Articles
Features of the supports structures’ processing for parts made of a metal-powder composition based on the Co–Cr–Ni–W–Ta system, manufactured by selective laser melting method, have been studied. As the main type of supports used for printing various types of parts, the block type was selected for the research. The analysis of advanced technological parameters of printing support structures, including delays of the laser beam movement when changing the trajectory, the beginning and end of the tracks, the transition between the tracks were held. Influence of the parameters on the quality of manufacturing supports was determined and optimal parameters for printing supports were selected.
2. Kablov E.N. The dominant feature of the national technology initiative. Problems of accelerating the development of additive technologies in Russia. Metally Evrazii, 2017, no. 3, pp. 2–6.
3. Zlenko M.A., Popovich A.A., Mutylina I.N. Additive technologists in mechanical engineering. St. Petersburg: Publ. house of Polytech. University, 2013, 222 p.
4. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Trudy VIAM, 2019, no. 3 (75), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 28, 2021). DOI: 10.18577/2307-6046-2019-0-3-3-13.
5. Kruth J.-P., Badrossamay M., Yasa E. et al. Part and material properties in selective laser melting of metals. Proceedings of the 16th International Symposium of Electromachining, 2010, pp. 3–14.
6. Mercelis P., Kruth J.-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2006, vol. 12, no. 5, pp. 254–265.
7. Karpov I.D., Em V.T., Mazalov P.B., Sulyanova E.A. Characterisation of residual stresses by neutron diffraction at the research reactor IR-8 of NRC «Kurchatov Institute». Journal of Physics: Conference Series, 2018, vol. 1109, art. 012046. DOI: 10.1088/1742-6596/1109/1/012046.
8. Yadroitsev I., Smurov I. Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Physics Procedia, 2010, vol. 5, pp. 551–560.
9. Mumtaz K., Vora P., Hopkinson N. A method to eliminate anchors/supports from directly laser melted metal powder bed processes. Solid Freeform Fabrication Proceedings, 2011, pp. 273–275.
10. Yasa E., Deckers J., Kruth J. The investigation of the influence of laser re- melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyping Journal, 2011, vol. 17, no. 5, pp. 312–327.
11. Deshpande S. A Review on Appropriateness of Cobalt based Alloys and Super Alloys for Machining. International Journal of Engineering Research & Technology, 2019, vol. 8, is. 01, pp. 267–269.
12. Superalloys II. Heat-resistant materials for aerospace and industrial installations. Ed. Ch.T. Sims, N.S. Stolloff, W.C. Hagel. Moscow: Metallurgy, 1995, book 1, 384 p.
13. Mazalov P.B., Suhov D.I., Sulyanova E.A., Mazalov I.S. Heat-resistant cobalt-based alloys. Aviation materials and technologies, 2021, no. 3 (64), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 2, 2021). DOI: 10.18577/2713-0193-2021-0-2-3-10.
14. Mazalov I.S., Mazalov P.B., Suhov D.I., Sulyanova E.A. Influence of hot isostatic pressing parameters on structure and properties of cobalt-based alloys obtained by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 2, 2021). DOI: 10.18577/2713-0193-2021-0-2-3-14.
15. Aslanian G.G., Sukhov D.I., Mazalov PB, Sulyanova E.A. Fractographic study of Co–Cr–Ni–W–Ta alloy samples obtained by selective laser melting. Trudy VIAM, 2019, no. 4 (76), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 28, 2021). DOI: 10.18577/2307-6046-2019-0-4-3-10.
16. Coutsoradis D., Davin A., Lamberigts M. Cobalt-based Superalloys for Applications in Gas Turbines. Materials Science and Engineering, 1987, vol. 88, pp. 11–19.
17. Deshpande S. A Review on Appropriateness of Cobalt based Alloys and Super Alloys for Machining. International Journal of Engineering Research & Technology, 2019, vol. 8. Is. 01, pp. 267–269.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The work is devoted to the study of the processes of hot and cold plastic deformation of hard-to-deform shape memory alloys of the Ni–Ti–Nb and Ni–Ti–Nb–Zr systems. The optimal modes of deformation treatment of these alloys, which ensure the production of semi-finished products without surface defects, have been determined. Investigations of the mechanical properties of hot-deformed and cold-deformed semi-finished products from alloys of the Ni–Ti–Nb and Ni–Ti–Nb–Zr systems have been carried out. It is shown that the selected treatment modes of these alloys provide a high level of mechanical properties of materials.
2. Kablov E.N. Marketing of materials science, aircraft construction and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5-6, pp. 40–44.
3. Shcherbakov A.I., Mosolov A.N., Kalitsev V.A. Production of beryllium-containing steel 32Kh13N6K3M2BDLT-VI (VNS32-VI). Materialovedenie, 2017, no. 4, pp. 17–21.
4. Denisova V.S., Malinina G.A., Vlasova O.V., Vinogradova A.Yu. The influence of silicon tetraboride additives on properties of heat-resistant coatings for nickel alloys protection. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 68–73. DOI: 10.18577/2071-9140-2019-0-2-68-73.
5. Rosenenkova V.A., Solntsev S.S., Mironova N.A., Gavrilov S.V. Glass-ceramic composite protective technological coatings for thermomechanical processing of intermetallic alloys. Steklo i keramika, 2016, no. 10, pp. 32–36.
6. Solntsev S.S., Denisova V.S. Reaction-hardened composite coatings and glass. Steklo i keramika, 2019, no. 4, pp. 9–14.
7. Ponomarenko D.A., Letnikov M.N., Skugorev A.V., Sidorov S.A. The use of specialized isothermal presses for forging blanks of turbine disks from hard-to-deform heat-resistant alloys. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2018, no. 3, pp. 19–25.
8. Bakradze M.M., Lomberg B.S., Sidorov S.A., Bubnov M.V. Method of large-sized deformed turbine discs manufacturing from EK151-ID industrial ingots with limited diameter (320 mm). Trudy VIAM, 2017, no. 6 (54), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 18, 2021). DOI: 10.18577/2307-6046-2017-0-6-2-2.
9. Moiseev N.V., Nekrasov B.R., Letnikova E.Yu., Vydumkina S.V. Stamping materials for high-temperature isothermal deformation in air. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2017, no. 7, pp. 25–30.
10. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
11. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-saving technologies for the smelting of promising casting and wrought superheat-resistant alloys taking into account the processing of all types of waste. Elektrometallurgiya, 2016, no. 9, pp. 30–41.
12. Sidorov V.V., Min P.G., Kablov D.E. Desulfurization of monocrystalline heat-resistant nickel alloys during melting in vacuum. Metallurg, 2017, no. 5, pp. 57–62.
