Articles
Trends in the development of cast magnesium alloys with increased temperature, ignition and fire resistance are presented. The main world companies and institutions - developers of casting magnesium alloys are presented. The developed alloys are considered, indicating their chemical characteristics, mechanical characteristics at high and high temperatures and corrosion resistance, as well as the use of materials and design aspects of industry. The presented magnesium alloys with an increased ignition temperature allow expanding the scope of their use.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare earth elements – materials of modern and future high technologies. Trudy VIAM, 2013, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: September 30, 2020).
3. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Certification of standard samples of structure of complex-alloyed alloys using standard. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 9–11.
4. Kablov E.N. Aviation and Space Materials Science. Vse materialy. Enciklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
5. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metaliy Evrazii, 2012, no. 3, pp. 10–15.
6. Trofimov N.V., Leonov A.A. Investigation of the influence of alloying elements (Nb and Ti) on the content of impurities and mechanical properties of a high-strength magnesium alloy of the Mg–Zn–Zr system. Metally, 2020, no. 3, pp. 14–18.
7. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
8. Volkova E.F., Mostyaev I.V., Akinina M.V. Comparative analysis of mechanical properties anisotropy and microstructure of semi-finished products from high-strength magnesium alloys with REE. Trudy VIAM, 2018, no. 5 (65), paper no. 04. Available at: http://www.viam-works.ru (date of access: October 10, 2020). DOI: 10.18577/2307-6046-2018-0-5-24-33.
9. Duyunova V.A., Leonov A.A., Trofimov N.V. Investigation of the influence of rare-earth elements and heat treatment on the structure and properties of heat-resistant casting magnesium alloy of the Mg–REM–Zr system. Metally, 2020, no. 5, pp. 58–63.
10. Duyunova V.A., Leonov A.A., Molodtsov S.V. VIAM's contribution to the development of light alloys and the corrosion control of rocket and space technology products. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (date of access: October 30, 2020). DOI: 10.18577/2307-6046-2020-0-2-22-30.
11. Casting magnesium alloy with rare earth metals: pat. RU 2617072 C2; filed 06.10.15; publ. 19.04.17.
12. Alloy based on magnesium and method of its production: pat. RU 2218438 C2; filed 26.12.01; publ. 10.02.03.
13. Alloy based on magnesium and method of its production: pat. RU 2215056 C2; filed 26.12.01; publ. 20.08.03.
14. Casting magnesium alloy: pat. RU 2687359 C1; filed 23.11.18; publ. 13.05.19.
15. Magnesium alloy containing heavy rare earths: pat. WO 2011117630 A1; filed 23.03.11; publ. 29.09.11.
16. Castable magnesium alloys: pat. WO 2005035811 A8; filed 08.10.04; publ. 21.04.05.
17. High temperature resistant magnesium alloys: pat. US 6767506; filed 14.03.02; publ. 27.06.04.
18. Creep resistant magnesium alloy with improved ductility and fracture toughness for gravity casting applications: pat. US 20060020596 A1; filed 29.09.06; publ. 01.11.09.
19. Mg–Gd–Y–Zr magnesium alloy and heat treatment method of large-scale complex casting prepared from the Mg–Gd–Y–Zr magnesium alloy: pat. CN103388095; filed 18.07.13; publ. 26.10.16.
20. High-toughness heat-resistant Mg–Gd–Y alloy and preparation method thereof suitable for gravitational casting: pat. CN 201910251471; filed 29.03.19; publ. 25.06.19.
21. High-toughness heat-resistant Mg–Er alloy and preparation method thereof suitable for low pressure casting: pat. CN 201910250338; filed 29.03.19; publ. 07.06.19.
22. Aluminum-containing rare earth magnesium alloy and preparation method thereof: pat. CN 201910271180; filed 04.04.19; publ. 28.05.19.
23. Wu X., Pan F.S., Cheng R.J., Luo S.Q. Mater Effect of morphology of long period stacking ordered phase on mechanical properties of Mg–10Gd–1Zn–0,5Zr magnesium alloy. Materials Science and Engineering, 2018, no. 5. Р. 64–68
24. Wang D., Fu P.H., Peng L.M. et al. Development of high strength sand cast Mg–Gd–Zn alloy by co-precipitation of the prismatic β′ and β1 phases. Materials Characterization, 2019, vol. 153, no. 7, pp. 157–168.
25. Wang J., Zhou H., Wang L. et al. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg–Zn–Y–Nd–Zr alloy for stent applications. Journal of Materials Science & Technology, 2019, vol. 35, is. 7, pp. 1211–1217.
The damping characteristics of hybrid layered materials of the class «aluminum–organoplastics» and «titanium–organoplastics» based on metal sheets and layers of aramid organoplastics are studied. It is shown that the level of damping properties of hybrid layered materials is higher than that of the initial alloys and depends on the volume content of organoplastics, the location of organoplastics layers relative to metal layers, as well as on the reinforcement scheme. Hybrid layered materials are promising materials for the manufacture of high-speed aircraft structures operating under high vibroacoustic loads.
2. Ivanov A.V., Pismarov M.N., Kuftin A.A. Investigation of the damping properties of structural metallic materials for the protection of onboard equipment. Izvestiya TulGU. Tekhnicheskie nauki, 2019. Issue. 8, pp. 304–306.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Mashinskaya G.P., Zhelezina G.F., Senatorova O.G. Laminated Fibrous Metal – Polymer Composites. Soviet Advanced Composites Technology Series. Metal Matrix Composites, 1995, vol. 3, pp. 487-570.
6. Demeshkin A.G., Kozeko M.E., Kornev V.M., Kurguzov V.D. Damping characteristics of composite constructional materials made by winding. Prikladnaya mekhanika i tekhnicheskaya fizika, 2001, vol. 42, no. 1, pp. 190–195.
7. Podzhivotov N.Y., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Laminated Metal – Polymeric Materials in Structural Elements of Aircraft. Inorganic Materials: Applied Research, 2017, vol. 8, no. 2, pp. 211–221.
8. Antipov V.V., Kotova E.V., Serebrennikova N.Yu., Petrova A.P. Glue binders and glue prepregs for alumopolymeric composite materials. Trudy VIAM, 2018, no. 5 (65), paper no. 06. Available at: http://www.viam-works.ru (accessed: November 20, 2020). DOI: 10.18577/2307-6046-2018-0-5-44-54.
9. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. A new class of laminated aluminum-glass-fiber-reinforced plastics based on an aluminum-lithium alloy 1441 with a reduced density. Vestnik MGTU im. N.E. Bauman, ser.: Mashinostroyenie, 2011, no. S2, pp. 174–183.
10. Kablov E.N. Composites today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
11. Antipov VV, Sidelnikov VV, Samokhvalov SV, Shestov VV, Nefedova Yu.N. Possibilities of using aluminum-fiber-reinforced plastics in aircraft fuselage skins. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2016, vol. 18, no.1, pp. 77–82.
12. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
13. Gunyaev G.M., Zhelezina G.F., Ilchenko S.I. Layered metal-polymer composites based on aluminum and titanium alloys. Aviacionnye materialy i tehnologii, 2002, is.: Polymer composite materials, pp. 50–58.
14. Antipov V.V., Serebrennikova N.Yu., Shestov V.V., Sidelnikov V.V. Laminated hybrid materials on basis of Al–Li alloy sheets. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 212–224. DOI: 10.18577/2071-9140-2017-0-S-212-224.
15. Deev I.S., Zhelezina G.F. Fractographic analysis of a layered metal-polymer composite ALOR after testing for crack resistance. Kompozity i nanostruktury, 2015, vol. 7, no. 3, pp. 162–176.
