Articles
Intermetallic alloy based on a Ti2AlNb compound are the most promising high-temperature materials for gas turbine engines operating up to a temperature of 700 degrees Celsius. In this paper, the technology of hot pressure treatment of a cast billet on a plate with a thickness of 25 mcm is studied. The technology included three comprehensive forging of the ingot billet, forging by drawing the intermediate billet and its subsequent rolling to the final size. The influence of heat treatment on the macro and microstructure of plates is studied. The chosen scheme of hot deformation and the mode of heat treatment provides an increased level of mechanical properties in the plates.
2. Kablov E.N. VIAM: New generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 64–78.
4. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Nochovnaya N.A., Ivanov V.I. Prospects for the use of heat-resistant materials based on titanium aluminides. Int. conf. "Ti-2006 in the CIS". Verkhnyaya Salda, 2006, pp. 39–43.
6. Night H.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 318 p.
7. Leyens C., Hausmann J., Kumfert J. Continuous Fiber Reinforced Titanium Matrix Composites Fabrication, Properties and Applcation. Titanium and Titanium Alloys. Fundamental and Application. Ed. C. Leyens, M. Peters. Weinheim: Wiley-VCH Verlag GnbH & Co. KGaA 2003, pp. 305–331.
8. Dey S. R., Roy S., Suwas S. et al. Annealing response of the intermetallic alloy T – 22Al – 25Nb. Journal of Intermetallics, 2010, vol. 18, no. 6, pp. 1122–1131.
9. Ma X., Zeng W., Xu B. et al. Characterization of the hot deformation behavior of a Ti – 22Al – 25Nb alloy using processing maps based on the Murry criterion. Journal of Intermetallics, 2012, vol. 20, no. 1, pp. 1–7.
10. Nochovnaya N., Alexeev E., Izotova A., Ivanov V. Oportunities of increase of mechanical properties of the deformed semifinished products from Ti – Al – Nb system alloys. Proceeding of the 12th Wold Conference on "Ti-2011". Beijing: Science Press, 2011, vol. 2, pp. 1383–1386.
11. Wang W., Zeng W., Chen X. et al. Microstructural control and mechanical properties from isothermal forging and heat treatment of Ti – 22Al – 25Nb (at.%) Orthorhombic alloy. Journal of Intermetallics, 2015, vol. 56, pp. 79–86.
12. Shang J.L., Guo H.-Z., Liang H.-Q. Hot deformation behavior and process parameter optimization of Ti – 22Al – 25 Nb using processing map. Journal Rare Metals, 2016, vol. 35, no. 1, pp. 118–126.
13. Alekseev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium Part 1. Research on ingot microstructure and rheological curves plotting. Trudy VIAM, 2018, no. 6 (66), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-6-12-21.
14. Alexeev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium. Part 2. Research on heat treatment effect on rolled slab microstructure and mechanical properties. Trudy VIAM, 2018, no. 12 (72), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-12-37-45.
15. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4. Trudy VIAM, 2018, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: August 09, 2021). DOI: 10.18577/2307-6046-2018-0-2-5-5.
In this work, the samples of alloy 6013 of the Al–Mg–Si–Cu system after low-temperature thermomechanical treatment (LTMT) according to the scheme: quenching → aging → deformation → aging were studied by dark-field methods of transmission electron microscopy. The analysis of the structure of precipitates of hardening phases and dislocation structure in the volume of grains after different degrees of cold hardening of LHMT is carried out. It is shown that LHMT affects the formation of the structure of hardening precipitates, contributing to both heterogeneous nucleation at dislocations and homogeneous nucleation in the bulk of grains, due to the intensification of diffusion processes.
2. Kablov E.N., Duyunova V.A., Benarieb I., Puchkov Yu.A., Sbitneva S.V. Features of the decomposition of a supercooled solid solution during quenching of sheets from a high-tech alloy V-1341 of the Al – Mg – Si system. Tekhnologiya legkikh splavov, 2020, no. 3, pp. 20–33.
3. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
4. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
5. Kablov E.N., Belov E.V., Trapeznikov A.V., Leo- nov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 06, 2021). DOI: 10.18577/2713-0193-2021-0-2-24-34.
6. Sinyavsky V.S., Valkov V.D., Kalinin V.D. Corrosion and protection of aluminum alloys. 2nd ed., add. and rev. Moscow: Metallurgiya, 1986, 368 p.
7. Benarieb I., Ber L.B., Antipov K.V., Sbitneva S.V. Trends in development of wrought alloys of Al–Mg–Si–(Cu) system. Part 1 (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 14–22. DOI: 10.18577/2071-9140-2019-0-3-14-22.
8. Kolobnev N.I., Ber L.B., Tsukrov S.L. Heat treatment of wrought aluminum alloys. Moscow: APRAL, 2020, 552 p.
9. Chuistov K.V. Aging of metal alloys. 2nd ed., add. and rev. Kiev: Akademperiodika NAS of Ukraine, 2003, 567 p.
10. Zuo L., Ye B., Ding W. Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al – Si – Cu – Mg alloy at elevated temperature. Materials Science and Engineering: A, 2017, vol. 693, pp. 26–32. DOI: 10.1016/j.msea.2017.03.087.
11. Sunde J.K., Marioara C.D., Van Helvoort A.T.J., Holmestad R. The evolution of precipitate crystal structures in an Al – Mg – Si– (Cu) alloy studied by a combined HAADF-STEM and SPED approach. Materials Characterization, 2018, vol. 142, pp. 458–469.
12. Gazizov M., Marioara C. D., Friis J. et al. Unique hybrid precipitate structures forming in an Al – Cu – Mg – Si alloy. Alloys of Compounds, 2020, vol. 826, pp. 1–7.
13. Sunde J.K., Marioara C.D., Van Helvoort A.T.J., Holmestad R. The evolution of pre-cipitate crystal structures in an Al – Mg – Si– (Cu) alloy studied by a combined HAADF-STEM and SPED approach. Materials Characterization, 2018, vol. 142, pp. 458–469.
14. Ding L., Jia Z., Nie J.-F. at al. The structural and compositional evolution of precipitats in Al – Mg – Si – Cu alloy. Acta Materialia, 2018, vol. 145, pp. 437–450.
15. Liu S.D., Zhong Q.M., Zhang X.M., Deng Y.L. TTP diagrams for aluminum alloy 1933. Materials Science and Technology, 2010, vol. 26. DOI: 10.1179/026708309X12459430509256.
Provides an overview of methods for producing porous aluminum, its properties, advantages and disadvantages, and considers the use of aluminum foamed materials in the aerospace and mechanical engineering industries. It has been established that the mechanical properties of foam aluminum depend on the size and location of the pores, as well as on the method of its production; carrying out the process of modeling the deformation of samples with different pore diameters and the type of porous structure will make it possible to control the mechanical properties of a porous aluminum alloy.
2. Kablov E.N., Antipov V.V., Girsh R.I, Serebrennikova N.Yu., Konovalov A.N. Designed layered materials on the basis of sheets from aluminum lithium alloys and fibreglasses in designs of flight vehicles of new generation. Vestnik mashinostroeniya, 2020, no. 12, pp. 46–52.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
6. Way of receiving frothed metal: pat. 2016113 Rus. Federation; filed 20.05.92; publ. 15.07.94.
7. Sugimura Y., Meyer J., He Y. et al. On the mechanical performance of closed cell A1 alloys foams. Acta Materialia, 1997, vol. 45, pp. 5245–5259.
8. Way of production of porous semi-finished products from powder aluminum alloys: pat. 2121904 Rus. Federation; filed 17.07.01; publ. 20.11.98.
9. Калиниченко B.A., Калиниченко A.С. Способы получения вспененного алюминия, области его применения и ряд особенностей механической обработки // Литье и металлургия. 2005. № 2-1 (34). С. 164–169.