13. Sidorov V.V., Kablov D.E., Min P.G., Vadeev V.E. Refining of complex alloyed nickel alloy ZhS32-VI from silicon and phosphorus impurities by means of unidirectional solidification of the melt at low speeds of movement of the crystallization front. Tekhnologiya metallov, 2016, no. 3, pp. 2–7.
14. Shpagin A.S., Kucheryaev V.V., Bubnov M.V. Computer simulation of thermomechanical processing of heat-resistant nickel alloys VZh175 and EP742. Trudy VIAM, 2019, No. 8 (80), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 18, 2021). DOI: 10.18577/2307-6046-2019-0-8-27-35.
15. Bakradze M.M., Skugorev A.V., Kucheryayev V.V., Bubnov M.V. Computer modeling of technological metal forming processes as effective instrument for development of new technologies. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 175–185. DOI: 10.18577/2071-9140-2017-0-S-175-185.
16. Gladkov Yu.A., Kanevsky S.S. Modeling of extrusion of aluminum profiles in the new version of the QForm Extrusion VX program: a joint deformation problem. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2016, no. 11, pp. 41–48.
17. Borovkov D.V. Structure, martensitic transformations and functional properties of shape memory alloys based on Ti – Ni – Nb with wide martensitic hysteresis: thesis, Cand. tech. sciences. Moscow, 2006, 122 p.
The development of technology for the manufacture and production of reference materials (CRMs) of the composition of the magnesium alloy ML19 has been carried out. Manufactured material for CRM pipes with a diameter of 40 mm and a height of 30 mm. Tests of the material for CRM have been carried out in order to validate it. The metrological characteristics of the CRM were established, a metrological examination was carried out, and the conclusion on the verification of the CRM test results for the composition of the ML19 magnesium alloy.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare-earth elements are materials for modern and future high technologies. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 3–10.
3. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
4. Karachevtsev F.N., Eroshkin S.G., Mos-tayev I.V., Akinina M.V., Slavin А.V. Development of standard samples of magnesium alloys VML20 and VMD16. Trudy VIAM, 2021, no. 5 (99), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 16, 2021). DOI: 10.18577/2307-6046-2021-0-5-39-47.
5. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
6. Lutsenko A.N., Perov N.S., Chabina E.B. The new stages of development of Testing Center. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
7. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of material diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I. pp. 5–12.
8. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, pp. 97–107.
9. Otto M. Modern methods of analytical chemistry: in 2 vols. Moscow: Technosfera, 2003, vol. 1. 416 p.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Fariñas J.C., Rucandio I., Pomares-Alfonso M.S. et al. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry . Talanta, 2016, no. 154, pp. 53–62. DOI: 10.1016/j.talanta.2016.03.047.
12. Dvoretskov R.M., Baranovskaya V.B., Karachevtsev F.N., Letov A.F. Determination of rare earth metals in magnesium alloys by inductively coupled plasma atomic emission spectrometry. Izmeritelnaya tekhnika, 2019, no. 4, pp. 62–66.
13. State Standard 7728–79. Magnesium alloys. Methods of spectral analysis. Moscow: Publishing house of standards, 2004, 11 p.
14. RMG 53–2002. Standard samples. Assessment of metrological characteristics using standards and exemplary measuring instruments. Moscow: Publishing house of standards, 2004, 8 p.
15. State Standard 8.315–2019. Standard samples of the composition and properties of substances and materials. Basic provisions. Moscow: Standartinform, 2019, 33 p.
The possibility of replacing acetic anhydride with phthalic anhydride when determining the hydroxyl groups contents in polyester 24K is discussed. Titrimetric analysis method obtained data on the content of these functional groups, consistent with previously analyzes. The reaction completeness was controlled by infrared spectroscopy, the results of which report on the successful process flow. Additionally, the reactivity of the product with an expired shelf life was checked.
2. Kablov E.N. Chemistry in Aviation Materials Science. Russian Journal of General Chemistry, 2011, vol. 81, no. 5. P. 967–969.
3. State standart 22234–76. Polyester 24K. Specifications. Moscow: Publishing house of standards, 1989, 10 p.
4. Kablov E.N. Aviation materials science: results and prospects. Vestnik RAN, 2002, vol. 72, no. 1, pp. 3–12.
5. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
6. Epoxypolyester paint composition: pat. 2472830 Rus. Federation, no. 2011140686/05; filed 07.10.11; publ. 20.01.13.
7. Polymer radiotransparent composition: pat. 2570446 Rus. Federation, no. 2014137816/05; filed 18.09.14; publ. 10.12.15.
8. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
9. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
10. Perov N.S. Design of polymer materials on the molecular principles. I. The development of polymer materials with additional mechanisms of dissipation of mechanical energy at low temperatures. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 50–55. DOI: 10.18577/2071-9140-2017-0-3-50-55.
11. Yakovlev A.D. Powder paints. Leningrad: Khimiya, 1987, 216 p.
12. State Standard 17555–72. Plastics. Methods for determining the content of hydroxyl groups in epoxy resins and epoxidized compounds. Moscow: Publishing house of standards, 1979, 11 p.
13. Nakanishi K. Infrared spectra and structure of organic compounds. Moscow: Mir, 1965, 219 p.
14. Siggia S. Instrumental methods for the analysis of functional groups of organic compounds. Moscow: Mir, 1974, 464 p.
15. Tarasevich B.N. IR spectra of the main classes of organic compounds: reference materials. Moscow: Lomonosov Moscow State University, 2012, 55 p.
16. Kline G. Analytical chemistry of polymers. Moscow: Publ. of foreign literature, 1963, vol. 1, 592 p.
17. Kline B.J., Beckman E.J., Russell A.J. One-step biocatalytic synthesis of linear polyesters with pendant hydroxyl groups. Journal of the American chemical society, 1998, vol. 120, no. 37, pp. 9475–9480. DOI: 10.1021/ja9808907.
18. State Standard 25261–82. Polyethers are simple and complex for polyurethanes. Method for determining the hydroxyl number. Moscow: Publishing house of standards, 1982, 5 p.
19. ASTM D4274-11. Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols. ASTM International, 2011, 9 p.
Discusses the process of obtaining spherical granules of a metal composite material based on molybdenum with an initial fraction of 40‒63 microns. The results obtained during the research showed the fundamental possibility of spheroidization of granules of high-temperature metal composite materials based on refractory metals reinforced with particles of ceramic compounds. However, the need for a more thorough study and selection of spheroidization modes to minimize the formation of satellites on granules during processing in an electric arc discharge plasma is revealed.
2. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
3. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Svetlov I.L. High-temperature Nb – Si-composites. Materialovedenie, 2010, no. 9, pp. 29–38.
6. Svetlov I.L. High-temperature Nb – Si-composites (end). Materialovedenie, 2010, no. 10, pp. 18–27.
7. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
8. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
9. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
10. Ershova I.O., Fedotenkova O.B. Powder composite materials based on molybdenum. Problemy chernoy metallurgii i materialovedeniya, 2015, no. 1, pp. 93–98.
