Articles
The work is devoted to the study of heat resistance and technological plasticity of a new heat-resistant alloy of the Fe–Cr–Al–Y system. The alloy of the Fe–Cr–Al–Y system being developed is intended for the manufacture of honeycomb seals for the flow path of gas turbine engines with an operating temperature of up to 1100 °С. This alloy is intended to replace heat-resistant alloys ЭИ435 and ЭИ868, which are currently used for the manufacture of honeycomb seals. In terms of heat resistance at 1100 °С, the alloy of the Fe–Cr–Al–Y system is 1.5–2 times superior to alloys analogs ЭИ435 and ЭИ868.
2. Salakhova R.K., Tikhoobrazov A.B., Farafonov D.P., Smirnova T.B. Features of electrolytic deposition of abrasive-wear-resistant nickel-based coatings. Trudy VIAM, 2022, no. 2 (108), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 16, 2022). DOI: 10.18577/2307-6046-2022-0-2-99-110.
3. Farafonov D.P., Migunov V.P., Sarayev A.A., Leshchev N.E. Abradability and erosion resistance of seals in turbine engine air-gas channel. Trudy VIAM, 2018, no. 8 (68), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 16, 2022). DOI: 10.18577/2307-6046-2018-0-8-70-80.
4. Bakradze M.M., Peskova A.V., Kaplansky Yu.Yu. Influence of thermal post-treatment on the texture and anisotropy of mechanical properties in the Cu–Cr construction alloy manufactured by laser powder bed fusion. Aviation materials and technologies, 2022, no. 1 (66), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 16, 2022). DOI: 10.18577/2071-9140-2022-0-1-3-16.
5. Kablov E.N. The role of fundamental research in the creation of new generation materials. Abstracts of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
6. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
7. Ivanov V.V., Tagiltsev S.V. Comparative analysis of manufacturing technologies for honeycomb seals. Gasoturbinnye tekhnologii, 2019, no. 6, pp. 26–29.
8. Farafonov D.P., Degovets M.L., Aleshina R.Sh. The metal fibers of heat-resistant alloys alloyed by platinum group metals. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 44–52. DOI: 10.18577/2071-9140-2016-0-1-44-52.
9. Abraimov N.V. High-temperature materials and coatings for gas turbines. Moscow: Mashinostroenie, 1993, 336 p.
10. Nychka J.A., Clarke D.R. Quantification of Aluminum Outward Diffusion During Oxidation of FeCrAl Alloys. Oxidation of Metals, 2005, vol. 63, no. 5/6, pp. 324–352.
11. Clemendot F., Gras J.M., Van Duysen J.C. Influence of yttrium on high temperature behavior of Fe–Cr–Al–Y alloys. Journal de Physique IV France, 1993, no. 3, pp. 291–299.
12. Mennicke C., Schumann E., Ruhle M. et al. The Effect of Yttrium on the Growth Process and Microstructure of α-Al2O3 on FeCrAl. Oxidation of Metals, 1998, vol. 49, no. 5/6, pp. 455–466.
13. Amano T. High-temperature oxidation of FeCrAl (Y, Pt) alloys in oxygen-water vapour. Materials at high temperatures, 2011, vol. 28, is. 4, p. 342–348.
14. Simms N.J., Norton J.F., McColvin G. Performance of candidate gas turbine abradeable seal materials in high temperature combustion Atmospheres. Materials and Corrosion, 2005, no. 11, pp. 765–777.
15. Smarsly W., Zheng N., Buchheim C.S. et al. Advanced High Temperature Turbine Seals Materials and Designs. Material Science Forum, 2005, vol. 492–493, pp. 21–26.
16. Zhukov L.L., Plemyannikova I.M., Mironova M.N. et al. Alloys for heaters. Moscow: Metallurgiya, 1985, 146 p.
17. Ponomarenko D.A., Letnikov M.N., Skugorev A.V., Sidorov S.A. The use of specialized isothermal presses for forging blanks of turbine disks from hard-to-deform heat-resistant alloys. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniyem, 2018, no. 3, pp. 19–25.
18. Kapitanenko D.V., Nekrasov B.R., Izakov I.A., Chebotareva E.S. Deforming equipment for isothermal stamping (part 1). Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniyem, 2021, no. 10, pp. 12–20.
19. Akhmedzyanov M.V., Skugorev A.V., Ovsepyan S.V., Mazalov I.S. Development of a resource-saving technology for producing cold-rolled sheet from a high-temperature weldable alloy VZh171. Proizvodstvo prokata, 2015, no. 1, pp. 14–17.
The causes of cracking of the material of parts of complex configuration made of heat-resistant and heat-resistant nickel-based alloy HN62VMUT-VD (EP708) after welding are investigated. To identify the causes of cracking, mechanical tests of samples from blanks of different melts were carried out, metallographic studies of blanks and finished parts were performed. A fractographic analysis of the surface of the exposed cracks was carried out. The grain size in different zones of the workpiece is investigated. Recommendations for the prevention of cracking are given.
2. Kablov E.N. The key problem is materials. Trends and guidelines for Russia's innovative development. Moscow: VIAM, 2015, pp. 458–464.
3. Gavrilov G.N., Kablov E.N., Erofeev V.T. et al. Material science. Theory and technology of heat treatment: textbook. allowance. Saransk: National Research Mordovia State University im. N.P. Ogareva, 2019, 276 p.
4. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 25–30.
5. Chabina E.B., Filonova E.V., Raevskikh A.N., Zaitsev D.V. Investigation of the Structural-Phase State of Heat-Resistant Nickel Wrought Alloys Using a Complex of High-Resolution Electron Microscopy Methods. Materials of All-Rus. sci.-tech. conf. "Modern heat-resistant nickel wrought alloys and technologies for their production". Moscow: NRC "Kurchatov Institute" – VIAM, 2021, pp. 122–131.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials. Trudy VIAM, 2013, no. 5, paper no. 06. Available at: http://www.viam-works.ru (accessed: July 18, 2022).
7. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
8. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractodiagnostics of destruction of metallic materials and structures. Moscow: MISIS, 2007, 259 p.
9. Shevyakov V.F., Gritsyuk A.A., Klimov D.A. et al. mastering the production of heat-resistant nickel alloys in PJSC Ruspolymet. Results and prospects. Materials of All-Rus. sci.-tech. conf. "Modern heat-resistant nickel wrought alloys and technologies for their production". Moscow: VIAM, 2018, pp. 75–79.
10. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractodiagnostics of destruction of metallic materials and structures. Moscow: MISIS, 2007, 259 p.
11. Khomutov M.G., Travyanov A.Ya., Petrovsky P.V. Comparison of the fatigue characteristics of EP708 alloy samples obtained by selective laser melting and hot rolling. Metallurg, 2018, no. 3, pp. 84–88.
12. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Fatigue strength of heat-resistant nickel alloys produced by selec-tive laser melting. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
13. Gorbovets M.A., Hodinev I.A., Ryzhkov P.V. Low-cycle fatigue at high temperatures of heat-resistant nickel-based alloy manufactured by selective laser melting. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 65–73. DOI: 10.18577/2071-9140-2019-0-4-65-73.
14. Treninkov I.A., Zavodov A.V., Petrushin N.V. Research of crystal structure and microstructure of the ZhS32-VI nickel-base superalloy synthesized by selective laser fusion method, after high-temperature mechanical tests. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 57–65. DOI: 10.18577/2071-9140-2019-0-1-57-65.
15. Chabina E.B., Filonova E.V., Lomberg B.S., Morozova G.I. Evolution of the structure and phase composition of deformable heat-resistant nickel alloys for GTE disks with increasing complexity of their alloying. Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 3 (717), pp. 8–12.
16. Bernstein M.L. Thermomechanical treatment of metals and alloys: in 2 vols. Moscow: Metallurgiya, 1968, vol. 1, 596 p.
17. Sorokin L.I. Weldability of heat-resistant alloys used in aircraft gas turbine engines. Svarochnoe proizvodstvo, 1997, no. 4, pp. 4–11.
