Articles
The paper shows the features of the formation of the structural-phase and textural state of the EP648 alloy obtained by the SLM method in the initial state, after hot isostatic pressing and heat treatment. It was found that in the process of synthesis, a limited crystallographic texture of the γ-phase is formed, which does not undergo significant changes in the process of subsequent treatments. The uniform distribution of fine particles of the hardening phases, apparently, leads to an increase in both the strength and plastic properties of the material obtained by the SLM method in comparison with the material obtained by the traditional technology.
2. Kishkin S.T., Kablov E.N. Casting heat-resistant alloys for turbine blades. Aviation materials. Selected works of "VIAM" 1932–2002. Moscow: VIAM, 2002. S. 48–58.
3. Kablov E.N., Golubovsky E.R. Heat resistance of nickel alloys. Moscow: Mashinostroenie, 1998, 464 p.
4. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metal-powder compositions of EP648 heat-resistant alloy produced by FSUE "VIAM" State Scientific Center of the Russian Federation in technologies of selective laser fusion, laser gas-powder surfacing and high-precision casting of polymers filled with metal powders. Izvestiya vysshikh uchebnykh zavedeniy, Mashinostroene. 2016, no. 9 (678), pp. 62–80.
5. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaitsev D.V., Prager S.M. Structure and properties of EP648 and VZh159 alloys synthesized by selective laser alloying after imitation annealing. Materialovedenie, 2020, no. 6, pp. 3–10.
6. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
7. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Krupnina O.A., Rogalev A.M. Fea-tures of the structure of Ti–6Al–4V alloy obtained by selective laser melting. Trudy VIAM, 2019, no. 10 (82), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 18, 2021). DOI: 10.18577/2307-6046-2019-0-10-14-24.
8. Carter L., Martin C., Withers P., Attallah M. The influence of the laser scan strategy on grain structure and cracking behavior in SLM powder-bed fabricated nickel superalloy. Journal of Alloys and Compounds, 2014, vol. 615, pp. 338–347.
9. Zhu Y., Liu D., Tian X. et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti – 6.5Al – 3.5Mo – 1.5Zr – 0.3Si titanium alloy. Materials and Design, 2014, vol. 56, p. 445-453.
10. Gaiduk S.V., Kononov V.V., Nalesny N.B. Investigation of dendritic liquation and phase inhomogeneity in heat-resistant corrosion-resistant nickel alloys. Vestnik dvigatelestroyeniya, 2006, no. 1, pp. 150–154.
11 Bazyleva O.A., Unchikova M.V., Turenko E.Yu., Bagetov V.V., Shestakov A.V. Study of heat treatment effect on structure, dendritic liquation parameters and time to failure of Ni3Al-based alloy containing Re). Trudy VIAM, 2016, no. 10, paper no. 4. Available at: http://www.viam.ru (accessed: May 20, 2021) DOI: 10.18577/2307-6046-2016-0-10-4-4.
12. Lukina E.A., Filonova E.V., Treninkov I.A. The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
13. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
14. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. HIP and deformation of the granulated heat resisting nickel alloys. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
15. Honicomb R. Plastic deformation of metals. Moscow: Mir, 1972, 408 p.
The article discusses the main technological approaches to obtain heat-resistant and heat-resistant materials based on compounds in the Ni–Al system in order to use them in promising products of aviation and rocket technology. It is shown that when receiving materials based on compounds in the Ni-Al system, a phase of eutectic origin is formed based on the Ni3Al compound, which reduces the technological plasticity of the alloys of this system. The use of powder metallurgy methods eliminates such phases in the structure of alloys obtained using granule metallurgy technology, as well as with the use of special methods of powder metallurgy.
Technological approaches are presented to obtain similar materials using powder metallurgy methods combined with thermomechanical processing.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
5. Bazyleva O.A., Turenko E.Yu., Rassokhina L.I., Bityutskaya O.N., Shitikov A.V., Lapeev B.S. Cast blocks of the nozzle apparatus of the 2nd stage of the HPT from the VKNA-4-VI intermetallic alloy. Liteinoe proizvodstvo, 2014, no. 10, pp. 7–10.
6. Bazyleva O.A., Unchikova M.V., Turenko E.Yu., Bagetov V.V., Shestakov A.VStudy of heat treatment effect on structure, dendritic liquation parameters and time to failure of Ni3Al-based alloy containing Re). Trudy VIAM, 2016, no. 10, paper no. 4. Available at: http://www.viam.ru (accessed: May 31, 2021). DOI: 10.18577/2307-6046-2016-0-10-4-4.
7. Evgenov A.G., Bazyleva O.A., Korolev V.A., Arginbaeva E.G. Prospects of Ni3Al-based intermetallic alloy VKNA-4UR application in additive technologies. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 31–35. DOI: 10.18577/2071-9140-2016-0-S1-31-35.
8. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Development trends of nickel-based intermetallic alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
9. Garibov G.S. Theory of crystallization and technology of granulated heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 107–118.
10. Garibov G.S., Grits N.M. V.I. Dobatkin and metallurgy of high-temperature nickel alloy granules. Tekhnologiya legkikh splavov, 2015, no. 2, pp. 34–39.
11. Eskin G.I. On the conditions for the formation of a non-dendritic structure in ingots and granules from heat-resistant nickel alloys. Tekhnologiya legkim splavov, 2013, no. 4, pp. 147–159.
12. Gessinger G.Kh. Powder metallurgy of heat-resistant alloys. Trans. from English Chelyabinsk: Metallurgy, 1988, 320 p.
13. Bazyleva O.A., Efimochkin I.Y., Arginbaeva E.G., Kuptsov R.S., Karashaev M.M. Composite Material Based оn Intermetallic Alloy оf VKNA Type Reinforced With Oxide Particles. Inorganic Materials: Applied Research, 2021, vol. 12, no. 2, pp. 307–312.
14. Abuzin Yu.A., Karashaev M.M., Roslyakov S.I. High-temperature composite material based on Nb reinforced with Al2O3. Uspekhi sovremennoy nauki, 2016, vol. 3, no. 6, pp. 6–12.
15. Abuzin Yu.A., Karashaev M.M., Sokolov R.A. Evaluation of Energy Efficiency of the Aluminothermic Process of Producing Metal Composite Materials by the Criteria of the Maximum Self-Heating Temperature and the Aggregate State of Oxygen Exchange Reaction Products // International Journal of Nanomechanics Science and Technology, 2015, vol. 6, no. 4, pp. 299–304.
16. Abuzin Yu.A., Karashaev M.M., Roslyakov S.I. Development of the fundamentals of the production technology and methods for controlling the structure of a high-temperature composite material of the Nb–Al2O3 system. Tekhnologiya legkikh splavov, 2017, no. 1, pp. 60–68.
17. Garibov G.S. Scientific and technical groundwork in the field of granular metallurgy for the creation of advanced aircraft engines. Tekhnologiya legkikh splavov, 2018, no. 2, pp. 63–71.
