Articles
A generalization of the results of scientific and technical publications is presented, the analysis of which will allow to develop scientific foundations for the creation of a new class of heat-resistant structural materials based on intermetallic matrices with increased plasticity at room temperature and high specific strength at temperatures up to 950 °C in the Ni–Al–Co system. It is shown that alloys of the Ni–Al–Co system can be used in the manufacture of rotary parts in the form of gas turbine engine discs (GTE), working at temperatures up to 950 °C, as well as materials for GTE blades due to heat resistance at temperatures up to 1200 °C.
2. Ospennikova O.G. Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings Aviacionnye materialy i tehnologii, 2012, no. S, pp. 19–36.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Bratukhin A.G., Shalin R.E., Kablov E.N., Toloraya V.N., Orekhov N.G. Cast monocrystalline turbine blades. Liteynoye proizvodstvo, 1993, no. 6, pp. 3–6.
5. Bratukhin A.G., Kablov E.N., Toloraya V.N. Comparative analysis of materials and technological processes for obtaining monocrystalline turbine blades. Aviatsionnaya promyshlennost, 1995, no. 3, pp. 20–31.
6. Kablov E.N. The main directions of development of materials for aerospace technology of the XXI century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
7. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel heat-resistant alloys for casting blades with directional and single-crystal structure (Part II). Materialovedenie, 1997, no. 5, pp. 14–17.
8. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel heat-resistant alloys for casting blades with directional and single-crystal structure (Part I). Materialovedenie, 1997, no. 4, pp. 32–39.
9. Kablov E.N. Ways of increasing the heat resistance of nickel alloys. Metallurg, 2000, no. 4, pp. 26–28.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Casting heat-resistant nickel alloys for promising aircraft gas turbine engines. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 6–16.
11. Kablov E.N., Petrushin N.V., Elyutin E.S. Monocrystalline heat-resistant alloys for gas turbine engines. Vestnik MGTU im. N.E. Bauman, ser.: Mechanical engineering, 2011, no. SP2, pp. 38–52.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nickel foundry heat resisting alloys of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 36–52.
13. Kornilov I.I. Physicochemical foundations of heat resistance of alloys. Moscow: AN SSSR, 1961, 561 p.
14. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Rhenium in single crystal nickel-based superalloys for gas turbine engine blades. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
15. Kablov E.N. VIAM: new generation materials for PD-14. Krylya rodiny, 2019, no. 7-8, pp. 54–58. 16. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
17. Kishkin S.T. Creation, research and application of heat-resistant alloys. Moscow: Nauka, 2006, 408 p.
18. Kablov E.N., Bronfin M.B. The effect of S.T. Kishkina, or why the structure of heat-resistant alloys should be heterophase. Foundry heat-resistant alloys. The effect of S.T. Kishkina: On the occasion of the 100th anniversary of the birth of S.T. Kishkina: scientific and technical collection. Moscow: Nauka, 2006, 272 p.
19. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materials for highly loaded parts of gas turbine engines. Vestnik MGTU im. N.E. Bauman, ser.: Mechanical engineering, 2011, no. SP2, pp. 13–19.
20. History of aviation materials science. VIAM-80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, 520 p.
21. Kablov E.N., Tolorajya V.N. VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 105–117.
22. Galieva E.V., Povarova K.B., Drozdov A.A., Valitov V.A. Structure and properties of solid-phase joints of wrought nickel alloy EP975 and monocrystalline intermetallic alloy VKNA-25, obtained by pressure welding with a degree of deformation of 24% under conditions of superplasticity of alloy EP975. Metally, 2018, no. 6, pp. 64–72.
23. Garibov G.S. Scientific and technical groundwork in the field of granular metallurgy for the creation of advanced aircraft engines. Tekhnologiya legkikh splavov, 2018, no. 2, pp. 63–71.
24. Gessinger G.Kh. Powder metallurgy of heat-resistant alloys. Chelyabinsk: Metallurgiya, 1988, 320 p.
25. Garibov G.S. IN AND. Dobatkin and metallurgy of high-temperature nickel alloy granules. Tekhnologiya legkikh splavov, 2015, no. 2, pp. 34–39.
26. Garibov G.S. Crystallization theory and technology of granulated heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 107–118.
27. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application. Trudy VIAM, 2013, no. 10, paper no. 01. Available at: http://www.viam-works.ru (accessed: July 5, 2021).
28. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
29. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in Nickel-Base Superalloys for Single Crystal gas turbine blades. 7th International Symposium on Technetium and Rhenium – Science and Utilization book of proceedings, 2011, p. 17.
30. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Production of cast rod (charge) billets from modern high-heat-resistant nickel alloys foundry. Problems and prospects for the development of metallurgy and mechanical engineering with the use of completed fundamental research and R&D: Proceedings of Vseros. scientific and technical conf. Ekaterinburg, 2011, pp. 31–38.
31. Kucheryaev V.V., Mironova N.A., Shishkov S.U. Research of technological features of Ni–Al–Co system ingots deformation. Trudy VIAM, 2016, no. 3 (39), paper no. 01. Available at: http://viam-works.ru (accessed: July 05, 2021). DOI: 10.18557/2307-6046-2016-0-3-1-1.
32. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
33. Povarova KB, Kazanskaya NK, Lomberg BS, Bondarenko Yu.A., Shkolnikov D.Yu. High-temperature structural (β + γ)-alloys based on NiAl with increased low-temperature plasticity. Metallurg, 1996, no. 5, pp. 13–20.
34. Bannykh O.A., Povarova K.B. Intermetallic compounds – a new class of light heat-resistant and heat-resistant materials. Tekhnologiya legkikh splavov, 1992, no. 5, pp. 26–32.
35. Povarova K.B., Lomberg B.S., Filin S.A., Kazanskaya N.K., Shkolnikov D.Yu., Bespalova M.D. Structure and properties of (β + γ)-alloys of the Ni – Al – Co system. Metally, 1994, no. 3, p. 77.
36. Povarova K.B., Kazanskaya N.K., Lomberg B.S., Shkolnikov D.Yu., Filin S.A., Bespalova M.D. Phase composition and structure of alloys based on NiAl systems Ni – Al – Co – Me, where Me –Ti, Zr, Hf, V, Nb, Ta, Cr, Mo. Metally, 1996, no. 3, pp. 33.
37. Povarova K.B., Lomberg B.S., Kazanskaya N.K., Drozdov A.A. Principles of creating structural alloys based on NiAl for high-temperature service. Problems of creating new materials for the aerospace industry in the XXI century: abstracts of interdisciplinary scientific and practical conf. (Moscow, June 25–26, 2002). Moscow: VIAM, 2002, p. 32.
38. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
39. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. The influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2019, No. 2 (55), pp. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
40. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Development trends of nickel-based intermetallic alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
41. Povarova K.B., Drozdov A.A., Bazyleva O.A., Morozov A.E., Antonova A.V., Bondarenko Yu.A., Bulakhtina M.A., Ashmarin A.A., Arginbaeva E.G., Aladiev N.A. Structural heat-resistant (NiAl + Ni3Al) alloys of the Ni – Al – Co system. I. Features of crystallization and structure of alloys. Metally, 2017, no. 5, pp. 20–30.
42. Povarova K.B., Drozdov A.A., Bazyleva O.A., Morozov A.E., Antonova A.V., Bondarenko Yu.A., Bulakhtina M.A., Arginbaeva E.G., A.V. Amezhnov Influence of cobalt concentration and chromium alloying on the structure of heat-resistant (NiAl + Ni3Al + Ni) alloys of the Ni – Al – Co system. Metally, 2018, no. 4, pp. 50–55.
43. Povarova K.B., Drozdov A.A., Bazyleva O.A., Morozov A.E., Antonova A.V., Arginbaeva E.G., Aladev N.A., Sirotinkin V.P. Structural heat-resistant (NiAl + Ni3Al) alloys of the Ni – Al – Co system. II. Oxidation. Metally, 2017, no. 5, pp. 31–36.
44. Povarova K.B., Skachkov O.A., Drozdov A.A. and others. Powder alloys Fe – Cr – Al and NiAl. I. Obtaining powders. Zagotovitelnye proizvodstva v mashinostroyenii, 2017, vol. 15, no. 8, pp. 13–20.
45. Logacheva A.I., Gusakov M.S., Sentyurina Zh.A. et al. Production of NiAl-based rod blanks for plasma centrifugal spraying using the method of mechanochemical synthesis. Metally, 2017, no. 3, pp. 84–93.
46. Razuvaev E.I., Kapitanenko D.V., Sidorov S.A. Influence of structure and temperature-rate parameters during hot deformation of EP742 (KhN62BMKTYu) alloy. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2019, no. 2, pp. 22–30.
47. Izakov I.A., Kapitanenko D.V., Sidorov S.A., Chebotareva E.S. Heating units for isothermal deformation. Part 1. Types of installations. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2019, no. 3, pp. 23–32.
48. Izakov I.A., Kapitanenko D.V., Bubnov M.V., Bazhenov A.R. Investigation of the parameters of technological processes of isothermal deformation. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 5 (23), paper no. 4. Available at: http://materialsnews.ru (accessed: May 28, 2021).