The current paper is the first part of the scientific and technical review of bismaleimide (BMI) resins chemistry. This part focuses on commercially available BMI monomers, main methods of their preparation and various compositions of BMI resins. Modifications of bismaleimides with various comonomers (diamines, aminohydrazides, allyl and propenyl compounds) are shown. Strength and performance properties of bismaleimide resins are given and their main advantages and disadvantages are determined.
2. Mukhametov R.R., Akhmadiyeva K.R., Soloveva N.A., Gulyayev A.I. Increase in water resistance of bismaleimide binder. Trudy VIAM, 2017, no. 5 (53), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2017-0-5-8-8.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 22, 2022). DOI: 10.18577/2307-6046-2019-0-12-67-79.
6. Dolgova E.V., Lavrova K.S. Application of cyanate ester materials (review). Part 1. Aviation and space structures. Trudy VIAM, 2021, no. 4 (98), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 14, 2022). DOI: 10.18577/2307-6046-2021-0-4-48-60.
7. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
8. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series. «International Conference on Engineering Systems 2020», 2020, p. 012031.
9. Evsyukov S.E., Pohlmann T., Wiel M. Modern approaches to the processing of bismaleimide resins. Current Trends in Polymer Science, 2020, vol. 20, pp. 2–14.
10. Campbell F.C. Thermoset Resins: The Glue That Holds the Strings Together. Manufacturing Processes for Advanced Composites. Elsevier, 2004, р. 77.
11. Chattha M.S., Dickie R.A., Carduner K.R. Epoxy-modified diallylbisphenol A and bis(maleimidopheny1)methane thermoset compositions: composition and dynamic mechanical thermal analysis. Industrial Engineering Chemistry Research, 1989, vol. 28, pp. 1438–1441.
12. Ren Z., Cheng Y., Li Y., Xiao F. Preparation and characterization of soluble bismaleimide-triazine resinsbased on asymmetric bismaleimide. Journal of Applied Polymer Science, 2016, vol. 134, p. 44519. DOI: 10.1002/app.44519.
13. Santhosh Kumar K.S., Reghunadhan Nair C.P., Sadhana R., Ninan K.N. Benzoxazine–bismaleimide blends: curing and thermal properties. European Polymer Journal, 2007, vol. 43, рр. 5084–5096.
14. Wilkinson S.P., Ward T.C., McGrath J.E. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer, 1993, vol. 34, pp. 870–884.
15. Iredale R.J., Ward C., Hamerton I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Progress in Polymer Science, 2017, vol. 69, pp. 1–21.
16. Synthesis of N-Aryl-Maleimides: pat. US 2444536A; filed 14.05.46; publ. 06.07.48.
17. Mangalgiri P.D. Polymer-matrix Composites for High-temperature Applications. Defence Science Journal, 2005, vol. 55, no. 2, pp. 175–193.
18. Nanjan M.J., Sivaraj K. Synthesis and characterization of certain new poly(bisimide)s. I. Journal of Polymer Science. Part A: Polymer Chemistry, 1989, vol. 27, pp. 375–388.
19. BISMALEIMIDES. Available at: https://www.hos-tec.com/products/bismaleimides/ (accessed: June 14, 2022).
20. COMPIMIDE® bismaleimides resins. Available at: https://healthcare.evonik.com/ en/pharmaceuticals/api-contract-manufacturing/technological-capabilities/bismaleimide-resins (accessed: June 14, 2022).
21. MATRIMID® markets & applications. Available at: https://huntsman-pimcore.equisolve-dev.com/Documents/US_2019_High_Performance_Components_Selector_Guide.pdf (accessed: June 14, 2022).
22. Bismaleimide group – Products. Available at: https://www.daiwakasei.jp/en/products_bismaleimide.html (accessed: June 14, 2022).
23. Cymer Commercial Monomers and Additives. Available at: https://www.cymerllc.com/organis-intermediates/ (accessed: June 14, 2022).
24. Takeda S., Akiyama H., Kakiuchi H. Synthesis and properties of bismaleimide resins containing ether bonds. Journal of Applied Polymer Science, 1988, vol. 35, pp. 1341–1350.
25. Evsyukov S., Klomp-de Boer R., Stenzenberger H.D., Pohlmann T., Wiel M. A new m-xylylene bismaleimide-based high performance resin for vacuum-assisted infusion and resin transfer molding. Journal of Composite Materials, 2019, vol. 53, pp. 3063–3072.
26. Vygodsky Ya.S., Adigezalov V.A., Askadsky A.A. Synthesis and study of network polymers based on aliphatic bismaleimides and card diamines. Vysokomolekulyarnye soyedineniya, 1979, vol. (A) XXI, no. 12, pp. 2672–2678.
27. Hu Z., Li S., Zhang C. Synthesis and characterization of novel chain-extended bismaleimides containing fluorenyl cardo structure. Journal of Applied Polymer Science, 2008, vol. 107, pp. 1288–1293.
28. Xiong X., Chen P., Yu Q. et al. Synthesis and properties of chain-extended bismaleimide resins containing phthalide cardo structure. Polymer International, 2010, vol. 59, pp. 1665–1672.
29. Wang C., Hwang H., Wiley J. Synthesis and properties of novel naphthalene-containing bismaleimides. Journal of Applied Polymer Science, 1996, vol. 60, pp. 857–863.
30. Dao B., Hawthorne D.G., Hodgkin J.H. et al. Preparation and characterization of some novel bismaleimide monomers and polymers based on diaminobisimides. High Performance Polymers, 1996, vol. 8, no. 2, pp. 243–263.
31. Stenzenberger H.D. Bismaleimide Resins. ASM handbook. Ed.: D.B. Miracle, S.L. Donaldson. 2001, vol. 21, pp. 97–104.
32. Evsyukov S.E., Pohlmann T., Stenzenberger H.D. m-Xylylene bismaleimide: a versatile buildingblock for high-performance thermosets. Polymers for Advanced Technologies, 2015, vol. 26, pp. 574–580.
33. Crivello J.V. Polyaspartimides: condension of aromatic diamines and bismaleimide compounds. Journal of Polymer Science: Polymer Chemistry Edition, 1973, vol. 11, pp. 1185–1200.
34. Cross-linked Resins: pat. US 3562223; filed 08.07.68; publ. 09.02.71.
35. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
36. Tung C.M., Lung C.L., Liar T.T. Effect of cure states on the mechanical properties of bismaleimides. Part 3: Dynamic mechanical properties and fracture energies. Polymer Materials Science Engineering, 1985, vol. 52, pp. 139–143.
37. Stenzenberger H.D. Addition Polyimides. Advances in Polymer Science, 1994, vol. 117, pp. 165–220.
38. Thermosetting imide resins from amino acid hydrazide: pat. US 4211861A; filed 29.11.78; publ. 08.07.80.
39. Reyx D., Campistron I., Caillaud C. Thermal reaction between N-phenylmaleimide and 2-allylphenol as a model for the crosslinking reaction in bismaleimide polymerization with diallylbisphenol A. Macromolecular Chemistry and Physics, 1995, vol. 196, pp. 773‒785.
40. Fischer G. High temperature and toughened bismaleimide composite materials for aeronautics. Materials. Université de Lyon, 2015, pp. 12–20.
41. Rozenberg B.A., Dzhavadyan E.A., Morgan R., Shin E. High-performance Bismaleimide Matrices: Cure Kinetics and Mechanism. Polymers for Advanced Technologies, 2002, vol. 13, pp. 837–844.
42. John B., Reghunadhan Nair C.P. Syntactic Foams. Handbook of Thermoset Plastics. Elsevier Ink., 2014, vol. 13, p. 520.
43. Morgan R.G., Shin E.E., Rosenberg B., Jurek A. Characterization of the cure reactions of bismaleimide composite matrices. Polymer, 1997, vol. 38, no. 3, pp. 639–646.
44. Enoki T., Takeda T., Ishii K., Shibahara S. Effects of catalysts on the model reactions of several maleimide resin systems‒(I) Amine-modified maleimide. High Perfomance Polymers, 1994, vol. 6, p. 385.
45. Satheesh Chandran M., Reghunadhan Nair C.P. Maleimide-Based Alder-Enes. Handbook of Thermoset Plastics. Elsevier Ink., 2014, vol. 12, pp. 459–470.