16. Dimitrienko Yu.I., Gubarev E.A., Fedonyuk N.N., Yakovlev D.O. Method for calculating energy dissipation in structures made of hybrid composites. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2014, is. 11 (656), pp. 12–24. DOI: 10.18698/0536-1044-2014-11-12-24.
17. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Vibro absorbing materials on the basis of thermoelastoplastics. Trudy VIAM, 2013, no. 3, paper no. 06. Available at: http://viam-works.ru (accessed: November 20, 2020).
18. Sagomonova V.A., Sytyj Yu.V. The basic principles of creation vibro absorbing materials of aviation assignment. Trudy VIAM, 2013, no. 11, paper no. 03. Available at: http://www.viam-works.ru (accessed: November 20, 2020).
19. Platonov M.M., Shuldeshov E.M., Nesterova T.A., Sagomonova V.A. Acoustic polymeric materials of new generation (review). Trudy VIAM, 2016, no. 4, paper no. 09. Available at: http://viam-works.ru (accessed: November 20, 2020). DOI: 10.18577/2307-6046-2016-0-4-9-9.
20. Sagomonova V.A., Kislyakova V.I., Tyumeneva T.Yu., Bolshakov V.A. The influence of vibration damping materials composition on their mechanical loss factor. Trudy VIAM, 2015, no. 10, paper no. 10. Available at: http://www.viam-works.ru (accessed: November 20, 2020). DOI: 10.18577/2307-6046-2015-0-10-10-10.
21. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
22. Zhelezina G.F., Voinov S.I., Solovieva N.A., Kulagina G.S. Aramid organotexolites for shock-resistant aircraft structures. Zhurnal prikladnoy khimii, 2019, vol. 92, is. 3, pp. 358–365.
23. Voinov S.I., Zhelezina G.F., Ilyichev A.V., Solovyova N.A. Investigation of the mechanical characteristics of a laminated metal-polymer composite material based on aluminum sheets and carbon-fiber-reinforced plastic layers. Voprosy materialovedeniya, 2018, no. 4 (96), pp. 86–97.
24. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
25. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Prospects for the use of titanium alloys in laminated composite materials. Trudy VIAM, 2015, no. 10, paper no. 04. Available at: http://www.viam-works.ru (accessed: November 20, 2020). DOI: 10.18577/2307-6046-2015-0-10-4-4.
Studies have been carried out on the effectiveness of the action of two types of fire retardants – graphene and an organic phosphorus-containing compound DOPO-THPO, introduced into an epoxy resin. The amount of fire retardants introduced was 0; 2 and 4% of the amount of epoxy resin. The efficiency was assessed by the oxygen index method (LOI). It was shown that for this epoxy resin, the introduction of graphene provided an increase in the oxygen index from 21 to 27%, and the introduction of the phosphorus-containing fire retardant DOPO-THPO – from 21 to 23%. With the simultaneous introduction of graphene (3%) and DOPO-THPO (1%), it was possible to achieve an increase in the oxygen index up to 28%.
2. Airworthiness Standards: Transport Category Airplanes: Part 25. Electronic Code of Federal Regulation. Title 14: Aeronautic and Space. Chapter 1. Subchapter C. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=9091f0ebbfbf1539cdb87015908ad369&mc=true&node=pt14.1.25&rgn=div5 (дата обращения: 01.12.2020).
3. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Assessment of fire safety of polymer materials for aviation purposes: state analysis, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
4. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
5. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
6. Kablov E.N. Marketing of materials science, aircraft construction and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5-6, pp. 40–44.
7. Korobeinichev O.P., Gonchikzhapov M.B., Paletsky A.A. et al. Structure of counterflow flame of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate. Proceedings of the Combustion Institute, 2017, vol. 36 (2), p. 3279–3286. DOI: 10.1016/j.proci.2016.06.117.
8. Korobeinichev O.P., Gonchikzhapov M.B., Paletsky A.A. et al. Counterflow flames of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate. Combustion and Flame, 2016, vol. 169, pp. 261–271. DOI: 10.1016/j.combustflame.2016.04.019.
9. Korobeinichev O.P., Trubachev S.A., Joshi A.K. et al. Experimental and numerical studies of downward flame spread over PMMA with and without addition of tri phenyl phosphate. Proceedings of the Combustion Institute. 2020. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1540748920305320 (accessed: December 14, 2020). DOI: 10.1016/j.proci.2020.07.082.
10. Trubachev S.A., Korobeinichev O.P., Karpov A.I. et al. The effect of triphenyl phosphate inhibition on flame propagation over cast PMMA slabs. Proceedings of the Combustion Institute. 2020. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1540748920300912 (accessed: December 14, 2020). DOI: 10.1016/j.proci.2020.05.043.
11. Ma S., Xiao Y., Zhou F. et al. Effects of novel phosphorus-nitrogen-containing DOPO derivative salts on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam. Polymer Degradation and Stability. 2020, vol. 177, art. No. 109160. DOI: 10.1016/j.polymdegradstab.2020.106160.
12. Jayarama Krishna J.V., Srivatsa Kumar S., Korobeinichev O.P., Vinu R. Detailed kinetic analysis of slow and fast pyrolysis of poly(methyl methacrylate)-Flame retardant mixtures. Thermochimica Acta, 2020, vol. 687. Art. No. 178545. DOI: 10.1016/j.tca.2020.178545.
13. Interior Parts and Components Fire Protection for Transport Category Airplanes. Federal Register, 2019, vol. 84, no. 128, p. 31747–31769. Available at: https://www.federalregister.gov/documents/2019/07/03/2019-13646/interior-parts-and-components-fire-protection-for-transportcategory-airplanes (accessed: December 1, 2020).
14. Barbotko S.L., Volny O.S., Bochenkov M.M. Analysis of the US Federal Aviation Administration proposals for the reform of aviation standards regarding the fire safety of used materials (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 1, 2020). DOI: 10.18577/2307-6046-2020-0-67-101-117.
15. Flame Retardant Chemicals: Technologies and Global Markets / BCC Research. 2015. 164 p.
16. Polymer Green Flame Retardant. Ed. C.D. Papaspyrides, P. Kiliaris. Elsevier, 2014. 943 p.
17. Organization for the Prohibition of Chemical Weapons. Chemical Weapons Convention. Available at: http://www.opcw.org/ru (accessed: December 1, 2020).
18. Serkova EA, Zastrogina O. B., Barbotko S. L. Study of the possibility of use of new environmentally friendly organophosphorus flame retardants in the composition of binders for interior fire safety materials . Trudy VIAM, 2019, no. 2 (74), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 01, 2020). DOI: 10.18577/2307-6046-2019-0-2-24-34.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
21. Krutikova A. Functionalized graphene oxide improves the fire resistance of composites. Available at: https://ogneportal.ru/news/2401 (accessed: December 01, 2020).
22. Graphene in the form of microparticles in powder. Available at: https://rusgraphene.ru/product-page/graphene-powder (accessed: December 01, 2020).
23. Wang J., Ma C., Wang P., Qiu S. et al. Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin. Polymer Degradation and Stability, 2018, no. 149, pp. 119–128. DOI: 10.1016/j.polymdegradstab.2018.01.024.
24. Yan W., Zhang M.-Q., Yu J. et al. Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets. Chinese Journal of Polymer Science, 2019, no. 37, pp. 79–88. DOI: 10.1007/s10118-019-2175-6.
In many industries, such as mechanical engineering and aerospace, traditional alloys are being replaced by metal matrix composites (MCM). Compared to unreinforced alloys, MCM is characterized by increased strength and rigidity combined with low density. To calculate the resource of nodes for the safe and reliable operation of new equipment, it is necessary to have a set of calculated values of the MCM strength characteristics, including the characteristics of short-term and long-term strength, low-cycle (LCF) and high-cycle (HCF) fatigue. The work is devoted to the study of the characteristics of short-term and long-term strength, LCF and MCF fatigue of dispersion-strengthened MKM grade VKM22.
2. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
3. Kablov E.N. New generation materials – the basis for innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
5. Krasnov E.I., Shteinberg A.S., Shavnev A.A., Serpova V.M., Zabin A.N. Research of layered metal composite material of Ti–TiAl3 system. Trudy VIAM, 2016, no. 7, paper no. 03. Available at: http://http www.viam-works.ru (accessed date: September 15, 2020). DOI: 10.18577 / 2307-6046-2016-0-7-3-3.
6. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
7. Tarasov Yu.M., Antipov V.V. The VIAM new materials – for perspective aviation engineering of production of JSC «OAK». Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 5–6.
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspective reinforcing high-temperature fibers for metal and ceramic composite materials. Trudy VIAM, 2013, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: September 21, 2020).
9. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metalmatrix composite materials on the basis of Al–SiC. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 373–380.
10. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. New materials for the perspective engine of JSC «NPO „Saturn”». Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 6–8.
11. Berezovskij V.V., Shavnev A.A., Lomov S.B., Kurganova Yu.A. Receiving and the analysis of structure of the disperse strengthened composite materials of Al–SiC system with the different maintenance of the reinforcing phase. Aviacionnye materialy i tehnologii, 2014, no. S6, pp. 17–23. DOI: 10.185577/2071-9140-2014-0-S6-17-23.
12. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N., Grashchenkov D.V., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. et al. Metal composite materials based on Al – SiC for power electronics. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2012. T. 18, no. 3, pp. 359–368.
15. Kablov E.N., Chibirkin V.V., Vdovin S.M. Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 20–22.
16. Solovyev A.E., Golynets S.A., Khvatsky K.K., Aslanyan I.R. Performing of static tensile tests on Zwick/Roell machines. Trudy VIAM, 2015, no. 8, paper no. 12. Available at: http://viam-works.ru (accessed: October 5, 2020). DOI: 10.18577/2307-6046-2015-0-8-12-12.
17. Gorbovets M.A., Khodinev I.A., Ryzhkov P.V. Equipment for testing carrying out the strain-controlled low-cycle fatigue. Trudy VIAM, 2018, no. 9 (69), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 5, 2020). DOI: 10.18577/2307-6046-2018-0-9-51-60.
18. Beletsky V.M., Krivov G.A. Aluminum alloys (composition, properties, technology, application): reference book. Ed. I.N. Friedlander. Kiev: KOMINTECH, 2005, 365 p.
19. Tham L.M., Gupta M., Cheng L. Effect of limited matrix-reinforcement interfacial reactions on enhancing the mechanical properties of aluminum-silicon carbide compo-sites. Acta Materialia, 2001, vol. 49, no. 16, pp. 3243–3253.
20. Kablov E.N., Golubovsky E.R. Heat resistance of nickel alloys. Moscow: Mashinostroenie, 1998, 463 p.
21. Grishina O.I., Shavnev A.A., Serpova V.M. Features of influence of structural parameters on mechanical properties of metallic composite material based on particle-reinforced aluminum alloys by silicon carbide. Aviacionnye materialy i tehnologii, 2014, no. S6, pp. 24–27. DOI:
22. Pandey V., Chattopadhyay K., Srinivas N. C., Singh V. Role of Ultrasonic Shot Peening on Low Cycle Fatigue Behavior of 7075 Aluminum Alloy. International Journal of Fatigue, 2017. DOI: 10.1016/j.ijfatigue.2017.06.033.
23. Radetskaya E.M., Makeev Yu.I. Corrosion fatigue of high-strength aluminum alloys. Aviacionnye materialy, 1987, is.: Increasing the strength and reliability of structuresuction materials, pp. 204–214.
Presentsthe results of of research of the properties of a series of high-temperature carbon plastics based on phthalonitrile resin after long-term exposure in various climatic zones: temperate climate, moderately warm climate with mild winters, warm humid climate, very cold climate are presented. The state of the surface of carbon fiber reinforced plastics has been investigated, their thermal stability and water absorption have been determined. After exposure, CFRPs showed high retention of properties from the level of the initial values: 80–90% at room temperature of tests and 60–75% at a temperature of 300 °С.
2. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
3. Kablov EN, Kirillov VN, Zhirnov AD, Startsev OV, Vapirov Yu.M. Centers for climatic testing of aviation PCM. Aviatsionnaya promyshlennost, 2009, no. 4, pp. 36–46.
4. Aviation materials: reference book: in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2015, vol. 13: Climatic and microbiological resistance of non-metallic materials, 270 p.
5. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
6. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Assessment of the influence of significant factors of influence. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16.
7. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of research methods for the early stages of aging. Deformatsiya i razrusheniye materialov, 2020, no. 1, pp. 15–21.
8. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
9. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
10. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
11. Kablov E.N., Skibin V.A., Abuzin Yu.A., Kochetov V.N., Shavnev A.A., Karimbaev T.D., Luppov A.A. Wide-chord fan blades for turbofan engines of 5–6 generations. Konversiya v mashinostroyenii, 2006, no. 5, pp. 5–16.
12. Mekham M. Snecma and her partner AEC create a new technology for the manufacture of composite blades. Aviatransportnoe obozrenie, 2012, no. 131. Available at: http://www.ato.ru/content/ snecma-i-ee-partner-aec-sozdayut-novuyu-tehnologiyu-izgotovleniya-kompozitnyh-lopatok (accessed: November 17, 2020).
13. Novikov A.S., Karimbaev T.D., Luppov A.A., Afanasyev D.V., Mezentsev M.A. Innovations in the use of composite materials in aircraft engines. Dvigatel, 2015, no. 2 (98), pp. 6–9.
14. Novikov A.S., Karimbaev T.D. Rotor blades of high bypass fans for promising turbojet engines. Dvigatel, 2015, no. 5 (101), pp. 6–11.
15. High temperature plastics market by type (polysulfones, polyimides, polyphenylene sulfide, fluoropolymers, and others), by end-use industries (electrical & electronic, transportation, industrial, medical, and others) – Global trends & forecast to 2019. Available at: https://www.marketsandmarkets.com/Market-Reports/high-temperature-plastics-market-1192.html (accessed: November 17, 2020).
16. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders. Voprosy materialovedeniya, 2016, no. 4, pp. 50–62.
17. Kuznetsov A.A., Semenova G.K. Promising high-temperature thermosetting binders for polymer composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 53, no. 4, pp. 86–96.
18. Zelenina I.V., Gulyayev I.N., Kucherovskiy A.I., Mukhametov R.R. Heat-resistant CFRP for the impulse wheel of the centrifugal compressor. Trudy VIAM, 2016, no. 2 (38), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 6, 2020). DOI: 10.18577/2307-6046-2016-0-2-8-8.
19. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016. no. 6, paper no. 11. Available at: http://www.viam-works.ru (accessed: November 6, 2020). DOI: 10.18577/2307-6046-2016-0-6-11-11.
20. Gladkikh A.V., Kurs I.S., Kurs M.G. Analysis of the data of full-scale climatic tests combined with the application of operational factors of nonmetallic materials (review). Trudy VIAM, 2018, no. 10 (70), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 06, 2020). DOI: 10.18577/2307-6046-2018-0-10-74-82.
21. Deev I.S., Kurshev E.V., Lonsky S.L., Zhelezina G.F. The influence of long-term climatic aging on the surface microstructure of epoxy organoplastics and the nature of its destruction under bending conditions. Voprosy materialovedeniya, 2016, no. 3 (87), pp. 104–114.