49. Izakov I.A., Kapitanenko D.V., Bubnov M.V., Nekrasov B.R. Thermomechanical foundations of isothermal deformation of metals under conditions of dynamic softening. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2015, no. 8, pp. 38–45.
50. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Skugorev A.V. Modern technologies of metal forming by pressure. Tekhnologiya legkikh splavov, 2015, no. 1, pp. 37–43.
Presents a review of the scientific literature on various methods for producing electrically conductive polymer materials and coatings. The prospects of using carbon nanotubes (CNT) to impart high electrical properties to the surface of materials are shown. The mechanism of formation of the structured surface of polymer materials with CNT is described. It is shown that the use of CNT is a promising way to impart electrically conductive and superhydrophobic properties to the surface.
2. Kablov E.N. Chemistry in aviation materials science. Russian Journal of General Chemistry, 2011, vol. 81, no. 5, pp. 967–969.
3. Fedusiv I.N., Chermoshentsev S.F. Propulsion electrification of an unmanned aerial vehicle. XXII Tupolev Readings (School of Young Scientists). Kazan: KNITU-KAI, 2015, pp. 150–153.
4. Horvat T., Berta I. Neutralization of static electricity. Trans. from Engl. Moscow: Energoatomizdat, 1987, 104 p.
5. Gainutdinov R.R., Chermoshentsev S.F. Methodology for ensuring the intersystem electromagnetic compatibility of the onboard equipment of unmanned aerial vehicles. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2016, no. 4, pp. 155–160.
6. Gorlov M.I., Emelyanov A.V., Plebanovich V.I. Electrostatic charges in electronics. Minsk: Belarusian Science, 2006, 295 p.
7. Hirano Y., Yoshimura A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Composites, Part A. 2010, no. 41, pp. 973–981.
8. Tkachenko A.N., Vishnyakov L.R., Gogaev K.A. et al. Copper microwires for lightning protection meshes of knitted structure. Tekhnologicheskie sistemy, 2009, no. 4, pp. 16–20.
9. Polozkov V.T., Goncharyuk V.A., Linetskiy V.A., Sultanovich A.I. Labor protection at oil refineries and petrochemical plants. Moscow: Khimiya, 1973, 296 p.
10. Khalilov F.Kh. Electromagnetic compatibility of electric power industry, technosphere and biosphere: textbook. Saint Petersburg: Center for training energy personnel, 2014, 190 p.
11. Melnikov A.A., Shchur P.A. Transparent conductive antireflective coatings based on ITO, SiO2, TiO2. Trudy VIAM, 2019, No. 8 (80), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 1, 2021). DOI: 10.18577 / 2307-6046-2019-0-8-56-66.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Knyazheva O.A., Baklanova O.N., Zhansakova K.S. et al. Physical and mechanical properties and electrical conductivity of polypropylene ‒ carbon black compositions. 9 Int. Sc. & Tech. Conf. «Technics and technology of petrochemical and oil and gas production». Omsk, 2019, pp. 165–165.
14. Low-resistivity polymer positive temperature coefficient material and preparation method thereof: pat. CN 102167859; filed 20.01.11; publ. 31.08.11.
15. Improved thermal conductive polymeric PTC compositions: pat. US 2008039575; filed 03.08.07; publ. 02.14.08.
16. Polyolefin/carbon black PTC conductive composite material and preparing method thereof: pat. CN 1528817; filed 30.09.03; publ. 15.09.04.
17. PTC conductive composition containing a low molecular weight polyethylene processing aid: pat. US 6620343; filed 19.03.02; publ. 16.09.03.
18. Ragushina M.D., Evseeva K.A., Kalugina E.V., Ushakova O.B. Polymer composite materials with antistatic and electrically conductive properties. Plasticheskie massy, 2021, no. 3-4, pp. 6–9.
19. Stepashkina A.S., Tsobkallo E.S., Aleshin A.N. Modeling the electrical conductivity of composite materials based on polypropylene and carbon black. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya legkoy promyshlennosti, 2014, vol. 25, pp. 51–54.
20. Matkovsky P.E., Sedov I.V., Saratovskikh S.L., Yarullin R.S. Thermoplastic composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2011, no. 2, pp. 2–16.
21. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon, 2012, vol. 50, pp. 2377–2395.
22. Lukina E.A., Zaitsev D.V., Romanenko V.A. Structure and properties of a composite material based on aluminum alloy with the addition of carbon nanotubes. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 27–34. DOI: 10.18577/2071-9140-2019-0-4-27-34.
23. Garcia E.J., Wardle B.L., Hart J.A., Yamamoto N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 2008, vol. 68, pp. 2034–2041.
24. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modification of structural carbon plastics with carbon nanoparticles. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 5–11.
25. Dushin M.I., Donetskiу K.I., Timoshkov P.N., Karavaev R.Yu. Research of process of out-of-autoclave formation semi-pregs on the basis of carbon fillers (rеview). Trudy VIAM, 2018, no. 9 (69), paper no. 03. Available at: http://www.viam-works.ru (accessed: June 1, 2021). DOI: 10.18577/2307-6046-2018-0-9-21-31.
26. Popkov O.V., Yurkov G.Y., Fionov A.S. Stabilization of nanoparticles on the surface of detonation nanodiamond. Physics, chemistry and application of nanostructures. Singapore: World Scientific, 2009, pp. 369–372.
27. Gul V.E., Shenfil L.Z. Electrically Conductive Polymer Compositions, Moscow: Knimiya, 1984, 240 p.
28. Ivanovsky V.I. Carbon black. Processes and devices: textbook. Omsk: Tekhuglerod, 2004, 228 p.
29. Donnet J.B., Bansal R.C., Wang M.J. Carbon Black: Sceince and Technology. 2nd ed. New York: Marcel Dekker Inc., 1993, 461 p.
30. Klochko B.N., Zachateyskiy E.E., Biider V.Ya. Influence of the dispersity and structure of soot on its electrical resistance. Kauchuk i rezina, 1969, no. 8, pp. 22–24.
31. Sommers D.J. Carbon black for electrically conductive plastics. Polymer Plastics Technology and Engineering, 1984, vol. 23 (1), pp. 83–98.
32. Safronov V.A., Klochkova D.A., Seleznev A.A. Electrically conductive thermoplastic elastomers based on polyolefins. XXII Regional Conf. young scientists of the Volgograd region. Volgograd, 2017, pp. 26–27.
33. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, vol. 69, pp. 1486–1498.
34. Polymer – carbon nanotube composites. Preparation, properties and applications. Ed. T. McNally, P. Pötschke. Woodhead Publishing Ltd., 2011, 820 p.
35. Carbon Nanotubes – Polymer Nanocomposites. Ed. S. Yellampalli. Published by InTech, 2011, 396 p.
36. Irzhak V.I. Epoxy composite materials with carbon nanotubes. Uspekhi khimii, 2011, no. 8, pp. 821–839.
37. Rakov E.G. Carbon nanotubes in new materials. Uspekhi khimii, 2013, vol. 82, no. 1, pp. 227–247.
38. Reia da Costa E.F., Skordos A.A., Partridge I.K., Rezai A. RTM processing and electrical performance of carbon nanotube modified epoxy/fiber Composites. Composites. Part A: Applied Science and Manufacturing, 2012, vol. 43, no. 4, pp. 593–602.
39. Badamshina E.R., Gafurova M.P., Estrin Ya.I. Modification of nanotubes and synthesis of polymer composites with their participation. Uspekhi khimii, 2010, vol. 79, no. 11, pp. 1027–1063.
40. Grady B.P. Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications. Wiley, 2011, 352 p.
41. Troung V.T., Tsang K.M.C., Keough S.J., St John N.G. Effect of Sonication on the Mechanical Properties of Poly Vinyl Alcohol. Carbon Nanotube Composites, 2006, no. 6415, pp. 641–503.
66. 42. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
43. Akatenkov R.V., Aleksashin V.M., Anoshkin I.V., Babin A.N., Bogatov V.A., Grachev V.P., Kondrashov S.V., Minakov V.T., Rakov E.G. Criterion of the application efficiency of functionalized carbon nanotubes for improving the physico-mechanical properties of epoxy resins. Aviacionnye materialy i tehnologii, 2010, no. 3, pp. 22–27.
44. Solovyanchik L.V., Shashkeev K.A., Soldatov M.A. A method for controlling the electrical conductive properties of a polymer composition. Bulletin of the Moscow Aviation Institute. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 184–194.
45. Yakovlev A.D. Chemistry and technology of paints and varnishes: textbook. Saint Petersburg: Khimizdat, 2010.448 p.
46. Matkovsky P.E., Sedov I.V., Saratovskikh S.L., Yarullin R.S. Thermoplastic composite materials. Entsiklopediya inzhenera-khimika, 2011, no. 6, pp. 49–57.
47. Richardson M. Industrial polymer composite materials. Moscow: Chemistry, 1980, p. 472.
48. Compositions for electrically conductive coatings and a method of making solid electrically conductive coatings: pat. 2460750 Rus. Federation, no. 2011115573/05; declared 21.04.11; publ. 10.09.12.
49. Kats G.S., Milevski D.V. Fillers for polymer composite materials: a reference guide. Moscow: Khimiya, 1981, p. 736.
50. Electrically conductive paint for radio-absorbing aggregates: pat. 2472825 Rus. Federation, no. 2011145154/05; declared 09.11.11; publ. 20.01.13.