11. Titov D.D., Kargin Yu.F., Lysenkov A.C. et al. Influence of WSi2 content and magnesium aluminosilicate additives on oxidation and strength properties of MoSi2–WSi2 composites. Materialovedenie, 2012, no. 7, pp. 45–49.
12. Klimkina A.A. Study of the structure and properties of molybdenum alloys obtained by the methods of additive technologies. XLVII Gagarin readings: collection of articles. Proceedings of Mezhdunar. youth scientific. conf. Moscow, 2021, p. 81.
13. Dubinkin D.M., Ismailova Sh.Ya., Iskandarova E.I., Usachenko O.I. Current state, development paths, areas of application of selective laser sintering (SLS). Innovations in information technologies, mechanical engineering and motor transport: materials III Intern. scientific-practical conf. Kemerovo: Kuzbass state tech. un-t them T.F. Gorbachev, 2019, pp. 174–177.
14. Zalessky V.G., Pobol I.L., Bakinovsky A.A., Gubko A.D. Obtaining metal products using electron-beam additive technologies. Izvestiya Natsionalnoy akademii nauk Belarusi, A series of physical and technical sciences, 2018, vol. 63, no. 2, pp. 169–180.
15. Rodionov A.I., Efimochkin I.Yu., Samokhin A.V., Sinayskiy M.A. The influence of the spheroidization process on the fractional composition and morphology of alloy VKNA-4u in a particle-reinforced sheath Al2O3–Y2O3. Trudy VIAM, 2019, no. 11 (83), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 12, 2021). DOI: 10.18577/2307-6046-2019-0-11-12-21.
Provides an overview of scientific and technical literature in the field of application of polymer composite materials in the automotive industry. The paper presents the history of the issue, as well as current trends in the field of materials, technologies and the technical solutions used to solve the assigned tasks. Taking into account world experience. examples are given and the prospects of using polymer composite materials and technologies for their processing developed for the aerospace industry in automotive industry are shown.
2. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Investigation of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9.
3. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concen-tration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
4. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
5. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
6. Kuznetsova V.A., Marchenko S.A., Emelya- nov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and harden-ers on the operational properties of paint coatings. Aviation materials and technology, 2021. no. 1 (62). paper no. 07. Available at: http://www.journal.viam.ru (accessed: 10, 2021). DOI: 10.18577/2713-0193-2021-0-1-71-79.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Kara-vaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: September 10, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
8. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
9. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Composite materials in automotive industry (review). Trudy VIAM, 2017, no. 6 (54), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2017-0-6-7-7.
10. Borshchev A.V., Gusev Y.A. Development and implementation of PCM in automotive industry, varieties of HP-RTM processes. Aviacionnye materialy i tehnologii, 2014, no. 4, pp. 48–52. DOI: 10.18577/2071-9140-2014-0-4-48-52.
11. Doriomedov M.S. Russian and world market of polymer composites (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2020-67-29-37.
12. Komornicki J., Bax L., Vasiliadis H., Magallon I., Ong K. Polymer composites for automotive sustainability. Brussels: SusChem (European technology platform for sustainable chemistry), 2017, 56 p. Available at: http://www.suschem.org/publications (accessed: September 10, 2021).
13. Zauer M. World market of carbon fibers and composites. Polymer materials, 2020, no. 10. Available at: https://polymerbranch.com/d2d2c6e2445eef2bcff6bf0fdf69846c/f90e3aea9d69d3da52e7d874caca9cea/magazineclause.pdf (accessed: September 10, 2021).
14. Composite Materials Market for Automotive by Material Type (PMC, MMC, & CMC), Application & their Sub-Components (Structural, Powertrain, Interior, Exterior, & Others), Vehicle Type (PC, LCV, HCV, & Rolling Stock), & by Region-Global Forecast to 2020. Market research report. Oct., 2015. Available at: https://www.marketsandmarkets.com/Market-Reports/automotive-composite-materials-market-6114278.html (accessed: September 10, 2021).
15. Arutyunyan G.A., Kartashov A.B. Analysis of the history of development and relevance of the use of load-bearing systems made of composite materials. Zhurnal avtomobilnykh inzhenerov, 2015, no. 5, pp. 60–66.
16. Automotive component. Available at: https://www.torayca.com/en/lineup/composites/ com_011.html (accessed: September 10, 2021).
17. The BMW i8 Production. BMW Medien-information, 2014, vol. 08, pp. 1–8. Available at: https://www.press.bmwgroup.com (accessed: September 10, 2021).
18. Schlarb A.K. Loesungspotenziale fuer die Automobilindustrie. Kunststoffe, 2011, vol. 7, pp. 82–89.
19. Qinglong AN, Jie Chen, Weiwei Ming, Ming Chen. Machining of SiC ceramic matrix composites: A review. Chinese Journal of Aeronautics.,2021, vol. 34 (4), pp. 540–567.
20. World première: Braided carbon wheels. Available at: https://newsroom.porsche.com/en/
products/porsche-carbon-wheels-braided-world-premiere-911-turbo-s-exclusive-series-14064.html (accessed: September 10, 2021).
21. Marsh G. Composites conquer with carbon supercars. Reinforced Plastics, 2006, vol. 50, no. 1, pp. 20–24.
22. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
23. VehiclesCars. Available at: https://www.torayca.com/en/activity/act_006.html (accessed: September 10, 2021).
24. Technological materials. Available at: https://www.lamborghini.com/ru (accessed: September 10, 2021).
25. Doreen F., Trinkvalter B., Wolfsberger K., Zwicklhuber P. The concept of a modular table for the car of the future. Polimernye materialy, 2021, no. 2. Available at: https://polymerbranch.com/7f6caf1f0ba788cd7953d817724c2b6e/3524ace8b7b3c240bbb74b1374c1a9c7/magazineclause.pdf (accessed: September 10, 2021).
26. Composite material for automobile spoiler and preparation method thereof: pat. CN 112731173А, no. 202110125113.4A; filed 29.01.21; publ. 25.05.21.
27. Mit Kostensenken wächst deleichten. VDI-Nachr, 2012, no. 21, pp. 8.
28. Advanced in the bonnet moving as fast as those under it. European Tool and Mould Making, 2013, vol. 15, no. 10, pp. 38–39.
29. Production method for automobile roof made of fiber reinforced composite material: pat. CN 102922621A, no. 201210484676.3A; filed 23.11.12; publ. 13.02.13.
30. Design method of automobile carbon fiber reinforced composite reinforcement: pat. CN 110781603А, no. 201911069730.6A; filed 05.11.19; publ. 11.02.20.
31. Carbon fiber composite material automobile front floor, manufacturing method and automobile: pat. CN 111516761А, no. 202010313244.0A; filed 20.04.20; publ. 11.08.20.
