, 2016, vol. 6, no. 1, pp. 1–13.
47. Yuan C., Roach D.J., Dunn C.K. et al. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter, 2017, vol. 13, no. 33, pp. 5558–5568.
48. Beyer P., Terentjev E.M., Zentel R. Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromolecular rapid communications, 2007, vol. 28, no. 14, pp. 1485–1490.
49. Ahir S.V., Tajbakhsh A.R., Terentjev E.M. Self assembled shape memory fibers of triblock liquid crystal polymers. Advanced Functional Materials, 2006, vol. 16, no. 4, pp. 556–560.
50. Thermoplastic elastomers. Fundamentals of plastics processing technology. Ed. V.N. Kuleznev and V.K. Gusev. Moscow: Khimiya, 2004. Available at: mplast.by/encyklopedia/termoelastoplastyi/ (accessed: September 25, 2021).
51. Shape Memory Polymer. Available at: http://www2.smptechno.com/en/smp/ (accessed: September 25, 2021).
52. Yang Y., Chen Y., Wei Y. et al. 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 2016, vol. 84, no. 9–12, pp. 2079–2095.
53. Liu Y., Zhang W., Zhang F. et al. Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Composites Part B: Engineering, 2018, vol. 153, pp. 233–242.
54. Bodaghi M., Damanpack A.R., Liao W.H. Adaptive metamaterials by functionally graded 4D printing. Materials & Design, 2017, vol. 135, pp. 26–36.
55. Kondrashov S.V., Pykhtin A.A., Larionov S.A. et al. Influence of production modes on the structure and properties of polyethylene samples produced by FDM-printing. Vse materialy. Entsiklopedicheskiy spravochnik, 2021, no. 2, pp. 30–36.
56. Van Manen T., Janbaz S., Zadpoor A.A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials horizons, 2017, vol. 4, no. 6, pp. 1064–1069.
57. Ly S.T., Kim J.Y. 4D printing-fused deposition modeling printing with thermal-responsive shape memory polymers. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, vol. 4, no. 3, pp. 267–272.
58. Zarek M., Layani M., Cooperstein I. et al. 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials, 2016, vol. 28, no. 22, pp. 4449–4454.
59. Liu Y., Zhang W., Zhang F. et al. Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament. Composites Science and Technology, 2019, vol. 181, pp. 107692.
60. Song S.H., Lee J.Y., Rodrigue H. et al. 35 Hz shape memory alloy actuator with bending-twisting mode. Scientific reports, 2016, vol. 6, pp. 21118.
61. Yang C., Boorugu M., Dopp A. et al. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Materials Horizons, 2019, vol. 6, no. 6, pp. 1244–1250.
62. Kang M., Pyo Y., Young Jang J. et al. Design of a shape memory composite (SMC) using 4D printing technology. Sensors and Actuators A: Physical, 2018, vol. 283, pp. 187–195.
63. Akbari S., Sakhaei A.H., Panjwani S. et al. Multimaterial 3D printed soft actuators powered by shape memory alloy wires. Sensors and Actuators A: Physical, 2019, vol. 290, pp. 177–189.
64. Umedachi T., Trimmer B.A. Design of a 3D-printed soft robot with posture and steering control. IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2874–2879.
The paper presents the results of a study of the effect of fire retardants on the flammability and melt flow rate of aliphatic polyamides of the PA 66L, PA 610L, PA 66KS grades. The degree of this influence depends on the grade of polyamide, the type of fire retardant and its quantitative content. Among the selected grades of polyamides, polyamide PA 66L has the highest fluidity. The efficiency of using decabromodiphenyloxide and antimony trioxide to reduce the duration of residual combustion of polyamides of the studied brands is shown, compositions related to the category of «self-extinguishing» are determined.
2. Gurenkov V.M., Gorshkov V.О., Chebotarev V.P., Prudskova Т.N., Andreeva Т.I. Comparative analysis of properties of polyetheretherketone of domestic and foreign production. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 41–47. DOI: 10.18577/2071-9140-2019-0-3-41-47.
3. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
4. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lons-kii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
5. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
6. Berlin A.A. Combustion of polymers and low flammability polymeric materials. Sorovskiy obrazovatelnyy zhurnal, 1996, no. 4, pp. 16–24.
7. Kopylov V.V., Novikov S.N., Oksentevich L.A. et al. Polymeric materials with reduced flammability. Moscow: Khimiya, 1986, 222 p.
8. Mailhos-Lefievre V., Sallet D., Martel B. Thermal degradation of pure and flame-retarded polyamides 11 and 12. Polymer degradation and stability, 1989, vol. 23, no. 4, pp. 327–336.
9. Chizhova M.A., Khairullin R.Z. Toxicity of combustion products of polymeric materials with the introduction of flame retardants into their composition. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 9, pp. 144.
10. Dzivitskaya G.G., Khatenko A.S., Ostrovskaya L.E., Ksenofontov M.A. Influence of fire retardants on increasing the thermal stability and fire resistance of polyurethane foams. Abstracts of the XII Symposium "Modern Chemical Physics". Tuapse, 2000, p. 38.
11. Bogdanova V.V. Fire-extinguishing effect of flame retardants in synthetic polymers and natural combustible materials. Chemical Problems of Creating New Materials and Technologies: collect. of articles. Minsk, 2003, is. 2, pp. 344–375.
12. Levchik S.V., Balabanovich A.I., Levchik G.F., Costa L. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6. Fire and Materials, 1997, vol. 21, no. 2, pp. 75–83.
13. Levchik S.V. Studies of the regularities of the action of fire retardants in aliphatic polyamides. Moscow: Khimiya, 1998, pp. 3–13.