22. Startsev V.O. Climatic resistance of polymer composite materials and protective coatings in a moderately warm climate: thesis, Dr. Sc. (Tech.). Moscow: VIAM, 2018, 308 p.
23. Valevin E.O. Influence of heat and humidity impact on the properties of heat-resistant polymer composite materials based on phthalonitrile matrix: thesis, Cand. Sc. (Tech.). Moscow: MAI, 2018. 130 p.
24. Valevin E.O., Zelenina I.V., Shvedkova A.K., Gulyaev I.N. Thermal aging of heat-resistant carbon plastics. Voprosy materialovedeniya, 2015, no. 4 (84), pp. 91–99.
25. Gulyaev I.N., Zelenina I.V., Valevin E.O., Shvedkova A.K. Investigation of the influence of increased temperature and humidity on the properties of heat-resistant carbon plastics. Konstruktsii iz kompozitsionnykh materialov, 2015, no. 3 (139), pp. 55–61.
26. Valevin E.O., Startsev V.O., Zelenina I.V. Thermal aging, surface degradation and water transfer in carbon fiber reinforced plastic VKU-38TR. Trudy VIAM, 2020, no. 6–7 (89), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 06, 2020). DOI: 10.18577/2307-6046-2020-0-67-118-128.
27. Panin P.V. Investigation of changes in surface relief and moisture transfer in polymer composite materials in the process of climatic aging: thesis, Cand. Sc. (Tech.). Moscow: VIAM, 2015, 131 p.
28. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 44–48.
29. Laptev A.B., Barbotko S.L., Nikolaev E.V., Skirta A.A. Statistical processing of the results of climatic tests of fiberglass. Plasticheskiye massy, 2016, no. 3–4, pp. 58–64.
The influence of interstitial impurities in the Zr–Y target alloys (manufactured by two different techniques) on the quality of thermal barrier ceramic layers of heat resisting coating are studied in this work. The heat resisting ceramic coating manufactured in the UOKS-2 devices by magnetron medium-feculence plasma–chemical deposition on the surface of components that are used at the high temperatures (above 1150 °C). It was found that when the content of interstitial impurities in the target alloy is more than 0,1% (1000 ppm), the rate of the coating process decreases and has to be maintained by increasing the energy of argon ions. This leads to overheating of the target alloy and the surface of the parts (substrate) which impairs the adhesion of the deposited atoms.
2. Sudhangshu B. High Temperature Coatings. Oxford: Butterworth-Heinemann, 2018, 416 p.
3. Kablov E.N., Muboyadzhyan S.A., Budinovsky S.A., Galoyan A.G., Lutsenko A.N. Protective and hardening coatings of blades and GTE parts. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 107–124.
4. Bakan E., Vassen R. Ceramic Top Coats of Plasma – Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. Journal of Thermal Spray Technology, 2017, vol. 26, pp. 992–1010.
5. Sergeev V.P., Neifeld V.V., Sungatulin A.R. et al. Increase in thermal cycling resistance of coatings based on Zr–Y–O obtained by magnetron deposition. Izvestiya Tomskogo politekhnicheskogo universiteta, 2010, vol. 317, no. 3, pp. 111–115.
6. Chubarov D.A., Budinovskij S.A., Smirnov A.A. Magnetron sputtering method for applying ceramic layers for thermal barrier coatings. Aviacionnye materialy i tehnologii, 2016, No. 4 (45), pp. 23–30. DOI: 10.18577/2107-9140-2016-0-4-23-30.
7. Chubarov D.A., Budinovskij S.A. Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С. Trudy VIAM, 2015, no. 4, paper no. 7. Available at: http://viam-works.ru (accessed: September 17, 2020). DOI: 10.18577/2307-6046-2015-0-4-7-7.
8. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
9. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
10. Muboyadzhyan S.A., Lesnikov V.P., Kuznetsov V.P. Complex protective coatings for turbine blades of aircraft gas turbine engines. Ekaterinburg: Kvist, 2008, 208 p.
11. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis: textbook. manual for universities. 4th ed., add. and rev. Moscow: MISiS, 2002, 360 p.
12. Nolze G. PowderCell: instruction manual. Berlin: Federal Institute for Materials Research and Testing, 2017, 45 p.
13. Dukhopelnikov D.V. Magnetron spray systems: textbook in 2 parts. Moscow: Publ. house of Bauman MSTU, 2014. Part 1: Device, principles of operation, application, pp. 31–35.
14. Samsonov G.V., Borisova A.L., Zhidkova T.G. et al. Physico-chemical properties of oxides: handbook. Moscow: Metallurgiya, 1978, 472 p.
15. Budinovsky S.A., Stekhov P.A., Doronin O.N., Artemenko N.I. Main mechanisms of destruction of the ceramic layer of thermal barrier coatings (review). Trudy VIAM, 2019, no. 2 (74), paper no. 11. Available at: http://www.viam-works.ru (accessed: August 11, 2020). DOI: 10.18577/2307-6046-2019-0-2-105-112.
The results of research on improving the fretting resistance of a titanium alloy made of orthorhombic titanium aluminide Ti2AlNb by forming a coating consisting of a barrier and an outer layer on the surface using an industrial vacuum-arc installation MAP-3 are presented. The dependences of the total wear and the coefficient of friction of samples made of Ti2AlNb alloy with and without coating in combination with a counterbody made of high-strength welded dispersed-hardening alloy during fretting damage tests at room (20 °C) and elevated (700 °C) temperatures are established. The kinetics of oxygen saturation of the surface of samples made of Ti2AlNb alloy with and without coating at the operating temperature of the alloy based on 200 h is shown. The phase and elemental compositions of the fretting-resistant coating after high-temperature exposure are investigated.
2. Lesnevsky L.N. Fretting corrosion of coatings of the «solid lubricant» type in extreme operating conditions. Vestnik nauchno-tekhnicheskogo razvitiya, 2009, no. 2 (18), pp. 31–35.
3. Selivanov K.S., Galiakbarov R.F. Increasing the fretting resistance of machine parts by complex vacuum plasma treatment. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2011, no. 7 (84), pp. 29–32.
4. Gorlov D.S., Skripak V.I., Muboyadzhyan S.A., Egorova L.P. The research of fretting-wear slip and ion-plasma coatings. Trudy VIAM, 2017, no. 3, paper no. 07. Available at: http://www.viam-works.ru (accessed: November 26, 2020). DOI: 10.18577/2307-6046-2017-0-3-7-7.
5. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materials for highly heat-loaded parts of gas turbine engines. Vestnik MGTU im. N.E. Baumana, ser.: Mashinostroyenie, 2011, no. SP2, pp. 13-19.
6. Kablov E.N. Cast blades of gas turbine engines: alloys, technologies, coatings. 2nd ed. Moscow: Nauka, 2006, 632 p.
7. Putyrskij S.V., Arislanov A.A., Artemenko N.I., Yakovlev A.L. Different methods of wear resistance increase of titanium alloys and comparative analysis of their efficiency for VT23M titanium alloy. Aviacionnye materialy i tehnologii, 2018, no. 1, pp. 19–24. DOI: 10.18577/2071-9240-2018-0-1-19-24.
8. Sibileva S.V., Kozlova L.S. Review of technologies of applying coatings to titanium alloys by plasma electrolytic oxidation. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 3–10. DOI: 10.18577/2071-9140-2016-0-S2-3-10.
9. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Pomelov Ya.A. Ion-plasma protective coatings for blades of gas turbine engines. Konversiya v mashinostroyenii, 1999, no. 2, pp. 42–47.
10. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
11. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Investigation of the structure and properties of heat-resistant alloys based on titanium aluminides with microadditions of gadolinium. Materialovedenie, 2017, no. 3, pp. 3–10.
12. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
13. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4. Trudy VIAM, 2018, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: November 26, 2020). DOI: 10.18577/2307-6046-2018-0-2-5-5.