32. Othman R., Ismail N.I., Ab Hamid Pahmi M.A. et al. Application of carbon fiber reinforced plastics in automotive industry: a review. Journal of Mechanical Manufacturing, 2018, vol. 1, pp. 144–154.
33. Hexcel Composite Materials. Automotive Product Focus. Available at: https://www.hexcel.com/Markets/automotivestructuralparts (accessed: September 10, 2021).
34. Preparation method of automobile carbon fiber composite material B column reinforcement: pat. CN 111169039A, no. 202010027167.2A; filed 10.01.20; publ. 19.05.20.
35. Benzoxazine combined material new energy automobile lightweight battery box lower box body: pat. CN 210224090U, no. 201920155754.2U; filed 29.01.19; publ. 31.03.20.
36. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Phenolformaldehyde binding new generation for interior materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 265–272.
37. Manufacturing method of automobile engine cover made of carbon filer composite materials: pat. CN 105383070A, no. 201510660669.8А; filed 12.10.15; publ. 09.03.16.
38. New type automobile gasoline tank and forming method thereof: pat. CN 105253011A, no. 201510756346.9A; filed 06.11.15; publ. 20.01.16.
39. Shielding device, passenger compartment, motor vehicle and shielding method: pat. DE 102015201710A1, no. 102015201710.9A; filed 02.02.15; publ. 04.08.16.
40. High-strength lightweight new energy automobile battery shell and production process thereof: pat. CN 111224021A, no. 202010110909.8A; filed 21.02.20; publ. 02.06.20.
41. Backplate and electric automobile at bottom of carbon-fibre composite battery: pat. CN 111301184А, no. 202010201570.2A; filed 20.03.20; publ. 19.06.20.
42. Dream patent. Available at: https://klaxonnew.ru/patent-na-mechtu-34329-9872 (accessed: September 10, 2021).
43. Jin Z., Khunlavit Ch., Shuai H. et al. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials and Design, 2012, no. 36pp. 75–80.
44. Li R.I., Psarev D.N., Bykonya A.N., Kiba M.R. Mathematical model of thermo-radiation treatment of polymer coatings during restoration of car body parts // Klei. Germetiki. Tekhnologii, 2021, no. 2, pp. 29–35.
45. Li R.I., Rizaeva Yu.N., Psarev D.N., Bykonya A.N., Kiba M.R. Method of calculating the parameters of the installation of thermo-radiation treatment of polymer coatings during the restoration of car body parts // Klei. Germetiki. Tekhnologii, 2021, no. 5, pp. 38–43.
46. Strategy for the development of the automotive industry of the Russian Federation for the period up to 2025, approved by the order of the Government of the Russian Federation dated April 28, 2018 No. 831-r. Available at: http://government.ru/ docs/32547/ (accessed: September 10, 2021).
47. Kablov E.N. Trends and guidelines for innovative development in Russia: collection of articles. inform. materials. 3rd ed., Rev. and add. Moscow: VIAM, 2015, 720 p.
48. Sokolov I.I., Raskutin A.E. Carbon plastics and fibreglasses of new generation. Trudy VIAM, 2013, no. 4, paper no. 09. Available at: http://www.viam-works.ru (accessed: September 10, 2021).
49. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry. Trudy VIAM, 2015, no. 8, paper no. 08. Available at: http://viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2015-0-8-8-8.
50. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2021-0-1-43-53.
51. Our history. Available at: https://viam.ru/history_1 (accessed: September 10, 2021).
52. Our vector of tasks and accomplishments is the future. Available at: https://viam.ru/interview/4343 (accessed: September 10, 2021).
53. Evdokimov A.A., Raskutin A.E., Mishkin S.I., Mikhaldykin E.S. Arched bridges with the use of carbon-fiber arched elements. Konstruktsii iz kompozitsionnykh materialov, 2019, no. 2, pp. 22–29.
54. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Technologies and the main stages of construction of the arch bridge first in Russia from composite materials. Trudy VIAM, 2017, no. 6 (54), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 10, 2021). DOI: 10.18577/2307-6046-2017-0-6-5-5.
55. Automobile opening part and manufacturing method thereof: pat. CN 103552610A, no. 201310582706.9A; filed 19.11.13; publ. 05.02.14.
Today, the wings of Boeing 787, Airbus A350 aircraft are made by automated laying out of prepregs with subsequent autoclave molding. Boeing and Airbus plan to replace the 737 and A320 aircraft in the coming years, and new materials and technologies need to be developed to ensure the production of these aircraft in the amount of 100 pieces per month. To introduce new processes and materials, research is being carried out on the selection of a binder, reinforcing fillers, development of the vacuum impregnation process, curing and automation in order to increase reliability, speed up the process and reduce cycle time.
2. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFBR, 2017, no. 3, pp. 97–105.
4. Kablov E.N. VIAM: New generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8. pp. 54–58.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Kara-vaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: February 19, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
7. Doneckij K.I., Karavaev R.Yu., Raskutin A.E., Panina N.N. Properties of carbon fiber and fiberglass on the basis of braiding preforms. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 54–59. DOI: 10.18577/2071-9140-2016-0-4-54-59.
8. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
9. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
10. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience in the use of vacuum infusion technologies in the production of PCM structures. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4 (3). pp. 344–350.
11. How superlight parts for aircraft and missiles are made in Russia. Available at: https://ria.ru/20190522/1553632826.html (accessed: September 8, 2021).
12. A wing made of Russian composite materials was installed on the MS-21-300 aircraft. Composite World, 2021, no. 3, pp. 7.
13. "Wing of Tomorrow": FACC and Airbus develop wings of the future. Available at: https://newsroom.aviator.aero/wing-of-tomorrow-facc-and-airbus-develop-wings-of-the-future (acces-sed: September 10, 2021).
14. GKN Aerospace Manufactures First Parts for Wing of Tomorrow Program. Available at: https://www.compositesworld.com/news/gkn-aerospace-manufactures-first-demonstrator-parts-for-wing-of-tomorrow-program (accessed: September 10, 2021).
15. Update: Lower wing skin, Wing of Tomorrow. Available at: https://www.compositesworld.com/ articles/update-lower-wing-skin-wing-of-tomorrow (accessed: September 13, 2021).
16. Large, high-volume, infused composite structures on the aerospace horizon. Available at: https://www.compositesworld.com/articles/large-high-volume-infused-composite-structures-on-the-aerospace-horizon (accessed: September 7, 2021).
17. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 13, 2021). DOI: 10.18577/2713-0193-2021-0-3-105-106.