10. Hassanli F., Paydar M.H. Improvement in energy absorption properties of aluminum foams by designing pore-density distribution. Journal of Materials Research and Technology, 2021, vol. 14, pp. 609–619.
11. Hangai Y., Saito K., Utsunomiya T., Kuwazuru O. Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Materials Science and Engineering: A, 2014, vol. 613, pp. 163–170.
12. Brothers A.H., Dunand D.C. Density-graded cellular aluminum. Advanced Engineering Materials, 2006, vol. 8 (9), pp. 805–809.
13. Mirzaei M., Paydar M.H. Fabrication and characterization of coreeshell density-graded 316L stainless steel porous structure. Journal of Materials Engineering and Performance, 2019, no. 28 (1), pp. 221–230.
14. Hе S.Y., Lv Y.N., Chen S.T. et al. Gradient regulation and compressive properties of density-graded aluminum foam. Materials Science and Engineering: A, 2020, vol. 772, pp. 501–511.
15. Mahbod M., Asgari M. Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: analytical and numerical models. International Journal of Mechanical Sciences, 2019, vol. 155, pp. 248–266.
16. Gupta N. A functionally graded syntactic foam material for high energy absorption under compression. Materials Letters, 2007, vol. 61, pp. 979–982.
17. Singh G., Pandey P.M. Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: surface morphology, mechanical properties and energy absorption capacity. Materials Science and Engineering: A, 2019, vol. 761, pp. 192–205.
18. Jeon I., Katou K., Sonoda T. et al. Cell wall mechanical properties of closed-cell Al foam. Mechanics of Materials, 2009, vol. 41, pp. 60–73.
19. Leushin I.O., Grachev A.N., Nazarov V.N., Gorokhov P.A. Foamed aluminum – perspective material for production of cast products of responsible assignment. Teoriya i tekhnologiya metallurgicheskogo proizvodstva, 2020, no. 4 (35), pp. 35–38.
20. Butarovich D.O., Smirnov A.A., Ryabov D.M. Foamed aluminum as power absorbing material and its mechanical properties. Mashinostroenie, 2011, no 7, pp. 53–58.
21. Kraev I.D., Sorokin A.E., Nyrtsov A.V., Shipin N.O., Krayeva A.A., Titkova Yu.M. Foams designed to ensure the absorption of acoustic waves over a wide range of frequencies. Trudy VIAM, 2018, no. 1 (61), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 09, 2021). DOI: 10.18577/2307-6046-2018-0-1-10-10.
22. Zhelezina G.F., Kolobkov A.S., Kulagina G.S., Kan A.Ch. Damping properties of hybrid layered metal-polymer materials based on aluminum, titanium alloys and organoplastics layers. Trudy VIAM, 2021, no. 2 (96), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 8, 2021). DOI: 10.18577/2307-6046-2021-0-2-10-19.
23. Stoyakina E.A., Kurbatkina E.I., Simonov V.N., Kosolapov D.V., Gololobov A.V. Mechanical properties of aluminium-matrix composite materials reinforсed with SiC particles, depending on the matrix alloy (review). Trudy VIAM, 2018, no. 2, paper no. 08. Available at: http://www.viam-works.ru (accessed: August 8, 2021). DOI: 10.18577 / 2307-6046-2018-0-2-8-8.
24. Weber A. Light weighting Is Top Priority for Automotive Industry. Available at: https://www.assemblymag.com/articles/94341-lightweighting-is-top-priorityfor-automotive-industry (accessed: August 16, 2021).
25. Claar T.D., Vu C.J., Hall L. et al. Ultra-lightweight Aluminum Foam Materials for Automotive Applications. SAE Technical Papers, 2000, vol. 36 (6), pp. 11–18.
26. Banhart J. Manufacturing Routes for Metallic Foams. Journal of the Minerals, Metals, 2000, vol. 52 (12), pp. 22–27.
27. Fuganti A., Lorenzi L., Hanssen A.G., Langseth M. Aluminium foam for automotive applications. Advanced Engineering Materials, 2000, vol. 2 (4), pp. 200–204.
28. Mohammed R.H., Mesalhy O., Elsayed M.L. et al. Performance of desiccant heat exchangers with aluminum foam coated or packed with silica gel. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1359431119339286 (accessed: August 16, 2021).
The use of various adhesives and adhesive binders in the composition of organoplastics is shown, as well as the use of adhesives for gluing structural elements made of organoplastics in the composition of products. Examples of the use of VK-3 film adhesive as part of VKO-20 and VKO-2TB organoplastics, VK-36RT adhesive as part of VKO-19, VKO-19L organoplastics, VSK-14-2m adhesive binder as part of VKO-24 organoplastics are given. The results of the use of VK-41M adhesive in the composition of the Alor D16/41 aluminum organoplastic and the use of this material in the An-124 aircraft are presented.
2. Mashinskaya G.P., Perov B.V., Shalin R.E. Multipurpose organoplastics for aviation technology. Aviation materials. Selected works of "VIAM" 1932-2002. Ed. E.N. Kablov. Moscow: VIAM, 2002, pp. 247–270.
3. Zhelezina G.F. Features of the destruction of organoplastics under shock impacts. Aviation materials and technologies. Ed. E.N. Kablov. Moscow: VIAM, 2012, pp. 272–277.
4. Gunyaev G.M., Zhelezina G.F., Zelenina I.V. et al. Corporate nano- and CALS-technologies in science-intensive industries. Proceedings of the 4th International. conf. "Theory and practice of technologies for the production of products from composite materials and new metal alloys". Moscow: Lomonosov Moscow State University, 2005, pp. 739–743.
5. Mukhametov R.R., Akhmadieva K.R., Chursova L.V., Kogan D.I. New polymer binders for promising methods for the manufacture of structural fibrous PCM. Aviacionnye materialy i tehnologii, 2011, no. 2, pp. 38–42.
6. Petrova A.P., Donskoy A.A., Chalykh A.E., Shcherbina A.A. Adhesive materials. Sealants. Saint Petersburg: Professional, 2008. 589 p.
7. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Kablov E.N. New generation materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
10. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
11. Kulagina G.S., Zhelezina G.F. Structural and ballistic resistant organoplastics based on film adhesives. All-Rus. scientific and technical conf. "Fundamental and applied research in the field of creating adhesives, adhesive binders and adhesive prepregs". Moscow: VIAM, 2018, pp. 31–42.
12. Zhelezina G.F., Shuldeshova P.M. Structural organoplastics based on film adhesives. Klei. Germetiki. Tekhnologii, 2014, no. 2, pp. 9–14.
13. Zhelezina G.F., Kulagina G.S., Shuldeshova P.M., Chernykh Т.E. Organoplastics based on heat-resistant polymer fibers and matrices. Trudy VIAM, 2021, no. 5 (99), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 16, 2021). DOI: 10.18577/2307-6046-2021-0-5-78-86.
14. Zhelezina G.F., Tikhonov I.V., Chernykh T.E. and other Aramid fibers of the third generation Rusar-NT for the reinforcement of organotexolites for aviation purposes. Plasticheskie massy, 2019, no. 3-4, pp. 43–47.
15. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
16. Zhelezina G.F., Voinov S.I., Solovyova N.A., Kulagina G.S. Aramid organotexolites for shock-resistant aircraft structures. Journal of Applied Chemistry, 2019, vol. 92. 3, pp. 358–364. DOI: 10.1134/S0044461819030101.
17. Shuldeshova P.M., Deev I.S., Zhelezina G.F. Features of destruction of SVM aramide fibers and structural organoplastics on their basis. Trudy VIAM, 2016, no. 2 (38), paper no. 11. Available at: http://www.viam-works.ru (accessed: March 29, 2021). DOI 10.18577/2307-6046-2016-0-2-11-11.
18. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Study of possibility of thermoset binder creation for operating temperature up to 400°C. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 58–61.
19. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
20. Kulagina G.S., Zhelezina G.F., Shuldeshova P.M. Organoplastics for aviation purposes, properties and applications. All-Rus. scientific and technical conf. "New generation polymer composite materials for civilian industries". Moscow: VIAM, 2020, pp. 55–62.
21. Antipov V.V., Kotova E.V., Serebrennikova N.Yu., Petrova A.P. Glue binders and glue prepregs for alumopolymeric composite materials. Trudy VIAM, 2018, no. 5 (65), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 22, 2021). DOI: 10.18577/2307-6046-2018-0-5-44-54.
A metal composite material (MCM) based on an aluminum corrosion-resistant alloy of the AMg6 brand, containing 22.5 % (vol.) Silicon carbide, obtained by mechanical alloying, has been investigated. Aspects of the formation of the MCM structure based on chips and powder from this alloy are considered. The influence of the initial components on the structure of the dispersion-strengthened MCM was investigated, and samples were made from this composite material.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. New generation materials and digital technologies of their processing. Vestnik Rossijskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Alaneme K.K., Bodunrin M.O. Corrosion behavior of alumina reinforced aluminium (6063) metal matrix composites. Journal of Minerals and Materials Characterization and Engineering, 2011, vol. 10, no.12, pp.1153–1165.
7. Singh J., Chauhan A. Characterization of hybrid aluminum matrix composites for advanced applications – a review. Journal of Materials Research and Technology, 2016, vol. 5, no.2, pp.159–169.
8. Kosolapov D.V., Shavnev A.A., Nyafkin A.N., Grishina O.I. Research of forming of structure of composition granules of Al–SiC. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 49–52. DOI: 10.18577 / 2071-9140-2016-0-3-49-52.
9. Kosolapov D.V., A.A. Shavnev, E.I. Kurbatki-na, A.N. Nyafkin, A.V. Gololobov. Study on structure and properties of dispersion hardened MMC based on aluminium alloy of Al–Mg–Si system. Trudy VIAM, 2020, no. 1, paper no. 06. Available at: http://www.viam-works.ru (accessed: June 14, 2021). DOI: 10.18577/2307-6046-2020-0-1-58-67.
10. Miller W.S., Humphreys F.J. Strengthening mechanisms in particulate metal matrix composite. Scripta Metallurgica et Materialia, 1991, vol. 25, pp.33–38.
11. Velidandla B., Radhakrishna B., Anjilivelil K. et al. P/M processing of Al–SiC composites. Journal of Powder Metallurgy, 1991, vol. 27, pp.227–235.
12. Deaquino-Lara R., Gutierrez-Castaneda E., Estrada-Guel I. et al. Structural characterization of aluminium alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion. Materials and Design, 2014, vol. 53, pp. 1104–1111.
13. Yuan W., Zhang J., Zhang C., Chen Z. Processing of ultrahigh strength SiCp/Al–Zn–Mg–Cu composites. Journal of Materials Processing Technology, 2009, vol. 209, pp.3251–3255.
14. Verma R.K., Mahesh N.S., Anwar M.I. Numerical Analysis of Powder Compaction to Obtain High Relative Density in ʹ601ABʹ Aluminum Powder. SasTech journal, 2012, vol. 11, is. 1, pp.79–84.
15. Veeresh Kumar G.B., Rao C.S.P., Selvaraj N., Bhagyashekar M.S. Studies on Al6061–SiC and Al7075–Al2O3 Metal Matrix Composites. Journal of Minerals & Materials Characterization & Engineering, 2010, vol. 9, no.1, pp. 43–55.
The article notes the results of studying the surface of VKU-30K.UMT49 carbon fiber-reinforced plastic without and with its treatment with atmospheric pressure plasma (APP), which is one of the most advanced methods of surface preparation for various adhesion processes, based on the study of the phenomenon of wetting and the theory of adhesion. The results of the effect of APP on the strength of an adhesive bond based on VKU-30K.UMT49 carbon fiber-reinforced plastic, the roughness of the surface of the carbon fiber and its microstructure, the results of the free energy of the surface and its components and the work of adhesion according to the method of Owens–Wendt–Rabel–Kaelble were obtained.
2. Kablov E.N. New Generation Materials and Technologies for their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225-228.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Kablov E.N. New generation materials - the basis of innovation, technological leadership and national security of Russia. Intellekt & Tekhnologii, 2016, no. 2, pp. 41–46.
6. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
8. Timoshkov P.N., Khrulkov A.V., Usacheva M.N., Purvin K.E. Technological features of the manufacture of thick-walled parts of the PCM (review). Trudy VIAM, 2019, no. 3 (75), paper no. 07. Available at: http://viam-works.ru (accessed: April 13, 2021). DOI: 10.18577/2307-6046-2019-0-3-61-67.
9. Barannikov A.A., Postnov V.I., Veshkin E.A., Strelnikov S.V. On the role of fiberglass surface preparation for gluing. Klei. Germetiki. Tekhnologii, 2019, no. 6, pp. 19–27.
10. Barannikov A.A., Рostnov V.I., Veshkin E.A., Starostina I.V. Link between the energy characteristics of the surface of fiberglass of the VPS-53К brand and the strength of the adhesive joint based on it. Trudy VIAM, 2020, no. 10 (92), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 04, 20). DOI: 10.18577/2307-6046-2020-0-10-40-50.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Williams T.S., Yu H., Hicks R.F. Atmospheric pressure plasma activation of polymers and composites for adhesive bonding: A Critical Review. Reviews of Adhesion and Adhesives, 2013, vol. 1, no. 1, pp. 46–87. DOI: 10.7569/RAA.2013.097302.
13. Serrano J.S. Surface modifications of composite materials by atmospheric pressure plasma treatment: PhD Thesis. Madrid: Universidad Rey Juan Carlos, 2011.302 p. Available at: https://eciencia.urjc.es/bitstream/10115/11379/1/Thesis_June%202011%20JSS-SLU-AUF_v5.pdf (accessed: April 04, 2021).
14. Gleich H. Zusammenhang zwischen Oberflächenenergie und Adhäsionsvermögen von Polymer werkstoffen am Beispiel von PP und PBT und deren Beeinflussung durch die Niederdruck-Plasmatechnologie: dis. Universtät Duisburg-Essen, 2004, 103 p. Available at: https://duepublico2.unidue.de/servlets/MCRFileNodeServlet/duepublico_derivate_00005593/gleichdiss.pdf (accessed: April 04, 2021).
15. Rodríguez B.N. Pre-Treatment for adhesive bonding of aerospace composite components: PhM Thesis. London: Brunel University, 2016, 133 p. Available at: https://bura.brunel.ac.uk/bitstream/2438/14669/1/FulltextThesis.pdf (accessed: April 04, 2021).
16. Al-Maliki H.L.R. Adhesive and tribological behavior of cold atmospheric-treated polymer surfaces: PhD plasma Dissertation. Gödöllő: Szent István University, 2018, 115 p. Available at: https://szie.hu/sites/default/files/hayder_lateef_dissertation.pdf (accessed: April 04, 2021).
17. Lisco F., Shaw A., Wright A. et al. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Solar Energy, 2017, vol. 146, pp. 287–297.
18. Kostova K.G., Nishimea T.M.C., Castroa A.H.R. et al. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 2014, vol. 314, pp. 367–375.
19. Akiyama H., Hasegawa K., Sekigawa T., Yamazaki N. Atmospheric pressure plasma treatment for composites bonding. Mitsubishi Heavy Industries Technical Review, 2018, vol. 55, no. 2, pp. 1–5.
20. Lucchetta G. Experimental analysis of atmospheric plasma treatment and resin optimization for adhesive bonding of carbon fiber/epoxy composites. Available at: http://tesi.cab.unipd.it/ 48832/1/Tesi_ANTONELLO_Julien.pdf (accessed: April 04, 2021).