18. Reed R.C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006, 370 p.
19. Povarova K.B., Lomberg B.S., Filin S.A., Kazanskaya N.K., Shkolnikov D.Yu., Bespalova M.D. Structure and properties of (β + γ)-alloys of the Ni–Al–Co system. Metally, 1994, no. 3, pp. 77–81.
20. Zhitnyuk S.V., Sorokin O.Yu., Zhuravleva P.L. Silicon carbide ceramics obtained by sintering granular powder. Trudy VIAM, 2020, no. 2 (86), paper no. 06. Available at: http://www.viam-works.ru (accessed: May 31, 2021). DOI: 10.18577/2307-6046-2020-0-2-50-59.
21. Sevostyanov N.V., Efimochkin I.Yu., Basargin O.V., Burkovskaya N.P. Stages of the process of synthesis of titanium carbosilicide from simple elements by the method of spark plasma sintering (SPS). Metallovedenie i termicheskaya obrabotka metallov, 2020, no. 3 (777), pp. 55–59.
The paper considers the process of pyrolysis of polymers-precursors, and also shows the influence of various parameters of technological processes for obtaining ceramics on its composition, structure, and properties. The main types of binary, ternary and multicomponent silicon-based ceramics, methods of its preparation, features of structure and properties are considered, and promising directions of application of ceramics are determined. The possibility of obtaining porous ceramic materials (ceramic foams) with controlled porosity and ceramic composite materials with a given composition is noted.
2. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Grashchenkov D.V., Evdokimov S.A., Zhestkov B.E., Solntsev S.St., Shtapov V.V. Research of thermochemical influence of the air plasma flow on high-temperature ceramic composite material. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 31–40. DOI: 10.18577/2071-9140-2017-0-2-31-40.
5. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
6. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
7. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastianov V.G. High-temperature structural composite materials based on glass and ceramics for advanced aircraft products. Steklo i keramika, 2012, no. 4, pp. 7–11.
8. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM, 2014, no. 6, paper no. 8. Available at: http://www.viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2014-0-6-8-8.
9. Minakov V.T., Solntsev S.S. Ceramic-matrix composites. Vse materialy. Entsiklopedicheskiy spravochnik, 2007. no. 2, pp. 5–9.
10. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
11. Сорокин О.Ю. К вопросу о механизме взаимодействия углеродных материалов с кремнием (обзор). Авиационные материалы и технологии. 2015. № 1 (34). С. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
12. Shvets N.I., Minakov V.T., Papkov V.S. et al. Investigation of thermochemical transformations of polycarbosilane precursors into a ceramic matrix. Zhurnal prikladnoy khimii, 2014, vol. 87, no. 6, pp. 793–799.
13. Shestakov A.M., Minakov V.T., Shvets N.I. et al. Ceramic-forming polymeric precursors based on polycarbosilane and diallylbisphenol A. Zhurnal prikladnoy khimii, 2014, vol. 87, no. 11, pp. 1626–1635.
14. Shestakov A.M., Shvets N.I., Khaskov M.A., Ponomarenko S.A., Minakov V.T. Compositions based on polycarbosilane and bismaleimide are precursors of ceramic-matrix composite materials. Zhurnal prikladnoy khimii, 2015, vol. 88, no. 9, pp. 1339–1347.
15. Shestakov A.M., Khaskov M.A., Sorokin O.Yu. Organosilicon polymer compounds based inorganic fibers for high-temperature composite materials (review). Trudy VIAM, 2019, no. 1 (73), paper no. 09. Available at: http://viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2019-0-1-74-91.
16. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: methods of preparation and properties (review). Trudy VIAM, 2020, no. 11 (93), paper no. 9. Available at: http://www.viam-works.ru (accessed: April 12, 2021). DOI: 10.18577/2307-6046-2020-0-11-76-92.
17. Colombo P., Mera G., Riedel R., Soraru G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, no. 7, pp. 1805–1837.
18. Blum Y.D., Schwartz K.B., Laine R.M. Preceramic Polymer Pyrolysis. Part 1: Pyrolytic Properties of Polysilazanes. Journal of Materials Science, 1989, vol. 24, no. 5, pp. 1707–1718.
19. Wan J., Gasch M.J., Mukherjee A.K. Silicon Nitride-Silicon Carbide Nanocomposites Fabricated by Electric-Field-Assisted Sintering. Journal of the American Ceramic Society, 2003, vol. 86, no. 3, pp. 526–528.
20. Esfehanian M., Oberacker R., Fett T., Hoffmann M.J. Development of Dense Filler-Free Polymer-Derived SiOC Ceramics by Field-Assisted Sintering. Journal of the American Ceramic Society, 2008, vol. 91, no. 11, pp. 3803–3805.
21. Rapid thermal process for obtaining silica coatings: pat. US № 5059448; filed 18.06.90; publ. 22.10.91.
22. Dzivenko D.A., Zerr A., Bulatov V.K. et al. High-Pressure Multianvil Synthesis and Structure Refinement of Oxygen-Bearing Cubic Zirconium(IV) Nitride. Advanced Materials, 2007, vol. 19, no. 14, pp. 1869–1873.
23. Danko G.A., Silberglitt R., Colombo P. et al. Comparison of Microwave Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2000, vol. 83, no. 7, pp. 1617–1625.
24. Pivin J.C., Colombo P. Ceramic Coatings by Ion Irradiation of Polycarbosilanes and Polysiloxanes. Part I. Conversion Mechanism. Journal of Materials Science, 1997, vol. 32, no. 23, pp. 6163–6173.
25. Pivin J.C., Colombo P. Ceramic Coatings by Ion Irradiation of Polycarbosilanes and Polysiloxanes. Part II. Hardness and Thermochemical Stability. Journal of Materials Science, 1997, vol. 32, no. 23, pp. 6175–6182.
26. Pivin J.C., Colombo P., Soraru G.D. Comparison of Ion Irradiation Effects in Silicon-Based Preceramic Thin Films. Journal of the American Ceramic Society, 2000, vol. 83, no. 4, pp. 713–720.
27. Kroke E., Li Y.-L., Konetschny C. et al. Silazane derived ceramics and related materials. Materials Science and Engineering, ser.: Reports, 2000, vol. 26, no. 4–6, pp. 97–199.
28. Haug R., Weinmann M., Bill J., Aldinger F. Plastic forming of preceramic polymers. Journal of the European Ceramic Society, 1999, vol. 19, no. 1, pp. 1–6.
29. Greil P. Polymer derived engineering ceramics. Advanced Engineering Materials, 2000, vol. 2, no. 6, pp. 339–348.
30. Konetschny C., Galusek D., Reschke S. et al. Dense silicon carbonitride ceramics by pyrolysis of cross-linked and warm pressed polysilazane powders. Journal of the European Ceramic Society, 1999, vol. 19, no. 16, pp. 2789–2796.
31. Yu S.H., Riman R.E., Danforth S.C., Leung R.Y. Pyrolysis of Titanium-Metal-Filled Poly(siloxane) Preceramic Polymers: Effect of Atmosphere on Pyrolysis Product Chemistry. Journal of the American Ceramic Society, 1995, vol. 78, no. 7, pp. 1818–1824.