18. Timoshkov P.N., Goncharov V.A., Grigoreva L.N., Usacheva M.N., Hrulkov A.V. Robotic laying out of prepregs as an alternative to technology to ATL and AFP (review). Trudy VIAM, 2021, no. 3 (97), paper no. 08. Available at: http://www.viam-works.ru (accessed: September 13, 2021). DOI: 10.18577/2307-6046-2021-0-3-87-98.
The article presents a scientific and technical literature review of copper-based hybrid composite materials (CM). Common combinations of reinforcing components for the manufacture of hybrid composite materials are presented. The main methods for fabricating copper-based hybrid CMs are briefly mentioned. The influence of a combination of various types of reinforcing components and their volume or mass content on the mechanical, thermophysical and tribological properties of hybrid CMs based on copper is considered. A comparison of the characteristics of hybrid CMs with matrix alloys or metallic CMs of similar systems is given.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: June 2, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
5. Karashaev M.M., Bazyleva O.A., Shesta- kov A.V., Ovsepyan S.V. Technological princi-ples for the development of metal composite materials reinforced with oxide and intermetallic particles. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 29–36. DOI:10.18577/2071-9140-2020-0-3-29-36.
6. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
7. Serpova V.M., Sidorov D.V., Nyafkin A.N., Kurbatkina E.I. Hybrid metal matrix compo-sites based on aluminum alloys (review). Trudy VIAM, 2021, no. 3 (97), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 2, 2021). DOI: 10.18577/2307-6046-2021-0-3-68-77.
8. Chawla N., Chawla K.K. Metal Matrix Composites. New York: Springer Sience + Business Media, Inc., 2006, pp. 351–379.
9. Chu K., Jia C.C., Jiang L.K., Li W.S. Thermal conductivity enhancement in carbon nanotube/Cu–Ti composites. Applied Physics A, 2013, vol. 110, pp. 269–273. DOI: 10.1007/s00339-012-7450-0.
10. Dong S.J., Zhou Y., Shi Y.W., Chang B.H. Formation of a TiB2-Reinforced Copper-Based Composite by Mechanical Alloying and Hot Pressing. Metallurgical and materials transactions A, 2002, vol. 33A, pp. 1275–1280. DOI: 10.1007/s11661-002-0228-9.
11. Jia L., Yang M., Lu Z. et al. Microstructure evolution and reaction behavior of Cu–Ni alloy and B4C powder system. Progress in Natural Science: Materials International, 2021, vol. 31, pp. 55–62. DOI: 10.1016/j.pnsc.2020.12.002.
12. Zhang X., Shi C., Liu E. In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility. Composites. Part A: Applied Science and Manufacturing, 2017, vol. 103, pp. 178–187. DOI: 10.1016/j.compositesa.2017.
13. Thankachan T., Prakash K., Kavimani S. Investigating the effects of hybrid reinforcement particles on the microstructural, mechanical and tribological properties of friction stir processed copper surface composites. Composites, Part B: Engineering, 2019, vol. 174. DOI: 10.1016/j.compositesb.2019.107057.
14. Liang S., Li W., Jiang Y. et al. Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles. Journal of Alloys and Compounds, 2019, vol. 797, pp. 589–594. DOI: 10.1016/j.jallcom.2019.05.1.
15. Akbarpour M.R., Salahi E., Alikhani H.F. et al. Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes. Materials Science and Engineering: A, 2013, vol. 572, pp. 83–90. DOI: 10.1016/j.msea.2013.02.039.
16. Chen X., Tao J., Liu Y. et al. Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube-graphene hybrids. Carbon, 2019, vol. 146, pp. 736–755. DOI: 10.1016/j.carbon.2019.02.048.
17. Chu K., Wang F., Li Y. et al. Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on grapheme. Composites, Part A: Applied Science and Manufacturing, 2018, vol. 109, pp. 267–279. DOI: 10.1016/j.compositesa.2018.
18. Luo H., Sui Y., Qi J. et al. Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Materials Letters, 2017, vol. 196, pp. 354–357. DOI: 10.1016/j.matlet.2017.03.08.
19. Zhang X., Dong P., Zhang B. et al. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles. Journal of Alloys and Compounds, 2016, vol. 671, pp. 465–472. DOI: 10.1016/j.jallcom.2016.02.06.
In present work electrical insulating coatings based on BaO–B2O3–SiO2 glass-forming system for use in electronic circuits on a metal substrate were investigated. The synthesized compositions in terms of chemical resistance belong to the class of stabilized glasses. The tests were showed that the experimental compositions significantly exceed the known coatings in terms of dielectric properties. Positive data on the stability of dielectric properties and on the quality of the defect-free coating layer were obtained.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technical development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences. 2020, vol. 90, no. 2, pp. 225–228.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 65, no. 6, pp. 846–855.
5. Nemilov S.V. Optical materials science. Optical glasses: textbook. St. Petersburg: SPbGU ITMO, 2011, 175 p.
6. Appen A.A. Glass chemistry. Leningrad: Khimiya, 1974, 352 p.
7. Denisova V.S., Vlasova O.V., Malinina G.A. Effect of the addition of silicon tetraboride on the thermal stability of reaction cured coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 50–55. DOI: 10.18577 / 2071-9140-2020-0-2-50-55.
8. Belyachenkov I.O., Schegoleva N.E., Chainikova A.S., Vaganova M.L., Shavnev A.A. The influ-ence of sintering and modifying additives on the sintering process and the properties of silicon nitride ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 70–78. DOI: 10.18577/2071-9140-2020-0-1-70-78.
9. Barinov D.Ya., Marahovskiy P.S., Maltceva E.Yu., Besprozvanniy E.D., Aliasova E.E. Research of thermal conductivity of printed circuit boards based on aluminum substrate and alumina dielectric. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 43–48. DOI: 10.18577/2071-9140-2019-0-1-43-48.
10. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
11. Shilova O.A., Polyakova I.G., Petrova I.V. et al. Synthesis and study of film-forming compositions based on silica sols and dispersed oxides for obtaining glass-ceramic electrical insulating coatings. Fizika i khimiya stekla, 2015, vol. 41, no. 6, pp. 819–829.
12. Efimova L.N., Ivanov N.V., Shilova O.A. Electrical insulating glass-ceramic coating on a small-section nichrome wire. Collection of materials II scientific-technical. conf. with int. participation "Nanoindustry and technologies of the future" for students, graduate students and young scientists. St. Petersburg, 2014, pp. 74–76.
13. Structural transformations in glasses at elevated temperatures. Ed. N.A.. Toropova, E.A. Porai-Kosice. Moscow; Leningrad: Nauka, 1965, 514 p.
14. Shelby J. Structure, properties and technology of glass: trans. from English Moscow: Mir, 2006, 288 p.
15. Krishnan A.T., Bae S., Fonash S.J. Low temperature microcrystalline silicon thin film resistors on glass substrates. Solid-State Electronics, 2000, vol. 44, no. 7, pp. 1163–1168.