14. Kurzina I.A., Popova N.A., Nikonenko E.L., Kalashnikov M.P., Savkin K.P., Sharkeev Yu.P., Kozlov E.V. Formation of nanosized intermetallic phases under conditions of implantation of titanium targets by aluminum ions. Izvestiya RAN, ser.: Fizicheskaya, 2012, vol. 76, no. 1, pp. 74–78.
15. Alexandrov D.A., Muboyadzhyan S.A., Gayamov A.M., Gorlov D.S. Studies of heat resistance and kinetics of elemental composition of VT41 titanium alloy with heat-resistant coatings. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 61–66. DOI: 10.18577/2071-9140-2014-0-s5-61-66.
16. Gorlov D.S., Aleksandrov D.A., Zaklyakova O.V., Azarovskiy E.N. Investigation of the possibility of protection of intermetallic titanium alloy against fretting wear by ion-plasma coating. Trudy VIAM, 2018, no. 4 (64), paper no. 06. Available at: http://www.viam-works.ru (accessed: November 26, 2020). DOI: 10.18577/2307-6046-2018-0-4-51-58.
17. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Describes the application of the technology of applying erosion-resistant and fretting-resistant ion-plasma coatings to protect compressor blades of VT8M-1 alloy from erosion wear and fretting, presents the results of tests of compressor blades for erosion resistance and vibration fatigue, samples of VT8M-1 alloy for fretting wear, multi-cycle fatigue and long-term strength, metallographic and metallophysical studies. It has been established that multilayer coatings TiN/CrN and Ti+TiN increase, respectively, the erosion resistance of the feather and the resistance to fretting wear of the locking part of titanium GTE compressor blades while maintaining their fatigue strength.
2. Farafonov D.P., Leshchev N.E., Afanasiev-Khody- kin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, No. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
3. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
4. Kablov E.N., Nochovnaya N.A., Shiryaev A.A., Davydova E.A. Investigation of structural and phase transformations in metastable β-titanium alloys and effect of cooling rate from homogenization temperature on structure and properties of VT47 alloy. Part 2. Trudy VIAM, 2020, no. 8 (90), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 25, 2020). 10.18577/2307-6046-2020-0-8-11-19.
5. Muboyadzhyan S.A., Alexandrov D.A., Gorlov D.S. Ion-plasma nanolayer erosion-resistant coatings based on metal carbides and nitrides. Metally, 2010, no. 5, pp. 39–51.
6. Muboyadzhyan S.A., Gorlov D.S., Shchepilov A.A., Konnova V.I. Study of damping capacity of ion-plasma coatings. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 67–72. DOI: 10.18577/2071-9140-2014-0-s5-67-72.
7. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
8. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Hardening of the surface of titanium alloys by ion implantation method and ionic modification. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
9. Smyslov A.M., Smyslova M.K., Mukhin V.S. Ion-implantation and vacuum-plasma modification of the surface of the blades of a gas turbine engine compressor. Vestnik Rybinskoy gosudarstvennoy aviatsionnoy tekhnologicheskoy, 2017, no. 1 (40), pp. 133–138.
10. Smyslov A.M., Bybin A.A., Nevyantseva R.R. Influence of ion implantation and plasma surface treatment on the performance characteristics of heat-resistant nickel alloy. Fizika i khimiya obrabotki materialov, 2007, no. 3, pp. 29–34.
11. Smyslov A.M., Smyslova M.K., Dubin A.I. Investigation of the effect of complex vacuum ion-plasma treatment on the fatigue resistance of GTE blades with a concentrator. Vestnik USATU, 2016, vol. 20, no. 3 (73), pp. 38–43.
12. Pogrebnyak A.D., Yakushchenko I.V., Sobol O.V. et al. Influence of residual pressure and ion implantation on the structure, elemental composition and properties of nitrides (TiZrAlYNb) N. Zhurnal tekhnicheskoy fiziki, 2015, vol. 85, no. 8, pp. 72–79.
13. Karpov D.A., Litunovsky V.N. Plasma-immersion ion implantation (PII): physical foundations, use in technology. Saint Petersburg: NIIEFA, 2009, 62 p.
14. Grigoriev S.N., Melnik Yu.A., Metel A.S. et al. Immersion ion implantation and nitriding in glow discharge plasma with electrostatic electron confinement. Uprochnyayushchie tekhnologii i pokrytiya, 2010, no. 6, pp. 43–48.
15. Sutygina A.N., Shulepov I.A. Plasma-immersion ion implantation of aluminum into titanium VT1-0. Prospects for the development of fundamental sciences: collection of articles of XII Int. Conf. Students and Young Scientists. Tomsk: Nat. Research Tomsk Polytechnic. University, 2015, pp. 248–250.
16. Vorobiev V.L., Bykov P.V., Bystrov S.G. et al. Change in the composition of surface layers of titanium alloy VT6 after ion-beam mixing of aluminum and heat treatment. Khimicheskaya fizika i mezoskopiya, 2013, vol. 15, no.4, pp. 576–581.
17. Smyslov A.M., Mingazhev A.D., Smyslova M.K., Selivanov K.S., Mingazheva A.D. Nanolayer coating for turbomachine blades made of titanium alloys. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2011, vol. 15, no.1 (41), pp. 109–112.
18. Budinovskiy S.A., Kablov E.N., Muboyadzhyan S.A. Application of an analytical model for determining elastic stresses in a multilayer system when solving problems of creating high-temperature heat-resistant coatings for rotor blades of aircraft turbines. Vestnik MGTU im. N.E. Baumana, ser.: Mechanical engineering, 2011, no. SP2, pp. 26–37.
19. Uchevatkina N.V., Ovchinnikov V.V., Zhdanovich O.A., Sbitnev A.G. Residual stresses in the surface layer of titanium alloy VT6 after ion implantation with a high dose. Zagotovitelnye proizvodstva v mashinostroyenii, 2016, no. 6, pp. 41–46.
20. Smyslov A.M., Smyslova M.K., Dubin A.I., Sazanov V.P., Pavlov V.F. Investigation of the influence of residual stresses on the fatigue resistance of the blades of a gas turbine engine taking into account fractographic features. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki, 2016, no. 1 (37), pp. 121–130.
The paper presents the results of structural studies of metal-powder compositions (MPC) from the VSDP-3 alloy, as well as heat-resistant atmospheric-plasma powder coatings, developed at the FSUE «VIAM». As blanks for sputtering the MPC, standard charge blanks and exhausted resource cast tube cathodes for ion-plasma deposition were used. It was found that MPC obtained by sputtering cathodes and coatings deposited by sputtering these MPC are not inferior in properties to standard MPC and coatings. At the same time, the cost of such MPC and coatings can be 20–40% lower.
2. Shalin R.E. et al. Vacuum-plasma technology of high energies – a promising process for obtaining protective coatings for gas turbine engine blades. Novye tekhnologicheskiye protsessy i nadezhnost GTD, 1974, no. 2, pp. 1–8.
3. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
4. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. The research of erosion resistance and heat resistance of the ion-plasma damping coatings. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 11–17. DOI: 10.18577/2071-9140-2016-0-2-11-17.
5. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
6. Konokotin S. P., Yatsyuk I. V., Dobrynin D. A., Azarovsky E. N. Influence of yttrium on the quality of cast billets from alloys based on aluminum. Trudy VIAM, 2020, no. 3 (87), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 14, 2020). DOI: 10.18577/2307-6046-2020-0-3-30-40.
7. Kablov E.N., Muboyadzhyan S.A. Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 60–70.
8. Yatsyuk I.V., Artemenko N.I., Doronin O.N., Nerush S.V. Application of gas atomization technology to obtain high-quality metal powder compositions for applying atmospheric plasma coatings. Trudy VIAM, 2020, no. 2 (86), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 14, 2020). DOI: 10.18577/2307-6046-2020-0-2-3-9.