51. Shchibrya N.G. Powder-based antistatic decorative coatings. Lakokrasochnyye materialy i ikh primeneniye, 1996, no. 12, pp. 19–20.
52. Tolmacheva D. Powder paints with metallic effect. Features of production. Promyshlennaya okraska, 2011, no. 2, pp. 33–34.
53. Yazykov S.Yu., Dammer V.Kh., Panin S.V., Vechkin B.B. Antistatic composite coatings for the protection of magnesium alloys based on powder paints processed in a planetary ball mill. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2014, vol. 325, no. 2, pp. 105–111.
54. Kondrashov E.K. Paints and varnishes for special purposes. Lakokrasochnyye materialy i ikh primeneniye, 1994, no. 11–12, pp. 23–24.
55. Guldi D.M., Nazario M. Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley-VCH Verlag GmbH & Co., 2010, p. 562.
56. Lordi V., Yao N. Molecular mechanics of binding in carbon-nanotube-polymer composites. Journal of Materials Research, 2000, vol. 15, no. 12, pp. 2770–2779.
57. Fritzsche J., Lorenz H., Kluppel M. et al. Elastomer – carbon nanotube composites in Polymer – carbon nanotube composites. Preparation, properties and applications. Woodhead Publishing Ltd, 2011, 820 p.
58. Boynovich LB, Emelianenko A.M. Hydrophobic materials and coatings: principles of creation, properties and application. Uspekhi khimii, 2008, vol. 77, no. 7, pp. 619–638.
59. Zou J., Chen H., Chunder A. Et al. Preparation of a Superhydrophobic and Conductive Nanocomposite Coating from a Carbon-Nanotube-Conjugated Block Copolymer Dispersion. Advanced Materials, 2008, vol. 20, no. 17, pp. 3337–3341.
60. Peng M., Liao Z., Qi J., Zhou Z. Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces. Langmuir, 2010, vol. 26, no. 16, pp. 13572–13578.
61. Kablov E.N., Solovyanchik L.V., Kondrashov S.V., Yurkov G.Yu., Buznik V.M., Kushch P.P., Kichigina G.A., Kiryukhin D.P., Dyachkova T.P. Electrically conductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers. Rossiyskiye nanotekhnologii, 2016, vol. 11, no. 12, pp. 91–97.
62. Das A., Hayvaci H. T., Tiwari M. K. et al. Superhydrophobic and conductive carbon nanofiber / PTFE composite coatings for EMI shielding. Journal of colloid and interface science, 2011, vol. 353, no. 1, pp. 311–315.
63. Han J.T., Kim S.Y., Woo J.S., Lee G.W. Transparent, conductive, and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution. Advanced Materials, 2008, vol. 20, no. 19, pp. 3724–3727.
64. Asthana A., Maitra T., Büchel R., Tiwari M. K., Poulikakos D. Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS applied materials & interfaces. 2014, vol. 6, no. 11, pp. 8859–8867.
65. Solovyanchik L.V., Kondrashov S.V., Nagornaya V.S., Volkov I.A., Dyachkova T.P., Borisov K.M. Electrically conductive, highly hydrophobic nanocomposites based on fluoropolymer with carbon nanotubes. Zhurnal prikladnoy khimii, 2018, vol. 91, no. 10, pp. 1462–1467.
Shows the scientific approaches of various authors to the study of the microstructure of ceramics, the purpose of which is to elucidate its structural organization at the micro- and nanoscale, as well as the influence of the microstructure on the complex of material properties. Various instrumental methods for studying ceramics (NMR spectroscopy, electron microscopy, х-ray structural analysis, etc.) are considered, the permissible capabilities of research methods and analysis of the results obtained with their correct interpretation are shown. The special role of theoretical modeling in understanding the structure of the considered ceramic materials is noted.
2. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Grashchenkov D.V., Evdokimov S.A., Zhestkov B.E., Solntsev S.St., Shtapov V.V. Research of thermochemical influence of the air plasma flow on high-temperature ceramic composite material. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 31–40. DOI: 10.18577/2071-9140-2017-0-2-31-40.
5. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
6. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
7. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastianov V.G. High-temperature structural composite materials based on glass and ceramics for advanced aircraft products. Steklo i keramika, 2012, no. 4, pp. 7–11.
8. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM, 2014, no. 6, paper no. 8. Available at: http://www.viam-works.ru (accessed: May 24, 2021). DOI: 10.18577/2307-6046-2014-0-6-8-8.
9. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
10. Prokopyev A.L., Postnov V.I. Production of launchers of unguided aircraft missiles from polymer composite materials. Reports of the Youth Innovation Forum of the Volga Federal District. Competition of scientific and technical creativity of youth (STTM). Ulyanovsk, 2011. Available at: https://docplayer.ru/45967293-Proizvodstvo-puskovyh-ustanovok-neupravlyaemyh-aviacionnyh-raket-iz-polimernyh-kompozicionnyh-materialov.html (accessed: April 12, 2021).
11. Sorokin O.Yu. On the issue of the mechanism of interaction between carbon materials and Si melt (review). Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
12. Colombo P., Mera G., Riedel R., Soraru G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, no. 7, pp. 1805–1837.
13. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: methods of preparation and properties (review). Trudy VIAM, 2020, no. 11 (93), paper no. 9. Available at: http://www.viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2020-0-11-76-92.
14. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: microstructure and properties (review). Part 1. Trudy VIAM, 2021, no.8 (102), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2021-0-8-21-33.
15. Riedel R., Passing G., Schönfelder H., Brook R.J. Synthesis of dense silicon-based ceramics at low temperatures. Nature, 1992, vol. 355, pp. 714–717.
16. Kleebe H.-J., Störmer H., Trassl S., Ziegler G. Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Applied Organometallic Chemistry, 2001, vol. 15, no. 10, pp. 858–866.
17. Mera G., Tamayo A., Nguyen H., Sen S., Riedel R. Nanodomain Structure of Carbon-Rich Silicon Carbonitride Polymer-Derived Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, no. 4, pp. 1169–1175.
18. Jiang T., Wang Ya., Wang Yi. et al. Quantitative Raman Analysis of Free Carbon in Polymer-Derived Ceramics. Journal of the American Ceramic Society, 2009, vol. 92, no. 10, pp. 2455–2458.
19. Cançado L.G., Takai K., Enoki T. et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 2006, vol. 88, no. 16, art. 163106.
20. Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, vol. 61, no. 20, pp. 14095–14107.
21. Ferrari A.C., Meyer J.C., Scardaci V. et al. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, vol. 97, no. 18, pp. 187401.
22. Pimenta M.A., Dresselhaus G., Dresselhaus M.S. et al. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, vol. 9, no. 11, pp. 1276–1290.
23. Riedel R., Mera G., Hauser R., Klonczynski A. Silicon-Based Polymer-Derived Ceramics: Synthesis Properties and Applications – A Review. Journal of the Ceramic Society of Japan, 2006, vol. 114, no. 1330, pp. 425–444.
24. Iwamoto Y., Völger W., Kroke E. et al. Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors. Journal of the American Ceramic Society, 2001, vol. 84, no. 10, pp. 2170–2178.
25. Mera G., Riedel R., Poli F., Müller K. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides). Journal of the European Ceramic Society, 2009, vol. 29, no. 13. P. 2873–2883.
26. Morcos R.M., Mera G., Navrotsky A. et al. Enthalpy of Formation of Carbon-Rich Polymer-Derived Amorphous SiCN Ceramics. Journal of the American Ceramic Society, 2008, vol. 91, no. 10, pp. 3349–3354.
27. Gervais C., Babonneau F., Ruwisch L. et al. Solid state NMR investigations of the polymer route to SiBCN ceramics. Canadian Journal of Chemistry, 2003, vol. 81, no. 11, pp. 1359–1369.
28. Dasgupta K., Sathiyamoorthy D. Disordered carbon – its preparation, structure, and characterization. Materials Science and Technology, 2003, vol. 19, no. 8, pp. 995–1002.
29. Shvets N.I., Minakov V.T., Papkov V.S., Buzin M.I., Bad'ina L.Yu., Shimkin A.A. Investigation of thermochemical transformations of polycarbosilane precursors into a ceramic matrix. Zhurnal prikladnoy khimii, 2014, vol. 87, is. 6, pp. 793–799.
30. Riedel R., Kleebe H.-J., Schönfelder H., Aldinger F. A covalent micro/nano-composite resistant to high-temperature oxidation. Nature, 1995, vol. 374, pp. 526–528.
31. Rouxel T., Soraru G.D., Vicens J. Creep Viscosity and Stress Relaxation of Gel-Derived Oxycarbide Glasses. Journal of the American Ceramic Society, 2001, vol. 84, no. 5, pp. 1052–1058.
32. Raj R., An L., Shah S. et al. Oxidation Kinetics of an Amorphous Silicon Carbonitride. Journal of the American Ceramic Society, 2001, vol. 84, no. 8, pp. 1803–1810.
33. Störmer H., Kleebe H.-J., Ziegler G. Metastable SiCN glass matrices studied by energy-filtered electron diffraction analysis. Journal of Non-Crystalline Solids, 2007, vol. 353, no. 30–31, pp. 2867–2877.