21. Barannikov A.A., Veshkin E.A., Postnov V.I., Semenichev V.V. Structural studies of adhesive joints of VPS-53K fiberglass sheets treated with atmospheric pressure plasma. Klei. Germetiki. Tekhnologii, 2020, no. 3, pp. 27–33. DOI: 10.31044/1813-7008-2020-0-3-27-33.
22. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook. allowance. Moscow: Moscow State University named after M.V. Lomonosov, 2010, 68 p.
23. Kraus E. Increasing the strength of adhesive joints of polymer materials by laser and plasma surface treatment: dis. ... Cand. tech. sciences. Kazan: KNITU, 2017, 184 p. Available at: http://www.kstu.ru/servlet/contentblob?id=146076 (accessed: April 04, 2021).
24. Danchenko Yu.M. Regulation of free surface energy of epoxy polymer materials using mineral fillers. Polimernye materialy i tekhnologii, 2017, vol. 3, no. 2, pp. 56–63.
25. Langer M., Otto D. Methods for studying the surface characteristics of polymers after plasma treatment. Comparative analysis. Analiz i kontrol: tekhnologii, pribory, resheniya, 2018, no. 2 (39), pp. 2–7.
26. Operating manual OCA 15EC: Version 1.0; English; Valid as of firmware version 10.27, and SCA software version 4.4.1 Build 1046. Data Physics Instruments GmbH. Available at: https://vdocuments.site/manual-sca20-u.html (accessed: April 15, 2021).
27. Thomsen F. Practical Contact Angle Measurement (5). Custom-made models: from contact angle to surface free energy. Available at: https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/ booking/dropshapeanalyser/practical_contact_angle_measurement_5.pdf (accessed: April 15, 2021).
28. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2020, no. 3 (87), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 13, 2021). DOI: 10.18577/2307-6046-2021-0-3-58-67.
Today wings for Boeing 787 and Airbus A350 aircraft are made of polymer composite materials in the form of prepregs based on carbon fiber, the blanks of which are molded in an autoclave. It is expected that by 2025–2030 will actively use the vacuum infusion method, which will require global research on the selection of binding and reinforcing materials, development of the vacuum impregnation and curing process, automation and development of new technological methods for laying out workpieces of parts, accelerating the process and shortening the cycle time.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: August 19, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
7. Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of the structure and reinforcement transmission shafts made of polymer composite materials (review). Trudy VIAM, 2021, no. 1 (95), paper no. 9. Available at: http://www.viam-works.ru (accessed: August 16, 2021). DOI: 10.18577/2307-6046-2021-0-1-85-96.
8. Kudryavtseva A.N., Tkachuk A.I., Grigorieva K.N., Gurevich Ya.M. The use of epoxy resin system VSE-30, processed by the infusion technology, for the manufacture of low and medium loaded structural polymer composite materials. Trudy VIAM, 2019, no. 1 (73), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 20, 2021). DOI: 10.18577/2307-6046-2019-0-1-31-39.
9. Doneckij K.I., Karavaev R.Yu., Raskutin A.E., Panina N.N. Properties of carbon fiber and fiberglass on the basis of braiding preforms. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 54–59. DOI: 10.18577/2071-9140-2016-0-4-54-59.
10. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
11. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Features of prepregs intended for automated laying by ATL and AFP technologies. Trudy VIAM, 2015, no. 3, paper no. 06. Available at: http://www.viam-works.ru (accessed: August 18, 2021). DOI: 10.18577/2307-6046-2015-0-3-6-6.
12. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: August 17, 2021). DOI: 10.18577/2713-0193-2021-0-2-51-61.
13. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp.20–26.
14. Minakov V.T., Postnov V.I., Khulkov A.V., Postnov A.V., Pletin I.I. Peculiarities of gluing PCM parts using polymer equipment. Klei. Germetiki. Tekhnologii, 2008, no. 5, pp. 24–29.
15. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Researches and development autoclave and out-of-autoclave technologies of formation of PCM. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 292–301.
16. Dushin M. I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Features of manufacturing of products from PCM impregnation method under pressure. Aviacionnye materialy i tehnologii, 2012, no. 1, pp. 18–26.
17. Timoshkov P.N., Usacheva M.N., Khrulkov A.V., Grigorieva L.N. Prospects for the use of polymer composite materials in the manufacture of prostheses (review). Plasticheskiye massy, 2021, no. 5-6. S. 40–43.
18. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience of using vacuum-infusion technologies in the production of structures from PCM. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4 (3), pp. 344–350.
19. Timoshkov P.N., Goncharov V.A., Grigoreva L.N., Usacheva M.N., Hrulkov A.V. Robotic laying out of prepregs as an alternative to technology to ATL and AFP (review). Trudy VIAM, 2021, no. 3 (97), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 13, 2021). DOI: 10.18577/2307-6046-2021-0-3-87-98.
20. Large, high-volume, infused composite structures on the aerospace horizon. Available at: https://www.compositesworld.com/articles/large-high-volume-infused-composite-structures-on-the-aerospace-horizon (accessed: August 18, 2021).
21. Rajan S., Sutton M.A., Wehbe R. et al. Experimental investigation of prepreg slit tape wrinkling during automated fiber placement process using StereoDIC. Composites. Part B: Engineering, 2019, vol. 160, pp. 546–557.
22. Boeng 787-8. AirlinesInfo. Available at: https://www.airlines-inform.ru/commercial-aircraft/boeing-787.html (accessed: August 20, 2021).
23. Yavuz H. Materials Selection for Aircraft Skin Panels by Integrating Multiple Constraints Design with Computational Evaluations. Procedia Structural Integrity, 2019, vol. 21, pp. 112–119.
24. Thermoplastic composites: Poised to step forward. Composites world: офиц. сайт. Available at: https://www.compositesworld.com/articles/thermoplastic-composites-poised-to-step-forward (accessed: August 20, 2021).
25. Baker A., Dutton S., Kelly D. Composite materials for aircraft structures. 2nd ed. AIAA, 2004. 602 p.
26. Chahroudi D. Low cost manufacture of laminar wings. Technical Soaring, 1997, vol. 21, no. 2. P. 55–61.
27. The spread of spread tow. Available at: https://www.compositesworld.com/articles/the-spread-of-spread-tow (accessed: August 20, 2021).
28. Update: Lower wing skin, Wing of Tomorrow. Available at: https://www.compositesworld.com/articles/update-lower-wing-skin-wing-of-tomorrow (accessed: August 20, 2021).
Epoxy oligomers are one of the most widespread synthetic polymers who during already enough long time apply to manufacturing of paint and varnish materials. Possessing number of valuable properties, epoxy paint and varnish materials have also shortcomings for which elimination use different receptions, including physical and chemical updatings using different mono- and elastomeric, silicon- and organophosphorous and other connections. The main attention is given to use of different modifiers for improvement of operational properties of anticorrosion paint coatings.
2. Kablov E.N. Aviation materials science: results and prospects. Vestnik Rossiyskoy akademii nauk, 2002, vol. 72, no. 1, pp. 3–12.
3. Kablov E.N. Materials and chemical technologies for aviation technology. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
4. Fomina M.A., Karimova S.A. Analysis of the corrosion state of materials of the airframe of aircraft of the "Su" type after long-term operation. Korroziya: materialy, zashchita, 2014, no. 9, pp. 20–24.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: June 24, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
7. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
8. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Paint and varnish materials and coatings. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 315–327.
9. Kozlova A.A., Kondrashov Je.K. Systems of paint coatings for anticorrosive protection of magnesium alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Eselev A.D., Bobylev V.A. Epoxy resins and hardeners for the production of paints and varnishes. Lakokrasochnyye materialy i ikh primenenie, 2005, no. 10, pp. 16–25.