46. Zahir A., Renner A. Process for the Manufacture of Crosslinked Polymers which Contain Imide Groups: pat. US 4100140A; filed 18.06.76; publ. 11.07.78.
47. Babkin A.V., Erdni-Goryaev E.M., Solopchenko A.V., Kepman A.V. Infusion bismaleimide binders for polymer composite materials. Khimiya i khimicheskaya tekhnologiya, 2015, no. 58, pp. 54–57.
48. Stenzenberger H.D., Konig P. Comonomers for Bismaleimides: o,oʹ-Diallylbisphenols. High Perfomance Polymers, 1989, vol. 1, no. 3, pp. 239–246.
49. Qu C., Zhao L., Wang D. et al. Bis[4-(4-maleimidephen-oxy)phenyl] propane/N,N-4,4-bismaleimidodiphenylmethyene blend modified with diallyl bisphenol A. Journal of Applied Polymer Science, 2014, vol. 131, pp. 40395 (1–8).
50. Resines durcissables: pat. EP 0230741; filed 10.12.86; publ. 05.08.87.
51. [(2-ethoxy-5-trans-1-propen-1-yl)-phenoxyl]-terminated compounds: pat. WO 2017/045931; filed 02.09.16; publ. 23.03.17.
52. Stenzenberger H.D. Recent Advances in Thermosetting-Polyimides. British Polymer Journal, 1988, vol. 20, pp. 383–396.
This article describes the features of the use of polyimide binders of solution and melt type in the manufacture of prepregs. The main physical and chemical characteristics of the solution binder of the polycondensation type brand SP-97S and the melt binder VS-51 of the polymerization type and prepregs based on them are given. The mechanical characteristics of glass-reinforced plastics were studied on the basis of binder data at room and elevated temperatures. The microstructural analysis of the surface of delamination of the samples after the compression test at temperature 20 °C was carried out by the method of scanning electron microscopy.
2. Kramarev D.V. Composite materials based on thermoplastic polyimide and polyaramid fabric: thesis, Cand. Sc. (Tech.). Moscow: Mendeleev Russian Chemical Technical University, 2018, 137 p.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Zharinov M.A., Petrova A.P., Babchuk I.V., Akhmadieva K.R. Heat-resistant polyimide structural adhesives. Klei. Germetiki. Tekhnologii, 2021, no. 4, pp. 2–8.
5. Bondaletova L.I., Bondaletov V.G. Polymer composite materials (part 1): textbook. Tomsk: Tomsk Polytechnic University, 2013, pp. 5–7.
6. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2018-0-12-46-53.
7. Fiberglass and other structural plastics: collection of articles. Ed. Ya.D. Avrasin. Moscow: Oborongiz, 1960, 169 p.
8. Korshak V.V. Heat resistant polymers. Moscow: Nauka, 1969, 381 p.
9. Raskutin A.E., Sokolov I.I., Shuldeshova P.M., Kutsevich K.E., Gulyaev I.N. Structural carbon plastics, fiberglass and organoplastics for high- and medium-loaded structures. Report of XX Int. sci.-tech. conf. "Designs and technologies for the production of products from non-metallic materials". Obninsk: ONPP Tekhnologiya, 2013, pp. 67–69.
10. Kolpachkov E.D., Vavilova M.I., Kurnosov A.O., Gunyaeva A.G. Glass-reinforced plastics based on thermosetting polyimide binders. Materials of All-Rus. sci.-tech. conf. "Polymer composite materials of a new generation for civil industries". Moscow: VIAM, 2020, pp. 31–41. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1294.pdf (accessed: December 4, 2021).
11. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 4, 2022). DOI: 10.18577/2307-6046-2019-0-12-67-79.
12. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders. Voprosy materialovedeniya, 2016, no. 4, pp. 50–62.
13. Handbook of composite materials: in 2 books. Ed. J. Lubin. Moscow: Mashinostroenie, 1988, book. 1, 448 p.
14. Veshkin E.A. Technologies of autoclave-free molding of low-porous polymer composite materials and large-sized structures from them: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2016, 23 p.
15. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Tsyplakov O.G. Scientific bases of technology of composite-fibrous materials. Perm, 1974, pp. 36–38.
17. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
18. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
19. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
20. Kobets L.P., Deev I.S. Structure formation in thermosetting binders in matrices of composite materials based on them. Mendeleev Russian Chemical Journal of the Chemical Society, 2010, no. 1, pp. 67–78.
21. Deev I.S., Startsev V.O., Nikishin E.F. Fractographic analysis of KMU-4L carbon fiber after 12 years of exposure to the outer surface of the International Space Station and subsequent bending tests. Voprosy materialovedeniya, 2015, no. 3 (83), pp. 140–149.
Considered and analyzes the microstructure of an organoplastic (organotextolite) based on an aramid fabric, made from a third-generation fiber of the Rusar-NT brand, and a melted epoxy binder modified with a thermoplastic – polysulfone. The physico-mechanical properties of organoplastics are determined. It has been established that the studied organoplastic in terms of its strength characteristics and water resistance surpasses its predecessors – organoplastics based on aramid fibers of the first and second generation.
2. Zhang S., Zhao D. Advances in materials science and engineering. Aerospace materials handbook. CRC Press. Taylor & Francis Group, 2012, 781 p.
3. Singh A.K., Wanhill R.J.H., Prasad N.E. Lightweight ballistic armours for aero-vehicle protection. Aerospace materials and material technologies, 2017, vol. 2: Aerospace material technologies. pp. 541–567.
4. Reference book on composite materials. Ed. J. Lubin. Moscow: Mashinostroitel, 1988, book 1, 448 p.
5. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
6. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
7. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
8. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 18, 2022). DOI: 10.18577/2307-6046-2020-0-67-38-44.
9. Mikhailin Yu.A. Structural polymeric composite materials. 2nd ed. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013, 822 p.
10. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
11. Roberts G.D., Revilock D.M., Binienda W.K. et al. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases. Journal of Aerospace Engineering, 2002, no. 15, pp. 104–110.
12. Zhelezina G.F., Solovieva N.A., Kulagina G.S., Shuldeshova P.M. Study of the possibility of increasing the impact resistance of thin-sheeted carbon fiber-reinforced plastics due to clading with aramid organoplastics. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 18, 2022). DOI: 10.18577/2713-0193-2021-0-4-35-42.
13. Laurens B.V. Development of a new hybrid material (ARALL) for aircraft structures. Industrial & Engineering Chemistry, 1983, no. 22 (3), pp. 492–496.
14. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymeric composite materials. Ed. E.N. Kablov. Mosocow: NRC "Kurchatov Institute" – VIAM, 2021, 528 p.
15. Petrova A.P., Mukhametov R.R., Shishimirov M.V., Pavlyuk B.Ph., Starostina I.V. Test methods and researches thermosetting binding for polymeric composite materials (review). Trudy VIAM, 2018, no. 12 (72), paper no. 07. Available at: http://viam-works.ru (accessed: May 11, 2022). DOI: 10.18577/2307-6046-2018-0-12-62-70.
16. Zhelezina G.F., Voinov S.I., Chernykh T.E., Chernykh K.Yu. New aramid fibers Rusar-NT for reinforcing structural organoplastics. Voprosy materialovedeniya, 2015, no. 1 (81), pp. 60–70.
17. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lons-kii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
18. Deev I.S., Kobets L.P. Study of the microstructure and microfields of deformations in polymer composites by scanning electron microscopy. Zavodskaya laboratory. Material diagnostics, 1999, vol. 65, no. 4, pp. 27–34.
19. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading. Trudy VIAM, 2014, no. 7, paper no. 06. Available at: http://www.viam-works.ru (accessed: May 22, 2022). DOI: 10.18577/2307-6046-2014-0-7-6-6.
20. Pakhomov K.S., Antipov Yu.V., Chalykh A.E., Budylin N.Yu., Stoyanov O.V., Simonov-Emelyanov I.D. Energy parameters of the surface of aramid fibers. Vestnik tekhnologicheskogo universiteta, 2016, vol. 19, no. 1, pp. 100–103.