34. Heidenreich R.D., Hess W.M., Ban L.L. A test object and criteria for high resolution electron microscopy. Journal of Applied Crystallography, 1968, vol. 1, part 1, pp. 1–19.
35. Delverdier O., Monthioux M., Oberlin A. et al. Thermal behaviour of polymer-derived ceramics II: Si–C–N system from a new PVSZ precursor. Journal of High Temperature Chemical Processes, 1992, vol. 1, pp. 139–149.
36. Gregori G., Kleebe H.-J., Blum Y.D., Babonneau F. Evolution of C-rich SiOC ceramics: Part II. Characterization by high lateral resolution techniques: electron energy-loss spectroscopy, high-resolution TEM and energy-filtered TEM. International Journal of Materials Research, 2006, vol. 97, no. 6, pp. 710–720.
37. Kroke E., Li Y.-L., Konetschny C. et al. Silazane derived ceramics and related materials. Materials Science and Engineering: R: Reports, 2000, vol. 26, no. 4–6, pp. 97–199.
38. Saha A., Raj R., Williamson D.L., Kleebe H.-J. Characterization of Nanodomains in Polymer-Derived SiCN Ceramics Employing Multiple Techniques. Journal of the American Ceramic Society, 2005, vol. 88, no. 1, pp. 232–234.
39. Saha A., Raj R., Williamson D.L. A Model for the Nanodomains in Polymer-Derived SiCO. Journal of the American Ceramic Society, 2006, vol. 89, no. 7, pp. 2188–2195.
40. Peña-Alonso R., Soraru G.D., Raj R. Preparation of Ultrathin-Walled Carbon-Based Nanoporous Structures by Etching Pseudo-Amorphous Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2006, vol. 89, no. 8, pp. 2473–2480.
41. Dürr J., Lamparter P., Bill J. et al. An X-ray and neutron scattering investigations on precursor-derived Si24C43N33 ceramics. Journal of Non-Crystalline Solids, 1998, vol. 232–234, pp. 155–161.
42. Matsunaga K., Iwamoto Y., Fisher C.A.J., Matsubara H. Molecular Dynamics Study of Atomic Structures in Amorphous Si–C–N Ceramics. Journal of the Ceramic Society of Japan, 1999, vol. 107, no. 1251, pp. 1025–1031.
43. Amkreutz M., Frauenheim T. Understanding precursor-derived amorphous Si–C–N ceramics on the atomic scale. Physical Review B, 2002, vol. 65, no. 13, pp. 134113.
44. Resta N., Kohler Ch., Trebin H.-R. Molecular Dynamics Simulations of Amorphous Si–C–N Ceramics: Composition Dependence of the Atomic Structure. Journal of the American Ceramic Society, 2003, vol. 86, no. 8, pp. 1409–1414.
45. Golczewski J.A., Aldinger F. Thermodynamic modeling of amorphous Si–C–N ceramics derived from polymer precursors. Journal of Non-Crystalline Solids, 2004, vol. 347, no. 1–3, pp. 204–210.
46. Kroll P. Modelling polymer-derived ceramics. Journal of the European Ceramic Society, 2005, vol. 25, no. 2–3, pp. 163–174.
47. Kroll P. Modeling Amorphous Ceramic Structures. Ceramics Science and Technology. Wiley-VCH Verlag GmbH & Co., 2013, vol. 1: Structures, pp. 39–69.
48. Kroll P. Modeling the «free carbon» phase in amorphous silicon oxycarbide. Journal of Non-Crystalline Solids, 2005, vol. 351, no. 12–13, pp. 1121–1126.
The paper considers the latest technologies and polymer composite materials developed at FSUE «VIAM» and used in the manufacture of structural elements of a passenger aircraft cabin (namely: air conditioning systems, three-layer interior and floor panels) that meet the requirements of the Aviation Regulations AP-25 (Appendix F, Part I ), as well as the requirements for mechanical and mass characteristics. The developed products are made entirely from domestic components, which in turn reduces dependence on imported materials.
2. Kablov E.N. The role of fundamental research in the creation of new generation materials. Abstracts of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. Saint Petersburg, 2019, vol. 4, p. 24.
3. Kirin K.M. Promising fireproof textile materials for use in civil aviation: thesis abstract, Cand. Sc. (Tech.). Moscow, 2004, 16 p.
4. Standards of airworthiness of transport category aircraft: Aviation Reguation 25. Moscow: Aviaizdat, 2009, 267 p.
5. Black S. FAR Part 25 standards. High Performance Composites, 2006, no. 11, pp. 1–2.
6. Shershak P.V., Kosarev V.A., Ryabovol D.Yu. Hybrid facings in sandwich-construction of aviation floor panels. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 35–41. DOI: 10.18577/2071-9140-2018-0-3-35-41.
7. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
8. Black S. Advanced materials for aircraft interiors. Composites World, 2006, no. 11, pp. 1–3.
9. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: April 17, 2021). DOI 10.18577/2307-6046-2014-0-4-6-6.
technological control of semi-finished products of PCM. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 6 (2), pp. 393–398.
11. Surnin E.G., Kondrashov E.K. Fireproof decorative and finishing materials. Aviation materials. Moscow: MISIS-VIAM, 2002, pp. 271–281.
12. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A. The technology of accelerated molding of honeycomb panels of the aircraft interior. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013, vol. 15, no. 4 (4), pp. 799–805.
13. Avrasin Ya.D., Borodin M.Ya., Kiselev B.A. Fiberglass in aircraft engineering. Aviatsionnaya promyshlennost, 1982, no. 8. P. 80–84.
14. Sokolov I.I., Kogan D.I., Raskutin A.E., Babin A.N., Filatov A.A., Morozov B.B. Multilayer structures with spheroplastics. Konstruktsii iz kompozitsionnykh materialov, 2014, no. 1, pp. 37–42.
15. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
16. Serkova E.A., Shvets N.I., Zastrogina O.B. et al. Fast-curing phenol-formaldehyde binder, processed according to "crush-core" technology, for fireproof interior materials. Abstracts of the nineteenth conf. "Designs and technologies for producing products from non-metallic materials". Obninsk, 2010, pp. 70–71.
17. Dolmatovsky M.G., Sokolov I.I. The destruction particularities of honeycomb panels with sphere plastics. Aviacionnye materialy i tehnologii, 2008, no. 4. pp. 19–24.
18. Reference book on composite materials: in 2 books. Ed. J. Lubin. Moscow: Mashinostroyenie, 1988, book 2, 584 p.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Lukina N.F., Dementyeva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Adhesive binders for PCM honeycomb parts. Klei. Germetiki. Tekhnologii, 2016, no. 5, pp. 12–16.
21. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Adhesive prepregs and layered materials on their basis. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 19–21.
22. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
23. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Experience of using technological control of semi-finished PCM products. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 6 (2), pp. 393–398.
24. Postnov V.I., Strelnikov S.V., Makrushin K.V., Veshkin E.A. Semipreg for polymer rigging. Lifecycle management systems for aircraft products: topical problems, research, implementation experience and development prospects: abstracts of the 5th Intern. scientific-practical conf. Ulyanovsk, 2016, pp. 186–188.
25. Industry standard 1 00128–74. Tightness of products. Norms. Available at: https://files.stroyinf.ru/Data2/1/4293852/4293852847.pdf (accessed: March 12, 2021).
26. Barbotko S.L. Development of the fire safety test methods for aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
27. Barbotko S.L., Kirillov V.N., Shurkova E.N. Fire safety evolution for polymer composites of aeronautical application. Aviacionnye materialy i tehnologii, 2012. no. 3, pp. 56–63.
Provides an overview of the magnetism features of amorphous magnets of the RE–TM and RE–TM–B alloys (RE – rare earth metal, TM – transition metal, B – boron). Magnetic states in amorphous alloys, the effect of the single-ionic anisotropy of heavy rare-earth metals on local disorder and spin frustrations in an amorphous body, and some spin-reorientation transitions observed in such compounds are presented. It is shown that the identification of the spin-glass state can be achieved by detecting specific features on the field and temperature dependences of the magnetic moment and magnetic susceptibility of the sample.
2. O’Handley R.C. Physics of ferromagnetic amorphous alloys. Journal of Applied Physics, 1987, vol. 62. DOI: 10.1063/1.339065.
3. Andreenko A.S., Nikitin S.A. Magnetic properties of amorphous alloys of rare earth metals with transition 3D metals. Uspekhi fizicheskikh nauk, 1997, vol. 167, pp. 606–622.
4. Rao K.V. Spin-Glass-Ferromagnetic «Phase» Transitions in Amorphous Soft Magnetic Systems. Physica Scripta, 1982, vol. 25, no. 6A, p. 742.
5. Imry Y., Ma Sh.-K. Random-Field Instability of the Ordered State of Continuous Symmetry. Physical Review Letter, 1975, vol. 35, p. 1399.
6. Chudnovsky E.M., Saslow W.M., Serota R.A. Ordering in ferromagnets with random anisotropy. Physical Review B, 1986, vol. 33, p. 251.
7. Filippi J., Amaral V.S., Barbara B. High-field magnetization curve of random-anisotropy amorphous magnets: Observation of a crossover and link to structural short-range order. Physical Review B, 1991, vol. 44, p. 2842.