16. Bao R., Busta C. M., Su X. et al. Microstructures, phases, and properties of low melting BaO–B2O3–ZnO glass films prepared by pulsed laser deposition. Journal of Non-Crystalline Solids, 2013, vol. 371, pp. 28–32.
17. Technology of enamel and protective coatings: textbook. Ed. L.L. Bragina, A.P. Zubekhin. Kharkov: NTU KhPI; Novocherkassk: YURSTU (NPI), 2003, 484 p.
Low-cycle fatigue has been investigated under a «hard» loading cycle and under a «soft» loading cycle of a heat-resistant deformable VZh175 alloy at room and two operating temperatures at three asymmetry coefficients. The tests were carried out at a sinusoidal loading cycle with a frequency of 1 Hz. Comparison of stresses at «soft» and «hard» loading cycles is carried out. A comparison of the fatigue curve and a priori curves obtained using the characteristics of short-term strength is carried out.
2. Kablov E.N., Ospennikova O.G., Petrushin N.V. New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades. Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
3. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
4. Ospennikova O.G. Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review). Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Priority directions of development of technologies for the production of heat-resistant materials for aircraft engine building. Problemy chernoy metallurgii i materialovedeniya, 2013, no. 3, pp. 47–54.
7. Golubovsky E.R., Svetlov I.L., Petrushin N.V., Cherkasova S.A., Volkov M.E. Low-cycle fatigue of single crystals of heat-resistant nickel alloys at elevated temperatures. Deformatsiya i razrushenie materialov, 2009, no. 8, pp. 41–48.
8. Gorbovets M.A., Bazyleva O.A., Belyaev M.S., Khodinev I.A. Low-cycle fatigue of a single-crystal intermetallic alloy of the VKNA type under conditions of "hard" loading. Metallurg, 2014, no. 8, pp. 111–114.
9. Hodinev I.A., Monin S.A. Anisotropy of low cycle fatigue characteristics of single-crystal heat-resistant nickel alloys. Trudy VIAM, 2020, no. 10 (92), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 1, 2021). DOI: 10.18577/2307-6046-2020-0-10-97-105.
10. Zhong Z., Gu Y., Yuan Y. et al. On the low cycle fatigue behaviour of a Ni-based superalloy containing high Co and Ti contents. Materials Science and Engineering, 2012, vol. A552, pp. 434–443.
11. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. High-temperature heat resisting nickel alloys for details of gas turbine engines. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 52–57.
12. Belyayev M.S., Gorbovets M.A., Bakradze M.M. Change of parameters of elasto-plastic deformation for LCF testing Ni-base superalloy VZh175. Trudy VIAM, 2015, no. 12, paper no. 04. Available at: http://www.viam-works.ru (accessed: May 1, 2021). DOI: 10.18577/2307-6046-2015-0-12-4-4.
13. Lomberg B.S., Shestakova A.A., Letnikov M.N., Bakradze M.M. The influence of temperature and stresses on nature of nanosize γʹ-phase in Ni-base superalloy VZh175-ID. Trudy VIAM, 2019, no. 12 (84), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 1, 2021). DOI: 10.18577/2307-6046-2019-0-12-3-10.
14. State Standart 25.502–79. Calculations and tests for strength in mechanical engineering. Methods for mechanical testing of metals. Fatigue test methods. Moscow: Publishing house of Standards, 1986, 34 p.
15. ASTM E606/ E606M-19. Standard Test Method for Strain-Controlled Fatigue Testing. American Society for Testing and Materials, 2018, 16 p.
16. Gorbovets M.A., Khodinev I.A., Ryzhkov P.V. Equipment for testing carrying out the strain-controlled low-cycle fatigue. Trudy VIAM, 2018, no. 9 (69), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 01, 2021). DOI: 10.18577/2307-6046-2018-0-9-51-60.
17. Recommended circular RC-AP-33.15-1. Guidelines for determining the design values of the characteristics of the structural strength of metallic materials. Moscow: Aviaizdat, 2013. S. 32–33.
18. Troshchenko V.T., Khamaza L.A. Deformation curves of fatigue of steels and methods for determining their parameters. Communication 1. Traditional methods. Problemy prochnosti, 2010, no. 6, pp. 26–43.
19. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021. no. 1 (62). paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 15, 2021). DOI: 10.18577/2071-9140-2021-0-1-80-94.
20. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DO1: 10.18577/2071-9140-2020-0-4-59-70.
21. Radhakrishnan V.M. On bilinearity of the Coffin–Manson low-cycle fatigue relationship. International Journal of Fatigue, 1992, vol. 14, no. 5, pp. 305–311.
22. Norman E. Dowling. Mean Stress Effects in Stress-Life and Strain-Life Fatigue. Fatigue & Fracture of Engineering, 2009, no. 32 (3), pp. 163–179.
23. Manson S.S. Fatigue: a Complex Subject – Some Simple Approximations. Experimental Mechanics – Journal of the Society for Experimental Stress Analysis, 1965, no. 5 (7), pp. 193–226.
24. Muralidharan U., Manson S.S. Modified Universal Slopes Equation for Estimation of Fatigue сharacteristics. Journal of Engineering Materials and Technology – Transactions of the American Society of Mechanical Engineers, 1988, no. 110, pp. 55‒58.
The results of the calculations and the obtained experimental data show the need to take into account the distribution of strain fields on samples with stress concentrators for the selection of the correct gage of optical strain gauges. The ability to install certain gage of optical sensors with specific geometric parameters of the sample allows one to obtain the values of the stiffness and deformation characteristics on the sample with holes close to the values of the material characteristics, which can be used, for example, when carrying out research work in conditions of limited materials.
2. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. On the need to create a unified information and analytical center for aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019, no. 3, pp. 28–34.
5. Afanasyev A.V., Rabinsky L.N., Shershak P.V. Experimental determination of deformation and strength characteristics of polymer composite materials. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2010, vol. 16, no. 2, pp. 214–222.
6. Erasov V.S. Modern methods for assessing the physical and mechanical properties of materials. Collection of reports of the All-Russian conference on testing and research of properties of materials "TestMat-2012". Moscow: VIAM, 2012, p. 13.
7. Lutsenko A.N., Odintsev I.N., Grinevich A.V. i dr. Study of material deformation by optical-correlation methods. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 70–86. DOI: 10.18577/2071-9140-2014-0-s4-70-86.
8. Nikitin A.V., Krylov V.D., Khanzhin V.G. Equipment and technique for real-time observation of deformation instability during stretching of thin aluminum foil. Vestnik Tambovskogo universiteta, 2013, vol. 18, no. 4-2, pp. 1871–1872.
9. Panin S.V., Burkov M.V., Lyubutin P.S., Altukhov Yu.A., Eremin A.V., Khizhnyak S.A. Application of an integral-type strain gauge in cyclic testing of a composite material based on carbon fibers. Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 2013, vol. 56, no. 12-2. S. 186-191.