21. Chalykh, A.E., Gerasimov, V.K., Bukhteev, A.E. et al. Compatibility and evolution of the phase structure of mixtures of polysulfone–curing epoxy oligomers, Vysokomolekulyarnye soyedineniya, Ser. A, 2003, vol. 45, no. 7, pp. 1148–1159.
22. Budylin N.Yu., Shapagin A.V., Chalykh A.E. Comparative studies of mutual diffusion and phase states in mixtures of epoxy oligomers with polysulfones and polyethersulfones. Articles of XIX All-Rus. conf. "Structure and Dynamics of Molecular Systems". Moscow: IFCHE RAN, 2012, vol. 2, pp. 192–195.
23. Min H.S., Kim S.Ch. Fracture toughness of polysulfone/epoxysemi-IPN with morphology spectrum. Polymer Bulletin, 2003, vol. 42, pp. 221–227.
24. Woo E.M., Hseih H.K. Morphology development in epoxy/polymer systems: thermosetting epoxy micro particles with a thermoplastic shell. Polymer, 1998, vol. 39, no. 1, pp. 7–13.
25. Kim B.S., Chiba T., Inoue T. Phase separation and apparent phase dissolution during cure process of thermoset/thermoplastic blend. Polymer, 1995, vol. 36, no. 1, pp. 67–71.
26. Shapagin A.V. Structure formation in systems epoxy oligomers–thermoplastics: thesis, Cand. Sc. (Chem.). Moscow, 2004, 163 p.
Analysis of the magnetic hysteresis loops of permanent magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B with a high Co content allows us to conclude that with an increase in the cobalt content in the alloy, the coercive force HcI value decreases significantly. The replacement of Nd with Pr in the alloy composition leads to a decrease in the volume fraction of the main magnetic phase R2–(FeCo)14B in the composition of sintered permanent magnets, which proportionally affects the dependence of the HcI on the Co content in the permanent magnet material. This effect is presumably related to the difference in the diffusion rate in the materials under consideration.
2. Martynenko Yu.G. Trends in the development of modern gyroscopy. Sorosovskiy obrazovatelnyj zhurnal, 1997, no. 11, pp. 120–127.
3. Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental evaluation of allowable mechanical impacts on a dynamically adjustable gyroscope. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroyenie, 2018, no. 4, pp. 69–79. DOI: 10.18698/0236-3933-2018-4-69-79.
4. Peshekhonov V.G. Prospects for the development of gyroscopy. Giroskopiya i navigatsiya, 2020, vol. 28, no. 2, pp. 3–10. DOI: 10.1785/0869-7035-0028.
5. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
6. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 5, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
7. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 7. Available at: http://www.viam-works.ru (accessed: May 5, 2022). DOI: 10.18577/2307-6046-2019-0-11-60-67.
8. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 5, 2022). DOI: 10.18577/2307-6046-2019-0-7-67-75.
9. Haavisto M., Tuominen S., Santa-Nokki T. et al. Magnetic behavior of sintered NdFeB mag-nets on a long-term timescale. Advances in Materials Science and Engineering, 2014, art. ID 760584. DOI: 10.1155/2014/760584.
10. Wang Y., Yu B., Feng M. et al. Magnetic properties оf Nd–Fe–Co–B permanent magnetic alloys. Journal of Applied Physics, 1987, vol. 61, pp. 3448–3450.
11. Bolzoni F., Leccabue F., Moze O. et al. 3d and 4f magnetismin Nd2Fe14–xCoxB and Y2Fe14–xCoxB compounds. Journal of Applied Physics, 1987, vol. 61, no. 12, pp. 5369–5373.
12. Niihara K., Shishido T., Yajima S. The crystal data of ternary rare earth borides RCo2B2. Bulletin of the chemical society of Japan, 1973, vol. 46, pp. 1137–1140.
13. Belov K.P., Nikitin S.A., Savitsky E.M. Magnetic and Magnetostrictive Properties of Intermetallic Compounds of Rare Earth Metals with Iron Type RFe2 and RFe3. Rare Earth Metals, Alloys and Compounds. Moscow: Nauka, 1973, pp. 89–91.
14. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63, no. 4, pp. 819–898.
15. Kablov E.N., Petrakov A.F., Piskorsky V.P., Valeev R.A., Nazarova N.V. Influence of dysprosium and cobalt on the temperature dependence of magnetization and phase composition of the material of the Nd–Dy–Fe–Co–B system. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 4, pp. 3–10.
16. Bala H., Szymura S., Sergeev V.V. et al. Properties of terbium-doped (Nd, Dy)–(Fe, Co)–B sintered magnets. Journal of Magnetism and Magnetic Materials, 1992, vol. 103, pp. 58–64.
17. Deryagin A.V. Rare-earth magnetically hard materials. Uspekhi fizicheskikh nauk, 1976, vol. 120, is. 3, pp. 393–437.
18. Szytula A. Magnetic properties of the RT2X2, RTX2 and RTX compounds in high magnetic field. Acta Physica Polonica A, 1994, vol. 85, no. 2, pp. 293–296.
19. Faria R.N., Davies B.E., Brown D.N., Harris I.R. Microstructural and magnetic studies of cast and annealed Nd and PrFeCoBZr alloys and HDDR materials. Journal of Alloys and Compounds, 2000, vol. 296, pp. 223–228.
20. Bolzoni F., Coey J.M., Gavigan J. et al. Magnetic properties of Pr2(Fe1–xCox)14B compounds. Journal of Magnetism and Magnetic Materials, 1987, vol. 65, pp. 123–127.
The methods and trends in the development of tribomaterials science to provide the properties necessary for materials of friction units of modern technology are analyzed. The following approaches are being actively developed and are being used: ceramic coatings, development of new tribotechnical alloys or modification of the structure in order to improve their functional characteristics, ceramic materials, metal-ceramic materials, chemical-thermal treatment and surface hardening. Ceramic coatings for tribotechnical purposes are mainly based on nitride systems. Active work is being carried out in the field of ceramic materials, and new materials based on ZrO2 and Si3N4 are already finding industrial application in friction units. Metal-ceramic materials have high wear resistance comparable to ceramic materials and are used in the mining and oil and gas industries. Chemical-thermal treatment makes it possible to improve the tribological properties of industrial steels and alloys.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. Without new materials, there is no future. Metallurg, 2013, no. 12, pp. 4–8.
4. Mashkov Yu.K., Maliy O.V. Tribophysics of structural materials: textbook. Omsk: Omsk State Technical University, 2017, 176 p.
5. Denisova N.E., Shorin V.A., Gontar I.N. et al. Tribotechnical material science and tribotechnology: textbook. Ed. N.E. Denisova. Penza: Penza State University, 2006, 248 p.
6. Myshkin N.K., Petrokovets M.I. Friction, lubrication, wear. Physical foundations and technical applications of tribology. Moscow: Fizmatlit, 2007, 368 p.
7. Kritsky V.Yu., Zubko A.I. Investigation of the possibility of using ceramic aircraft bearings of a new generation in the structures of rotor bearings for gas turbine engines. Dvigatel, 2013, no. 3 (87), pp. 24–26.
8. Voronkov B.D. Dry friction bearings. 2nd ed., rev. and add. Leningrad: Mashinostroyenie, 1979, 224 p.
9. Bukharov S.N., Merinov V.K., Senatrev A.N., Sergienko V.P. Investigation of the effect of iron oxide (III) on the tribotechnical and vibroacoustic characteristics of friction composites for stationary friction units. Trenie i iznos, 2018, vol. 39, no. 6, pp. 567–572.
10. Brown E.D., Buyanovsky I.A., Voronin N.A. et al. Modern tribology: results and prospects. Ed. K.V. Frolov. Ed. stereotype. Moscow: LKI, 2014, 480 p.
11. Gorlov D.S., Shhepilov A.V. Influence of surface roughness and abrasive wear on the damping capacity of the composition «alloy–coating». Trudy VIAM, 2017, no. 5, paper no. 11. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2017-0-5-11-11.
12. Aleksandrov D.A., Artemenko N.I. Wear-resistant coatings to protect friction parts of modern gas turbine engines. Trudy VIAM, 2016, no. 10, paper no. 6. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2016-0-10-6-6.