8. Barbara B., Dieny B., Filippi J. Rotational and transverse dynamics of some random anisotropy magnets. Journal of Applied Physics, 1990, vol. 67. DOI: 10.1063/1.345958.
9. Sellmyer D.J., O’Shea M.J. Random anisotropy, exchange fluctuations and phase transitions in rare earth glasses. Journal of the Less-Common Metals, 1983, vol. 94, pp. 59–68.
10. Sellmyer D.J., Nafis S. Phase transition in the random anisotropy system: α-DyFeB. Journal of Magnetism and Magnetic Materials, 1986, vol. 54–57, pp. 1173–1176.
11. Zolotukhin I.V., Kalinin Yu.E. Amorphous metal alloys. Uspekhi fizicheskikh nauk, 1990, vol. 160, pp. 75–110.
12. Handrich K. A Simple Model for Amorphous and Liquid Ferromagnets. Physica Status Solidi B. 1969, vol. 32, art. k55. DOI: 10.1002/pssb.19690320166.
13. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 7. Available at: http://www.viam-works.ru (accessed: May 8, 2021). DOI: 10.18577/2307-6046-2019-0-11-60-67.
14. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB. Trudy VIAM, 2019, no. 7 (79), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 8, 2021). DOI: 10.18577/2307-6046-2019-0-7-67-75.
15. Messmer R. Local electronic structure of amorphous metal alloys using cluster models. Evidence for specific metalloid-metal interactions. Physical Review B, 1981, vol. 23, pp. 1616.
16. Korenblit E.Ya., Shender E.F. Spin glasses. Izvestiya vuzov, ser.: Physics, 1984, no. 10, pp. 23–45.
17. Rezchikova I.I., Moiseeva N.S., Korolev D.V., Morgunov R.B., Piskorskii V.P. Spontaneous magnetization loss dynamics of (Pr, Dy)–(Fe, Co)–B magnets. Technical Physics. The Russian Journal of Applied Physics, 2020, vol. 65, no. 3, pp. 377–381.
18. Koplak O.V., Kunitsyna E.I., Valeev R.A., Korolev D.V., Piskorskii V.P., Morgunov R.B. Ferromagnetic microwires α-Fe/(PrDy)(FeCo)B for micromanipulators and polymer composites. Trudy VIAM, 2019, no. 11 (83), paper no. 7. Available at: http://www.viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2019-0-11-60-67.
19. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
20. Kablov E.N., Piskorsky V.P., Valeev R.A., Melnikov S.A., Buzenkov A.V. Comparison of the effect of additives based on REM intermetallics on the properties of sintered magnets from the base alloy Nd – Fe – Ti – Cu – B. Metaliy, 2015, no. 1, pp. 73–75.
21. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
22. Nikitin S.A., Zolotukhin I.V., Solovev A.S. et al. Observation of giant magnetostriction in amorphous terbiumcobalt alloys. Fizika Tverdogo Tela, 1987, vol. 29, is. 5, pp. 1526–1529.
23. Sayko G.V., Utochkin S.N., Zvezdin A.K. Spin-reorientation phase transitions in thin films of RE–TM amorphous alloys. Journal of Magnetism and Magnetic Materials, 1992, no. 113, pp. 194–200.
24. De Almeidai J.R.L., Thoules D.J. Stability of the Sherrington-Kirkpatrick solution of a spin glass model. Journal Physical A, 1987, vol. 11, no. 5, pp. 983–990.
25. Sherrington D., Kirpatrick S. Solvable Model of a Spin-Glass. Physical Review Letter, 1975, vol. 35, p. 1792.
26. Dieny B., Barbara B. Critical Properties of a Random-Anisotropy System. Physical Review Letter, 1986, vol. 57, p. 1169.
27. Saito Т., Matsumaru Y., Shinagawa K., Tsushima T. Critical behavior of transverse and longitudinal ac susceptibilities in a random anisotropy magnet α-Dy16Fe84. Journal of Magnetism and Magnetic Materials, 1994, vol. 130, p. 347.
28. Chudnovsky E.M., Saslow W.M., Serota R.A. Ordering in ferromagnets with random anisotropy. Physical Review B, 1986, vol. 33, pp. 251–261. DOI: 10.1103/physrevb.33.251.
29. Saito T., Miyano H., Shinagawa K., Tsushima T. Effect of coherent anisotropy on the H-T phase diagram of random anisotropy magnets of amorphous DyGdFe. Journal of Magnetism and Magnetic Materials, 1995, vol. 140, pp. 1757.
30. Dieny B., Barbara B., Fillion G. et al. Hysteresis loop and torque experiments on a random anisotropy system. Journal of Physique, 1987, vol. 48, pp. 1741.
31. Katori H.A., Ito A. Experimental Study of the de Almeida-Thouless Line by Using Typical Ising Spin-Glass FexMn1-xTiO3 with x = 0.41, 0.50, 0.55, and 0.57. Journal Physical Society Japan, 1994, vol. 63, pp. 3122–3128.
32. Imai K., Masago E., Saito T. et al. Crossover from Heisenberg to Ising spin-glass-like magnetic properties in random anisotropy magnets amorphous Dy16MxFe84(1–x) (M = Cu, A1, Cu, and Al). Journal of Magnetism and Magnetic Materials, 1998, vol. 99, pp. 177–181.
33. Singh R.R.P., Young A.P. De Almeida–Thouless instability in short-range Ising spin glasses. Physical Review E, 2017, vol. 96, pp. 012127.
Adhesion and adhesive durability of functional systems of paint coatings on the basis of epoxy resin primer and polyurethane enamels to surfaces of polymeric composite materials with different geometrical and qualitative characteristics of surface on the basis of the epoxy binding are investigated. It is shown that the significant contribution to durability of coupling of film of paint coating in addition to mechanical forces is brought by also chemical nature of two components of adhesive interaction.
2. Kablov E.N. Aviation materials science: results and prospects. Vestnik Rossiyskoy akademii nauk, 2002, vol. 72, no. 1, pp. 3–12.
3. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Abstracts of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
4. Zhitomirskiy G.I. Aircraft design. Moscow: Mashinostroenie, 1991, 400 p.
5. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
6. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: May 18, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
7. Kuznetsova V.A., Deev I.S., Zheleznyak V.G., Silaeva A.A. Anti wear coating with quasicrystal filler. Trudy VIAM, 2018, no. 3 (63), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 19, 2021). DOI: 10.18577/2307-6046-2018-0-3-68-76.
8. Kuznetsova V.A., Semenova L.V., Kondrashov E.K., Lebedeva T.A. Paint-and-lacquer materials with a low content of harmful and design of polymer composite materials. Trudy VIAM, 2013, no. 8, paper no. 05. Available at: http://www.viam-works.ru (accessed: June 19, 2021).
9. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
10. Akay M. An introduction to polymer-matrix composites. Bookboon, 2015, 296 p.
11. Baranovskaya L.P., Bernenko N.O. Dependence of coating adhesion on roughness. Aktualnye problemy aviatsii i kosmonavtiki, 2017, no. 13, pp. 760–762.
12. Berlin A.A., Basin V.E. Basics of polymer adhesion. 2nd ed., rev. and add. Moscow: Khimiya, 1974, 391 p.
13. Simon A.D. Adhesion of films and coatings. Moscow: Khimiya, 1977, 352 p.
14. Yakovlev A.D., Yakovlev S.A. Functional paintwork. Saint Petersburg: Khimizdat, 2016.272 p.
15. Kondrashov E.K., Khaskov M.A., Derkov D.S., Rakova T.M. Investigation of thermal stability of fluoropolyurethane coatings. LKM i ikh primeneniye, 2020, no. 3, pp. 8–12.
16. Kablov E.N. The role of fundamental research in the creation of new generation materials. Abstracts of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. Saint Petersburg, 2019, p. 24.
17. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Possibility of increase of fire safety of VPS-58 glass fibre plastics and carbon fiber-reinforced plastic the VKU-51 brands by putting fireproof swelling-up fireproof paste of the VZO-9kh brand is investigated. Complex researches of physicomechanical, fire and heatphysical properties of fireproof paste of the VZO-9kh brand are conducted. By results of researches it is established that fireproof paste of the VZO-9kh brand corresponds to qualifying standards and can be applied to increase of fire safety of designs from polymeric composite materials.
2. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
3. Vlasenko F.S., Raskutin A.E. Applying FRP in building structures. Trudy VIAM, 2013, no. 8, paper no. 03. Available at: http://viam-works.ru (accessed: February 1, 2021).
4. Evdokimov A.A., Imametdinov E.Sh., Malakhovskiy S.S. Strengthening concrete building structure via reinforcement external system from carbon plastic. Trudy VIAM, 2020, no. 10 (92), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 1, 2021). DOI: 10.18577/2307-6046-2020-0-10-73-80.
5. Rachel J. Deploying Carbon-Fiber-Reinforced Polymer Composites in Precast, Prestressed Concrete Bridges. PCI Journal, 2012, vol. 57, is. 2, p. 41.
6. Lightweight Fiber Reinforced Polymer Composite Modular Panel: pat. 6591567 US; filed 10.12.01; publ. 15.07.03.
7. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Technologies and the main stages of construction of the arch bridge first in Russia from composite materials. Trudy VIAM, 2017, no. 6 (54), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 1, 2021). DOI: 10.18577/2307-6046-2017-0-6-5-5.