12. Blagonravova A.A., Nepomnyashchy A.I. Epoxy lacquer resins. Moscow: Khimiya, 1970, 248 p.
13. Paints and varnishes. Trans. from English. Ed. H.V. Chetfield. Moscow: Khimiya, 1988, 640 p.
14. Reibman A.I. Protective paints and varnishes. Leningrad: Chemistry, 1978, 296 p.
15. Goldberg M.M. Materials for paints and varnishes. Moscow: Chemistry, 1972, 343 p.
16. Bobylev V.A. State and development prospects of epoxy materials. Special resins. Kompozitnyy mir, 2006, no. 6, pp. 14–17.
17. Lapitskaya T.V., Lapitsky V.A. Epoxy materials. Kompozitnyy mir, 2006, no. 7, pp. 16–17.
18. Kochnova Z.A., Lark E.S., Chalykh A.E. Epoxy resins and hardeners: industrial products. Moscow: Paint Media LLC, 2006, 200 p.
19. Chebotareva E.G., Ogrel L.Yu. Modern trends in the modification of epoxy oligomers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
20. Mayorova N.V., Karjakina M.I., Kargin V.A. et al. Influence of plasticization on the processes of structure formation and properties of paint coatings. Lakokrasochnyye materialy i ikh primenenie, 1969, no. 3, pp. 17–19.
21. Baev A.A., Mikitaev A.K. Reducing the flammability of epoxy resins using halogen-containing epoxy compounds. Plasticheskiye massy, 1986, no. 2, pp. 51–53.
22. Kirillov A.N., Sof'ina A.N., Garipov R.M., Deberdeev R.Ya. Modification of epoxyamine compositions with epoxyurethane oligomers. Lakokrasochnyye materialy i ikh primenenie, 2003, no. 4, pp. 25–28.
23. Problems of protective coatings: a review of the materials of the European conference "Protective coating", Dusseldorf (Germany). Lakokrasochnye materialy i ikh primenenie, 2013, no. 9, pp. 33–35.
24. Lark E.S., Senchikhin I.N., Pchelintsev I.E., Roldugin V.I. Determination of the optimal mode of epoxyamine systems according to TTT diagrams. Vysokomolekulyarnye soedineniya, Ser. B, 2018, vol. 60, no. 2, pp. 140–146.
25. Moshinsky L.Ya. Epoxy resins and hardeners. Tel Aviv: Arcadia Press Ltd, 1995, pp. 40–42.
26. Chebotarevsky V.V., Eselev A.D., Smirnova L.I., Gabitov I.Z. New epoxy-polyamide primers and enamels. Lakokrasochnye materialy i ikh primenenie, 1970, no. 3, pp. 22–25.
27. Mostovoy A.S., Panova L.G. Investigation of the possibility of using low molecular weight polyamide PO-300 as a "cold" hardener for epoxy oligomers. Plasticheskiye massy, 2016, no. 1–2, pp. 16–18.
28. Lark E.S., Senchikhin I.N., Kolesnikova E.F. et al. Features of curing mixtures of dianic and aliphatic epoxy oligomers with different reactivity. Vysokomolekulyarnye soedineniya, Ser. B, 2010, vol. 52, no. 4, pp. 706–714.
29. Sukhareva L.A., Mironova T.A., Fedyakova N.V. et al. Properties and structure of modified epoxy-polyamine coatings. Lakokrasochnye materialy i ikh primenenie, 1989, no. 5, pp. 50–52.
30. Composition for protective coating: pat. 2402585 Rus. Federation; filed 31.03.09; publ. 27.10.10.
31. Kuznetsova V.А., Zheleznyak V.G., Kurshev E.V., Yemelyanov V.V. Research of fuel- and water resistance of coatings based on the filled epoxy-thiokol polymeric compositions. Aviacionnye materialy i tehnologii, 2021, no. 2 (63), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 24, 2021). DOI: 10.18577/2713-0193-2021-0-2-93-102.
32. Lyalushko D.S. Modification of epoxy oligomers with carboxylated butadiene-acrylonitrile rubbers in order to create aviation fuel-resistant coatings: thesis abstract, Cand. Sc. (Tech.). Moscow, 1983, pp. 13–14.
33. Chalykh A.E., Lark E.S., Kochnova Z.A., Kiselev M.R. Structure formation in binary mixtures carboxyl-containing rubber – epoxy oligomer. Khimicheskaya fizika, 2009, vol. 28, no. 6, pp. 91–96.
34. Kochnova Z.A., Lark E.S., Kotova A.V. Peculiarities of obtaining epoxy-rubber compositions based on liquid nitrile-butadiene rubbers and epoxy oligomers. Lakokrasochnye materialy i ikh primenenie, 1998, no. 11, pp. 27–28.
35. Pyrikov A.V., Loiko D.P., Kochergin Yu.S. Modification of epoxy resins with liquid polysulfide and carboxylate butadiene rubbers. Klei. Germetiki, Tekhnologii, 2010, no. 1, pp. 28–33.
36. Kuznetsova V.A., Kozlova A.A., Zheleznyak V.G., Shapovalov G.G. Influence of elastomeric modifiers on properties of metal-polymeric compositions. Trudy VIAM, 2019, no. 8 (80). Art. 06. URL: http://www.viam-works.ru (date of access: June 24, 2021). DOI: 10.18577/2307-6046-2019-0-8-46-55.
37. Chalykh A.E., Kochnova Z.A., Lark E.S., Baru R.L. Chemical transformations and rheokinetics in the carboxyl-containing rubber-epoxy oligomer system. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2007, vol. 50, no. 1, pp. 43–47.
38. Lark E.S., Senchikhin I.N. Estimation of the cross-linking density of a densely reticulated polymer taking into account the rigidity of the chain fragment between the network nodes. Vysokomolekulyarnye soedineniya, Ser. B, 2019. vol. 61, no. 4, pp. 282–288.
39. Chalykh A.E., Kochnova Z.A., Lark E.S. Compatibility and diffusion in systems epoxy oligomers – liquid carboxylate rubbers. Vysokomolekulyarnye soedineniya, Ser. A, 2001, vol. 43, no. 12, pp. 2147–2155.
40. Chalykh A.E., Lark E.S., Kochnova Z.A. Interaction of carboxyl-containing nitrile rubber and epoxy oligomer. Vysokomolekulyarnye soedineniya, Ser. B, 2010, vol. 52, no. 5, pp. 880–887.
41. Lark E.S. Multicomponent polymer networks based on epoxy oligomers with active polyfunctional groups: thesis abstract, Cand. Sc. (Tech.). Moscow, 2019, pp. 35–39.
42. Composition for coatings on metal: pat. 2260610 Rus. Federation; filed 13.05.04; publ. 20.09.05.
43. Composition for protective coating of polymer composite materials: pat. 2480499 Rus. Federation; filed 04.07.11; publ. 10.01.13.
44. Composition for anti-corrosion protective coating: pat. 2284342 Rus. Federation; filed 28.04.05; publ. 7.09.06.
45. Composition for priming covering: pat. 100007 JP; filed 10.07.05; publ. 04.19.07.
46. Covering for inner surface of large-size containers: pat. 101210147 CN; filed 12.21.07; publ. 02.07.08.
47. Water deluting composition for coverings: pat. 0242387 WO; filed 27.11.01; publ. 30.05.02.
48. Zakharova A.A. Investigation of the curing process of epoxy oligomers with aminoalkoxysilanes: abstracts thesis, Cand. Sc. (Chem.). Moscow, 1981, pp. 3–7.
49. Sorokin M.F., Kochnova Z.A., Zakharova A.A., Golova N.A. Curing of epoxy oligomers with aminoalkoxysilanes. Lakokrasochnye materialy i ikh primenenie, 1986, no. 5, pp. 24–28.
50. Van Ngan N., Kostromina N.V., Osipchik V.S. et al. Polysiloxane-containing epoxyurethane oligomers and coatings based on them. Plasticheskiye massy, 2019, no. 3-4. S. 3–6.