13. Elagina O.Yu., Komadynko A.S., Poleshchuk E.D. Prospects for the use of titanium nitride coating for contact surfaces of friction clutches. Trenie i iznos, 2020, vol. 41, no. 1, pp. 36–42.
14. Belov D.S., Sergevnin V.S., Blinkov I.V. Comparison of wear and erosion resistance of ion-plasma vacuum-arc coatings Ti–Al–Ni–N and Ti–Al–Ni–Mo–N. Trenie i iznos, 2021, vol. 42, no. 2, pp. 136–144.
15. Kolesnikov V.I., Vereskun V.D., Kudryakov O.V. et al. Technology for increasing the wear resistance of heavy-loaded tribosystems and their monitoring. Trenie i iznos, 2020, vol. 41, no. 2, pp. 228–234.
16. Klimovich I.M., Komarov F.F., Zaikov V.A. et al. Influence of parameters of reactive magnetron sputtering on tribomechanical properties of protective nanostructured coatings Ti–Al–N. Trenie i iznos, 2018, vol. 39, no. 2, pp. 122–129.
17. Putintsev S.V. Introduction to tribology of reciprocating engines. Moscow: Bauman Moscow State University, 2018, 183 p.
18. Gilevich A., Dobrukhovska E., Murzhinsky D. et al. Influence of the chemical composition of AlCrN coatings on their mechanical, tribotechnical and corrosion characteristics. Trenie i iznos, 2020, vol. 41, no. 5, pp. 526–537.
19. Zhitnyuk S.V. Oxygen-free ceramic materials for the space technics (review). Trudy VIAM, 2018, no. 8 (68), paper no. 8. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2018-0-8-81-88.
20. Perevislov S.N. Materials based on silicon carbide and nitride with oxide activating additives for structural products: thesis abstract, Dr. Sc. (Tech.). St. Petersburg, 2018, 38 p.
21. Products of the company "Viral". Available at: http://www.virial.ru/products (accessed: January 26, 2022).
22. Belyachenko I.O., Schegoleva N.E., Chaynikova A.S., Vaganova M.L., Shavnev A.A. Silicon nitride ceramic materials for aviation GTE bearings and methods of manufacturing (review). Trudy VIAM, 2019, no. 7 (79), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2019-0-7-42-49.
23. Belyachenkov I.O., Shchegoleva N.E., Chainikova A.S., Golubev N.V. Obtaining and properties of tribological ceramics based on silicon nitride. Materials of the II All-Rus. sci.-tech. conf. "High-Temperature Ceramic Composite Materials and Protective Coatings". Moscow: VIAM, 2018, pp. 45–55.
24. Wemhöner J., Bergrath B., Kreuser J. RolaMot-Erforschung des Einsatzes von Siliciumnitrid-Wälzlagern in einem Ottomotor zur Herabsetzung der inneren Motorreibung mit dem Ziel der Reduzierung des Kraftstoffverbrauchs und der CO2-Emissionen. Fraunhofer. Available at: https://edocs.tib.eu/files/e01fb08/558765742.pdf (accessed: January 26, 2022).
25. Savchenko N.L., Pyatova K.M., Kulkov S.N. Friction and wear of ceramics based on ZrO2∙Y2O3 under conditions of high-speed sliding over steel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2007, no. 1, pp. 84–88.
26. Savchenko N.L., Pyatova K.M. Friction and wear of zirconium dioxide ceramics stabilized by magnesium oxide. Vestnik NGU. Ser.: Physics, 2008, vol. 3, is. 1, pp. 109–114.
27. Akimov G.Ya., Chaika E.V. Influence of speed on wear of ceramics based on zirconium dioxide during its friction without lubrication against steel. Ogneupory i tekhnicheskaya keramika, 2010, no. 7–8, pp. 40–42.
28. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
29. Korobova E.N., Sevalnev G.S., Gromov V.I., Leonov A.V. Steels for the manufacture of roller bearings for special purposes (review). Trudy VIAM, 2021, no. 11 (105), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2021-0-11-3-11.
30. Gorban V., Krapivka N., Karpets M. et al. Influence of temperature on the wear characteristics of high-entropy alloys. Trenie i iznos, 2017, vol. 38, no. 4, pp. 335–340.
31. Mironov A.E., Gershman I.S., Gershman E.I., Zheleznov M.M. Interrelation of tribotechnical properties of experimental aluminum alloys with their chemical composition. Trenie i iznos, 2017, vol. 38, no. 2, pp. 67–72.
32. Efremenko V.G., Shimizu K., Pastukhova T.V. Wear mechanism and optimization of the chemical composition of complex-alloyed cast irons with spheroidal vanadium carbides under abrasive erosion. Trenie i iznos, 2017, vol. 38, no. 2, pp. 73–79.
33. Khrenov O.V., Dmitrovich A.A., Leshok A.V. Ceramic-metal friction materials: textbook. Minsk: BNTU, 2011, 42 p.
34. Kisly P.S., Bodnaruk N.I., Borovikova M.S. et al. Cermets. Kyiv: Naukova Dumka, 1985, 272 p.
35. Leshok A.V., Ilyushchenko A.F., Dyachkova L.N., Pinchuk T.I. Tribological properties of powder friction material based on copper with the addition of iron-chromium alloy powder. Trenie i iznos, 2021, vol. 42, no. 1, pp. 5–12.
36. Patrushev A.Yu., Farafonov D.P., Serov M.M. Tungsten-free hard alloys: manufacturing methods, structure and properties (review). Trudy VIAM, 2021, no. 11 (105), paper no. 07. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2021-0-11-66-81.
37. Trofimenko N.I., Efimochkin I.Yu., Dvoretskov R.M., Batienkov R.V. Obtaining fine-grained cemented carbide alloys of the WC–Co system (review). Trudy VIAM, 2020, no. 1 (85), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 15, 2022). DOI: 10.18577/2307-6046-2020-0-1-92-100.
38. Prozhega M.V. Development of methods for increasing the wear resistance of radial sliding friction pairs of electric centrifugal pumps: thesis abstract, Cand. Sc. (Tech.). Moscow, 2009, 19 p.
39. Elagina O.Yu., Buklakov A.G., Yanka L.E.V. Development of a new composite material for the teeth of the armament of support-centering devices. Trenie i iznos, 2017, vol. 38, no. 2, pp. 151–157.
40. Ilyushchenko A.F., Talako T.L., Leshok A.V. Tribotechnical properties of copper-based sintered friction material with the addition of ultrafine aluminide powder of the Ti–46Al–8Cr system. Doklady Natsionalnoy akademii nauk Belarusi, 2021, vol. 65, no. 1, pp. 103–110.
41. Dyachkova L.N., Feldshtein E.E., Letsko A.I. Tribotechnical properties of sintered bronze reinforced with aluminide of the Ti–46Al–8Cr system. Trenie i iznos, 2017, vol. 38, no. 2, pp. 80–85.
42. Sevostyanov N.V., Rozen A.E., Buznik V.M. Copper-fluoroplastic conductive composite material obtained by explosive pressing. Trenie i iznos, 2020, vol. 41, no. 1, pp. 55–62.
43. Adamenko N.A., Trykov Yu.P., Fetisov A.V. Polymer and metal-polymer materials obtained by explosive processing. Perspektivne materialy, 2004, no. 3, pp. 63–68.
44. Fedorchenko I.M., Pugina L.I. Composite sintered antifriction materials. Kyiv: Naukova Dumka, 1980, 404 p.
45. Poletaev V.A., Vedernikova I.I. Investigation of the wear resistance of surfaces of parts hardened by a combined electromechanical method. Trenie i iznos, 2021, vol. 42, no. 2, pp. 178–185.
46. Malinov L.S., Burova D.V., Gomanyuk V.D. and others. Improving the wear resistance of graphitized steel by obtaining metastable austenite in the structure. Trenie i iznos, 2021, vol. 42, no. 2, pp. 145–152.