8. Kachura S.M., Postnov V.I. Perspective optical fiber sensors and their application (review). Trudy VIAM, 2019, no. 5 (77), paper no. 06. Available at: http://www.viam-works.ru (accessed: February 1, 2021). DOI: 10.18577/2307-6046-2019-0-5-52-61.
9. Kurlepov D.V. The impact of high fire temperatures on building structures. Inzhenerno-stroitelny zhurnal, 2009, no. 4, pp. 41–43.
10. Romanenkov I.G., Levutes F.A. Fireproof building structures. Moscow: Stroyzdat, 1991, 320 p.
11. Lord E.S. Ways to protect building structures from fire impact. Molodoy ucheny, 2015, no. 24 (104), pp. 160–163. Available at: https://moluch.ru/Archive/104/24562/ (accessed: July 06, 2021).
12. Gabdulin R.Sh. Effective methods of fire protection construction structures. Bezopasnost, 2011, no. 1, pp. 48–49.
13. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
14. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Rubbers, sealants, fireproof and heat-shielding materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
15. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Kablov E.N. The role of chemistry in the creation of materials of a new generation for complex technical systems. XX Mendeleev Congress in general and applied chemistry. Ekaterinburg: URO RAS, 2016, pp. 25–26.
17. Kablov E.N. Sixth technological way. Nauka i zhizn, 2010, no. 4, pp. 2–7.
18. Krasnov L.L., Kirina Z.V. Materials that ensure the reliability of the structural elements in the conditions of fire. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 10, pp. 48–52.
19. Pavlovich A.V., Vladovenkov V.V., Izyumsky V.N., Kilchitskaya S.L. Fire retardant sweeping coatings. Lakokrasochnaya promyshlennost, 2012, no. 5, pp. 22–27.
20. Polymeric materials of reduced flammability: materials IV International. conf. Volgograd, 2000. 196 p.
21. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
22. Kraschinnikova M.V. Fire-proofing materials based on organic-soluble film consumers. Lakokrasochnye materialy, 2006, no. 12, pp. 14–16.
23. Barbotko S.L. Development of the fire safety test methods for aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
24. The norms of the airworthiness of the aircraft of the transport category: aviation regulations 25. 3rd ed. Moscow: Aviaisdat, 2009, 267 p.
25. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Evaluation of fire safety of polymeric materials of aviation destination: analysis of the state, methods of testing, development prospects, methodical features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
The article deals with the features of deformation and destruction of samples that have undergone chemical-thermal treatment, using the example of testing nitrided samples of steels 38H2MYuA and 30H3MA. It is established that the mechanical properties determined during the tensile testing of samples with a highly rigid brittle layer cannot serve as design characteristics when evaluating the bearing capacity of parts that have undergone chemical-thermal treatment. Testing of nitrided samples of 38H2MYuA and 30H3MA steels demonstrated a complex process of their deformation and destruction, and the test result showed that this steel treated to the «hardened + high tempering» mode sensitivity to the most dangerous concentration the crack is absent.
2. Kostetskiy B.I. Friction, lubrication and wear in machines. Kiev: Technika, 1970, 396 p.
3. Berliner E.M., Brown E.D., Chichinadze A.V. Friction, wear and lubrication (tribology and tribotechnics). Moscow: Mashinostroenie, 2003, 576 p.
4. Iakovlev N.O., Selivanov A.A., Gulina I.V., Grinevich A.V. Revisiting the durability of hinged-bolt connections. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-4-79-85.
5. Romanenko D.N., Sevalnev G.S., Leonov A.A., Udod K.A., Stepanenko E.V. Improving the tribo-logical characteristics of 18KHGT steel after ce-mentation and hardening heat treatment. Aviation materials and technology, 2021. no. 1 (62). paper no. 02. Available at: https://journal.viam.ru (accessed: May 31, 2021). DOI: 10.18577/2713-0193-2021-0-1-13-21.
6. Lakhtin Yu.M., Arzamasov B.N. Chemical heat treatment of metals. Moscow: Metallurgiya, 1985, 256 p.
7. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
8. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. On the need to create a unified information and analytical center for aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019, no. 3, pp. 28–34.
9. Carrying capacity and strength calculation of machine parts: handbook. Ed. S.V. Serensen. Ed. 3rd, rev. and add. Moscow: Mashinostroenie, 1975, 488 p.
10. Lakhtin Yu.M., Kogan Ya.D. Steel nitriding. Moscow: Mashinostroenie, 1976, 256 p.
11. Fetisov G.P. Materials science and technology of metals. Moscow: Vysshaya shkola, 2001, 640 p.
12. Brand of steels and alloys. Ed. Yu.G. Dragunov, A.S. Zubchenko. 4th ed., rev. and add. Mosocow: Mashinostroenie, 2015, 1216 p.
13. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
14. Popov L.E., Koneva N.A., Tereshko I.V. Strain hardening of ordered alloys. Moscow: Metallurgiya, 1976, 256 p.
15. Pisarenko G.S., Lebedev A.A. Deformation and strength of materials under complex stress conditions. Kiev: Naukova Dumka, 1976, 416 p.
16. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matrix strength characteristics for the assessment of limit states of structural metallic materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
The work carried out studies of the physicomechanical properties of polysulfide sealants of brands of U-30M and UT-31 after thermal, light aging, and the assessment of mushrooms. The data on the resistance of sealants of brands U-30M and UT-31 are investigated and summarized after the impact of accelerated climatic tests and aggressive environments. The optimal time and conditions for the storage of vulcanized sealants in the unattended state and components of sealants in warehouse conditions are determined, as well as the causes of different storage of sealing pastes based on liquid thiocola.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, Vol. 2, no. 2, pp. 37–42.
3. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials: I. Influence of significant factors. Russian metallurgy (Metally), 2020, vol. 2020, no. 4, pp. 364−372.
4. Mikhailin Yu.A. Heat-resistant polymers and polymer materials based on them. Saint Petersburg: Professiya, 2006, pp. 333–346.
5. Savenkova A.V., Tikhonova I.V., Trebukova E.A. Heat and frost-resistant sealants. Aviation materials at the turn of the XX–XXI centuries. Moscow: VIAM, 1994, pp. 432–439.
6. Krasnov L.L., Kirina ZV, Venediktova M.A., Bryk Ya.A. Approbation of tape sealant for sealing removable constructive elements operable at temperatures from -60 to +180°С. Trudy VIAM, 2019, no. 3 (75), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2019-0-3-53-60.
7. Krivushina A.A., Goryashnik Yu.S. Ways of protection of materials and products from microbiological damage (review). Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
8. Kablov E.N. Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 3–9.
9. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
10. Khakimullin Yu.N., Gubaidullin L.Yu. Modern approaches to obtaining hardening sealants. Second Kirpichnikov readings: plenary reports. Kazan, 2001, pp. 63–68.
11. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2021-0-5-114-126.
12. Petrova A.P., Donskoy A.A. Adhesive materials. Sealants: a reference book. Saint Petersburg: Professional, 2008, 589 p.
13. Kablov E.N., Semenova L.V., Eskov A.A., Lebedeva T.A. Complex systems of paint and varnish coatings for the protection of metal polymer composite materials, as well as their contact compounds from aggressive factors. Lakokrasochnye materialy i ikh primeneniye, 2016, no. 6, pp. 32–35.
14. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58.
15. Labutin A.L. Anti-corrosion and sealing materials based on synthetic rubbers. Leningrad: Khimiya, 1982, pp. 203–212.
16. Zaitseva E.I., Donskoy A.A. New polysulfide sealants for the aviation industry. Klei. Germetiki. Tekhnologii, 2009, no. 3, pp. 18–23.
17. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
The paper presents an overview of methods for determining residual stresses. Methods such as splitting and segmentation, layer-by-layer removal, slitting (cutting, pliability), profiling, drilling holes (including a «deep» hole) are considered. The description of the methods for mea-suring the deformation used in the determination of residual stresses is given. The most common contact method using strain gauges, as well as non-contact methods: polarization-optical (photo-elasticity), optical speckle interferometry, digital image correlation.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Krupnina O.A., Rogalev A.M. Features of the structure of Ti–6Al–4V alloy obtained by selective laser melting. Trudy VIAM, 2019, no. 10 (82), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 18, 2021). DOI: 10.18577/2307-6046-2019-0-10-14-24.
5. Burkin S.P., Shimov G.V. Residual stresses in metal products. Ekaterinburg: Ural Federal University, 2015, 247 p.
6. Birger I.A. Residual stresses. Moscow: Mashgiz, 1963, 233 p.
7. Nochovnaya N.A., Panin P.V. Residual Macrostress Analysis in Welded Junctions of Different Titanium Alloys. Trudy VIAM, 2014, no. 05, paper no. 02. Available at: http://www.viam-works.ru. (accessed: June 20, 2021). DOI: 10.18577/2307-6046-2014-0-5-2-2.
8. Lukin V.I., Ioda E.N. Improving the reliability of welded joints made of high-strength aluminum-lithium alloy V-1461. Svarochnoye proizvodstvo, 2010, no. 11, pp. 14–17.