10. Oreshko E.I., Erasov V.S., Grinevich D.V., Sershak P.V. Review of criteria of durability of materials. Trudy VIAM, 2019, no. 9 (81), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 11, 2021). DOI: 10.18577/2307-6046-2019-0-9-108-126.
11. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru (accessed: May 11, 2021). DOI: 10.18577/2307-6046-2019-0-7-92-111.
12. Kosarev V.A., Azikov N.S., Alipov A.E. Technique for solving physically nonlinear problems of structural strength with stress concentrators. Aviatsionnaya promyshlennost, 2014, no. 2, pp. 26–31.
13. Tretyakova T.V., Spaskova E.M. Experimental study of the limiting stress-strain states of a quasi-brittle material using the digital image correlation method. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta, ser.: Mekhanika, 2013, no. 2, pp. 186–198.
14. Ilichev A.V., Raskutin A.E. Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 62–66. DOI: 10.18577/2071-9140-2014-0-3-61-62.
15. Ilichev A.V., Gubin A.M., Akmeev A.R., Ivanov N.V. Definition of area of the maxi-mum shear deformations for CFRP samples on Iosipescu method, with use of optical system of measurements. Trudy VIAM, 2018, no. 6 (66), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 11, 2021). DOI: 10.18577/2307-6046-2018-0-6-99-109.
Extremophilic microorganisms are able to survive under extreme environmental conditions. The article is devoted to a review of research works on the study of extremophilic micromycetes, as well as the search among them for species known as destructors of polymeric materials. Such groups of extremophilic micromycetes as thermophiles, xerophiles, and oligotrophs, capable of surviving at high ambient temperatures, low humidity and lack of nutrients, are considered.In each group of extremophilic microorganisms, species of micromycetes were found, which were repeatedly noted as destructors of polymer materials.
2. Kablov E.N., Erofeev V.T., Svetlov D.A., Smirnov V.F., Bogatov A.D. Biodamage in space vehicles. Int. scientific and technical conf. “Composite materials. Theory and practice". Penza: Privolzhsky House of Knowledge, 2015, pp. 40–46.
3. Krivushina A.A., Goryashnik Yu.S. Ways of protection of materials and products from microbiological damage (review). Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
4. Krivushina A.A., Bobyreva T.V., Yakovenko T.V., Nikolaev E.V. Methods of microorganisms-destructors storage in FSUE «VIAM» collection (review). Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 89–94. DOI: 10.18577 / 2071-9140-2019-0-3-89-94.
5. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series. International Conference on Engineering Systems. 2020, vol. 1687, art. 012029. DOI: 10.1088/1742-6596/1687/1/012029.
6. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., Shein E.A. Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review). Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
7. Morozkina E.V., Slutskaya E.S., Fedorova T.V. et al. Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Prikladnaya biokhimiya i mikrobiologiya, 2010, vol. 46, no. 1, pp. 5–20.
8. Marteinsson V.T., Birrien J.L., Reysenbach A.L. et al. Thermococcus barophilus sp.now., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. International Journal of Systematic Bacteriology, 1999, vol. 49, no. 2, pp. 351–359. DOI: 10.1099/00207713-49-2-351.
9. Cooney D. G., Emerson R. Thermophilic fungi. An account of their biology, activities and classification. San Francisco ; London: W.H. Freeman & Co, 1964, no. 15, pp. 25–35.
10. Kuzyakina T.I. Ecology and geochemical activity of microorganisms on active volcanoes and in hydrothermal waters. Vladivostok: Dalnauka, 2004, 251 p.
11. Kalinina A.E., Sokolyanskaya L.O., Glukhova L., Karnachuk O.V. Isolation of thermophilic micromycetes from coal combustion sites. Start in science: materials LXVII scientific. stud. conf. Biological Institute. Tomsk, 2019, p. 77.
12. Kartavtseva Z.M., Koval E.Z., Kalaganov V.A., Lyapunov N.A. Destruction of diesel fuel by microorganisms in circulation systems. Mikrobiologicheskiy zhurnal, 1989, vol. 51, no. 4, pp. 87–94.
13. Gaylarde C.C., Bento F.M., Kelley J. Microbial contamination of stored hydrocarbon fuels and its control. Revista de Microbiologia, 1999, vol. 30, no. 1, pp. 1–10.
14. Bento F.M., Beech I.B., Gaylarde C.C. et al. Degradation and corrosive activities of fungi in a diesel – mild steel – aqueous system. World journal of microbiology and biotechnology, 2005, vol. 21, no. 2, pp. 135-142.
15. McNamara C. J., Perry T.D., Leard R. et al. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks. Biofouling, 2005, vol. 21, no. 5, pp. 257–265.
16. Chertishchev V.Yu., Ospennikova O.G., Boichuk A.S., Dikov I.A., Generalov A.S. Determina-tion of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
17. Lugauskas A.Yu., Mikulskene A.I., Shlyauzhene D.Yu. Catalog of micromycetes-biodegradants of polymeric materials. Moscow: Nauka, 1987, pp. 258–259.
18. Zlochevskaya I.V. Ecological groups of fungi damaging materials and their features. Biologicheskiye nauki, 1987, no. 8, pp. 81–87.
19. Scott J.A., Forsyth T.J. Thermophilic microorganisms in aircraft fuel. International Biodeterioration Bulletin, 1976, vol. 12.No. 1, pp. 1-4.
20. Thomas A.R., Hill E.C. Aspergillus fumigatus and supersonic aviation. International Biodeterioration Bulletin, 1977, vol. 13.No. 1, pp. 1-4.
21. Kanevskaya I.G. Biological damage to industrial materials. Leningrad: Nauka, 1984, 232 p.
22. Moretti M.M.S., Martins D.A.B., Silva R.D., Rodrigues A. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazillian Journal of Microbiology, 2012, vol. 43 (3), pp. 1062–1071. DOI: 10.1590/S1517-838220120003000032.
23. Brink J.V.D., Harman-van Muiswinkel G.C.J., Theelen B.J.F. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Applied and Environmental microbiology, 2012, vol. 79 (4). DOI: 10.1128/AEM.02865-12.
24. McClendon S.D., Batth T., Petzold C.J. et al. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnology for biofuels, 2012, no. 5 (54), pp. 1–9.
25. Berka R. M., Grigoriev I. V., Otillar R. et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, vol. 29, no. 10, pp. 922–927. DOI: 10.1038/nbt. 1976.
26. Balabanova L.A., Bakunina I.Yu., Slepchenko L.V. and other Polysaccharide-degrading activity of marine and terrestrial strains of filamentous fungi. Bioorganicheskaya khimiya, 2018, vol. 44, no. 4, pp. 425–432.