14. Borukaev T.A., Sablirova Yu.M., Mikitaev A.K. The use of boron compounds as effective flame retardants for polymeric materials. Materialovedenie, 2006, no. 5, pp. 29–34.
15. Zaikov G.E., Artsis M.I. Flame retardants for the polymer industry. Plasticheskiye massy, 2000, no. 8, pp. 48–54.
16. Borukaev T.A., Otarova R.M., Shaov A.Kh., Kharaev A.M. The influence of the addition of salts based on melamine and mineral acids on the fire resistance, physical and mechanical properties of polyamide-6 and polypropylene. Norwegian Journal of Development of the International Science, 2016, no. 1, pp. 20–25.
17. Fang K., Li J., Ke C. et al. Intumescent flame retardation of melamine-modified montmorillonite on polyamide 6: Enhancement of condense phase and flame retardance. Polymer Engineering & Science, 2011, vol. 51, no. 2, pp. 377–385.
18. Kostyuchenko M.A., Revyako M.M. Study of the influence of combined flame retardants "phosphorus + triazine" on the combustibility and performance properties of extruded polyamides. Trudy BGTU, 2012, no. 4, pp. 40–43.
19. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimization of the composition of a polymer composition with a reduced fire hazard based on polycarbonate for 3D printing technology with a molten polymer thread. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Chemistry and chemical technology, 2017, vol. 60, no. 1, pp. 87–94.
20. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate. Trudy VIAM, 2013, no. 6, paper no. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2021).
21. Petrova G.N., Beyder E.Ya. Increasing of fire resistance of polybutylene terephthalate (review). Aviacionnye materialy i tehnologii, 2014, No. 4, pp. 58–64. DOI: 10.18577/2071-9140-2014-0-4-58-64.
22. Ermakova N.V. On the smoke-generating ability of finishing materials. Auditorium, 2017, no. 3 (15), pp. 104–107.
23. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Polymer composition on the basis of polydodecanolactam for 3D-printing technology by melted polymer string. Trudy VIAM, 2016, no. 10, paper no. 9. Available at: http://www.viam-works.ru (accessed: October 13, 2021). DOI: 10.18577/2307-6046-2016-0-10-9-9.
24. Petrova G.N., Sapego Yu.A., Larionov S.A., Platonov M.M., Laptev A.B. Fireproof thermoplastic materials for 3D-technologies. Trudy VIAM, 2017, no. 9, paper no. 07. Available at: http://www.viam-works.ru (accessed: October 13, 2021). DOI: 10.18577/2307-6046-2017-0-9-7-7.
25. Ushkov V.A. Flammability and smoke-forming ability of polymer composite materials. Vestnik MGSU, 2017, vol. 12, no. 8 (107), pp. 897–903.
26. Fox D.W. Thermally stable flame-retardant thermoplastic molding composition: pat. US 4028335; filed 23.08.76; publ. 07.06.77.
27. Ohkawa Y. Flame-Retardant Polyamide Composition and Use Thereof: pat. US 10587713; filed 25.01.05; publ. 19.04.07.
28. Baer M. Flame retardant resin compositions: pat. US 4205142; filed 02.11.77; publ. 27.05.80.
29. Khalturinsky N.A., Rudakova T.A. Physical aspects of combustion of polymers and the mechanism of action of inhibitors. Khimicheskaya fizika, 2008, vol. 27, no. 6, pp. 73–84.
30. Hu Y., Wang S., Ling Z. et al. Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromolecular Materials and Engineering, 2003, vol. 288, no. 3, pp. 272–276.
31. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
32. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
33. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
34. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Chemistry and chemical technology, 2016, vol. 59, no. 10, pp. 61–71.
A review of scientific and technical literature in the field of obtaining metal-matrix composite materials (MMCM) reinforced with ceramic particles using additive technologies is presented. The structure, basic physical and mechanical properties and morphology of MMCM are briefly described. The structure and properties of MMCM reinforced with micro- and nano-sized ceramic particles are briefly described. The use of additive technologies for the manufacture of MMKM will make it possible to manufacture parts of a more complex shape, providing high adhesion between powder layers.
2. Kablov E.N. Composites: today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
4. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Lopatin A.N., Zverkov I.D. Shaping molding tools production for composite parts by means of additive technologies. Aviacionnye materialy i tehnologii, 2019, no. 2 (55). pp. 53–59. DOI: 10.18577/2071-9140-2019-0-2-53-59.
7. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
8. Chang F., Gu D., Dai D., Yuan P. Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surface & Coatings Technology, 2015, vol. 272, pp. 15–24. DOI: 10.1016/j.surfcoat.2015.04.029.
9. Xue G., Ke L., Zhu H. et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties. Materials Science & Engineering A, 2019, vol. 764, pp. 1–10. DOI: 10.1016/j.msea.2019.138155.
10. Famodimu O.H., Stanford M., Oduoza Ch.F., Zhang L. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite. Frontiers of Mechanical Engineering, 2018, vol. 13, part 4, pp. 520–527.
11. Anandkumar R., Almeida A., Vilar R. et al. Influence of powder particle injection velocity on the microstructure of Al–12Si/SiCp coatings produced by laser cladding. Surface & Coatings Technology, 2009, vol. 204, pp. 285–290. DOI: 10.1016/j.surfcoat.2009.07.025.
12. Gu D., Chang F., Dai D. Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases. Journal of Manufacturing Science and Engineering, 2015, vol. 137, pp. 1–11. DOI: 10.1115/1.4028925.