9. Arislanov A.А., Putyrskiy S.B., Yakovlev A.L., Gribkov M.S. Analysis of microstructure and mechanical properties of welded joint from VT6ch. alloy. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 74–79. DOI: 10.18577/2071-9140-2019-0-4-74-79.
10. Zhongxu X., Changpeng C. Study of residual stress in selective laser melting of Ti6Al4V. Materials & Design, 2020, no. 193, art. 108846. DOI: 10.1016/j.matdes.2020.108846.
11. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matrix strength characteristics for the assessment of limit states of structural metallic materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
12. Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components (Review). Materials and Design, 2012, no. 35, pp. 572–588. DOI: 10.1016/j.matdes.2011.08.022.
13. Schajer G.S. Residual Stresses: Measurement by Destructive Methods. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier Science, 2001. Section 5a, pp. 8152–8158. DOI: 10.1016/B0-08-043152-6/01462-5.
14. Walton H.W. Deflection Methods to Estimate Residual Stress. Handbook of Residual Stress and Deformation of Steel. ASM International, 2002, pp. 89–98.
15. ASTM E1928. Standard Practice for Estimating the Approximate Residual Circumferential Stress in Straight Thin-walled Tubing, 2019. Available at: https://www.astm.org/Standards/E1928.htm (accessed: June 20, 2021).
16. Cheng W., Finnie I. Residual Stress Measurement and the Slitting Method. New York: Springer, 2007. 164 p.
17. Hill M.R. The Slitting Method. Practical Residual Stress Measurement Methods. Vancouver: University of British Columbia, 2013, pp. 89–108. DOI: 10.1002/9781118402832.ch4.
18. Prime M.B. Cross-sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut. Journal of Engineering Materials and Technology, 2001, no. 123 (2), pp. 162–168.
19. Pagliaro P., Prime M.B., Swenson H., Zuccarello B. Measuring Multiple Residual-Stress Components Using the Contour Method and Multiple Cuts. Experimental Mechanics, 2010, no. 50 (2), pp. 187–194. DOI: 10.1007/s11340-009-9280-3.
20. ASTM E837. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, 2020. Available at: https://www.astm.org/Standards/E837.htm (accessed: June 20, 2021).
21. Schajer G.S., Yang L. Residual-stress Measurement in Orthotropic Materials Using the Hole-drilling Method. Experimental Mechanics, 1994, no. 34, pp. 324–333.
22. Ghasemi A.R., Shokrieh M.M. Measuring residual stresses in composite materials using the simulated hole-drilling method. Residual Stresses in Composite Materials. Woodhead Publishing, 2014, pp. 76–120. DOI: 10.1533/9780857098597.1.76.
23. Mathar J. Determination of Initial Stresses by Measuring the Deformation Around Drilled Holes. Transactions ASME, 1934, no. 56 (4), pp. 249–254.
24. Schajer G.S., Philip S.W. Hole-Drilling Method for Measuring Residual Stresses. Synthesis SEM Lectures on Experimental Mechanics, 2018, no. 1, pp. 1–186. DOI: 10.2200/S00818ED1V01Y201712SEM001.
25. Leggatt R.H., Smith D.J., Smith S.D., Faure F. Development and Experimental Validation of the Deep Hole Method for Residual Stress Measurement. Journal of Strain Analysis, 1996, no. 31 (3), pp. 177–186. DOI: 10.1243/03093247V313177.
26. Aleksandrov A.Ya., Akhmetzyanov M.X. Polarization-optical methods of solid mechanics. Moscow: Nauka, 1973, 572 p.
27. Razumovsky I.A. Method of photoelastic coatings in studies in areas of high stress gradients. Mashinovedenie, 1984, no. 2, pp. 84–87.
28. Thomas W.C., Wayne E.N. Residual strain Measurement using Photoelastic Coating. Optics and Lasers in Engineering, 1997, vol. 27, is. 1, pp. 111–123. DOI: 10.1016/S0143-8166(95)00012-7.
29. Rickert T. Residual Stress Measurement by ESPI Hole-Drilling. Procedia CIRP, 2016, vol. 45, pp. 203–206. DOI: 10.1016/j.procir.2016.02.256.
30. Razumovsky I.A. Interference-optical methods of solid mechanics. Moscow: Publ. house of MSTU, 2007, 240 p.
31. Apalkov A.A., Odintsev I.N., Razumovsky I.A. Application of electronic speckle interferometry for measuring residual stresses. Zavodskaya laboratoriya. Diagnostika materialov, 2002, vol. 68, no. 4, pp. 48–51.
32. Nelson D.V., McCrickerd J.T. Residual-stress Determination Through Combined Use of Holographic Interferometry and Blind-Hole Drilling. Experimental Mechanics, 1986, no. 26 (4), pp. 371–378.
33. Sutton M.A., Orteu J., Schreier H.W. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, 2009, 321 p.
34. Nelson D.V., Makino A., Schmidt T. Residual Stress Determination Using Hole Drilling and 3D Image Correlation. Experimental Mechanics, 2006, no. 46 (1)p pp. 31–38. DOI: 10.1007/s11340-006-5859-0.
35. Gao J., Shang H. Deformation-Pattern-Based Digital Image Correlation Method and its Application to Residual Stress Measurement. Applied Optics, 2009, vol. 48, pp. 1371–1381. DOI: 10.1364/AO.48.001371.
The plasticizing effect of moisture on the glass transition temperature of VSE-34 solvent-free epoxy binder based polymer composite materials (PCMs) with different reinforcement was studied. Natural weathering was performed in three climatic regions of Russia: Moscow, Gelendzhik, Sochi. It was shown that the glass transition temperature is significantly reduced after 1 year of exposure and then is gradually increased after 3 and 5 years of exposure. Samples were studied in «as-received» state as well as after drying and saturation by water till mass stabilization in order to investigate the moisture influence on PCMs’ glass transition temperature. Linear relationship between glass transition temperature and moisture content was observed.
2. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
3. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58.
5. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible influence of moisture on the mechanical properties of PCM after weathering. Trudy VIAM, 2018, no. 5 (65), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2018-0-5-110-118.
6. Soles C.L., Yee A.F. A discussion of the molecular mechanisms of moisture transport in epoxy resins. Journal of Polymer Science. Part B: Polymer Physics, 2000, vol. 38, no. 5, pp. 792–802.
7. Startsev V.O., Lebedev M.P., Khrulev K. et al. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers. Polymer Testing, 2018, vol. 65, pp. 281–296. DOI: 10.1016/j.polymertesting.2017.12.007.
8. Neuser S., Michaud V. Effect of aging on the performance of solvent-based self-healing materials. Polymer Chemistry, 2013, vol. 4, no. 18, pp. 4993–4999. DOI: 10.1039/c3py00064h.
9. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2021-0-5-114-126.
10. Sharp N., Li C., Strachan A., Adams D., Pipes R.B. Effects of water on epoxy cure kinetics and glass transition temperature utilizing molecular dynamics simulations. Journal of Polymer Science. Part B: Polymer Physics, 2017, vol. 55, no. 15, pp. 1150–1159. DOI: 10.1002/polb.24357.
11. Lu M.G., Shim M.J., Kim S.W. Effects of moisture on properties of epoxy molding compounds. Journal of Applied Polymer Science, 2001, vol. 81, no. 9, pp. 2253–2259. DOI: 10.1002/app.1664.
12. Zhou J., Lucas J.P. Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature. Polymer, 1999, vol. 40, no. 20, pp. 5513–5522. DOI: 10.1016s0032-3861(98)00791-5.
13. Kovalenko A.V., Gurevich Ya.M., Lukina A.I., Sokolov I.I. Investigation of a complex of technological and operational properties of a spheroplastic based on an epoxy binder. Plasticheskiye massy, 2020. N, no. 5-6, pp. 52–54.
14. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2020-0-67-38-44.
15. Ivanov N.V., Gurevich Ya.M., Khaskov M.A., Akmeev A.R. Mode studying curing binding VSE-34 and its influences on mechanical properties. Aviacionnyye materialy i tehnologii, 2017, no. 2, pp. 50–55. DOI: 10.18577 / 2071-9140-2017-0-2-50-55.
16. Markevich M.A., Kuzaev A.I., Sakhonenko L.S., Vladimorov L.V., Pekarskii V.A., Brusilov-
skii M.G. Synthesis, Structure and Properties of Epoxydiane Polymers. Polymer Science U.S.S.R., 1984, vol. 26, no. 3, pp. 687–695. DOI: 10.1016/0032-3950(84)90408-8.
17. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
18. Molchanov E.S., Yudin V.E., Kydralieva K.A., Elokhovskii V.Y. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications. Mechanics of Composite Materials, 2012, vol. 48, no. 3, pp. 343–350. DOI: 10.1007/s11029-012-9281-7.
19. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Composite materials in automotive industry (review). Trudy VIAM, 2017, no. 6 (54), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2017-0-6-7-7.
20. Startsev O.V., Kablov E.N., Makhonkov A.Yu. Regularities of the transition of epoxy binder composite materials according to dynamic mechanical analysis. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana, ser.: Mechanical engineering. 2011, no. SP2, pp. 104–113.
21. Panin S.V., Startsev O.V., Krotov A.S. Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient. Trudy VIAM, 2014, no. 7, paper no. 09. Available at: http://viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2014-0-7-9-9.