47. Kuksenova L.I., Lapteva V.G., Alekseeva M.S., Gerasimov S.A. Influence of the composition and structure of nitrided iron alloys on wear resistance under conditions of sliding friction. Problemy mashinostroyeniya i nadezhnosti mashin, 2011, no. 1, pp. 55–62.
Investigations of the surface of a nickel alloy after the penetration of diffusion coatings from powders were carried out. Application of chrome and chromoaluminide screens on atmospheric devices according to the parameters of the temperature-time interval. Determining the values of change in the mass of samples and the degree of diffusion of the surface. Given metallographicl and X-ray microspectral analysis of samples. According to the research results, it was found that after powder chromium plating, the depth of the diffusion zone reaches 18 microns with a chromium concentration of up to 92 %. With the appearance of chromoaluminide surfaces, aluminization mainly takes place, while the diffusion of chromium and iron is not observed.
2. Kablov E.N. Developments of VIAM for gas turbine engines and installations. Krylya Rodiny, 2010, no. 4, pp. 31–33.
3. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 04, 2022). DOI: 10.18577/2307-6046-2020-0-3-3-12.
4. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines. Aviation materials and technologies, 2022, no. 2 (67), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 4, 2022). DOI: 10.18577/2713-0193-2022-0-2-5-17.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Kolomytsev P.G. Gas corrosion and strength of nickel alloys. Moscow: Metallurgy, 1984, 215 p.
7. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
8. Muboyadzhyan S.A., Kablov E.N., Budinovsky S.A. Vacuum-plasma technology for obtaining protective coatings from complex alloyed alloys. Metallovedenie i termicheskaya obrabotka metallov, 1995, no. 2, pp. 15–18.
9. Budinovsky S.A., Muboyadzhyan S.A. Efficiency of a two-stage ion-plasma technology for obtaining alloyed diffusion aluminide coatings on heat-resistant nickel alloys. Metallovedeniye i termicheskaya obrabotka metallov, 2003, no. 5, pp. 27–32.
10. Matveev P.V., Budinovskij S.A. Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300 °C. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 22–26.
11. Azarovskiy E.N., Doronin O.N., Muboyadzhyan S.A. Formation of porosity on the border «of heat-resistant alloy–heat-resistant condensation-diffusion coating». Trudy VIAM, 2019, no. 2 (74), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 4, 2022). DOI: 10.18577/2307-6046-2019-0-2-113-120.
12. Simonov V.N., Abraimov N.V., Shkretov Yu.P., Lukina V.V., Terekhin A.M. Chromium aluminizing of cooled gas turbine blades by the circulation method. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 7 (625), pp. 36–39.
13. The method of one-stage diffusion chromium-altering of parts from heat-resistant alloys: pat. EN 2572690C2; filed 05.05.14; publ. 01.20.16.
14. Method for obtaining a combined heat-resistant coating: pat. 1658652 Rus. Federation; filed 08.04.88; publ. 20.12.00.
15. Kablov E.N., Muboyadzhyan S.A., Budinovsky S.A., Galoyan A.G. Protective and hardening coatings for gas turbine turbine blades. Proceedings of Intern. sci.-tech. conf. “Scientific ideas of S.T. Kishkin and modern materials science” (Moscow, April 25–26, 2006). Moscow: VIAM, pp. 55–65.
16. Muboyadzhyan S.A., Galoyan A.G. Thermodiffusion processes of saturation of the surface of heat-resistant alloys with refractory elements and carbon. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 114–120.
17. Galoyan A.G., Muboyadzhyan S.A., Kashin D.S. Termodiffusion barrier formation under vacuum cementation process on rhenium and rhenium-ruthenium comprising nickel based superalloys. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 38–43. DOI: 10.18577/2071-9140-2015-0-3-27-37.
18. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
Considers the trend of replacing galvanic chromium plating, used to protect steel parts from corrosion and wear, by gas-thermal coating methods using composite powders based on tungsten and chromium carbides. Varieties of thermal spraying, methods for manufacturing composite powders are considered, their advantages and disadvantages are described. It has been established that the most common method of applying wear-corrosion-resistant coatings is the high-velocity oxygen fuel spraying method. The example shows the superiority of such a coating compared to galvanic chromium plating. The direction of development in the field of manufacturing composite powders with the necessary technological properties to obtain wear-corrosion-resistant coatings with optimal characteristics is indicated.
2. Matthews S., James B., Hyland M. High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions. Corrosion Science, 2013, no. 70, pp. 203–211.
3. Kaur M., Singh H., Prakash S. Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments. Thermal Spray Technology, 2008, no. 18 (4), pp. 619–631.
4. Barbezat G., Nicoll A.R., Sickinger A. Erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications. Wear, 1993, no. 162–164, pp. 529–537.
5. Thakur L., Arora N., Jayaganthan R., Sood R. An investigation on erosion behavior of HVOF sprayed WC–CoCr coatings. Applied Surface Science, 2011, no. 258, pp. 1225–1234.
6. Kamal S., Jayaganthan R., Prakash S. Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25 % NiCr coatings on nickel- and iron-base superalloys. Surface and Coatings Technology, 2009, no. 203, pp. 1004–1013.
7. Matthews S., James B., Hyland M. The role of microstructure in the high temperature oxidation mechanism of Cr3C2–NiCr composite coatings. Corrosion Science, 2009, no. 51, pp. 1172–1180.
8. Wirojanupatump S., Shipway P.H., McCartney D.G. The influence of HVOF powder feedstock characteristics on the abrasive wear behaviour of CrxCy–NiCr coatings. Wear, 2001, no. 249, pp. 829–837.
9. Sidhu T.S., Prakash S., Agrawal R.D. Hot corrosion studies of HVOF sprayed Cr3C2–NiCr and Ni–20Cr coatings on nickel-based superalloy at 900 °C. Surface and Coatings Technology, 2006, no. 201, рр. 792–800.
10. Murthy J.K.N., Venkataraman B. Abrasive wear behavior of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology, 2006, no. 200, pp. 2642–2652.
11. He J.H., Ice M., Schoenung M. et al. Thermal stability of nanostructured Cr3C2–NiCr coatings. Thermal Spray Technology, 2001, no. 10, pp. 293–300.
12. Stein K.J., Schorr B.S., Marder A.R. Erosion of thermal spray MCr–Cr3C2 cermet coatings. Wear, 1999, no. 224, pp. 153–159.
13. Li C.J., Wang Y.Y., Ohmori G.J.A., Khor K.A. Effect of solid carbide particle size on deposition behavior, microstructure and wear performance of HVOF cermet coatings. Materials Science and Technology, 2004, no. 20, pp. 1087–1096.
14. Sidhu T.S., Prakash S., Agrawal R.D. Characterizations and Hot corrosion resistance of Cr3C2–NiCr coatings on nickel-based superalloy in aggressive environment. Thermal Spray Technology, 2006, no. 15 (4), pp. 811–816.
15. Guilemany J.M., Fernandez J., Delgado J. et al. Effects of thickness coatings on the electrochemical behavior of thermal spray Cr3C2–NiCr coatings. Surface and Coatings Technology, 2002, no. 153, pp. 107–113.
16. Chatha S.S., Sidhu H.S., Sidhu B.S. High temperature hot corrosion behavior of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C. Surface and Coatings Technology, 2012, no. 206, pp. 3839–3850.
17. Kamal S., Jayaganthan R., Prakash S. High temperature oxidation studies of detonation-gun-sprayed Cr3C2–NiCr coating on Fe- and Ni-based superalloys in air under cyclic condition at 900 °C. Journal of Alloys and Compounds, 2009, no. 472, pp. 378–389.
18. Sidhu T.S., Prakash S., Agrawal R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed satellite-6 coating on Ni and Fe based superalloys. Surface and Coatings Technology, 2006, no. 201, pp. 273–281.
19. Shuklaa V.N., Jayaganthanb R., Tewarib V.K. Degradation Behavior of HVOF-Sprayed Cr3C2–25 % NiCr Cermet Coatings Exposed to High Temperature. Materials Today: Proceedings, 2015, vol. 2, is. 4, pp. 1805–1813.