51. Severny V.V., Karyugin M.A., Kisin A.V., Sokolskaya I.B. Analysis of the structural composition of oligoorganosiloxanes using Si NMR spectroscopy. Zavodskaya laboratory. 1990, no. 6, pp. 61–64.
52. Kuznetsova V.A., Deev I.S., Semenova L.V. Influence of modification of epoxy film-forming compositions on their phase microstructure and adhesion to aluminum alloy. Aviation materials and technologies. 2016, no. 1 (40). S. 72–77. DOI: 10.18577 / 2071-9140-2016-0-1-72-78.
53. Vedyakin S.V., Shode L.G., Smekhov F.M., Zeitlin G.M. Modification of epoxyamine systems with organosilicon epoxyurethanes. Paints and varnishes and their application. 1991, no. 2, pp. 1–3.
54. Vedyakin S.V., Shode L.G., Zeitlin G.M. Epoxyurethane oligomers modified with organosilicon carbofunctional glycols. Paints and varnishes and their application. 1990, no. 6, pp. 12–16.
55. Strekachinskaya L.S. Study of the formation process, structure and properties of exfoliated paint and varnish coatings: author. dis. ... Cand. chem. sciences. M., 1980. S. 6–10.
56. Grozinskaya ZP, Strekachinskaya L.S., Verkholantsev V.V. Improvement of some characteristics of coatings due to delamination of the film former. Paints and varnishes and their application. 1980, no. 5. S. 30–32.
57. Strekachinskaya L.S., Verkholantsev V.V., Grozinskaya Z.P. Regularities of delamination of solutions of mixtures of oligomers. Paints and varnishes and their application. 1980, no. 4, pp. 13–15.
58. Kuznetsova V.A., Semenova L.V., Shapovalov G.G., Chesnokov D.V. Development trends in the field of anticorrosive polymer compounds for corrosion protection of fasteners of contact pairs of combined structures (review). Aviation materials and technologies. 2017, no. 1 (46). S. 25–31. DOI: 10.18577 / 2071-9140-2017-0-1-25-31.
59. Snopkov A.Yu., Glazer E.A., Zeitlin G.M. et al. Coatings based on epoxy resins modified by rubbers. Paintwork materials and their application. 1989, no. 3, pp. 66–71.
60. Polymer composition for corrosion protection of welded joints: US Pat. 2273653 Rus. Federation; filed 10/05/2004; publ. 10.04.06.
61. Composition for anti-corrosion coating: US Pat. 2574512 Rus. Federation; filed 11/10/14; publ. 02/10/16.
62. Beskhromatny primer composition: pat. 2008118950 US; filed 09/26/08; publ. 02.10.08.
63. A waterborne epoxy corrosion resistant primer comprises a waterborne epoxy, a curing agent, and a non-chromate containing corrosion-inhibiting pigment: pat. US 6758887; filed 11/29/02; publ. 06.07.04.
64. Zheludkevich M.L., Tedim J., Ferreira V.G.S. "Smart" coating for active corrosion protection based on multifunctional micro and nanocontainers. Electrochimica Acta. 2012, vol. 82. Nov, pp. 314–323.
65. Composition for application: US Pat. 2284342 Rus. Federation; filed 04/28/05; publ. 09/27/06.
In this work was explored the removal possibility of strippers by acid, alkaline and organic bases, was explored the corrosion effect of strippers for typical metal materials for aircrafts the aluminium alloys 1163-T, B95-T2, the steel 30HGSA. The fact of the corrosive effect of strippers for metal materials was experimentally substantiated. The negative impact of the several strippers (in the case of their mixing) for the surface of the fragments of the aluminum alloy cladding, and, accordingly, on the resource characteristics (low-cycle fatigue), is studied, using the example of the B95-T2 alloy.
2. Kablov E.N. Materials and chemical technologies for aviation technology. Vestnik RAN, 2012, vol. 82, no. 6, pp. 520–530.
3. Kablov E.N. Corrosion or life. Nauka i zhizn, 2012, no. 11, pp. 16–21.
4. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
5. Kravchenko D.V., Kozlov I.A., Nikiforov A.A. Methods for preparing the surface of aluminum alloys for electroplating (review). Trudy VIAM, 2021, no. 6 (100), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 16, 2021). DOI: 10.18577/2307-6046-2021-0-6-82-99.
6. Kovrizhkina N.A., Kuznetsova V.A., Kozlov I.A., Vdovin A.I., Silaeva A.A.. Influence of silicate fillers on operational properties of coatings based on protective polymeric pastes with the lowered content of strontium chromate. Trudy VIAM, 2020, no. 4-5 (88), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 16, 2021). DOI: 10.18577/2307-6046-2020-0-45-80-88.
7. Kravchenko N.G., Kozlov I.A., Shchekin V.K., Efimova E.A. Cleaning chemical compositions for aircraft engines (review). Trudy VIAM, 2021, no. 1 (95), paper no. 11. Available at: http://www.viam-works.ru (accessed: August 16, 2021). DOI: 10.18577/2307-6046-2021-0-1-105-113.
8. Kuznetsova V.A., Deev I.S., Semenova L.V. Influence of modification of epoxy film-forming compositions on their phase microstructure and adgesion to aluminium alloy. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 72–78. DOI: 10.18577/2071-9140-2016-0-1-72-78.
9. Semenova L.V., Novikova T.A., Nefedov N.I. Study of removing ability of removers for paint systems removal. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 32–37. DOI: 10.18577 / 2071-9140-2017-0-1-32-37.
10. Wolf K., Krincher R., Ermalovich J. Laser Strip: A Portable Hand-held Laser Stripping Device for Reducing VOC, Toxic and Particulate Emissions. Report under Innovative Clean Air Technologies grant number 06-010 from the California Air Resources Boar Institute for Research and Technical Assistance. IRTA, California, 2009, pp. 4–11.
11. Merati A., Yanishevsky M., Bombardier Y. Effect of Alternative Paint Stripping Processes on the Fatigue Performance of Aluminum Alloys-Atmospheric Plasma De-painting. Springer, 2019, pp. 589–599.
12. Ospennikova O.G., Kozlova A.A., Kozlov I.A. Laser technology to remove paint coatings in the process of repair and maintenance of aircraft (review). Trudy VIAM, 2021, no. 4 (98), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 16, 2021). DOI: 10/18577/2307-6046-2021-0-4-110-123.
13. Composition for removing paint and varnish coatings from external metal surfaces: US Pat. 2686928C1 Rus. Federation, no. 2018133349; filed 20.09.18; publ. 06.05.19.
14. Uang S.N., Shih T.S., Chang C.H. et al. Exposure assessment of organic solvents for aircraft paint stripping and spraying workers. Science of the Total Environment, 2006, no. 356, pp. 38–44.
15. Demin S.A., Petrova A.P., Kozlov I.A., Nikiforov N.N. Heat-resistant composite coating for corrosion protection of steel parts. Modern achievements in the field of creating promising light alloys and coatings for aviation and space technology. Sat. report All-Russian scientific and technical conference. Moscow: VIAM, 2021, pp. 9–11.
16. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
17. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
18. Itsko E.F. Removal of paint and varnish coatings. Leningrad: Khimiya, 1991, 96 p.
19. Newman P. Peroxide-Activated paint removers in Aerospace application. Metal Finishing, 2004, no. 3, pp. 6–11.
20. Kablov E.N. Materials for aerospace technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
21. Tkachenko E.A., Senatorova O.G., Milevskaya T.V., Ivanov A.L. Influence of grain size on the complex of properties of cladding clad cold-rolled sheets from base alloys 1163 and V95pch. Tsvetnyye metally, 2013, no. 9, pp. 57–63.