22. Koretskaya L., Aleksandrova T. Structural changes are inevitable. Influence of water on the properties of fiberglass. Polimernye truby, 2011, no. 1 (31), pp. 38–41.
23. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 1. Aging mechanisms. Russian Metallurgy (Metally), 2011, no. 10, pp. 993–1000. DOI: 10.1134/S0036029520100110.
24. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties. Russian Metallurgy (Metally), 2011, no. 10, pp. 1001–1007. DOI: 10.1134/S0036029511100077.
25. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329. DOI: 10.1134/S0036029512040040.
The founder of the science of protecting materials from corrosion, aging and bio-damage in Soviet Russia is Georgy Vladimirovich Akimov, who created the infrastructure for climate testing of materials and products. Currently, his students and followers have discovered new directions for the development of climatic and microbiological tests – these are studies of the preservation of the properties of materials in complex technical systems under the influence of climatic factors, mold fungi, bacteria and operational loads using the most modern methods at the sites of the created network of climate test stations, as well as using modern regulatory documentation.
2. Investigation of corrosion of metals under tension. Ed. G.V. Akimov. Moscow: Mashgiz, 1953, 140 p.
3. Akimov G.V., Rosenfeld I.L. Influence of the concentration of hydrogen ions on corrosion and electrode potential of metals. Research in the field of electrochemical and corrosion behavior of metals and alloys. Moscow: Oborongiz, 1950, pp. 201–233.
4. Paleologue E.N., Akimov G.V., Tomashov N.D., Korotkova K.S. Influence of protective films on corrosion and electrochemical behavior of magnesium. Problem of corrosion and protection of metals. Moscow: Publishing House of the Academy of Sciences of the USSR, 1956, pp. 237–254.
5. Clark G.B., Akimov G.V. Electrode potentials of magnesium-based solid solutions. Research in the field of electrochemical and corrosion behavior of metals and alloys. Moscow: Oborongiz, 1950, pp. 121–137.
6. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Assessment of the influence of significant influencing factors. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16.
7. Kablov E.N., Erasov V.S., Panin S.V., Course M.G., Gladkikh A.V., Avtaev V.V., Sorokina N.I., Lukyanychev D.A. Investigation of the combined effect of mechanical loads and climatic factors on the properties of materials in the composition of a large-sized structure of the experimental wing compartment after 4 years of testing. Reports of the II Intern. scientific and technical conf. "Corrosion, aging and biostability of materials in a maritime climate". Moscow: VIAM, 2016. Art. 6.
8. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of research methods for the early stages of aging. Deformatsiya i razrusheniye materialov, 2020, no. 1, pp. 15–21.
9. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 15, 2020). DOI: 10.18577/2307-6046-2019-0-7-84-91.
10. Krasnoyarsk V.V., Frenkel G.V., Nosov R.P. Corrosion and protection of metals. Moscow: Metallurgy, 1969, p. 9.
11. Polyakov K.A., Slomyanskaya F.B., Polyakova K.K. Corrosion and chemical resistant materials. Moscow: State sc. and tech. publ. house chem. literature, 1953, p. 10.
12. Kablov E.N., Petrova A.P., Narsky A.R. G.V. Akimov – the creator of the national science of corrosion. Istoriya nauki i tekhniki, 2009, no. 11, pp. 12–15.
13. Castañeda A., Corvo F., Fernández D., Valdés C. Outdoor-Indoor Atmospheric Corrosion in a Coastal Wind Farm Located in a Tropical Island. Engineering journal, 2016, vol. 21, is. 2, pp. 44–62.
14. Morcillo M., Chico B., de la Fuente D., Simancas J. Looking back on contributions in the field atmospheric corrosion offered by the MICAT Ibero-American testing network. International journal of corrosion, 2012, vol. 2012, art. ID 824365.
15. Dong J., Han E., Ke W. Introduction to atmospheric corrosion research in China. Science and Technology of Advanced Materials, 2007, no. 8, pp. 559–565.
16. Perevedentsev Yu.P., Zandi R., Aukhadaev T.R. Dynamics of dust storms on the territory of Khuzenstan (south-west of Iran) at the beginning of the XXI century. Rossiyskiy zhurnal prikladnoy ekologii, 2015, no. 1, pp. 10–14.
17. Khristoforov D.A., Klyushnichenko A.B., Startsev V.O., Suranov A.Ya., Fizulov B.G., Startsev O.V. Linear dilatometry of polymers and polymer composite materials. Experimental methods in the physics of structurally inhomogeneous condensed media: proceedings of the Second Intern. scientific and technical conf. EFM-2001. Barnaul: Altaysk. state un-t, 2001, pp. 186–194.
18. Nizina T.A., Startsev V.O., Selyaev V.P., Startsev O.V., Nizin D.R. Analysis of the influence of actinometric parameters on the intensity of changes in the color characteristics of epoxy composites in a marine climate. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta imeni I.I. V.G. Shukhova, 2015, no. 5, pp. 95–101.
19. Kurs M.G., Kutyrev A.E., Fomina M.A. Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests. Trudy VIAM, 2016, no. 8 (44), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 18, 2021). DOI: 10.18577/2307-6046-2016-0-8-10-10.
20. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 1. Atmospheric corrosion. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-4-86-94.
21. Abramova M.G. Revisiting the confirmation of the identity of the corrosion destruction mechanism of aluminum alloys (review). Part 2. Corrosion in sea water. Aviation materials and technology, 2021. no. 1 (62). paper no. 09. Available at: http://www.journal.viam.ru (accessed: July 7, 2021). DOI: 10.18577/2713-0193-2021-0-1-95-103.
22. Tourova T., Sokolova D., Nazina T., Grouzdev D., Kurshev E., Laptev A. Biodiversity of microorganisms colonizing the surface of polystyrene samples exposed to different aqueous environments. Sustainability, 2020, vol. 12, art. 3624. DOI: 10.3390/su12093624.
23. Yang Y., Yang J., Wu W.-M. et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environmental Science & Technology, 2015, vol. 49, pp. 12087–12093. DOI: 10.1021/acs.est.5b02663.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Vitaly V. Avtaev |
Leading Engineer |
Olga A. Bazyleva |
Deputy Head of Laboratory of Science, Candidate of Sciences (Tech.) |
Alexander A. Barannikov |
First category engineer-technologist |
Ruslan A. Valeev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Jana А. Vakhrusheva |
Head of Laboratory |
Ilya M. Veligodsky |
First Category Engineer, Candidate of Sciences (Chem.) |
Maria A. Venediktova |
Head of Sector |
Evgeny A. Veshkin |
Head of USTC, Candidate of Science (Tech.) |
Anatoly V. Grinevich |
Chief Researcher Doctor of Sciences (Tech.) |
Anna A. Gromova |
Head of Sector, Candidate of Sciences (Tech.) |
Irina V. Gulina |
Deputy Head of Laboratory |
Anton. A. Evdokimov |
Second Category Engineer |
Vyacheslav G. Zheleznyak |
Head of Laboratory, Candidate of Sciences (Tech.) |
Mukhamed M. Karashaev |
Leading Engineer, Candidate of Sciences (Tech.) |
Tatiana V. Koval |
Head of Sector |
Stanislav V. Kondrashov |
Deputy Head of the Laboratory for Science, Doctor of Sciences (Tech.) |
Dmitry V. Korolev |
Senior Researcher, Candidate of Sciences (Chem.) |
Elena A. Kotova |
Researcher |
Lavrentiy L. Krasnov |
Chief Researcher, Candidate of Sciences (Tech.) |
Vera A. Kuznetsova |
Head of Sector, Candidate of Sciences (Tech.) |
Evgeny V. Kurshev |
First Category Engineer |
Anatoly B. Laptev |
Chief Researcher, Doctor of Sciences (Tech.) |
Mikhail N. Letnikov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Boris S. Lomberg |
Chief Researcher, Doctor of Sciences (Tech.) |
Anton A. Lyakhov |
First Category Engineer |
Ivan S. Makushchenko |
First Category Technician |
Anton D. Monakhov |
Engineer |
Roman B. Morgunov |
Leading Researcher, Doctor of Sciences (Phys. & Math.) |
Evgeny V. Nikolaev |
Deputy Head of Testing Center, Candidate of Sciences (Tech.) |
Aleftina P. Petrova |
Chief Researcher, Doctor of Sciences (Tech.) |
Vadim P. Piskorskiy |
Deputy Head of Laboratory of Science, Doctor of Sciences (Tech.) |
Ruslan A. Satdinov |
Head of Laboratory |
Anna A. Silaeva |
Engineer, Candidate of Sciences (Tech.) |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Denis N. Smirnov |
Head of Sector |
Lyudmila V. Solovyanchik |
Head of Sector |
Valery O. Startsev |
Head of Laboratory, Doctor of Sciences (Tech.) |
Alexey M. Shestakov |
Leading Researcher, Candidate of Sciences (Chem.) |
Nikolay O. Yakovlev |
Head of Laboratory, Candidate of Sciences (Tech.) |
JSC Gavrilov-Yam Machine-Building Plant «Agat»; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Alexey A. Vishtalyuk |
Technical Director |
Olga V. Kuzmina |
Head of Central Plant Laboratory – Deputy Chief Metallurgist |