13. Astfalck L.C., Kelly G.K., Li X., Sercombe T.B. On the Breakdown of SiC during the Selective Laser Melting of Aluminum Matrix Composites. Advanced Engineering Materials, 2017, pp. 1–6. DOI: 10.1002/adem.201600835.
14. Simchi A., Godlinski D. Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy. Scripta Materialia, 2008, vol. 59, pp. 199–202. DOI: 10.1016/j.scriptamat.2008.03.007.
15. Li X.P., Ji G., Chen Z. et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Materialia, 2017, vol. 129, pp. 183–193. DOI: 10.1016/j.actamat.2017.02.062.
16. Aversa A., Marchese G., Lorusso M. et al. Microstructural and Mechanical Characterization of Aluminum Matrix Composites Produced by Laser Powder Bed Fusion. Advanced Engineering Materials, 2017, pp. 1–11. DOI: 10.1002/adem.201700180.
The article analyzes the scientific and patent literature about modern methods of manufacturing polymer composite materials. The main aspects of using automatic filler laying for preforms and the use of various polymer binders for stabilizing filler layers are considered. The requirements for polymer binders, types of production forms and the nature of the chemical structure, as well as their application are described. Methods of activation of polymeric binders by local and general actions are presented.
2. Polynt Composites - truly high-quality solutions for shipbuilding. Kompozitnyy mir, 2018, no. 1, pp. 44–47.
3. Panshin A. Evgeny Kablov: Russia's share in the market of composites is negligible. Kompozitnyy mir, 2019, no. 1, pp. 22–23.
4. Bityukov Yu.I., Deniskin Yu.I. Quality control of structures made of composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2017, no. 11, pp. 14–19.
5. Minibaev M.I., Raskutin A.E, Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2019-0-1-105-114.
6. Marakhovsky P.S., Barinov D.Ya., Chutskova E.Yu., Melnikov D.A. Curing of multilayer polymeric composite materials. Part 2. Molding of a thick-walled fiberglass plate. Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 6, pp. 7–14.
7. Kablov E.N. Materials of a new generation - the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14). pp. 42–47.
8. Kudryavtseva A.N., Tkachuk A.I., Grigorieva K.N., Gurevich Ya.M. The use of epoxy resin system VSE-30, processed by the infusion technology, for the manufacture of low and medium loaded structural polymer composite materials. Trudy VIAM, 2019, no. 1 (73), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2019-0-1-31-39.
9. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. Effect of gaps and overlaps when laying prepregs on the mechanical properties of carbon plastics (review). Trudy VIAM, 2018, no. 12 (72), paper no. 08. Available at: http://www.viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2018-0-12-71-78.
10. Mosiyuk V.N., Tomchani O.V. Evaluation of properties of glass-fibre-reinforced plastics based on epoxybismaleimide resin, produced by different non-autoclave molding techniques. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 47–52. DOI: 10.18577/2071-9140-2019-0-2-47-52.
11. Gusev Yu.A., Grigorev M.M., Timoshina L.N. Production of standard polymer composite samples with the set porosity by vacuum infusion. Trudy VIAM, 2014, no. 11, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2014-0-11-6-6.
12. Mosiyuk V.N., Vorvul S.V., Tomchani O.V. Differential vacuum molding as an advanced technology of vacuum molding. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 37–41. DOI: 10.18577/2071-9140-2017-0-4-37-41.
13. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 2. Automat-ed Fiber Placement (AFP). Aviation materials and technologies, 2021, no. 3 (64), paper no. 11. Available at: http://www.journal.viam.ru (accessed: October 2, 2021). DOI: 10.18577/2713-0193-2021-0-3-117-127.
14. Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V., Donetsky K.I. Thermosetting binders and polymer binders for polymer composite materials obtained by vacuum infusion (review). Plasticheskiye massy, 2018, no. 1–2. pp. 57–64. DOI: 10.18577/2307-6046-2018-0-2-57-64.
15. Lebel L.L., Trudeau P. Preforming of a Fuselage C-shaped Frame Manufacturing by Resin Transfer Molding. SAE International Journal of Aerospace, 2013, vol. 6, no. 2, pp. 508–512. DOI: 10.4271/2013-01-2214.
16. Epoxy resin formulations for textiles, mats and other fibrous reinforcements for composite applications: pat. EP2623561A1; filed 06.02.12; publ. 07.08.13.
17. Toughened binder compositions for use in advance processes: pat. WO2008063611A3; filed 19.11.07; publ. 14.08.08.
18. Binder resin for resin transfer molding preforms, preforms made therewith, and a method for preparing such preforms: pat. US5432010; filed 23.09.94; publ. 11.07.95.
19. Method of fabricating fiber reinforced composite articles by resin transfer molding: pat. US4988469A; filed 16.02.90; publ. 29.01.91.
20. Epoxy composite: pat. GB2460050; filed 14.05.08; publ. 18.11.09.
21. Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials: pat. US8246882; filed 27.10.04; publ. 21.08.12.
22. Dry fibrous material for subsequent resin infusion: pat. WO2013096377A3; filed 19.12.12; publ. 27.02.14.
23. Epoxy binder for polymer composite materials: pat. RU25227086; filed 22.11.12; publ. 27.08.14.
24. Liquid binder composition for binding fibrous materials: pat. US20140179187A1; filed 11.07.13; publ. 26.06.14.
25. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2 (41), pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
26. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed October 2, 2021). DOI: 10.18577/2713-0193-2021-0-2-51-61.
27. VaRTM Processing of Tackified Fiber/Fabric Composites: pat. US2014120332; filed 21.03.13; publ. 01.05.14.
28. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Features of prepregs intended for automated laying by ATL and AFP technologies. Trudy VIAM, 2015, no. 3, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2015-0-3-6-6.