32. Breval E., Hammond M., Pantano C.G. Nanostructural Characterization of Silicon Oxycarbide Glasses and Glass-Ceramics. Journal of the American Ceramic Society, 1994, vol. 77, no. 11, pp. 3012–3018.
33. Liew L.-A., Saravanan R.A., Bright V.M. et al. Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators. Sensors and Actuators. A: Physical, 2003, vol. 103, no. 1–2, pp. 171–181.
34. Colombo P., Martucci A., Fogato O., Villoresi P. Silicon Carbide Films by Laser Pyrolysis of Polycarbosilane. Journal of the American Ceramic Society, 2001, vol. 84, no. 1, pp. 224–226.
35. Yoon T.-H., Park S.-H., Min K.-I. et al. Novel inorganic polymer derived microreactors for organic microchemistry applications. Lab on a Chip, 2008, vol. 8, no. 9, pp. 1454–1459.
36. Method for coating a surface: pat. US № 6316057B1; filed 26.05.98; publ. 03.12.98.
37. Fu Sh., Zhu M., Zhu Y. Organosilicon polymer-derived ceramics: An overview. Journal of Advanced Ceramics, 2019, vol. 8, no. 4, pp. 457–478.
38. Wang Y., Xiao P., Zhou W. et al. Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders. Ceramics International, 2018, vol. 44, no. 4, pp. 3606–3613.
39. Mishra M.K., Kumar S., Ranjan A., Prasad N.E. Processing, properties and microstructure of SiC foam derived from epoxy-modified polycarbosilane. Ceramics International, 2018, vol. 44, no. 2, pp. 1859–1867.
40. Eick B.M., Youngblood J.P. SiC nanofibers by pyrolysis of electrospun preceramic polymers. Journal of Materials Science, 2009, vol. 44, no. 1, pp. 160–165.
41. Hu T.-J., Li X.-D., Li G.-Y. et al. SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes. Materials Science and Engineering: B, 2011, vol. 176, no. 9, pp. 706–710.
42. Ma Y., Wang S., Chen Z.-H. Effects of high-temperature annealing on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane. Materials Science and Engineering: A, 2011, vol. 528, no. 7–8, pp. 3069–3072.
43. Mu Y., Zhou W., Luo F., Zhu D. Effects of BN/SiC dual-layer interphase on mechanical and dielectric properties of SiCf/SiC composites. Ceramics International, 2014, vol. 40, no. 2, pp. 3411–3418.
44. Fu X., Zhu N., Peng Zh. One-step synthesis and characterization of tree-like branched α-Si3N4 nano/submicron-structures by pyrolysis of a polymer precursor. Solid State Sciences, 2012, vol. 14, no. 9, pp. 1267–1272.
45. Peng Zh., Zhu N., Fu X. et al. Growth and Mechanism of Network-Like Branched Si3N4 Nanostructures. Journal of the American Ceramic Society, 2010, vol. 93, no. 8, pp. 2264–2267.
46. Zhu N., Peng Zh., Fu X. et al. A simple approach to controllably grow network-like branched single-crystalline Si3N4 nanostructures. Solid State Sciences, 2010, vol. 12, no. 7, pp. 1076–1079.
47. Jiang Y.G., Zhang C.R., Cao F. et al. Effects of thermal load on mechanical properties and microstructures of 3D SiO2f/Si3N4–BN composites using polyborosilazane. Materials Science and Engineering: A, 2008, vol. 487, no. 1–2, pp. 597–600.
48. Sasikumar P.V.W., Zera E., Graczyk-Zajac M. et al. Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications. Journal of the American Ceramic Society, 2016, vol. 99, no. 9, pp. 2977–2983.
49. Vakifahmetoglu C., Zeydanli D., de Mello Innocentini M.D., dos Santos Ribeiro F., Lasso P.R.O., Soraru G.D. Gradient-hierarchic-aligned porosity SiOC ceramics. Scientific Reports, 2017, vol. 7. Publ. 41049.
50. Colombo P., Arcaro A., Francesconi A. et al. Effect of hypervelocity impact on microcellular ceramic foams from a preceramic polymer. Advanced Engineering Materials, 2003, vol. 5, no. 11, pp. 802–805.
51. Iwamoto Y., Völger W., Kroke E. et al. Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors. Journal of the American Ceramic Society, 2001, vol. 84, no. 10, pp. 2170–2178.
52. Mera G., Riedel R., Poli F., Müller K. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides). Journal of the European Ceramic Society, 2009, vol. 29, no. 13, pp. 2873–2883.
53. Nangrejo M.R., Bao X., Edirisinghe M.J. Preparation of silicon carbide-silicon nitride composite foams from pre-ceramic polymers. Journal of the European Ceramic Society, 2000, vol. 20, no. 11, pp. 1777–1785.
54. Degenhardt U., Stegner F., Liebscher C. et al. Sintered silicon nitride/nano-silicon carbide materials based on preceramic polymers and ceramic powder. Journal of the European Ceramic Society, 2012, vol. 32, no. 9, pp. 1893–1899.
55. Graczyk-Zajac M., Fasel C., Riedel R. Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. Journal of Power Sources, 2011, vol. 196, no. 15, pp. 6412–6418.
56. Bernardo E., Colombo P., Pippel E., Woltersdorf J. Novel Mullite Synthesis Based on Alumina Nanoparticles and a Preceramic Polymer. Journal of the American Ceramic Society, 2006, vol. 89, no. 5, pp. 1577–1583.
57. Griggio F., Bernardo E., Colombo P., Messing G.L. Kinetic Studies of Mullite Synthesis from Alumina Nanoparticles and a Preceramic Polymer. Journal of the American Ceramic Society, 2008, vol. 91, no. 8, pp. 2529–2533.
58. Bernardo E., Colombo P., Hampshire S. SiAlON-Based Ceramics from Filled Preceramic Polymers. Journal of the American Ceramic Society, 2006, vol. 89, no. 12, pp. 3839–3842.
59. Schlier L., Fu Z., Harris J. et al. Crack healing of ferrosilicochromium-filled polymer-derived ceramic composites. Journal of the European Ceramic Society, 2018, vol. 38, no. 6, pp. 2495–2501.
60. Riedel R., Passing G., Schönfelder H., Brook R.J. Synthesis of dense silicon-based ceramics at low temperatures. Nature, 1992, vol. 355, pp. 714–717.
61. Kleebe H.-J., Störmer H., Trassl S., Ziegler G. Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Applied Organometallic Chemistry, 2001, vol. 15, no. 10, pp. 858–866.
62. Mera G., Tamayo A., Nguyen H., Sen S., Riedel R. Nanodomain Structure of Carbon-Rich Silicon Carbonitride Polymer-Derived Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, no. 4, pp. 1169–1175.
The article deals with the development of ion-plasma coating systems based on multilayer heterogeneous structures of the type (Me1)N/(Me2)N, (Me1–Me2)N/(Me3)N, (Me1–Me2–Me3)N/(Me4)N, where Me: Ti, Al, Cr, Mo. Tests for heat resistance and wear resistance, gas-abrasive resistance, metallographic and x-ray structural studies were carried out. It is shown that the ion-plasma coating (Ti–Al–Cr)N/CrN can be used to increase the heat resistance, wear resistance (including abrasive) of steel and titanium intermetallic parts of aircraft gas turbine engines operating in the temperature range up to 800 °C.
2. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for gas turbine engine compressor blades. Russian metallurgy (Metally), 2017, vol. 2017, no. 6, pp. 494–504.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narskiy A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104). S. 64–78.
4. Aleksandrov D.A. The research of wear-resistant coatings based on multicomponent titanium nitrides Trudy VIAM, 2020, no. 4-5 (88), paper no. 07 Available at: http://www.viam-works.ru (accessed: June 10, 2021). DOI: 10.18577 / 2307-6046-2020-0-45-62-69.
5. Gorlov D.S., Zaklyakova O.V., Aleksan- drov D.A., Budinovskii S.A. Improving of fretting resistance intermetallic Ti2AlNb alloy. Trudy VIAM, 2021, no. 2 (96), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 10, 2021). DOI: 10.18577/2307-6046-2021-0-2-62-70.
6. Zhang M., Cheng Y., Xin L. et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy. Corrosion Science, 2020, no. 166, pp. 108476–108486. Available at: http://www.elsevier.com/locate/corsci (accessed: June 10, 2021). DOI: 10.1016/j.corsci.2020.108476.
7. Alexandrov D.A., Gorlov D.S., Budinovskii S.A. Application of a complex of ion-plasma technologies to protect the compressor blades of a helicopter gas-turbine engine from erosion wear and fretting. Trudy VIAM, 2021, no. 2 (96), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 10, 2021). DOI: 10.18577/2307-6046-2021-0-2-71-80.
8. Grzesik W., Malecka J., Kwasny W. Identification of oxidation process of TiAlN coatings versus heat resistant aerospace alloys based on diffusion couples and tool wear tests. CIRP Annals – Manufacturing Technology, 2020, no. 69, pp. 41–44.
9. Gromov V.I., Yakusheva N.A., Vostrikov A.V., Cherkashneva N.N. High strength structural steels for gas-turbine engine shafts (review). Aviation materials and technology, 2021. no. 1 (62). paper no. 01 Available at: http://www.journal.viam.ru (accessed: March 29, 2021). DOI: 10.18577/2713-0193-2021-0-1-3-12.
10. Muboyadzhyan S.A. Erozionnostoykiye pokrytiya dlya lopatok kompressora GTD. Metally, 2009, no. 3, pp. 3–20.
11. Vereschaka A.A., Grigoriev S.N. Study of cracking mechanisms in multi-layered composite nano-structured coatings. Wear, 2017, no. 378–379, pp. 43–57. Available at: http://www.elsevier.com/locate/wear (accessed: June 10, 2021). DOI: 10.1016/j.wear.2017.01.101.
12. Xu Y.X., Riedl H., Holec D. et al. Thermal stability and oxidation resistance of sputtered Ti–Al–Cr–N hard coatings. Surface & Coatings Technology. 2017, no. 324, pp. 48–56. Available at: http://www.elsevier.com/locate/surfcoat (accessed: June 10, 2021). DOI: 10.1016/j.surfcoat.2017.05.053.
13. Asanuma H., Polcik P., Kolozsvari S. et al. Cerium doping of Ti–Al–N coatings for excellent thermal stability and oxidation resistance. Surface & Coatings Technology, 2017, no. 326, pp. 165–172. Available at: http://www.elsevier.com/locate/surfcoat (accessed: June 10, 2021). DOI: 10.1016/j.surfcoat.2017.07.037.
14. Sui X., Li G., Zhou H. et al. Evolution behavior of oxide scales of TiAlCrN coatings at high temperature. Surface & Coatings Technology, 2019, no. 360, pp. 133–139. Available at: http://www.elsevier.com/ locate/surfcoat (accessed: June 10, 2021). DOI: 10.1016/j.surfcoat.2019.01.016.
15. Tillmann W., Grisales D., Stangier D. et al. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface & Coatings Technology, 2021, no. 406, pp. 126664–126675. Available at: http://www.elsevier.com/locate/surfcoat (accessed: June 10, 2021). DOI: 10.1016/j.surfcoat.2020.126664.
16. Pilemalm R., Sjögren A. High pressure and high temperature behaviour of TiAlN coatings deposited on c-BN based substrates. Processing and Application of Ceramics, 2020, vol. 3, no. 14, pp. 210–217. DOI: 10.2298/PAC2003210P.
17. Özkan D., Erarslan Y., Sulukan E. et al. Tribological behavior of TiAlN, AlTiN, and AlCrN coatings at boundary lubricating condition. Tribology Letters, 2018, no. 66, pp. 152–167. DOI: 10.1007/s11249-018-1111-1.
18. Lin J., Zhang X., Ge F. et al. Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance. Surface & Coatings Technology, 2019, no. 377, pp. 124922–124933. Available at: http:// www.elsevier.com/locate/surfcoat (accessed: June 10, 2021). DOI: 10.1016/j.surfcoat.2019.124922.
The technological aspects of producing frit based are studied for heat-resistant enamel EV-300-60M in experimental industrial conditions. It was found that in the temperature range of 1200–1250 °C, intensive foaming of the charge occurs due to the active release of oxygen by manganese oxide. Due to the combination of technological operations, it is possible to ensure a sufficient reduction, but not complete exclusion of foaming when cooking frit. In this regard, the further direction of work on improving heat-resistant enamels for the protection of corrosion-resistant steels determines the need to develop a technological composition of frit.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577 / 2071-9140-2020-0-1-3-11.
3. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Solncev S.S., Denisova V.S., Rozenenkova V.A. Reaction cure – the new direction in technology ofhigh-temperature composite coatings and materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 329–343. DOI: 10.18577/2071-9140-2017-0-S-329-343.
5. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Wings of the Motherland, 2016, no. 5, pp. 8–18.
6. Denisova V.S., Soloveva G.A. Heat-resistant glass-ceramic coating for protection of gas turbines’ combustion chambers parts. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 18–22. DOI: 10.18577/2071-9140-2016-0-4-18-22.
7. Vargin V.V. Enamel and metal enamel technology. Moscow: Stroyizdat, 1965, 316 p.
8. Kablov E.N. Aviation materials: reference book in 12 vols. 7th ed. Moscow: VIAM, 2011, 176 p.
9. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
10. Petzold A., Peshman G. Enamel and enameling. Trans. from German. Moscow: Metallurgiya, 1990, 576 p.
11. Niu X., Zhang H., Hu X., Han W. Synthesis of well-adhered SiO2–Al2O3 glass-ceramic coating on NiCrFe alloy supports. Applied Surface Science, 2013, vol. 268, p. 265–269.
12. Bachar A., Mabrouk A., De Sousa Meneses D. et al. Study of the firing type on the microstructure and color aspect of ceramic enamels. Journal of Alloys and Compounds, 2018, vol. 735, pp. 2479–2485. DOI: 10.1016/j.jallcom.2017.11.364.
13. Guldal O., Apak C. A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses. Journal of Non-Crystallibe Solids, 1986, vol. 38–39, pp. 251–256.