9. Budinovskij S.A., Chubarov D.A., Matveev P.V. Modern methods for deposition of thermal barrier coatings on GTE turbine blades. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 38–44.
10. Hasui A. Sputtering technique. Moscow: Mashinostroenie, 1975, 288 p.
11. Libenson G.A., Lopatin V.Yu., Komarnitskiy G.V. Powder metallurgy processes: textbook for universities: in 2 vols. Moscow: MISiS, 2001, vol. 1: Production of metal powders, 368 p.
12. Ospennikova O.G., Evgenov A.G., Nerush S.V., Afanasyev-Khodykin A.N. Investigation of finely dispersed powders of solders on a nickel base in relation to obtaining a high-tech semi-finished product in the form of a self-adhesive tape on an organic binder. Vestnik UGSATU, 2012, vol. 16, no. 5 (50), pp. 137–144.
13. Nerush S.V., Evgenov A.G. Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP. Trudy VIAM, 2014, no. 3, paper no. 01. Available at: http://www.viam-works.ru (accessed: October 14, 2020). DOI: 10.18577/2307-6046-2014-0-3-1-1.
14. Kuklin A.A., Michkova E.S., Bulanov V.Ya. Technology and economics of powder metallurgy. Moscow: Nauka, 1989, 223 p.
15. Blinov I.G., Dorodnov A.M., Minchaev V.E. Vacuum high-current plasma devices and their application in technological equipment of microelectronics. Part II. High energy plasma technology. Obzory po elektronnoy tekhnike, ser.: Mikroelektronika. Moscow: TsNII Electronics, 1974, no. 8. 75 p.
16. Plasma accelerators. Ed. L.A. Artsimovich et al. Moscow: Mashinostroenie, 1973, 312 p.
17. Kablov E.N., Muboyadzhyan S.A., Lutsenko A.N. Nanostructured ion-plasma protective and hardening coatings for blades of gas turbine engines. Voprosy materialovedeniya, 2008, no. 2 (54), pp. 175–186.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Describes a mathematical model for processing the results of measurements of thermal conductivity of highly porous fibrous materials of thermal protection. The results and some methodological features of measuring the thermal conductivity of rigid thermal insulation based on refractory oxide fibers are presented. The possibility of measurements taking into account the anisotropy of properties is investigated. The stiffness of the thermal insulation at the fiber contacts is provided by the binder. Thermal conductivity was measured by the stationary method on cylindrical samples in a wide temperature range from 20 to 1700 °C in various gaseous media.
2. Armor for «Buran». Materials and technologies of VIAM for the ISS «Energia-Buran». Ed. E.N. Kablov. Moscow: Nauka i zhizn, 2013, 128 p.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Zhitnyuk S.V. Oxygen-free ceramic materials for the space technics (review). Trudy VIAM, 2018, no. 8 (68), paper no. 8. Available at: http://www.viam-works.ru (accessed: December 2, 2020). DOI: 10.18577/2307-6046-2018-0-8-81-88.
5. Polezhaev Yu.V., Yurevich F.B. Thermal protection. Moscow: Energiya, 1976б 392 p.
6. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fibrous sealing materials. Aviacionnye materialy i tehnologii, 2017, No. S, pp. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
7. Istomin A.V., Kolyshev S.G. Electrostatic method of forming ultrathin fibers of refractory oxides. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 40–46. DOI: 10.18577/2071-9140-2019-0-2-40-46.
8. Zuev A.V., Prosuntsov P.V. Model of the structure of fibrous thermal insulation materials for the analysis of combined heat transfer processes. Inzhenerno-fizicheskii zhurnal, 2014, vol. 87, no. 6, pp. 1319–1330.
9. Zuev A.V., Prosuntsov P.V., Mayorova I.A. Computational and experimental study of heat transfer processes in highly porous fibrous materials. Teplovye protsessy v tekhnike, 2014, vol. 6, no. 9, pp. 410–420.
10. Zuev A.V., Zarichnyak Yu.P., Razmakhov M.G. Prerequisites for the selection of the structure model of highly porous fibrous materials to take into account the influence of technological factors and the calculation of heat transfer. Trudy VIAM, 2019, no. 12 (84), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 2, 2020). DOI: 0.18577/2307-6046-2019-0-12-109-118.
11. Alifanov O.M., Budnik S.A., Mikhailov V.V., Nenarokomov A.V. Experimental-computing complex for the study of thermophysical properties of heat engineering materials. Teplovye protsessy v tekhnike, 2010, vol. 1, no. 2, pp. 49–60.
12. Majorova I.A. Mathematical modeling of heat transfer and optimization of multilayer thermal protective system. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 16–18.
13. Alifanov O.M., Cherepanov V.V. Prediction of physical properties and identification of models of light highly porous heat-shielding materials. Vestnik MAI, 2010, vol. 16, no. 4, pp. 48–57.
14. Royzen L.I. An approximate method for solving problems of heat conduction of multilayer bodies. Teplofizika vysokikh temperatur, 1981, vol. 19, no.4, pp. 821–831.
15. Tikhonov A.N., Samarsky A.A. Equations of mathematical physics. Ed. 5th. Moscow: Nauka, 1977, 736 p.
In the second part of the review, based on the analysis of the world experience in conducting climate tests, the main development trends related to new applications of materials, their compatibility, modeling of loading cycles, acceleration of climate tests, the impact of climate gradients, taking into account the level of climate factors in a particular area with a minimum resolution, climate change, new methods for assessing the climatic resistance of materials and biolo-gical impact factors are identified. The relevance of complex tests of materials for climatic and biological resistance with the use of methods for predicting their properties is shown.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosion of the marine atmosphere. Part 2. New approaches to assessing the corrosiveness of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1-15.
3. Petrunin M.A., Maksaeva L.B., Yurasova T.A. et al. The effect of self-organizing vinyl siloxane nanolayers on the corrosion behavior of aluminum in neutral chloride-containing solution. Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, no. 6, pp. 784–791.
4. Erofeev V.T., Salnikova A.I., Kablov E.N., Startsev O.V., Varchenko E.A. Investigation of the durability of bituminous composites in conditions of variable humidity, ultraviolet radiation and sea water. Fundamentalnye issledovaniya, 2014, no. 12, pp. 2549–2556.
5. Sehra A.K., Whitlow W.W. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences, 2004, vol. 40, is. 4–5, pp. 199–235. DOI: 10.1016/j.paerosci.2004.06.003.
6. Singha D., Ravi K., Amritap M. et al. Mechanical Characterization of C–Ph Composites Treated with Aviation Grade Fluids. Procedia Structural Integrity, 2020, vol. 25, pp. 159–171. DOI: 10.1016/j.prostr.2020.04.019.
7. Mirzaa J., Duranda B., Bhuttab A.R., Tahirb M.M. Preferred test methods to select suitable surface repair materials in severe climates. Construction and Building Materials, 2014, vol. 50, pp. 692–698. DOI: 10.1016/j.conbuildmat.2013.10.006.
8. Jenkins M.G., Lara-Curzio E., Gonczy S.T. Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Philadelphia, 2000, 53 р.
9. Sitziaab F., Lisciab C., Mirãoab J. Accelerate ageing on building stone materials by simulating daily, seasonal thermo-hygrometric conditions and solar radiation of CSA Mediterranean climate. Construction and Building Materials, part A, 2021, vol. 266. DOI: 10.1016/j.conbuildmat.2020.121009.
10. Laptev A.B., Barbotko S.L., Nikolaev E.V., Skirta A.A. Statistical processing of the results of climatic tests of fiberglass. Plasticheskiye massy, 2016, no. 3–4, pp. 58–64.