27. Goryaeva A.G., Velikova T.D., Dobrusina S.A. Mycobiota of air and composites of paper with polymer coatings in the Russian National Library. Mikologiya i fitopatologiya, 2010, vol. 44, no. 1, pp. 10–18.
28. Smolyanitskaya OL Micromycetes as potential agents of biological damage to cultural property and a strategy of protection against them in the State Hermitage: thesis abstracts, Cand. Sc. (Bio). St Petersburg, 2007, 26 p.
29. Goncharova I.A., Sabadakha E.N., Trigubovich A.M., Black N.V. Mycological analysis of industrial materials contaminated with microscopic fungi. Trudy BGTU, Ser. 2, 2020, no. 2, pp. 163–168.
30. Rebrikova NL, Ponizovskaya VB Extremely xerophilic fungi found in museum funds. Modern mycology in Russia: abstracts reports. Ser. 6, 2015, vol. 5, pp. 298–300.
31. Kuvshinova N.M., Svistova I.D., Gulieva D.Z. The composition and structure of the mycomycete complex of leached chernozem. Razvitiye sovremennoy nauki: teoreticheskiye i prikladnyye aspekty, 2016, no. 3, pp. 173–175.
32. Zheltikova T.M., Antropova A.B., Bilanenko E.N. et al. Molds for living quarters. RET-info, 2006, no. 1, pp. 31–36.
33. Antropova A.B., Mokeeva V.L., Bilanenko E.N. and other Aeromikota living quarters in Moscow. Mikologiya i fitopatologiya, 2003, vol. 37, is. 6, pp. 1–11.
34. Sizonenko T.A., Khabibullina F.M., Zagirova S.V. Soil microbiota of the meso-oligotrophic bog of the middle taiga. Mikologiya i fitopatologiya, 2016, vol. 50. 2, pp. 115–123.
35. Mitkovskaya T.I., Koval E.Z. Assessment of the role of micromycetes isolated from works of art. Abstracts of the II congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2008, vol. 2, pp. 374–375.
36. Kataev A.D., Kurakov A.V. Microbial colonization and destruction of biodegradable synthetic materials based on polyhydroxybutyrate and polyhydroxyvalerate in soils. Abstracts of the III congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2012, vol. 3, pp. 218–219.
37. Baluta A.A., Vazhinskaya I.S. Resistance of modern building materials to mold damage. Abstracts of the III congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2012, vol. 3, p. 210.
38. Ogarkova G.R., Bukovskaya N.E., Samusenok L.V., Ogarkov B.N. Biodamage of porous building materials by associations of specific microorganisms. Abstracts of the III congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2012, vol. 3, pp. 224–225.
39. Mamaeva N.Yu., Velikova T.D., Goryaeva A.G. Biodamage of paper by micromycetes under conditions of different illumination. Abstracts of the IV congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2017, vol. 6, pp. 418–420.
40. Popikhina E.A., Trepova E.S. Microdestructors of building materials. Tez. reports of the IV congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2017, vol. 6, pp. 424–426.
41. Khalmuradova P.A., Mezitova L.D., Alatbi A.Kh. et al. Micromycetes-destructors of old buildings in Kazan: analysis of metabolites and selection of biocides. Abstracts of the IV congress of mycologists of Russia "Modern mycology in Russia". Moscow: Nat. Academy of Mycology, 2017, vol. 6, pp. 415.
42. Georgieva M.L., Grum-Grzhimailo A.A., Yamnova I.A., Bilanenko E.N. Filamentous fungi in the soils of sulfate-soda salinization of the Gobi Desert (Mongolia). Mikologiya i fitopatologiya, 2012, vol. 46. 1, pp. 27–32.
43. Redkina V.V. Biological activity of primary soils on nepheline sands of tailing dumps of JSC "Apatit" (Murmansk region). Biological monitoring of natural-technogenic systems: materials of All-Russian. scientific-practical conf. with Int. participation. Kirovsk: Loban, 2011, part 1, pp. 148–152.
44. Evdokimova G.A., Korneikova M.V., Lebedeva E.V., Kalmykova V.V. Micromycetes in sands and sandy soils of natural and technogenic genesis. Mikologiya i fitopatologiya, 2009, vol. 43, is. 2, pp. 84–92.
45. Rojas T. I., Aira M. J., Batista A. et al. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana, 2012, vol. 51, is. 1, pp. 44–51.
46. Sumina O.I., Vlasov D.Yu., Dolgova L.L., Safronova E.V. Features of the formation of communities of micromycetes in overgrown sand pits in the north of Western Siberia. Vestnik Sankt-Peterburgskogo universiteta, Ser. 3, 2010, is. 2, pp. 84–90.
Heat-resistant alloys and steels
Bogachev I.A., Sukhov D.I., Khodyrev N.A., Kurkin S.E. Investigation of the supportsstructures’ printing parameters for parts obtained by selective laser melting of metal powder composition of the Co–Cr–Ni–W–Ta alloy
Skugorev A.V., Kapitanenko D.V. Deformation treatment of hard-to-deform Ni–Ti–Nb and Ni–Ti–Nb–Zr shape memory alloys
Light-metal alloys
Karachevtsev F.N., Eroshkin S.G., Trofimov N.V., Leonov A.A., Popovnina N.A. Development of standard samples of magnesium alloy ML19
Polymer materials
Prokopova L.A. Phthalic anhydride application for hydroxyl groups contents determination in polyester 24K
Composite materials
Bobrovskiy A.P., Efimochkin I.Yu., Bolshakova A.N., Khudnev A.A.Production of spherical granules of a high-temperature metal composite material based on molybdenum
Valueva M.I., Evdokimov A.A., Nacharkina A.V., Gubin A.M.Polymer composite materials and technologies in the automotive industry (rеview)
Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of technology and polymer composite materials for the manufacture of wings of advanced aircraft (review)
Serpova V.M., Nyafkin A.N., Kurbatkina E.I. Hybrid metal matrix composites based on copper (review)
Protective and functional
coatings
Vlasova O.V., Denisova V.S., Zakalashniy A.V., Solntsev St.S. Electrical insulating heat-resistant lead-free enamel for the protection of electronic equipment
Material tests
Hodinev I.A., Gorbovets M.A., Monin S.A., Ryzhkov P.V. Low-cycle fatigue at elevated temperatures of heat-resistant nickel-based alloy manufactured by selective laser melting
Shershak P.V., Yakovlev N.O., Oreshko E.I. Application of optical deformation sensors for estimating the deformativity of CFRP samples near the stress concentrators
Krivushina A.A., Startsev V.O. Micromycetes-destructors of polymeric materials among extremophilic microorganisms (review)
Conferences of
NRC «Kurchatov Institute» – VIAM
The solution of the All-Russian Scientific and Technical Conference «Functional and Polymer materials for aviation glazing»