14. Shultz M.M., Mazurin O.V. Modern ideas about the structure of glasses and their properties. Leningrad: Nauka, 1988, 198 p.
15. Chen M., Li W., Shen M. et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms. Corrosion Science, 2014, vol. 82, pp. 316–327.
Adhesion, physicomechanical properties, and also kinetics of water absorption of priming coatings on basis the E-41 epoxy resin modified by liquid Thiokol 1 and by Laproxide AF, and also their phase structure are investigated. As hardeners of primer compositions organic silicon ammine ASOT-2 and low-molecular polyamide PO-200 has been used. It is shown that use of the reactive modifier Laproxide AF and hardener ASOT-2 in the epoxy and thiokol film-formers allows to receive priming coating with uniform finely divided phase structure with low porosity and high water resistance.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp.25–26.
3. Zhitomirskiy G.I. Aircraft design. Moscow: Mashinostroenie, 1991, 400 p.
4. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Strength tests and researches of aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Kozlova A.A., Kuznetsova V.A., Kozlov I.A., Naprienko S.A., Silaeva A.A. The effect of prolonged heating on the properties of protective coatings for aluminum alloy system Al–Si–Mg. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 74–80. DOI: 10.18577/2071-9140-2019-0-2-74-80.
7. Fomina M.A., Karimova S.A. Analysis of the corrosion state of materials of the airframe of aircraft of the "Su" type after long-term operation. Corrosion: materials, protection. 2014, no. 9, pp.20–24.
8. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
9. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: January 18, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
10. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A., Malova N.Ye. Development of aviation paints and varnishes. Vse materialy. Entsyklopedicheskiy spravochnik, 2012, no. 5, pp. 49–54.
11. Kuznecova V.A., Kuznecov G.V. Development trends in the field of fuel resistant paintwork coatings for protection of integral fuel tanks of aircrafts (review). Trudy VIAM, 2014, no. 11, paper no. 08. Available at: http://www.viam works.ru (accessed: January 25, 2021). DOI: 10.18577/2307-6046-2014-0-11-8-8.
12. Drinberg A.S., Itsko E.F., Kalinskaya T.V. Anti-corrosion primers. Saint Petersburg, 2006, 168 p.
13. Kuznetsova V.A., Deev I.S., Zheleznyak V.G., Silaeva A.A. Anti wear coating with quasicrystal filler. Trudy VIAM, 2018, no. 3 (63), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 25, 2021). DOI: 10.18577/2307-6046-2018-0-3-68-76.
14. Kurbatov V.G., Ilyin A.A., Indeikin E.A. Anticorrosive pigments and fillers with a polyaniline sheath. Lakokrasochnye materialy i ikh primenenie, 2012, no. 11, pp. 49–52.
15. Kurbatov V.G., Kochkina N.V., Indeikin E.A. The use of shell pigments in the composition of polymeric anticorrosive materials. Uspekhi v khimii i khimicheskoy tekhnologii, 2014, vol. XXVIII, no. 3, pp. 92–96.
16. Problems of protective coatings (review). Lakokrasochnye materialy i ikh primenenie, 2013, no. 9, pp. 33–35.
17. Rosenfeld I.L., Rutinstein F.I., Zhigalova K.A. Protection of metals from corrosion by paint and varnish coatings. Moscow: Khimiya, 1987. 224 p.
18. Sosnina S.A., Kuleshova I.D. Regulation of the interaction of components in filled paint and varnish compositions. Lakokrasochnye materialy i ikh primenenie, 2011, no. 1, pp. 60–62.
19. Korobschikova T.S., Orlova N.A. Modeling of mechanical properties of paint and varnish material filled with wollastonite. Lakokrasochnye materialy i ikh primenenie, 2011, no. 1–2, pp. 62–64.
20. Semenova L.V., Nefedov N.I. Application of modified epoxy primers in the painting systems. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 38–44. DOI: 10.18577/2071-9140-2014-0-3-38-44.
21. Chalykh A.E., Kochnova Z.A., Lark E.S. Compatibility and diffusion in epoxy oligomer – liquid carboxylate rubbers systems. Vysoko molekulyarnye soedineniya, series A, 2001, vol. 43, no. 12, pp. 2147–2155.
22. Chalykh A.E. Diffusion in polymer systems. Moscow: Chemistry, 1987, pp.252–266.
23. Kablov V.F. System technology of rubber-oligomeric compositions. Collection of articles X Intern. conf. on chemistry and physical chemistry of polymers. Volgograd: Volgograd State Tech. University, 2009, pp. 162–191.
24. Lipatov Yu.S. Interfacial phenomena in polymers. Kiev: Naukova Dumka, 1980. 260 p.
25. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Recently in the aviation industry there has been an increasing demand for the development of functional paints and varnishes, in particular, for the production of coatings intended to protect aviation equipment from abrasion and erosion damaged. Coatings of this type are especially relevant for polymer products. This work is devoted to the development of a new polyurethane enamel for the protection of antenna radomes. The comparative data of fluoroplastic, polyurethane imported enamel, enamels based on chlorosulfonated polyethylene and fluorinated rubber, intended for protection of abrasive damage.
2. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
3. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
4. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
5. Kablov E.N. Materials for aerospace technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
6. Kablov E.N. The main directions of development of materials for aerospace technology of the XXI century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
7. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: July 7, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
8. Kondrashov E.K., Vladimirsky V.N., Beider E.Ya. Erosion-resistant paints and varnishes. Moscow: Chemistry, 1989, 136 p.
9. Kuznetsova V.A., Vladimirsky V.N., Kondrashov E.K. Prediction of erosion resistance of paint and varnish coatings taking into account dynamic parameters. Paints and varnishes and coatings. Aviation materials and technologies. Moscow: VIAM, 2003, pp. 50–53.
10. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. The main directions of improving the operational, technological and environmental characteristics of paint and varnish coatings for aviation technology. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
11. Kondrashov E.K., Naidenov N.D. Erosion resistant paint coverings of aviation purpose. Part 1. Erosion resistant paint coatings based on epoxy and polyurethane films forming (review). Trudy VIAM, 2020, no. 2 (86), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 20, 2020). DOI: 10.18577/2307-6046-2020-0-2-81-90. (accessed: July 7, 2021).
12. Kondrashov E.K. Paints and varnishes and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, 256 p.
13. Pavlov A.V., Merkulova Yu.I., Zelenskaya A.D., Zheleznyak V.G. Wear resistance of paint and varnish coatings (literature review). Lakokrasochnye materialy i ikh primenenie, 2018, no. 1–2, pp. 40–43.
14. Yakovlev A.D. Chemistry and technology of paints and varnishes: textbook for universities. Leningrad: Chemistry, 1989, 84 p.
15. Zubarev P.A. Protective wear-resistant coatings based on modified polyurethanes: thesis, Cand. Sc. (Tech.). Penza: PGUAS, 2014, 156 p.