20. Kablov E.N., Lukina E.A., Zavodov A.V., Efimochkin I.Yu. The formation of structure in ultrafine WC–Cо carbide material in the presence of inhibitory additives. Trudy VIAM, 2020, no. 4–5 (88), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 16, 2022). DOI: 10.18577/2307-6046-2020-0-45-89-99.
21. Kozlov I.A., Leshchev K.A., Nikiforov A.A., Demin S.A. Cold spray coatings (review). Trudy VIAM, 2020, no. 8 (90), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2020-0-8-77-93.
22. Iatsyuk I.V., Doronin O.N., Kuko I.S. Secondary processing of cast tube cathodes when obtaining a metal powder composition for the gas-thermal spray of coatings. Trudy VIAM, 2021, no. 2 (96), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2021-0-2-81-87.
23. Chesnokov A.E. Influence of high-energy impacts on the microstructure of SHS metal-ceramic powders and gas-thermal coatings "titanium carbide-nichrome": thesis, Cand. Sc. (Tech.). Novosibirsk: Siberian Federal University, 2016, 118 p.
24. Picas J.A., Xiong Y., Punset M. Microstructure and wear resistance of WC–Co by three consolidation processing techniques. Journal of Refractory Metals & Hard Materials, 2009, no. 27, pp. 344–349.
25. Rakesh B. Development of erosion corrosion resistant HVOF Sprayed Cr3C2‒NiCr coatings for boiler tube steels operating at elevated temperatures. Punjabi University, 2013, 252 p.
26. Toma D., Brandl W., Marginean G. Wear and corrosion behaviors of thermally sprayed cermet coatings. Surface and Coatings Technology, 2001, vol. 138, no. 2–3, pp. 149–158.
27. Zimakov S., Kulu P., Goljandin D. et al. Microstructured cermet powders for HVOF spraying. Welding & Powder Metallurgy, 2005, vol. 1, pp. 1–8.
28. Żórawski W., Skrzypek S., Trpčevska J. Tribological Properties of Hypersonically Sprayed Carbide Coatings. Faculty of Mechanical Engineering, FME Transactions, 2008, vol. 36, pp. 81–86.
29. Jia K., Fisher T.E. Abrasion Resistance of Nanostructured and Conventional Cemented Carbides. Wear, 1996, no. 200, pp. 206–214.
30. Jia K., Fisher T.E. Sliding Wear of Conventional and Nanostructured Cemented Carbides. Wear, 1997, no. 203–204, pp. 310–318.
31. Cho T.Y., Yoon J.H., Kim K.S. et al. A Study on HVOF Coatings of Micron and Nano WC–Co Powders. Surface and Coatings Technology, 2008, no. 202, pp. 5556–5559.
32. Guilemany J.M., Dosta S., Miguel J.R. The Enhancement on the Properties of WC–Co HVOF Coatings Through the Use of Nanostructured and Microstructured Feedstock Powders. Surface and Coatings Technology, 2006, no. 201, pp. 1180–1190.
33. Agüero A., Camoʹn F., Garcıʹa de Blas J. et al. HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators. Thermal Spray Technology, 2011, vol. 20 (6), pp. 1292–1309.
Analyzes the effectiveness of various methods of applying a powder developer included in a penetrant materials with level I sensitivity for automated penetrant testing. The technologies of penetrant testing with the application of a powder developer using the electrostatic spraying unit and the automatic storm-camera. The results of comparative tests of two technologies on samples with low-cycle fatigue cracks of various sizes are presented, as well as a graph of the probability of detecting a defect characterizing a specific control technology.
2. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
3. Podzhivotov N.Yu. The minimum samples amounts for an assessment of the initial moments of distribution of tensile ultimate strength for the samples of structural metallic materials. Aviation materials and technologies, 2021, no. 2 (63), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 4, 2022). DOI: 10.18577/2713-0193-2021-0-2-103-114.
4. Klyuev V.V., Evlampiev A.I., Popov E.D. at al. Non-destructive control and diagnostics: a reference book. Moscow: Mashinostroenie, 2003, 656 p.
5. Beda P.I., Vybornov B.I., Glazkov Yu.N. at al. Non-destructive control of metals and products. Moscow: Mashinostroenie, 1976, 456 p.
6. Caturano G., Cavaccini G., Ciliberto A., Pianese V. Probability of Detection for Penetrant Testing in Industrial Environment. Applied and Industrial Mathematics, 2010, vol. 3, no. 3, pp. 186–195.
7. Lively J.A. Fluorescent penetrant inspection probability of detection demonstrations performed for space propulsion. Review of Quantitative Nondestructive Evaluation, 2003, vol. 22, pp. 1891–1898.
8. Rummel W.D., Matzkanin G.A. Nondestructive evaluation (NDE) capabilities data book. Third ed. Austin: TRI Austin, 1997, 598 p.
9. Rentala V.K., Mylavarapu Ph., Gautam J., Kumar V. NDE Reliability using Laboratory Induced Natural Fatigue Cracks. 7th European-American Workshop on Reliability of NDE. Potsdam, 2017, pp. 1–8. Available at: https://www.ndt.net/search/docs.php3?showForm=off&id=21793 (accessed: September 4, 2022).
10. Migun N.P., Gnusin A.B. Thermal effects in capillary non-destructive testing. Minsk: Belarus Navuka, 2011, 131 p.
11. Industry Standard 1 90243–83. Capillary methods of non-destructive testing. Marking. Moscow: VIAM, 1983, 38 p.
12. Kulichkova S.I., Golovkov A.N., Kudinov I.I., Laptev A.S. Modern flaw detection materials, equipment and automation of the process of capillary non-destructive testing. Kontrol. Diagnostika, 2019, no. 2, pp. 52–57. DOI: 10.14489/td.2019.02.pp052-057.
13. Kudinov I.I., Golovkov A.N., Kulichkova S.I., Skorobogatko D.S. Evaluation of the effectiveness of the application of various methods of intensifying the process of capillary control using a domestic set of flaw detection materials. Defektoskopiya, 2019, no. 11, pp. 59–66. DOI: 10.1134/S0130308219110071.
14. Mubarakshin R.M. Optimization of technology and equipment for producting disks of gas turbine engines and units. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 11–18. DOI: 10.18577/2071-9140-2018-0-4-11-18.
15. State Standard 18442–80. Unbrakable control. capillary methods. Moscow: Publishing house of standards, 1987, 24 p.
16. State Standard R ISO 3452-3-2009. The control is non-destructive. Penetrating control. Part 3: Test specimens. Moscow: Standartinform, 2011, 12 p.
17. IndustryStandard1 90282–79. Product quality. Unbrakable control. capillary methods. Moscow: VIAM, 1979, 50 p.
18. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Estimation of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using domestic and foreign flaw detection liquids. Defektoskopiya, 2021, no. 1, pp. 64–71. DOI: 10.31857/SO130308221010073.
19. Chertishchev V.Yu. The estimation of the probability of defects detection by the acoustic methods, depending on their size in constructions from PCM for output control data in the form of binary. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 65–79. DOI: 10.18577/2071-9140-2018-0-3-65-79.
20. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: July 4, 2022). DOI: 10.18577/2713-0193-2021-0-2-115-122.
An urgent task for developers of heat-protective materials is to create methods for a comprehensive assessment of the complex of their key properties that reliably ensure their operation under operating conditions. The purpose of this study is to evaluate the properties of a layered heat-shielding material sufficient to simulate the propagation of a heat front through a sample under conditions of non-stationary heat flow. Work has been carried out to evaluate a set of thermophysical properties of the material sufficient to construct a model of the propagation of a thermal front through a sample under unilateral heating. A model of the passage of the heat front through the material has been created. The work on the numerical evaluation of the thermal conductivity coefficient and the heat transfer coefficient on the front sides of the multilayer sample was carried out.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Krainov A.Yu. Fundamentals of heat transfer. Heat transfer through a layer of matter: textbook. Tomsk: STT, 2016, 48 p.
4. Baikov V.I., Pavlyukevich N.V. Thermophysics: in 2 vols. Minsk: Institute of Heat and Mass Transfer named after A.V. Lykov NAS of Belarus, 2013. Vol. 1: Thermodynamics, statistical physics, physical kinetics, 400 p.