29. Rakhmatullin A.E., Postnov V.I., Strelnikov S.V. Development and application experience of software for carrying out the formation process of structures from PCM on the heated equipment. Trudy VIAM, 2019, no. 4 (76), paper no. 06. Available at: http://viam-works.ru (accessed: September 22, 2021). DOI: 10.18577/2307-6046-2019-0-4-48-56.
30. Savin S.P. The use of modern polymer composite materials in the airframe design of aircraft of the MS-21 family. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (2). pp. 686–693.
31. Epoxy film former string binder: pat. US6828024B1; filed 30.06.03; publ. 07.12.04.
32. Veshkin E.A. Technologies of autoclave-free molding of low-porous polymer composite materials and large-sized structures from them: thesis, Cand. Sc. (Tech.). Mosocw, 2016. 146 p.
33. Rohatgi V., Lee L.J. Moldability of Tackified Fiber Preforms in Liquid Composite. Journal of Composite Materials, 2018, vol. 31 (7), pp. 720–744. DOI: 10.1177/002199839703100705.
34. Schmidt S., Mahrholz T., Kühn A., Wierach P. Powder binders used for the manufacturing of wind turbine rotor blades. Part 2. Investigation of binder effects on the mechanical performance of glass fiber reinforced polymers. Journal of Composite Materials, 2017, vol. 53 (16), pp. 2261–2270. DOI: 10.1177/0021998318824784.
35. Preforms for moulding process and resins therefor: pat. WO1998050211A1; filed 30.04.98; publ. 12.11.98.
36. Flexible polymer element as toughening agent in prepregs: pat. EP1317501B1; filed 16.08.01; publ. 22.11.06.
37. Estrada G., Vieux-Pernon C., Advani S.G. Experimental Characterization of the Influence of Tackifier Material on Preform Permeability. Journal of Composite Materials, 2020, vol. 36 (19), pp. 2297–2310. DOI: 10.1177/0021998302036019542.
38. Thermally stable binder resin composition and method for binding fibres: pat. EP1341850B2; filed 06.11.01; publ. 14.08.13.
39. Process for producing a reinforcing woven fabric, a preform and a fiber reinforced plastic molded component: pat. US8168106B2; filed 15.12.10; publ. 01.05.12.
40. Method for preparing preforms for molding processes: pat. WO1995032085A1; filed 16.05.95; publ. 30.11.95.
41. Laser-assisted placement of veiled composite material: pat. US2006048881; filed 08.09.04; publ. 09.03.06.
42. Method for making a composite material having at least one twisted thread deposited therein: pat. US8696850; filed 10.06.08; publ. 15.04.14.
43. Thermally stable binder resin composition and method for bonding fibers: pat. JP2004514758A; filed 06.11.01; publ. 20.05.04.
44. Improved process for resin transfer molding: pat. WO1994026492A1; filed 15.04.94; publ. 24.11.94.
45. Heieck F. Binder application methods for textile preforming processes. LTH Faserverbund-Leichtbau. Available at: https://www.researchgate.net (accessed: September 22, 2021). DOI: 10.13140/RG.2.2.14197.73446.
The article provides an overview of the scientific and technical literature in the field of the formation of silicon carbide coatings by chemical vapor deposition (CVD). CVD is a complex process, approaches to which vary depending on the tasks being solved. Depending on the technological parameters it is possible to achieve both the deposition of pure silicon carbide and the co-deposition of silicon and carbon, mixed coating In the article attention is paid to the study of CVD from the point of view of the kinetic and parameters for deposition and thermodynamic.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 21, 2021). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: August 11, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Matovic B., Yano T. Handbook of Advanced Ceramics. Materials, Applications, Processing, and Properties. Oxford, 2013, pp. 225–244.
5. Sidorov D.V., Storozhenko P.A., Shutova O.G., Kozhevnikov B.E. Obtaining high purity alkylsilanes. Chemical technology, 2006, no. 7, pp. 22–24.
6. Ashby M., Jones E. Structural materials. Full course. Dolgoprudny: Intellekt, 2010. 672 p.
7. Choy K. Chemical vapour deposition of coatings. Progress in material science, 2003, vol. 48, pp. 57–170. DOI: 10.1016/S0079-6425(01)00009-3.
8. Sidorov D.V., Schavnev A.A., Melentev A.A. Formation of silicon carbide coatings by chemical vapor deposition (review). Part 1. Trudy VIAM, 2021, no. 6 (100), paper no. 10. 09. Available at: http://www.viam-works.ru (accessed: September 6, 2021). DOI: 10.18577/2307-6046-2021-0-6-100-111.
9. Loumagne F., Langlais F., Naslain R. Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiC3/H2 gas precursor. Journal of Crystal Growth, 1995, vol. 155, pp. 205–213.
10. Huo Y., Chen Y. Effects of Deposition Temperature on the Growth Characteristics of CVD SiC Coatings. Key Engineering Materials, 2008, vol. 368–372, pp. 846–848.
11. Deng J.G., Su K., Wang X. Thermodynamics of the Production of Condensed Phases in the CVD of Methyltrichlorosilane Pyrolysis. Chemical vapor deposition, 2009, vol. 15, pp. 281–290.
12. Shulberg M., Allendorf M., Outka D. The adsorption of hydrogen chloride on polycrystalline silicon carbide. Surface Science, 1995, vol. 341, pp. 262–272.
13. Pons M., Meziere J., Kuan S. Heat and mass transfer modeling for a better knowledge of the large-area growth of homoepitaxial SiC by CVD. Materials Research Society Symposium Proceedings, 2001, vol. 640, pp. H.5.6.1–H.5.6.1.6.