22. Lutsenko A.N., Grinevich A.V., Skripachev S.Yu., Bakanov A.V. On the issue of determining the design characteristics of aviation metallic materials taking into account the effect of a corrosive environment. Voprosy materialovedeniya, 2017, no. 4, pp. 169–182. DOI: 10.22349/1994-6716-2017-92-4-169-182.
23. Nesterenko B.G. Experimental study of the degradation of strength the accuracy of aircraft structures. Nauchnyy vestnik Moskovskogo gosudarstvennogo universiteta grazhdanskoy aviatsii, 2010, no. 153, pp. 146–149.
Nondestructive testing results of carbon fiber reinforced plastics (CFRP) specimens at the development and testing process are given at that paper. Ultrasonic pulse-echo technique is the most applicable for CFRP monolithic panels and curved beam specimens testing. It is shown that ultrasonic testing allows optimizing the mode in the process of developing molding modes for new CFRP grades. At the test stages it allows to exclude defective specimens from the testing process and estimate the sorts and damage sizes after the tests.
2. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
5. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
6. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
7. Ivanov N.V., Gurevich Ya.M., Khaskov M.A., Akmeev A.R. Mode studying curing binding VSE-34 and its influences on mechanical properties. Aviacionnyye materialy i tehnologii, 2017, no. 2, pp. 50–55. DOI: 10.18577 / 2071-9140-2017-0-2-50-55.
8. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
9. Boychuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. Inspection of monolithic parts and structures of aviation equipment made of PCM by ultrasonic non-destructive testing using phased arrays. Main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: Collection of articles. Proceedings of the X All-Russia. conf. "TestMat". Moscow: VIAM, 2018, pp. 18–31. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1063.pdf (accessed: May 07, 2021).
10. Papa I., Lopresto V., Langella A. Ultrasonic inspection of composites materials: Application to detect impact damage. International Journal of Lightweight Materials and Manufacture, 2021, vol. 4, is. 1, pp. 37–42. DOI: 10.1016/j.ijlmm.2020.04.002.
11. Bossi R.H., Georgeson G.E. Nondestructive testing of aerospace composites. Polymer Composites in the Aerospace Industry, second edition, 2020, pp. 461–489. DOI: 10.1016/B978-0-08-102679-3.00016-2.
12. Starikovsky G.P., Karabutov A.A., Kuryatin A.A. Non-destructive testing of integral structures made of polymer composite materials. V mire nerazrushayushchego kontrolya, 2011, no. 4, pp. 61–65.
13. Non-destructive testing: reference book in 7 vols. Ed. V.V. Klyuev. Moscow: Mashinostroenie, 2004. Vol. 3: Ultrasonic control, 864 p.
14. Kosarina E.I., Stepanov A.V. Radiographic control of honeycomb structures. V mire nerazrushayushchego kontrolya, 2003, no. 3, pp. 12–15.
15. Boytsov B.V., Vasiliev S.L., Gromashev A.G. Non-destructive testing methods used for structures made of advanced composite materials. Trudy MAI, 2011, no. 49, pp. 63–74.
16. Troitsky V.A., Karmanov M.N., Troitskaya N.V. Non-destructive quality control of composite materials. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol, 2014, no. 3, pp. 29–33.
17. Dikov I.A., Boychuk A.S., Dalin M.A., Chertishchev V.Yu., Generalov A.S. Relationship between strength characteristics, porosity and ultrasonic control data for PCM samples obtained by autoclave and infusion technologies. Kontrol. Diagnostika, 2018, no. 11, pp. 40–51.
18. Boychuk A.S. Development of technologies for non-destructive testing of monolithic structures made of carbon fiber using ultrasonic antenna arrays: thesis, Cand. Sc. (Tech.). Moscow, 2016, 203 p.
The document includes the below main trends in development of acoustic non-destructive testing methods in aviation industry: automation and enhancement of the sensitivity the testing, development of Procedures for acoustic non-destructive testing methods for products in case of repair and use of products, probabilistic assessment of the outcomes of the ultrasonic non-destructive testing, mathematic simulation of the ultrasonic non-destructive testing, development of the ultrasonic non-destructive testing by applying state-of-the-art technologies, development of the low-frequency acoustic testing methods, development of a Procedure on training of specialists who conduct NDT. The experience of NRC «Kurchatov institute» – VIAM is pointed out to show an example on the implementation of main trends on ultrasonic testing development.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Lozhkova D.S. Evaluation of the probability of detecting defects in automated immersion ultrasonic testing of semi-finished products from titanium alloys using mathematical modeling: thesis, Cand. Sc. (Tech.). Moscow, 2018, 197 p.
4. Guidance circular AP-33.70-1. Methodological materials for the implementation of the requirements for the main engine parts, the resource of which is set in cycles. Moscow: Aviaizdat, 2012, 31 p.
5. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Evaluation of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using flaw detection liquids of domestic and foreign production. Defektoskopiya, 2021, no. 1, pp. 64–71.
6. Lozhkova D.S. Assessment of the reliability of automated ultrasonic testing of semi-finished products of the main parts of a gas turbine engine made of titanium alloy using a mathematical model. Kontrol. Diagnostics, 2017, no. 12, pp. 54–63.
7. Chertishchev V.Yu. Development of technologies and means of acoustic impedance control of multilayer honeycomb structures made of polymer composite materials: thesis, Cand. Sc. (Tech.). Moscow, 2020, 180 p.
8. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Kara-vaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: March 11, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
9. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
10. Murashov V.V., Generalov A.S. PCM products and multilayer glued structures testing by ultrasonic reflection methods. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 69–74. DOI: 10.18577/2071-9140-2017-0-1-69-74.
11. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
12. Kablov E.N. Do not fall into technological slavery. Ekspert, 2017, no. 24, pp. 37–42.
13. Chertishchev V.Yu. The estimation of the probability of defects detection by the acoustic methods, depending on their size in constructions from PCM for output control data in the form of binary. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 65–79. DOI: 10.18577/2071-9140-2018-0-3-65-79.
14. ASTM D5687/D5687M-95. Standard Guide for Preparation of Flat Composite Panels with Processing Guidelines for Specimen Preparation. ASTM International, 2007, 16 p.
15. Chertishchev V.Yu., Boychuk A.S., Dikov I.A., Yakovleva S.I., Generalov A.S. Determination of the depth of occurrence of defects in multilayer structures made of PCM by acoustic methods by the magnitude of the mechanical impedance. Defektoskopiya, 2018, no. 8, pp. 21–34.
16. Lozhkova D.S., Krasnov I.S. Experimental studies on the assessment of defectiveness of welded joints of the main parts of a gas turbine engine. Defektoskopiya, 2015, no. 2, pp. 10–16.
17. State Standard 21120–75. Bars and billets of round and rectangular cross-section. Ultrasonic flaw detection methods. Moscow: Publishing house of standards, 1988, 7 p.
18. ASTM B594-09. Standard Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications. ASTM International, 2009.10 p.
19. SAE AMS-STD-2154. Inspection, Ultrasonic, Wrought Metals, Process for. SAE International, 1998, 41 p.
20. SAE AMS2628. Ultrasonic immersion inspection titanium and titanium alloy billet premium grade. SAE International, 2007.28 p. DOI: 10.4271/AMS2628.
In order to protect polymer materials in particular polyurethanes and similar materials from biodeterioration by microscopic fungi, seven fungicidal compounds of the guanidine series were synthesized and their effectiveness was investigated in various concentrations. Among the tested compounds, the most effective is the first fraction of polyhexamethylene guanidine n-octylphosphonate (code B1), which completely suppresses the growth of all studied micromycetes at a minimum concentration of 0.01 % by weight. At a lower concentration of 0.001 % by weight, compound the first fraction of polyhexamethylene guanidine n-octylphosphonate inhibits the growth of most of the studied micromycetes, with the exception of the Aspergillus niger culture.
2. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series. International Conferece on Engineering Systems, 2020, vol. 1687, art. 012029. DOI: 10.1088/1742-6596/1687/1/012029.
3. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials. II. Development of methods for studying the early stages of aging. Russian metallurgy (Metally), 2020, vol. 2020, no. 10, pp. 1088–1094. DOI: 10.1134/S0036029520100110.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.MMicrobiological resistance tests under nature conditions in variety of climatiс zones. Trudy VIAM, 2016, no. 4, paper no. 11. Available at: http://www.viam-works.ru (accessed: August 18, 2021). DOI: 10.18577/2307-6046-2016-0-4-11-11.
6. Chertishchev V.Yu., Ospennikova O.G., Boi-chuk A.S., Dikov I.A., Generalov A.S. Determination of the size and depth of defects in multilayer PCM honeycomb structures based on the mechanical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
7. Sakhno ON, Selivanov OG, Chukhlanov V.Yu. Biological stability of polymeric materials. Ed. T.A. Trifonova. Vladimir: Vladimir. state un-t them. A.G. and N.G. Stoletovs, 2014, 64 p.
8. Klempner D., Sendidzharevich V. Polymer foams and foaming technology. Ed. A.M. Chebotarya. Saint Petersburg: Professiya, 2009, 600 p.
9. Pekhtasheva E.L., Neverov A.N., Zaikov G.E., Stoyanov O.V., Rusanova S.N. Biodamage and protection of synthetic polymeric materials. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012., vol. 15, no. 10, pp. 166–173.
10. Kraev I.D., Pykhtin A.A., Lonskii S.L., Kurshev E.V., Terekhov I.V. Effect of biocidal additives on technological parameters in the manufacture of polyurethane foams. Inorganic materials: Applied Research, 2021, vol. 12 (1), pp. 125–132.
11. Krivushina A.A., Goryashnik Yu.S. Ways of protection of materials and products from microbiological damage (review). Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
12. Vointseva I.I., Gembitsky P.A. Polyguanidines are disinfectants and multifunctional additives in composite materials. Moscow: LKSM-press, 2009, 303 p.
13. Ozerov M.Yu., Karkishchenko V.N., Popov D.V. et al. Means for disinfection of objects contaminated with B. anthracis spores. Biomedicine, 2009, no. 1, pp. 28–37.
14. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58.
15. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 2009, vol. 27, pp. 76–83.
16. Dallas P., Sharma V.K., Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 2011, vol. 166, pp. 119–135.
17. Duran N., Duran M., de Jesus M.B. et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, vol. 12, pp. 789–799.
18. Picca R.A., Paladini F., Sportelli M.C. et al. Combined Approach for the Development of E ffi cient and Safe Nanoantimicrobials: The Case of Nanosilver-Modi fi ed Polyurethane Foams. ACS Biomaterials Science and Engineering, 2017, vol. 3 (7), pp. 1417–1425.
19. Yakovenko T.V., Bukharev G.M., Bobyreva T.V. et al. Experience in the selection of biocidal additives for modifications of polyurethane foams. Climate-2019: Modern approaches to assessing the impact of external factors on materials and complex technical systems. Gelendzhik, 2019, pp. 201–211.
20. Kuimov V.A., Malysheva S.F., Belogorlova N.A. et al. Synthesis of Long-Chain n-Alkylphosphonic Acids by Phosphonylation of Alkyl Bromides with Red Phosphorus and Superbase under Micellar/Phase Transfer Catalysis. European Journal of Organic Chemistry, 2021, vol. 2021 (10), pp. 1596–1602. DOI: 10.1002/ejoc.202100067.
21. Arslanova M.M., Yampolskaya T.D. Microorganisms as biodestructors of various materials. Vestnik SurGU, 2015, is. 3 (9), s. 14–22.
22. Arashkova A.A., Goncharova I.A., Mitskevich A.G., Kostenevich A.A., Sharich T.V. Fungi of the genus Aspergillus in foci of mold infection in residential and public premises. Vestsi Natsyanalnay Akademii Navuk Belarusi, 2016, no. 3, pp. 13–16.
23. Kurakov A.V., Gevorkyan S.A., Goginyan V.B., Ozerskaya S.M. Diversity and compositional features of microscopic fungi on synthetic polymeric materials. Prikladnaya biokhimiya i mikrobiologiya, 2008, vol. 44, no. 2, pp. 232–235.
24. Sakhno O.N., Selivanov O.G., Chukhlanov V.Yu. Biostability of polymeric materials and methods of its assessment: textbook. Vladimir: Publishing house of Vladimir University, 2018, 83 p.
Authors named |
Position, academic degree |
NRC «Kurchatov Institute» – VIAM; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Leonid Y. Avilochev |
Leading Engineer |
Alexander A. Barannikov |
First Category Engineer-technologist |
Alexander S. Boychuk |
Senior Researcher, Candidate of Sciences (Tech.) |
Evgeny A. Veshkin |
Head of USTC, Candidate of Science (Tech.) |
Karina A. Vlasova |
Engineer |
Ilia A. Volkov |
Second Category Engineer |
Alexander S. Generalov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Alexander V. Gololobov |
Second Category Engineer |
Vitaly A. Goncharov |
Head of Laboratory |
Mikhail A. Dalin |
Head of Sector |
Ivan A. Dikov |
Leading Engineer |
Victoria A. Duyunova |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Viktor V. Emelyanov |
Engineer |
Alexander N. Zhabin |
Leading Engineer |
Denis V. Zaytsev |
Leading Engineer |
Kirill E. Zakharov |
First Category Engineer |
Andrey L. Ivanov |
Leading Engineer |
Victor I. Ivanov |
Senior Researcher |
Aleksey Yu. Isaev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Natalia A. Kovrizhkina |
Engineer |
Anastasia A. Krivushina |
Senior Researcher, Candidate of Sciences (Bio.) |
Vera A. Kuznetsova |
Head of Sector, Candidate of Sciences (Tech.) |
Evgeny V. Kurshev |
First Category Engineer |
Alexander A. Leonov |
Head of Laboratory |
Eva A. Lukina |
Head of Laboratory, Candidate of Sciences (Tech.) |
Natalia Ph. Lukina |
Chief Researcher, Candidate of Sciences (Tech.) |
Klavdia N. Moskvitina |
Engineer |
Nadezhda A. Nochovnaya |
Deputy Head of Laboratory, Doctor of Sciences (Tech.) |
Andrey N. Nyafkin |
Head of Sector |
Mikhail S. Oglodkov |
Deputy Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Aleftina P. Petrova |
Chief Researcher, Doctor of Sciences (Tech.) |
Ekaterina A. Prokhorchuk |
Technician |
Ruslan A. Satdinov |
Acting Head of Laboratory |
Svetlana V. Sbitneva |
Senior Researcher, Candidate of Sciences (Tech.) |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Oleg I. Smirnov |
Engineer |
Ivan V. Terekhov |
Senior Researcher, Candidate of Sciences (Chem.) |
Pavel N. Timoshkov |
Head of Scientific-Research Bureau |
Andrey V. Trapeznikov |
Head of Sector |
Maria N. Usacheva |
Second Category Technician |
Marina A. Fomina |
Head of Sector |
Vasily Yu. Chertishchev |
Leading Engineer, Candidate of Sciences (Tech.) |
Georgy G. Shapovalov |
Leading Engineer |
Federal State-Funded Education Institution of Higher Education «Samara State Technical University»; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Vladimir I. Nikitin |
Head of Chair, Doctor of Sciences (Tech.), Professor |
Konstantin V. Nikitin |
Dean, Doctor of Sciences (Tech.), Professor |
Irkutsk Institute of Chemistry named after A.E. Favorsky Siberian Branch of the RAS; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Vladimir A. Kuimov |
Senior Researcher, Candidate of Sciences (Chem.) |
Svetlana F. Malysheva |
Leading Researcher, Doctor of Sciences (Chem.) |