11. Chena S., Youa Z., Sharifia N.P., Yaoba H., Gongac F. Material selections in asphalt pavement for wet-freeze climate zones: a review. Construction and Building Materials, 2019, vol. 201, pp. 510–525. DOI: 10.1016/j.conbuildmat.2018.11.276.
12. Sharifia N.P., Chena S., Youa Z., Damb T.V., Gilbertsona C. A review on the best practices in concrete pavement design and materials in wet-freeze climates similar to Michigan. Journal of Traffic and Transportation Engineering (English Edition), 2019, vol. 6, is. 3, pp. 245–255. DOI: 10.1016/j.jtte.2018.12.003.
13. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
14. Lutsenko A.N., Course M.G., Laptev A.B. Justification of the timing of full-scale climatic tests of metallic materials in the atmosphere of the Black Sea coast. Analytical review. Voprosy materialovedeniya, 2016, no. 3 (87), pp. 126–137.
15. Koopmans S., Heusinkveld B.G., Steeneveld G.J. A standardized Physical Equivalent Temperature urban heat map at 1-m spatial resolution to facilitate climate stress tests in the Netherlands. Construction and Building Materials, 2020, vol. 213, pp. 115–132. DOI: 10.1016/j.buildenv.2020.106984.
16. Averina A.E., Laptev A.B., Nesterov A.S., Sarvaeva G.A., Nikolaev E.V. Application of quantum-chemical calculations to evaluate the aging processes of polyethylene terephthalate under the influence of climate. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 47–56. DOI: 10.18577/2071-9140-2020-0-3-47-56.
17. Verbista K.M.J., Maureira-Cortésb H., Rojasb P., Vicuñac S. A stress test for climate change impacts on water security: A CRIDA case study. Climate Risk Management, 2020, vol. 10, art. 100222. DOI: 10.1016/j.crm.2020.100222.
18. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. To the problem of determining the moisture sorbed in polymeric composite materials. Trudy VIAM, 2017, no. 8 (56), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 19, 2020). DOI: 10.18577/2307-6046-2017-0-8-7-7.
19. Laptev A.B., Bugay D.E., Alexandrov A.A., Larionov V.I. Environmental and biological factors affecting complex technical systems. Bezopasnost v tekhnosfere, 2017, vol. 6, no. 4, pp. 21–30.
20. Wolkoff P., Nielsen A. A new approach for indoor climate labeling of building materials – emission testing, modeling, and comfort evaluation. Atmospheric Environment, 1996, vol. 30, is. 15, pp. 2679–2689. DOI: 10.1016/1352-2310(95)00323-1.
21. ASTM D2176-16. Standard Test Method for Folding Endurance of Paper and Plastics Film by the M.I.T. Tester: Active Standard (Latest Version). Last Updated November 1, 2016. Available at: https://www.astm.org/Standards/D2176.htm (accessed: November 19, 2020).
22. ASTM D5870-16. Standard Practice for Calculating Property Retention Index of Plastics: Active Standard (Latest Version). Last Updated April 1, 2016. Available at: https://www.astm.org/Standards/D5870.htm (accessed: November 19, 2020).
23. ASTM D3012-19. Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven: Active Standard (Latest Version). Last Updated May 9, 2019. Available at: https://www.astm.org/Standards/D3012.htm (accessed: November 19, 2020).
24. Tourova T., Sokolova D., Nazina T., Grouzdev D., Kurshev E., Laptev A. Biodiversity of microorganisms colonizing the surface of polystyrene simples exposed to different aqueous environments. Sustainability, 2020, vol. 12, no. 9, art. 3624. DOI: 10.3390/su12093624.
25. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 19, 2020). DOI: 10.18577/2307-6046-2019-0-7-84-91.
26. Kogan A.M., Nikolayev E.V., Golubev A.V., Laptev A.B., Movenko D.A. Stages of biofouling and corrosion of steel in the Black sea water. Trudy VIAM, 2019, no. 6 (78), paper no. 09. Available at: http://viam-works.ru (accessed: November 19, 2020). DOI: 10.18577/2307-6046-2019-0-6-84-94.
27. ASTM D6954-18. Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation: Active Standard (Latest Version). Last Updated March 13, 2018. Available at: https://www.astm.org/Standards/D6954.htm (accessed: November 19, 2020).
28. ASTM D6400-19. Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities: Active Standard (Latest Version). Last Updated June 4, 2019. Available at: https://www.astm.org/Standards/D6400.htm (accessed: November 19, 2020).
29. ASTM D7991-15. Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions: Active Standard (Latest Version). Last Updated September 1, 2015. Available at: https://www.astm.org/Standards/D7991.htm (accessed: November 19, 2020).
30. STP533. Disposal of Plastics with Minimum Environmental Impact. Available at: https://www.astm.org/DIGITAL_LIBRARY/STP/SOURCE_PAGES/STP533_foreword.pdf (accessed: November 19, 2020).
31. ASTM F2759-19. Standard Guide for Assessment of the Ultra-High Molecular Weight Polyethylene (UHMWPE) Used in Orthopedic and Spinal Devices: Active Standard (Latest Version). Last Updated February 6, 2020. Available at: https://www.astm.org/Standards/F2759.htm (accessed: November 19, 2020).
32. ASTM D5338-15. Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures: Active Standard (Latest Version). Last Updated June 1, 2015. Available at: https://www.astm.org/Standards/D5338.htm (accessed: November 19, 2020).
33. ASTM E2317-04. Standard Guide for Conducting Renewal Microplate-Based Life-Cycle Toxicity Tests with a Marine Meiobenthic Copepod: Active Standard (Latest Version). Last Updated December 1, 2012. Available at: https://www.astm.org/Standards/E2317.htm (accessed: November 19, 2020).
34. ASTM E1562-00. Standard Guide for Conducting Acute, Chronic, and Life-Cycle Aquatic Toxicity Tests with Polychaetous Annelids: Active Standard (Latest Version). Last Updated March 1, 2013. Available at: https://www.astm.org/Standards/E1562.htm (accessed: November 19, 2020).
35. ASTM D7475-20. Standard Test Method for Determining the Aerobic Degradation and Anaerobic Biodegradation of Plastic Materials under Accelerated Bioreactor Landfill Conditions: Active Standard (Latest Version). Last Updated March 6, 2020. Available at: https://www.astm.org/Standards/D7475.htm (accessed: November 19, 2020).
The article presents data on combined anodic dissolution of aluminum alloy of Al–Li–Cu system with not high sensibility to intergranular corrosion, consisting in sequential dissolution in two different solutions, with different modes – the ratio of the specific amount of electricity. The obtained corrosion deteriorations were evaluated by optical and confocal microscopy, the dependences of mass loss, the depth of pitting and intergranular corrosion, as well as changes in the tensile strength of the specific amount of electricity for different modes were determined. As a result of the analysis of the obtained data, models for predicting the loss of tensile strength from the value of the specific amount of electricity (or mass loss) in atmospheric corrosion are proposed.
2. Agarwala V.S. Aircraft corrosion and aging: problems and controls. Proceedings of 15th ICC. Granada, 2002, pp. 3-12.
3. Feigenbaum Yu.M., Dubinsky S.V. Influence of accidental operational damage on the strength and life of the aircraft structure. Nauchnyj vestnik MGTU GA, 2013, no. 187, pp. 83–91.
4. Sadkov V.V., Mirkin I.I. Ensuring corrosion resistance of aluminum structures in Tu aircraft. Tsvetnye metally, 2006, no. 11, pp. 73–76.