14. Vorob’ev А.N., Karpov S.Yu., Bord O.V. Modeling of gas phase nucleation during silicon carbide chemical vapor deposition. Diamond and Related Materials, 2000, vol. 9, pp. 472–475.
15. Takeuchi T., Egashira Y., Komiyama H. A design policy of the SiC CVD reactor based on the chemical reaction kinetics of diclorodimethylsilane. Journal of Materials Science, 1997, vol. 97-25, pp. 447–454.
16. Herlin N., Lefebvre M., Pealat M. Investigation of the Chemical vapor deposition of silicon carbide from tetramethylsilane by in situ temperature and gas composition measurements. Journal of Physical Chemistry, 1992, vol. 96, pp. 7063–7072.
17. Shirvan M., Ellahi R., Sheikholeslami T., Behzadmehr А. Numerical investigation of heat and mass transfer flow under the influence of silicon carbide by means of plasma enhanced chemical vapor deposition vertical reactor. Neural Computing & Application, 2017, vol. 96, pp. 7063–7072.
18. Ding J., Zhao Y., Yan N., Shubo M. Effect of electrode architecture and process parameters on distribution of SiH3 in a PECVD system. Vacuum, 2011, vol. 86, pp. 344–349.
19. Soong C., Chyuan C., Tzong R. Thermo-flow structure and epitaxial uniformity in large-scale metalorganic chemical vapor deposition reactors with rotating susceptor and inlet flow control. Japanese Journal of Applied Physics, 1998, vol. 37, pp. 5823–5834.
20. Lu C., Cheng L., Zhao C. Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Applied Surface Science, 2009, vol. 255, pp. 7495–7499.
An electrolytic method of deposition of composite abrasive-wear-resistant coatings based on nickel containing microparticles of zirconium dioxide with a dispersion of 120–200 microns in a metal matrix is proposed. A device for the application of a nickel abrasive-wear-resistant coating and a technological process diagram have been developed, which ensures uniform introduction of particles into the coating with the formation of the so-called «abrasive knife». The results of a metallographic study of the structure, micro-х-ray spectral analysis of a nickel matrix and tests of the coating for thermal cyclic resistance and penetration (abrasion of the sealing material) are presented.
2. Kablov E.N. Materials are the basis of any business. Delovaya Slava Rossii, 2013, no. 2, pp. 4–9.
3. Kablov E.N., Muboyadzhyan S.A. Heat-shielding coatings for high-pressure turbine blades of advanced gas turbine engines. Metaly, 2012, no. 1, pp. 5–13.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Farafonov D.P., Migunov V.P., Sarayev A.A., Leshchev N.E. Abradability and erosion resistance of seals in turbine engine air-gas channel. Trudy VIAM, 2018, no. 8 (68), paper no. 7. Available at: http://www.viam-works.ru (accessed: November 10, 2021). DOI: 10.18577/2307-6046-2018-0-8-70-80.
7. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, No. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
8. Farafonov D.P., Leshchev N.E., Afanasiev-Khody- kin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
9. Balashova Yu.A., Grashchenkov D.V., Shavnev A.A., Babashov V.G. High-temperature heat-shielding ceramic and metal-ceramic composite materials for a new generation of aircraft. Vestnik kontserna VKO «Almaz-Antey», 2020, no. 2 (33). pp. 83–92.
10. Barvinok V.A., Shitarev I.A., Bogdanovich V.I., Dokukina I.A. and others. Triggered, wear-resistant and heat-shielding coatings for parts of the gas path of the turbine, compressor and combustion chamber of the gas turbine engine. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2009, no. 3 (19). pp. 11–28.
11. Salakhova R.K., Semenychev V.V., Tyurikov E.V. Technological features of deposition of composite-cluster galvanic coatings based on nickel and chromium (III). Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013, vol. 15, no. 6, pp. 82–87.
12. Salakhova R.K., Semenychev V.V., Tikhobrazov A.B. Study of galvanic composite coatings by metal-physical methods. Galvanotekhnika i obrabotka poverkhnosti, 2013, vol. 21, no. 3, pp. 45–49.
13. Khaibieva V.Sh., Fomina G.G., Saifullin R.S. et al. Investigation of the influence of ZrO2 of various dispersions on the electrodeposition of nickel coatings and their properties. Vestnik tekhnologicheskogo universiteta, 2016, vol. 19, no. 9, pp. 129–131.
14. Tseluykin V.N. Composite electrochemical coatings: obtaining, structure, properties. Fizikokhimiya poverkhnosti i zashchita materialov, 2009, vol. 45, no. 3, pp. 287–301.
15. Tseluykin V.N., Yakovlev A.V. On electrochemical deposition and properties of nickel-based composite coatings. Fizikokhimiya poverkhnosti i zashchita materialov, 2020, vol. 56, no. 2, pp. 197–201.
16. Gorohova E.O., Kulebyakin A.V., Lomonova E.E. Synthesis, structure and properties of zirconium dioxide crystals doped with Yb3+ ions. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. 30, no. 3, pp. 123–125.
17. Kuznetsova L.I., Obukhova A.V., Bondarenko G.N., Fetisova O.Yu. Structural properties and state of the surface layer of zirconium dioxide modified with Me3+ cations. Zhurnal fizicheskoy khimii, 2018, vol. 92, no. 9, pp. 1470–1477.
18. Devoino O.G., Okovity V.V. Plasma heat-shielding coatings based on zirconium dioxide with increased thermal stability. Nauka i tekhnika, 2015, no. 1, pp. 35–39.