16. Zubarev P.A., Lakhno A.V. Wear-resistant polyurethane coatings. Molodoy ucheny, 2014, no. 20, pp. 143–146.
17. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
18. Semenova L.V., Kondrashov E.K. Modified bromine epoxy Aviacionnye materialy i tehnologii, 2010, no. 1, pp. 29–32.
Presents results of studies of the erosion resistance of soldered joints with various types of coatings. It was established that a coating based on tungsten carbide, applied by the electrospark method, has the greatest positive influence on the erosion resistance of VPr4 solder. At the same time, preliminary machining of the solder surface also increases resistance to the effects of erosion flow. The possibility of using an electrospark coating as an erosion-resistant sublayer for composite protective coatings was shown.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crys-tallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 2, 2021). DOI: 10.18577/2307-6046-2020-0-3-3-12.
4. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Pomelov Ya.A. Ion-plasma protective coatings for blades of gas turbine engines. Konversiya v mashinostroyenii, 1999, no. 2, pp. 42–47.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Karpinos B.S., Korovin A.V., Lobunko A.P., Vedishcheva M.Yu. Operational damage of turbojet engines with afterburner combustion chamber. Vestnik dvigatelestroyeniya, 2014, no. 1, pp. 18–24.
7. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for compressor blades of gas turbine engines. Elektrometallurgiya, 2016, no. 10, pp. 23–38.
8. Muboyadzhyan S.A., Lutsenko A.N., Alexandrov D.A., Gorlov D.S., Zhuravleva P.L. Investigation of the properties of nanolayer erosion-resistant coatings based on metal carbides and nitrides. Metally, 2011, no. 4, pp. 3–20.
9. Muboyadzhyan S.A., Alexandrov D.A., Gorlov D.S. Ion-plasma nanolayer erosion-resistant coatings based on metal carbides and nitrides. Metally, 2010, no. 5, pp. 3–20.
10. Vinogradov A.S. The design of the TRDDF RD-33. Samara: Korolev Samara State Aerospace University, 2013, 99 p.
11. Zrelov V.A. Domestic gas turbine engines. Basic parameters and design schemes (Part 2): textbook. allowance. Samara: Samara State Aerospace University, 2002, 250 p.
12. Kashin D.S., Dergacheva P.E., Stekhov P.A. Heat resistant slurry coatings (review). Trudy VIAM, 2018, no. 5 (65), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 3, 2021). DOI: 10.18577/2307-6046-2018-0-5-64-75.
13. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
14. Vinogradov S.S., Nikiforov A.A., Demin S.A. Ways of solving the problem of replacing the cadmium coating. Galvanotekhnika i obrabotka poverkhnosti, 2018, vol. 26, no. 2, pp. 13–25.
15. Malikov A.A., Markova E.V., Chechuga O.V. Application of electric discharge methods of surface hardening for tool life durability. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 19-25. DOI: 10.18577 / 2071-9140-2018-0-4-19-25.
16. Aleksandrov D.A., Muboyadzhyan S.A., Zhuravleva P.L., Gorlov D.S. Investigation of the effect of surface preparation and ion-assisted deposition on the structure and properties of erosion-resistant ion-plasma coating. Trudy VIAM, 2018, no. 10 (70), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 27, 2021). DOI: 10.18577/2307-6046-2018-0-10-62-73.
Systematically analyzes and justifies the characteristics of equipment operating in monochromatic radiation by the «swing» method and in polychromatic radiation by the Laue method in relation to the specifics of controlled samples in the technology of single-crystal casting from nickel heat-resistant alloys. The main application of the «swing» method is the mass control of seed blanks, seedings, growth cones of samples and blades. The main application of the Laue method is local measurements of block misorientation in the casting of the turbine blade, determination of the crystallographic orientation misorientation in controlled areas on the blade. An optimized configuration is proposed for a compact modification of a diffractometer operating in monochromatic radiation for mass control of the structure in production.
2. Lisoyvan V.I., Zadneprovsky G.M. On the method of determining the orientation of the crystallographic plane in a single crystal on a diffractometer. Apparatura i metody rentgenovskogo analiza, 1969., is. 4, pp. 64–70.
3. Heiker D.M. X-ray diffractometry of single crystals. Leningrad: Mashinostroenie, 1973, 256 p.
4. Shamray V.F., Lifshits V.A., Serebryany V.N. and others. Experience of using the DRON-7 diffractometer with the PGTM attachment for the study of textures. Zavodskaya laboratoriya. Diagnostika materialov, 2009, vol. 75, no. 1, pp. 32–35.
5. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov. M.R. The microstructure modifications of single crystals of Ni-based superalloys in time-tested turbine blades. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 9–17. DOI: 10.18577/2071-9140-2016-0-4-9-17.
6. Nazarkin R.M. X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review. Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 41–48. DOI: 10.18577/2071-9140-2015-0-1-41-48.
7. Goganov D.A., Kazansky B.V., Klimenskaya D.A. et al. Position-sensitive detectors of soft X-ray radiation and their application. Pribory i tekhnika eksperimenta, 2015, no. 1, pp. 109–116.
8. Pyankova L.A., Elokhin V.A., Arkhipov S.N. et al. Control of functional layers of HTSC-2 using a texture attachment of an X-ray diffractometer "Difrey-401". Zavodskaya laboratoriya. Diagnostika materialov, 2016, no. 82 (10), pp. 44–46.
9. Abyzov A.M. X-ray diffraction analysis of polycrystalline substances on a mini-diffractometer "Difrey": textbook. Saint Petersburg: SPbGTI (TU), 2008, 95 p.
10. Nazarkin R.M. Small-sized x-ray diffractometers for structure and phase analysis purposes (review). Trudy VIAM, 2019, no. 9 (81), paper no. Available at: http://www.viam-works.ru (accessed: May 12, 2021). DOI: 10.18577/2307-6046-2019-0-9-89-99.
11. Umansky M.M. X-ray structural research equipment. Moscow: Fizmatgiz, 1960.348 p.
12. Sidokhin F.A., Sidokhin A.F., Sidokhin E.F. On the determination of the crystallographic orientation of single crystals by the Laue method. Zavodskaya laboratoriya. Diagnostika materialov, 2009, vol. 75, no. 1, pp. 35–37.
13. Potrakhov N.N., Khayutin S.G., Lifshits V.A., Oses R. Installation PRDU-KROS for express determination of crystallographic orientation of cubic single crystals by inverse Lauegrams. Zavodskaya laboratoriya. Diagnostika materialov, 2015, vol. 81, no. 8, pp. 27–30.
14. Kuzmina N.A., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Comparative structure control of single-crystal castings of nickel superalloys x-ray diffraction methods of oscillation and Laue. Trudy VIAM, 2019, no. 9 (81), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 12, 2021). DOI: 10.18577/2307-6046-2019-0-9-15-25.
15. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
16. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
17. Toloraya V.N., Kablov E.N., Demonis I.M. Technology of obtaining single-crystal casts of GTE blades of a given crystallographic orientation from rhenium-containing heat-resistant alloys. The effect of S.T. Kishkina. Moscow: Nauka, 2006, pp. 206–219.
18. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization. Aviacionnye materialy i tehnologii, 2011, no. 4, pp. 25–31.