5. Korotkikh A.G. Thermal conductivity of materials: textbook. Tomsk: Tomsk Polytech. University, 2011, 97 p.
6. Tomak V.I., Burkov A.S., Rytsarev A.M., Tovstonog V.A. Experimental assessment of the thermophysical characteristics of high-temperature heat-insulating materials. Vestnik MGTU im. N.E. Baumana. Ser.: Natural sciences, 2020, no. 2, pp. 99–116. DOI: 10.18698/1812-3368-2020-2-99-116.
7. Barinov D.Ya., Marakhovskij P.S., Zuev A.V. Mathematical modeling of destruction of fiberglass-based thermal-protection material. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 71–78. DOI: 10.18577/2071-9140-2020-0-4-71-78.
8. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Evaluation of fire safety of polymeric materials for aviation purposes. Ed. E.N. Kablov. M.: VIAM, 2018, 408 p.
9. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Creation of the mathematical model and calculation of sample temperatures at tests on fire resistance. Trudy VIAM, 2017, no. 7 (55), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 7, 2022). DOI: 10.18577/2307-6046-2017-0-7-12-12.
10. Vorobev N.N., Barinov D.Ya., Zuev A.V., Pakhomkin S.I. Computational and experimental study of the effective thermal conductivity of fibrous materials. Trudy VIAM, 2021, no. 7 (101), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 07, 2022). DOI: 10.18577/2307-6046-2021-0-7-95-102.
11. Barinov D.Ya., Prosuntsov P.V. Modeling of heat transfer in the layer of decomposing material of the heat-shielding coating of the descent vehicle. Vestnik MGTU im. N.E. Baumana. Ser.: Mechanical engineering, 2016, no. 6, pp. 22–32. DOI: 10.18698/0236-3941-2016-6-22-32.
12. Belskikh G.N., Maiorov A.V. Development of highly efficient composite heat-shielding materials. Innovatsii, 2014, no. 9 (191), pp. 118–120.
13. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
14. Flexible heat and sound insulating fibrous material of low density: pat. 2641495 Rus. Federation, no. 2016142842; filed 01.11.16; publ. 17.01.18.
15. Fire-resistant layered sound and heat insulating material: pat. 2465145 Rus. Federation, no. 2011118705/05; filed11.05.11; publ. 27.10.12.
16. Heat Insulation System: pat. 5246759 USA, no. 702269; filed 17.05.91; publ. 21.09.93.
17. Lugovoy A.A., Babashov V.G., Karpov Yu.V. The thermal diffusivity of the gradientthermal insulation material. Trudy VIAM, 2014, no. 2, paper no. 02. Available at: http://viam-works.ru (accessed: March 2, 2022). DOI: 10.18577/2307-6046-2014-0-2-2-2.
18. Stand for the qualitative assessment of heat-insulating materials: pat. 156904 Rus. Federation, no. 2014138916; заявл. 25.09.14; опубл. 20.11.15.
19. Butakov V.V., Lugovoy A.A., Varrik N.M., Babashov V.G. Assessment of thermal conductivity of a layered highly porous thermal insulation material. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 1, 2022). DOI: 10.18577/2713-0193-2022-0-1-129-142.
20. Butakov V.V., Shavnev A.A., Lugovoy A.A., Varrik N.M., Babashov V.G. An approach to the construction of a mathematical model of the passage of a heat front through a sample of a heat-shielding material under conditions of an unsteady heat flow. Trudy VIAM, 2022, no. 6 (112), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 1, 2022). DOI: 10.18577/2307-6046-2002-0-6-127-137.
The results of the production of standard samples of the composition of alloys on various bases for spectral analysis are given, as well as a list of standard samples developed over the past 10 years. The technologies for manufacturing standard samples homogeneous in chemical composition are shown, which provide the requirements for the material of standard samples. The capabilities of the National Research Center "Kurchatov Institute" - VIAM for the development and production of reference materials are presented, directions for the development of the production of reference materials are indicated.
2. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of material diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
3. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, pp. 97–107.
4. Otto M. Modern methods of analytical chemistry: in 2 vols. Moscow: Technosfera, 2003, vol. I, 416 p.
5. On ensuring the uniformity of measurements: Feder. Law No. 102-FZ of June 26, 2008. Rossiyskaya Gazeta, 2010, no. 112 (5191), May 26.
6. Karachevtsev F.N., Letov A.F., Protsenko O.M., Yakimova M.S. Development and application of certified reference materials of airborne advanced alloys. Trudy VIAM, 2016, no. 10, paper no. 8. Available at: http://www.viam-works.ru (accessed: December 21, 2021). DOI: 10.18577/2307-6046-2016-0-10-8-8.
7. Osintseva E.V. Tasks and functions of the Scientific Methodological Center of the State Service of Reference Materials of the Composition and Properties of Substances and Materials. Standartnye obraztsy, 2012, no. 3, pp. 15–40.
8. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 12, 2022). DOI: 10.18577/2071-9140-2022-0-1-30-40.
9. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
10. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
11. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
12. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 11, 2022). DOI: 10.18577/2071-9140-2021-0-3-11-18.
13. Alishin M.I., Knyazev A.E. Production of metal-powder high-purity titanium alloy compositions by induction gas atomization for application in additive manufacturing. Trudy VIAM, 2017, no. 11 (59), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 21, 2021). DOI: 10.18577/2307-6046-2017-0-11-5-5.
14. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
15. Karachevtsev F.N., Eroshkin S.G., Mosolov A.N. Standard sample for spectral analysis of aluminum alloy VSDP 16 // Etalony. Standartnyye obraztsy, 2022, vol. 18, no. 1, pp. 39–58. DOI: 10.20915/2077-1177-2022-18-1-39-58.
16. Yakimovich P.V., Alekseev A.V. Determination of impurities in magnesium alloys by inductively coupled plasma mass spectrometry. Izmeritelnaya tekhnika, 2019, no. 8, pp. 68–72.
17. Alekseev A.V., Yakimovich P.V., Proskurnina E.V. Determination of Si, B, Ca, Mg, Ba, and Zr in complex nickel alloys by ICP-MS. Vestnik Moskovskogo universiteta. Ser. 2: Chemistry, 2020, vol. 61, no. 1, pp. 27–33.
18. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
Heat-resistant alloys and steels
Skugorev A.V., Melnikova D.A., Stolyankov Yu.V., Yaroshenko A.S. Heat resistance and technological plasticity of an alloy of the Fe–Cr–Al–Y system for honeycomb seals in the flow path of gas turbine engines
Morozova L.V., Grigorenko V.B., Terekhin A.M. Investigation of the causes of cracks in welded joints of parts made of alloy HN62VMYUT-VD
Polymer materials
Shosheva A.L. Bismaleimide resins (review). Part 1
Composite materials
Kurnosov A.O., Petrova A.P., Slavin A.V., Vavilova M.I., Kurshev Е.V. Comparison of the properties of glass-reinforced plastics based on polyimide binders of solution and melt type
Kulagina G.S., Zhelezina G.F., Shuldeshova P.M., Kurshev E.V. Structure and physical-mechanical properties of a new generation organoplastic based on Rusar-NT brand aramid fiber fabric and melt binder
Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets
Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B.
Sevostyanov N.V., Burkovskaya N.P. Modern aspects tribotechnical materials science of heavy-loaded dry friction units the development (review)
Protective and functional
coatings
Kashin D.S., Azarovskiy E.N. Powder chromium plating and cromium aluminizing of nickel alloy surface
Druzhnova Ya.S. Development of methods for thermal spraying of hardening tires based on tungsten and chromium carbides (review)
Material tests
Kulichkova S.I., Golovkov A.N., Kudinov I.I., Skorobogatko D.S. Evaluation of the effectiveness of various methods of applying powder developers during capillary control
Butakov V.V., Lugovoy A.A., Varrik N.M.,Babashov V.G. Simulation of the propagation of a heat front through a sample of a multilayer thermal insulation material under conditions of non-stationary heat flow
Karachevtsev F.N., Eroshkin S.G., Gorbovets M.A. Development of the production of standard samples of the composition of alloys at the National Research Center «Kurchatov Institute» – VIAM