19. Abrasive ceramic matrix turbine blade tip and method for forming: pat. 5952110 US; filed 12.24.96; publ. 09.14.99.
20. Gas-turbine engine sealing device (versions), gas-turbine engine blade and gas-turbine engine sharp edge: pat. 2229031RU; filed 11.24.98; publ. 05.20.04.
21. Salakhova R.K., Tikhoobrazov A.B. Thermal resistance of electrolytic chromium coatings. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 60–67. DOI: 10.18577/2071-9140-2019-0-2-60-67.
Additive manufacturing is increasingly used in the aviation industry. Its main feature is the manufacture of parts of complex external and internal geometric shapes without increasing the cost of their production. To calculate the resource of nodes and reliable operation of new equipment, it is necessary to have a set of calculated values of characteristics of structural strength, including the characteristics of tensile, creep rupture and high-cycle fatigue (HCF). The study of characteristics of tensile, creep rupture and HCF of the Co–Cr–Ni–W–Ta alloy obtained by the method of selective laser melting (SLM) is presented in this paper.
2. Kablov E.N. Present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
3. Graf B., Gook S.E., Gumenyuk A.V., Retmayer M. Combined laser additive technologies for the production of turbine blades of complex geometric shape. Globalnaya yadernaya bezopasnost, 2016, no. 3 (20), pp. 34–42.
4. Bytsenko O.A., Chabina E.B., Filonova E.V., Rogalev A.M. Interrelation of structural defects in heat-resistant nickel alloy obtained by selective laser alloying, strategy and scanning parameters. Nauka i obrazovanie, 2016, no. 3, pp. 121–132.
5. Min P.G., Vadeev V.E., Rogalev A.M., Knyazev A.E. Study of the chemical composition, structure and mechanical properties of the EP648 alloy at various stages of additive manufacturing. Materialovedenie, 2018, no. 12, pp. 17–22.
6. Kablov E.N. VIAM materials and technologies for Aviadvigatel. Permskiye aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
7. Di W., Yongqiang Ya., Xubin S., Yonghua Ch. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. The International Journal of Advanced Manufacturing Technology, 2012, vol. 58, is. 9, pp. 1189–1199.
8. Strano G., Hao L., Everson R.M., Evans K.E. Surface roughness analysis, modeling and prediction in selective laser melting. Journal of Materials Processing Technology, 2013, vol. 213, no. 4, pp. 589–597.
9. Smurov I.Yu., Movchan I.A., Yadroitsev I.A. et al. Additive manufacturing using a laser. Vestnik MGTU «Stankin», 2011, vol. 2, no. 4, pp. 144–146.
10. Deng D., Peng R.L., Brodin H., Moverare J. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments. Materials Science & Engineering A, 2018, vol. 713, pp. 294–306. DOI: 10.1016/j.msea.2017.12.043.
11. Zhou L., Mehta A., McWilliams B. et al. Microstructure, precipitations and mechanical properties of powder bed fused Inconel 718 before and after heat treatment. Journal of Materials Science and Technology, 2019, vol. 35, is. 6, pp. 1153–1164. DOI: 10.1016/j.jmst.2018.12.006.
12. Tucho M., Cullivier P., Sjolyst-Kverneland A., Hansen V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science & Engineering A, 2017, vol. 689, pp. 220–232. DOI: 10.1016/j.msea.2017.02.062.
13. Kuo Y.-L., Nagahari T., Kakehi K. The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built Up by Selective Laser Melting. Materials (Basel), 2018, vol. 11(6), pp. 183–192. DOI: 10.3390/ma11060996.
14. Sukhov D.I., Nerush S.V., Efimochkin I.Yu., Karachevchev F.N., Bogachev I.A. Production of MMC based on VZh159 alloy by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 07. Available at: http://www.journal.viam.ru (accessed: November 2, 2021). DOI: 10.18577/2713-0193-2021-0-2-62-72.
15. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Influence of hot isostatic pressing and heat treatment on the properties of the EP648 alloy synthesized by the method of selective laser alloying. Tekhnologiya mashinostroeniya, 2015, no. 9, pp. 11–16.
16. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
17. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
18. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metal-powder compositions of heat-resistant alloy EP648 produced by FGUP "VIAM" SSC of the RF in technologies of selective laser alloying, laser gas-powder surfacing and high-precision casting of polymers filled with metal powders. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyenie, 2016, no. 9 (678), pp. 62–80.
19. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaitsev D.V., Prager S.M. Structure and properties of EP648 and VZh159 alloys synthesized by selective laser melting after simulation annealing. Materialovedenie, 2020, no. 6, pp. 3–10.
20. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Fatigue strength of heat-resistant nickel alloys produced by selec-tive laser melting. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
21. Podyachev V.N., Demonis I.M., Baranova O.A. Laboratory of Refractory Alloys of VIAM and its first head A.S. Stroev. To the 55th anniversary of the organization. Istoriya nauki i tekhniki, 2013, no. 4, pp. 19–25.
22. Kazantseva N.V., Ezhov I.V., Davydov D.I., Merkushev A.G. Analysis of the structure and mechanical properties of the Co–Cr–Mo alloy obtained by 3D printing. Fizika metallov i metallovedenie, 2019, vol. 120, no. 12, pp. 1271–1278.
23. Mazalov I.S., Mazalov P.B., Suhov D.I., Sulyanova E.A. Influence of hot isostatic pressing parameters on structure and properties of cobalt-based alloys obtained by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 01. Available at: http://www.journal.viam.ru (accessed: November 2, 2021). DOI: 10.18577/2713-0193-2021-0-2-3-14.
24. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
25. Kablov E.N., Golubovsky E.R. Heat resistance of nickel alloys. Moscow: Mashinostroenie, 1998, 463 p.
26. Stepnov M.N. Statistical methods for processing the results of mechanical tests. Moscow: Mashinostroenie, 1985, 232 p.
27. Shkolnik L.M. Fatigue Test Methodology: handbook. Moscow: Metallurgiya, 1978, 304 p.
The article presents the main properties of flaw detection materials for conducting magnetic particle inspection based on the analysis of GOST R ISO 9934-2–2011. A description of the verification of each parameter of flaw detection materials is presented and it is established how their nonconformity affects the effectiveness of control. The types of tests and which subjects should conduct them are shown. An experimental check of the detectability of defects depending on the particle sizes of flaw-detecting materials was carried out and it was found that the highest detectability is characteristic of a flaw-detecting material with a particle size of magnetic powder in the range of 0–15 microns.
2. Kablov E.N. Aviation Materials Science in the XXI century. Prospects and tasks. Aviation materials. Selected Works VIAM 1932–2002. Moscow: MISIS – VIAM, 2002, pp. 23–47.
3. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: October 3, 2021). DOI: 10.18577/2713-0193-2021-0-2-115-122.
4. The concept of the development of the national standardization system of the Russian Federation for the period up to 2020 (approved by the order of the Government of
the Russian Federation No. 1762-p from 24.09.2012). Available at:
http://standard.gost.ru/wps/portal/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP0os3gLHzeXUFNLYwMLD1dLA09vR39DD68g4-BAI_2CbEdFACiQY_Q!/ (accessed: October 3, 2021).
5. On standardization in the Russian Federation. Available at: https://docs.cntd.ru/document/ 420284277 (accessed: October 3, 2021).
6. Standardization and technical regulation in the quality quality aspect: allowance. Ed. 3rd., rev. and add. Ulyanovsk: UlGTU, 2011, 258 p.
7. About technical regulation. Available at: https://docs.cntd.ru/document/901836556 (accessed: October 3, 2021).
8. Chesnokov A.G. On the issue of harmonization of standards. Moscow: Institute of Glass, 2003. Available at: https://glassinfo.ru/articles/2003_01_k_voprosu_o_garmonizaci_standartov.pdf (accessed: October 3, 2021).
9. Chertishchev V.Yu., Ospennikova O.G., Boichuk A.S., Dikov I.A., Generalov A.S. Determina-tion of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
10. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. Automated non-destructive inspection of three-layer honeycomb structures’ samples by ultrasonic through-transmission technique. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 74–80. DOI: 10.18577/2071-9140-2020-0-2-74-80.
11. Kablov E.N., Podzhivov N.Yu., Lutsenko A.N. On the need to create a single information and analytical center of aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019, no. 3, pp. 28–34.
12. Kosarina E.I., Generalov A.S., Demidov A.A. Questions of x-ray non-destructive testing in Russian State standardization system. Trudy VIAM, 2018, no. 11 (71), paper no. 10. Available at: http://viam-works.ru (accessed: October 3, 2021). DOI: 10.18577/2307-6046-2018-0-11-86-92.
13. Shershak P.V. National standardization specifics of polymer composites materials tests methods. Trudy VIAM, 2019, no. 2 (74), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 3, 2021).DOI: 10.18577/2307-6046-2019-0-2-77-88.
14. State Standard R 56512-2015. Control non-destructive. Magnetic powder method. Typical technological processes. Mosocw: Starotinform, 2016, 56 p.
15. State Standard R 1.0-2012. Standardization in the Russian Federation. Basic provisions. Moscow: Starotinform, 2013, 19 p.
16. Shelikhov G.S. Magnetic solo flaw detection of parts and nodes. Moscow: Expert, 1995, 224 p.
17. State Standard R ISO 9934-1-2011. Control non-destructive. Magnetic powder method. Part 1. Basic requirements. Moscow: Starotinform, 2019, 16 p.
The determination of Si, Y, Fe, Ni, Cu, Mg, Cr and Co in the cathodes of the VSDP-11 and VSDP-16 brands based on aluminum by the method of х-ray fluorescence spectroscopy was carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. A standard-free analysis was carried out using the method of fundamental parameters. The correctness of the results obtained was confirmed by a comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
3. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
4. Konokotin S. P., Yatsyuk I. V., Dobrynin D. A., Azarovsky E. N. Influence of yttrium on the quality of cast billets from alloys based on aluminum. Trudy VIAM, 2020, no. 3 (87), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 10, 2021). DOI: 10.18577/2307-6046-2020-0-3-30-40.
5. Farafonov D.P., Leshchev N.E., Afanasiev-Khody- kin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
7. State Standard 11739.7–99. Alloys aluminum casting and deformable. Methods for the determination of silicon. Moscow: Publishing house of standards, 1999, pp. 6–8.
8. State Standard 11739.21–90. Alloys aluminum casting and deformable. Methods for the determination of chromium. Moscow: Publishing house of standards, 1990, pp. 1–3.
9. State Standard 11739.6–99. Alloys aluminum casting and deformable. Methods for the determination of iron. Moscow: Publishing house of standards, 1999, pp. 1–4.
10. State Standard 11739.13–98. Alloys aluminum casting and deformable. Methods for the determination of copper. Moscow: Publishing house of standards, 1998, pp. 6–8.
11. ASTME E3061-17. Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry. ASTM International, 2017, p. 2.
12. Blokhin M.A. Methods of x-ray spectral studies. Moscow: State Publishing house of Phys.-Math. Lit., 1959, 388 p.
13. Handbook of x-ray spectrometry. Ed. by R.E. van Grieken, A.A. Marcowicz. 2nd ed., rev. and exp. New York: Marcel Dekker Inc., 2001. pp. 14–56.