19. Kablov E.N., Bondarenko Yu.A., Echin A.B. Investigation of the influence of variable controlled temperature gradient on structural features, phase composition, properties of high-temperature heat-resistant alloys during their directional crystallization. Vestnik MGTU im. N.E. Bauman, ser.: Mechanical engineering, 2016, no. 6 (111), pp. 43–61.
20. Toloraya V.N., Kablov E.N., Svetlov I.L., Orekhov N.G., Golubovsky E.R. Anisotropy of strength characteristics of single crystals of heat-resistant nickel alloys. Gorny informatsionno-analiticheskiy byulleten, 2005, special issue, pp. 225–236.
21. Toloraya V.N., Kablov E.N., Orekhov N.G., Ostroukhova G.A. Structure and growth defects of single crystals of heat-resistant nickel alloys. Gorny informatsionno-analiticheskiy byulleten, 2005, special issue, pp. 190–202.
22. Sidokhin E.F., Sidokhin F.A., Khayutin S.G. On the substructure of monocrystalline GTE blades. Aviatsionnaya promyshlennost, 2009, no. 1, pp. 34–36.
23. Macro- and microstructure of nickel heat-resistant alloys intended for monocrystalline casting of blades. Available at: https://studme.org/151298/tehnika/makro_mikrostruktura_nikelevyh_zharoprochnyh_splavov_prednaznachennyh_monokristalnogo_litya_lopatok (accessed: October 14, 2020).
24. Petrushin N.V., Visik E.M., Elyutin E.S. Improvement of the chemical composition and structure of castable nickel-base superalloy with low density. Part 2. Trudy VIAM, 2021, no. 4 (98), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 12, 2021). DOI: 10.18577/2307-6046-2021-0-4-3-15.
25. Oses R.Kh., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Program for decoding inverse laue patterns of fcc single crystals to determine the crystallographic orientation of samples (CGO analysis): Certificate of State Registration Computer Program no. 2011614448 (dated: June 6, 2011).
An explanation of the difference between the uncertainty and the error of the measurement results, which is in the approach to their assessment, is given. The standard and expanded uncertainty are estimated taking into account the uncertainty at each operation to transfer the size of a physical quantity from a standard (standard sample) to a measuring instrument and during measurements. The error is estimated based on the variance of the final measurement. Methods for evaluating the uncertainty of measurement results are given depending on regulatory documents, metrological characteristics, measurement methods, such as indicators and limits of repeatability and reproducibility.
2. Kuznetsov V.P. Comparative analysis of measurement error and uncertainty. Izmeritelnaya tekhnika, 2003, no. 8, pp. 21–27.
3. State Standard R ISO 5725-1–2002. Accuracy (correctness and precision) of measurement methods and results. Basic provisions and definitions. Moscow: Publishing house of standards, 2002, 32 p.
4. State Standard ISO/IEC 17025–2019. Interstate standard. General requirements for the competence of testing and calibration laboratories. Moscow: Standartinform, 2019. 26 p.
5. Recommendations for Interstate Standardization 43-2001. Application of the "Guide to the Expression of Uncertainty in Measurement". Moscow: Publishing house of standards, 2003. 24 p.
6. Metrology guidelines 50.2.038–2004. Direct single measurements. Estimation of errors and uncertainty of the measurement result. Moscow: Standartinform, 2005, 7 p.
7. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
8. Lutsenko A.N., Perov N.S., Chabina E.B. The new stages of development of Testing Center. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
9. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of materials diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
10. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Development trends of nickel-based intermetallic alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
11. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. State Standard 8.563–2009. Measurement techniques (methods). Moscow: Publishing house of standards, 2009, 32 p.
14. Dvoretskov R.M., Baranovskaya V.B., Karachevtsev F.N., Letov A.F. Determination of rare earth metals in magnesium alloys by inductively coupled plasma atomic emission spectrometry. Izmeritelnaya tekhnika, 2019, no. 4, pp. 62–66.
15. Dvoretskov R.M., Petrov PS, Orlov G.V., Karachevtsev F.N., Letov A.F. Standard samples of new grades of heat-resistant nickel alloys and their application for spectral analysis. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 11, pp. 15–22.
16. Alekseev A.V., Yakimovich P.V., Kvachenok I.K. Determination of impurities in nickel by ICP-MS. Trudy VIAM, 2020, no. 2 (86), paper no. 11. Available at: http://www.viam-works.ru (accessed: June 21, 2021). DOI: 10.18577/2307-6046-2020-0-2-101-108.
17. State Standard 7728–79. Magnesium alloys. Spectral analysis methods. Moscow: Publishing house of standards, 1998, 12 p.
The review of FRP structures radius zones ultrasonic non-destructive testing techniques is given in the paper. It is shown that both single-element piezoelectric transducers and phased arrays can currently be used to solve this problem. It is necessary to use special tools for positioning and creating an acoustic contact with both types of transducers. Ultrasonic testing using the described tools allows detecting defects in radius zones up to 6 mm in size.
2. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
4. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
7. Ivanov N.V., Gurevich Ya.M., Khaskov M.A., Akmeev A.R. Mode studying curing binding VSE-34 and its influences on mechanical properties. Aviacionnyye materialy i tehnologii, 2017, no. 2, pp. 50–55. DOI: 10.18577 / 2071-9140-2017-0-2-50-55.
8. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
9. González S., Herrera Á., Fernández R. etc. Ad-hoc solutions for ultrasonic inspection of radii in closed composite Structures. 11th International Symposium «NDT in Aerospace». Paris, 2019. Available at: https://https://www.ndt.net/article/aero2019/papers/fp_fri2b3_s_gonzalez.pdf (accessed: May 6, 2021).
10. We developed a unique solution for real-time detection of defects in composite plates using acousto-ultrasonic tomography (AUT). Creo Dynamics. 2021. Available at: https://creodynamics.com/portfolio-posts/acousto-ultrasonic-tomography (accessed: May 7, 2021).
11. Kite A.H. Nondestructive evaluation of a carbon fiber wing spar using air-coupled ultrasound. Retrospective Theses and Dissertations. 2007. Available at: https://https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=16040&context=rtd (accessed: May 6, 2021).
12. Rau E., Grauvogl E., Manzke H. etc. Ultrasonic Phased Array Testing of Complex Aircraft Structures. ECNDT. 2006. Tu. 1.1.2. Available at: https://www.ndt.net/article/ecndt2006/doc/Tu.1.1.2.pdf (accessed: May 7, 2021).
13. Boychuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Non-destructive testing of technological violations of the continuity of the T-shaped zone of an integral structure made of PCM using ultrasonic phased arrays. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 10, pp. 38–44.
14. Boychuk A.S. Development of technologies for non-destructive testing of monolithic structures made of carbon fiber using ultrasonic antenna arrays: thesis, Cand. Sc. (Tech.). Moscow, 2016, 203 p.
15. Lamarre A. Ultrasonic phased-array and eddy current array as approved methods for aircraft maintenance. Aerospace Testing Conference. Hamburg, 2006. Available at: https://https://ndt.aero/images/docs/UTPAfor%20maintenance.pdf (accessed: May 7, 2021).
16. Boychuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. Inspection of monolithic parts and structures of aviation equipment made of PCM by ultrasonic non-destructive testing using phased arrays. TestMat. The main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: collection of articles. materials of the X All-Russia. conf. (Moscow, February 9, 2018). Moscow: VIAM, 2018, pp. 18–31. Available at: https://https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (accessed: May 7, 2021).
17. Flexible Phassed Array Scanning Tool. Phoenix ISL. 2021. Available at: https://www.phoenixisl.com/ product/wrapit (accessed: May 7, 2021).
18. Flexible Ultrasonic Phased-Array Probe for Complex Shape Inspection. Olympus Corporation. 2021. Available at: https://www.olympus-ims.com/en/applications/flexible-ultrasonic-phased-array-probe-for-complex-shape-inspection (accessed: May 7, 2021).
The residual stresses in carbon fiber reinforced plastic (CFRP), based on VTkU-2.200 carbon fiber and VSC-14 cyanate ester resin, modified by nanoscale additives (astralen) were studied. Natural exposure was performed in a moderately cold climate. The influence of nanoadditives on mechanical and physical CFRP’s properties after 9 months of climatic testing was studied using the following properties: three-point bending strength, compression strength, coefficient of linear thermal expansion, glass transition temperature and residual stresses parameters. The increase of residual stresses after climatic testing was revealed.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Startsev V.O., Golushko S.K., Valevin E.O., Gunyaeva A.G., Amelina E.V. Influence of a nanomodifier on the climatic resistance of carbon fiber reinforced plastic based on a cyanoester binder. Materials conf. "Climate 2020: modern approaches to assessing the impact of external factors on materials and complex technical systems". Moscow: VIAM, 2020, pp. 134–149. Available at: https://conf.viam.ru/conf/338/proceedings (accessed: July 18, 2021).
5. Hahn H.T. Residual Stresses in Polymer Matrix Composite Laminates. Journal of Composite Materials, 1976, vol. 10, no. 4, pp. 266–278.
6. Hancox N. Thermal effects on polymer matrix composites. Part 1. Thermal cycling. Materials & Design, 1998, vol. 19, no. 3, pp. 85–91.
7. Dutta P.K. Structural fiber composite materials for cold regions. Journal of Cold Regions Engineering, 1988, vol. 2, no. 3, pp. 124–134.
8. Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Progress in Materials Science, 2016, vol. 83, pp. 536–573.
9. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in extremely cold climates. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111), pp. 41–51.
10. Harper B.D., Weitsman Y. On the effects of environmental conditioning on residual stresses in composite laminates. International Journal of Solids and Structures, 1985, no. 8, pp. 907–926.
11. Startsev O.V., Polyakov V.V., Salita D.S., Lebedev M.P. Acoustic Emission at the Crack Tip during Cooling of a Moisture-Saturated Composite. Doklady Physical Chemistry, 2020, vol. 493, no. 1, pp. 91–94.
12. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
13. Perov NS, Startsev V.O., Chutskova E.Yu., Gulyaev A.I., Abramov D.V. Properties of carbon fiber reinforced plastic based on polycyanurate binder after exposure to various natural and artificial environments. Materialovedenie, 2017, no. 2, pp. 3–9.
14. Dolgova EV, Akhmadieva KR, Bokov VV et al. Cyanester binders. Getting, properties, application. Polymer composite materials for the aerospace industry: materials of All-Rus. Scientific and Technical Conf. Moscow: VIAM, 2019, pp. 42–52.
15. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials: 1. Aging mechanisms. Russian Metallurgy (Metally), 2011, no. 10, pp. 993–1000.
16. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. 1. Assessment of the influence of significant influencing factors. Deformatsiya i razrushenie materialov, 2019, no. 12, pp. 7–16.
17. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. 2. Development of research methods for the early stages of aging. Deformatsiya i razrushenie materialov, 2020, no. 1, pp. 15–21.
18. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
19. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
20. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Denis А. Aleksandrov |
Leading Engineer |
Alexander S. Boychuk |
Senior Researcher, Candidate of Sciences (Tech.) |
Sergey A. Budinovsky |
Acting Head of Sector, Doctor of Sciences (Tech.) |
Arutyun M. Vardanyan |
Second Category Technician |
Olga V. Vlasova |
Engineer |
Alexander S. Generalov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Dmitry S. Gorlov |
Leading Engineer |
Valentina S. Denisova |
Head оf Sector, Candidate of Sciences (Tech.) |
Ivan A. Dikov |
Leading Engineer |
Nikita S. Dmitriev |
Engineer |
Oltg N. Doronin |
Deputy Head of Laboratory |
Vyacheslav G. Zheleznyak |
Head of Laboratory, Candidate of Sciences (Tech.) |
Denis V. Zaitsev |
Leading Engineer |
Alexander V. Zakalshnyy |
Engineer |
Ivan M. Ivanov |
Technician |
Fedor N. Karachevtsev |
Head of Laboratory, Candidate of Sciences (Chem.) |
Mukhamed M. Karashaev |
Leading Engineer, Candidate of Sciences (Tech.) |
Dmitry S. Kashin |
Head of Sector |
Natalia A. Kovrizhkina |
Engineer |
Vera A. Kuznetsova |
Head of Sector, Candidate of Sciences (Tech.) |
Natalya A. Kuzmina |
Senior Researcher, Candidate of Sciences (Geol. & Mineral.) |
Alexander F. Letov |
Deputy Head of Laboratory, Candidate of Sciences (Chem.) |
Stanislav L. Lonskii |
Second Category Engineer |
Pavel N. Medvedev |
Head of Sector, Candidate of Sciences (Phys. & Math.) |
Yulia I. Merkulova |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Sergey A. Naprienko |
Head of Sector, Candidate of Sciences (Tech.) |
Alexander A. Nechaev |
Second Category Technician |
Evgeny V. Nikolaev |
Deputy Head of Testing Center, Candidate of Sciences (Tech.) |
Olga G. Ospennikova |
Deputy Director General, Doctor of Sciences (Tech.) |
Aleksey M. Rogalev |
Head of Sector |
Alevtina S. Serdcelyubova |
Leading Engineer, Candidate of Sciences (Tech.) |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Stanislav S. Solntsev |
Counselor to Director General, Doctor of Sciences (Tech.) |
Valery O. Startsev |
Head of Laboratory, Doctor of Sciences (Tech.) |
Alexander V. Shestakov |
Leading Engineer |
Alexey M. Shestakov |
Leading Researcher, Candidate of Sciences (Chem.) |
FSAEI HE «Saint Petersburg Electrotechnical University «LETI» named after V.I. Ulyanov (Lenin)»; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Nikolay N. Potrakhov |
Head of a Chair, Doctor of Sciences (Tech.) |
JSC «Electronic Technique-Medicine»; е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Viktor A. Lifshitz |
Engineer |
Evgeny N. Potrakhov |
Director General, Candidate of Sciences (Tech.) |
Dmitry Mendeleev University of Chemical Technology of Russia; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
|
Anna A. Silaeva |
Assistant, Candidate of Sciences (Tech.) |