5. Fomina M.A., Karimova S.A. Analysis of the corrosion state of materials of the airframe of aircraft of the «Su» type after long service life. Korroziya: materialy, zashchita, 2014, no. 9, pp. 20–24.
6. Butushin S.V., Kovalevsky S.A., Shapkin V.S. Analysis of corrosion damage to the power structure of the airframe of the An-24 type aircraft. Nauchnyj vestnik MGTU GA, 2008, no. 130, pp. 41–47.
7. Bychkov A.S., Ignatovich S.R., Molyar A.G. The main types and causes of destruction of structural elements made of aluminum alloys of domestic aircraft of the transport category. Otkrytye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii, 2015, no. 70, pp. 136–151.
8. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Aluminum alloys in aerospace engineering. Moscow: Nauka, 2001, 192 p.
9. Dursun T., Soutis C. Recent developments in advanced aircraft aluminum alloys. Materials and Design, 2014., vol. 56, pp. 862–871.
10. Karimova S.A., Chesnokov D.V. Advanced technologies for corrosion protection and repair of aviation equipment. Novosti materialovedeniya. Nauka i tekhnika, 2013, no. 4, paper no. 05. Available at: https://materialsnews.ru (accessed: August 26, 2020).
11. Kablov E.N. The role of chemistry in creating new generation materials for complex technical systems. Abstracts of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: UB RAS, 2016, pp. 25–26.
12. Katsura A.V. Investigation of the effect of corrosion damage on the durability of structural elements of aircraft: thesis abstract, Cand. Sc. (Tech.). Krasnoyarsk, 2001, 15 p.
13. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
14. Semin A.V. The method of refining the characteristics of the survivability of the power elements of the airframe of long-term operated aircraft: thesis abstract, Cand. Sc. (Tech.). Moscow, 2011, 23 p.
15. Bellinger N.C., Liao M. Corrosion and fatigue modeling of aircraft structures. Corrosion Control in the Aerospace Industry. Woodhead Publishing, 2009, pp. 172–191.
16. Kutyrev A.E., Chesnokov D.V. Analysis of data on field tests of aluminum alloys and the development of their complex corrosion tests. Corrosion, aging and biostability of materials in a marine climate: Materials of the III Intern. Scientific and Iechnical Conf. 2018, pp. 80. Available at: https://conf.viam.ru (accessed: September 07, 2020).
17. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode. Trudy VIAM, 2018, no. 9 (69), paper no. 11. Available at: http://viam-works.ru (accessed: September 21, 2020). DOI: 10.18577/2307-6046-2018-0-9-105-118.
18. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Fridlander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Aluminum-lithium alloys. Aviation materials. Selected works of «VIAM» 1932–2007. Mosocow: VIAM, 2007, pp. 163–171.
21. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg. Trudy VIAM, 2014, no. 7, paper no. 01. Available at: http://viam-works.ru (accessed: September 7, 2020).
22. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Burlyaeva I.P. Structure and properties of massive extruded semiproducts from high-strength aluminium-lithium alloy V-1469. Trudy VIAM, 2015, no. 9, paper no. 04. Available at: http://www.viam-works.ru (accessed: October 13, 2020). DOI: 10.18577/2307-6046-2015-0-9-4-4.
23. Kurs M.G. Method for calculating the integral coefficient of corrosion destruction of sheets made of wrought aluminum alloys during field-accelerated tests: thesis, Cand. Sc. (Tech.). Moscow, 2016, 147 p.
24. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integral figure of corrosion damage of deformed aluminum alloys. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.
25. Szklarska-Smialowska Z. Pitting corrosion of aluminum. Corrosion Science, 1999, vol. 41, pp. 1743–1767.
26. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
27. Freiman L.I. Stability and kinetics of pitting development. Itogi nauki i tekhniki, ser.: Korroziya i zashchita ot korrozii, 1985, vol. 11, pp. 3–71.
28. Frankel G.S. Pitting corrosion of metals. Review of the critical factors. Journal of Electrochemical Society, 1998, vol. 145, pp. 2186–2198.
29. Lutsenko A.N., Grinevich A.V., Karimova S.V. Strength characteristics of aircraft airframe materials in high humidity conditions. Voprosy materialovedeniya, 2013, vol. 73, no. 1, pp. 220–229.
30. Grinevich A.V., Nuzhnyy G.A., Gulina I.V. Poisk kriteriya korrozionnoy povrezhdaemosti. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 29–33. DOI: 10.18577/2071-9140-2014-0-s4-29-33.
Authors named |
Position, academic degree |
Affiliation |
Denis A. Aleksandrov |
Leading Engineer |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
Vladislav V. Antipov |
Deputy Director General for Science, Candidate of Sciences (Tech.) |
|
Sergey L. Barbotko |
Head of Sector, Doctor of Sciences (Tech.) |
|
Dmitriy Ya. Barinov |
Second Category Engineer |
|
Mikhail M. Bochenkov |
First Category Technician |
|
Sergey A. Budinovskii |
Chief Researcher, Doctor of Sciences (Tech.) |
|
Evgeny O. Valevin |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
|
Alexander I. Vdovin |
Engineer |
|
Oleg S. Volnyj |
Leading Engineer |
|
Mikhail A. Gorbovets |
Deputy Head of Testing Center, Candidate of Sciences (Tech.) |
|
Dmitriy S. Gorlov |
Leading Engineer |
|
Ivan N. Gulyaev |
Deputy Head of Laboratory for Science, Candidate of Sciences (Tech.) |
|
Oleg N. Doronin |
Head of Laboratory, Candidate of Sciences (Tech.) |
|
Viktoriya A. Duyunova |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
|
Galina F. Zhelezina |
Head of Sector, Candidate of Sciences (Tech.) |
|
Oxana V. Zaklyakova |
Second Category Engineer |
|
Irina V. Zelenina |
Leading Engineer-Technologist |
|
Andrey V. Zuev |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
|
Alexey Ch. Kan |
First Category Engineer |
|
Alexander S. Kolobkov |
Head of Laboratory, Candidate of Sciences (Tech.) |
|
Sergey P. Konokotin |
Leading Engineer |
|
Ivan S. Kuko |
Engineer |
|
Galina S. Kulagina |
Senior Researcher, Candidate of Sciences (Chem.) |
|
Elena I. Kurbatkina |
Head of Laboratory, Candidate of Sciences (Tech.) |
|
Alexey E. Kutyrev |
Leading Researcher, Candidate of Sciences (Chem.) |
|
Anatoly B. Laptev |
Chief Researcher, Doctor of Sciences (Tech.) |
|
Alexander A. Leonov |
Head of Laboratory |
|
Roman M. Nazarkin |
Leading Engineer |
|
Andrey A. Novikov |
Technician |
|
Dmitriy I. Pevchev |
First Category Technician |
|
Mikhail R. Pavlov |
Senior Researcher, Candidate of Sciences (Tech.) |
|
Petr V. Ryzhkov |
Engineer |
|
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
|
Nikolay V. Trofimov |
Engineer |
|
Zinaida P. Uridiya |
Leading Researcher, Candidate of Sciences (Tech.) |
|
Maxim A. Khaskov |
Leading Researcher, Candidate of Sciences (Chem.) |
|
Dmitriy V. Chesnokov |
Head of Laboratory |
|
Ivan V. Iatsyuk |
Candidate of Sciences (Tech.) |
|
Yuriy P. Zarichnyak |
Professor, Doctor of Sciences (Phys. & Math.) |
FSAEI of HE «ITMO University»; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
Oleg P. Korobeinichev |
Chief Researcher, Doctor of Sciences (Phys. & Math.), Professor |
FSBIS «Voevodsky Institute of Chemical Kinetics and Combustion» of the SB of the RAS; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
Andrey G. Shmakov |
Head of Laboratory, Doctor of Sciences (Tech.) |