14. Criss J.W., Birks L.S. Calculation methods for fluorescent X-ray spectrometry. Empirical coefficients vs. fundamental parameters. Analytical Chemistry, 1968, vol. 40, pp. 1080–1086.
15. Mashin N.I., Lebedeva R.V., Tumanova A.N. X-ray fluorescence analysis of Ni–Fe–Mn–Cr systems. Analitika i kontrol, 2004, no. 2, vol. 8, pp. 160–164.
Axisymmetric hot compression experiments of nickel superalloy ЭП975-ИД, ЭП742-ИД and MA2, MA3 alloy specimens in a wide temperature and rate intervals were carried out. Structure formation was studied by х-ray diffractometry methods. Structure diagrams plotting method is based on using of the test machine which has been adjusted on compression, and structure studying is developed. Diagrams can be used for development and optimization of hot pressure technology parameters, for the purpose receiving preparations with the regulated structure.
2. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8. pp. 54–58.
4. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Volkova E.F., Akinina M.V., Mostyaev I.V. The ways of rising of wrought magnesium alloys main mechanical characteristics. Trudy VIAM, 2017, no. 10 (58), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 1, 2021). DOI: 10.18577/2307-6046-2017-0-10-2-2.
6. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
7. Antipov V.V. Strategy of development of titanium, magnesium, beryllium and aluminum alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 157–167.
8. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
9. Blokhin N.N., Ovechkin B.I. Structure and diagrams of structural states of deformable magnesium alloys // Tsvetnye metally, 1992, no. 11, pp. 56–59.
10. Filonova E.V., Bakradze M.M., Kochubey A.Ya., Vavilin N.L. Structural-phase evolution of VZH175-alloy during hot deformation and heat treatment. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 10–13. DOI: 10.18577/2071-9140-2014-0-3-10-13.
11. Weinblat Yu.M. Diagrams of structural states and maps of the structures of aluminum alloys. Izvestiya AN SSSR. Metally, 1982, no. 2, pp. 82–89.
12. Bubnov M.V., Sklyarenko V.G. Formation of a regulated structure during deformation of the granular alloy EP741NP. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 54–55.
13. Razuvaev E.I., Lebedev D.Yu., Bubnov M.V. Forming of ultrafine grained and nanodimensional structure in metals and alloys deformation methods. Aviacionnye materialy i tehnologii, 2010, no. 3, pp. 3–8.
14. Mazalov I.S., Filonova E.V., Lomberg B.S. Formation of microstructure of nickel weldable VGH172 superalloy in process of deformation and heat treatment of semi-finished products. Trudy VIAM, 2013, no. 12, paper no. 01. Available at: http://www.viam-works.ru (accessed: October 1, 2021).
15. Gorelik S.S. Recrystallization of metals and alloys. Moscow: Metallurgiya, 1978, 568 p.
16. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, radiography and electron microscopy. Moscow: Metallurgiya, 1982. 632 p.
17. Novikov I.I. Theory of heat treatment of metals. Moscow: Metallurgy, 1978. 392 p.
18. Kochubey A.Ya., Medvedev P.N. The use of direct pole figures in the study of structure formation processes during heating of deformed metals and alloys. News of Materials Science. Science and technology, 2016, no. 5 (23). Art. 02. Available at: http://www.materialsnews.ru (accessed: October 1, 2021).
19. Davydov V.G., Ber L.B., Kochubey A.Ya. Influence of grain size on diagrams of structural states of alloy MA2-1. Tekhnologiya legkikh splavov, 2003, no. 2–3, pp. 28.
Heat-resistant alloys and steels
Rassokhina L.I., Bityutskaya O.N., Gamazina M.V., Avdeev V.V. Features of the deve-lopment of technologies for the manufacture and removal of ceramic cores based on fused quartz for casting turbine blades from superalloys
Light-metal alloys
Kalashnikov V.S., Reshetilo L.P., Chuch-man O.V., Naprienko S.A. Strength and reliability of rods and rotor blade stamps made of heat-resistant industrial titanium alloys and modern pseudo-α-titanium alloy
Polymer materials
Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review)
Kondrashov S.V., Solovyanchik L.V., Lario-nov S.A., Volny O.S. Investigation of the effect of flame retardants on the flammabi-lity and fluidity of the melt of aliphatic polyamides
Composite materials
Zhabin A.N., Nyafkin A.N. Manufacturing of metal-matrix composite materials using additive technologies (review)
Afanaseva E.A., Shiriakina Yu.M., Kitaeva N.S., Novikova A.A.Рolymer binders in advanced technologies of polymer composite materials production (review)
Protective and functional
coatings
Sidorov D.V., Schavnev A.A., Melentev A.A. Formation of silicon carbide coatings by chemical vapor deposition (review). Part 2
Salakhova R.K., Tikhoobrazov A.B., Farafonov D.P., Smirnova T.B. Features of electrolytic deposition of abrasive-wear-resistant nickel-based coatings
Material tests
Gorbovets M.A., Golynets S.A., Sukhov D.I., MoninS.A. Research of Characteristics of Durability of the alloy of Co–Cr–Ni–W–Ta system, obtained by SLM
Lednev I.S. Inquiry of the properties of detection media for magnetic particle inspection
Alekseev A.V., Orlov G.V., Petrov P.S. Analysis of aluminum-based cathodes by x-ray fluorescence spectroscopy
Kochubey A.Ya., Zhuravleva P.L. X-rays diffractometry application at plotting of structure conditions diagrams of deformable alloys of aviation assignment