Articles
An overview of heat and corrosion-resistant steels of domestic and foreign production, used for the manufacture of aircraft rolling bearings, is presented. The requirements for bearing steels, the classification of steels depending on the operating conditions, and the method of production are described. The chemical compositions of the steels and the principles of alloying are shown, and the analysis of the properties is carried out. The properties of ceramic materials and the possibility of their application for bearings used in the aerospace industry are considered.
2. Geller Yu.A. Tool steels. Moscow: Metallurgiya, 1983, 525 p.
3. Sprishevsky A.I. Rolling bearings. Moscow: Mashinostroenie, 1968, 632 p.
4. Pinegin S.V. Rolling bearings in machines. Moscow: Publishing house of the AS of the USSR, 1961, 150 p.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Kablov E.N. Russia needs new generation materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
8. Kablov E.N. Trends and guidelines for innovative development in Russia: collection of articles. scientific-inform. materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
9. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577 / 2071-9140-2020-0-1-3-11.
10. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed struc-tural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
11. Udod K.A., Trofimenko N.N., Romanenko D.N., Sevalnev G.S. Prospects for the development of constructional aluminium-doped steels. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 9–13. DOI: 10.18577/2071-9140-2019-0-3-9-13.
12. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
13. Decaudin B., Djega-Mariasassou C., Cizeron G. Mise en èvidence par spectromètrie Mössbauer de I’effet de traitements d’austènitisation avant trempe sur un acier semi-rapide de type 80DCV40. Revue de Mètallurgie, 1994, vol. 91, no. 9, pp. 1241–1241.
14. Gloeckner P. The influence of the raceway curvature ratio on power loss and temperature of a high speed jet engine ball bearing. Tribology transactions, 2013, vol. 56, no. 1, pp. 27–32.
15. Bars made of heat-resistant bearing steel grade 8Kh5M3VFB-ISh (VKS241-ISH) and 8Kh5M3VFB-ID (VKS241-ID). Available at: https://catalog.viam.ru/catalog/8kh5m3vfb-vks241 (accessed: July 07, 2021).
16. Ooi S., Bhadeshia H.K.D.H. Duplex Hardening of steels for Aeroengine Bearings. ISIJ International, 2012, vol. 52, no. 11, pp. 1927–1934.
17. Heat-resistant bearing steel: pat. 2447183 Rus. Federation, no. 2011112950/0; filed 05.04.11; publ. 10.04.12.
18. Rabitsch R., Koch F., Würzinger P. M50 (AMS 6191) and M50NiL (AMS 6278) High-Performance VIM-VAR Melted Bearing Steels for the Aviation Industry. Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting, 2005, vol. 5, pp. 57–64.
19. Beswick J.M. Bearing steel technology. ASTM International, 2002, 533 p.
20. Svyazin A.G., Kaputkina L.M. Nitrogenous and high-nitrogenous steels. Industrial technologies and properties. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2019, no. 62 (3), pp. 173–187. DOI: 10.17073/0368-0797-2019-3-173-187.
21. Svyazin A.G., Kaputkina L.M. Nitrogen alloyed steels. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2005, no. 10, pp. 36–46.
22. Rashev Ts.V. High nitrogen steels. Metallurgy under pressure. Sofia: Publishing house of prof. Marine Drinov, 1995, 272 p.
23. Gavrilyuk V.G., Efimenko S.P. The influence of nitrogen on the structure and properties of α- and γ-iron and promising directions for the development of high-nitrogen steels. Proceedings of the I All-Union. conf. "High nitrogenous steels". Kiev, 1990, pp. 5–26.
24. Berns H., Escher C., Streich W.D. Martensitic high nitrogen steel for applications at elevated temperature. Materials science forum. Transaction Technical Publications Ltd., 1999, vol. 318, pp. 443–448.
25. Berns H., Ehrhardt R. Carbon or nitrogen alloyed quenched and tempered stainless steel – comparative study. Steel Research, 1996, vol. 67, no. 8, pp. 343–349.
26. Stein G., Hucklenbroich I., Wagner M. P 2000-A new austenitic high nitrogen steel for power generating equipment. Materials science forum. Transaction Technical Publications Ltd., 1999, vol. 318, pp. 167–174.
27. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva O.A. Development and research of high-strength corrosion-resistant steel for bearing parts. Metallurg, 2019, no. 11, pp. 39–44.
28. Cronidur 30 Stainless Steel. PASU (Progressivealloy). Available at: https://www.progressivealloy.com/cronidur-30-stainless-steel (accessed: July 07, 2021).
29. Trojahn W., Streit E., Chin H., Ehlert D. Progress in bearing performance of advanced nitrogen alloys stainless steel, Cronidur 30. Materialwissenschaft und Werkstofftechnik: Entiwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe. 1999, vol. 30, no. 10, pp. 605–611.
30. Berns H., Ebert F.-J., Zoch H.-W. The new low nitrogen steel LNS – a material for advanced aircraft engine and aerospace bearing applications. Bearing steels: into the 21-st century. ASTM International, 1998, 440 p.
31. Wang F., Li Q., Zheng L. et al. Microstructure and corrosion characterization of Cr Film on Carburized CSS-42L Aerospace bearing steel by filtered cathodic vacuum arc deposition. Coatings, 2018, vol. 8, no. 9, pp. 313.
32. Martensitic stainless steels XD15NW. AUBERT & DUVAL. Available at: https://www.aubertduval.com/alloy/768 (accessed: July 07, 2021).
33. BÖHLER N360. Available at: https://www.bohler-edelstahl.com/en/products/n360 (accessed: July 07, 2021).
34. High-strength corrosion-resistant steel: pat. 2725766 Rus. Federation, no. 2724766 / C1; filed 23.05.19; publ. 25.06.20.
35. Nozhnitskiy Yu.A., Petrov N.I., Lavtrentev Yu.L. Hybrid rolling bearings for aircraft engines (review). Aviatsionnye dvigateli, 2019, no. 2 (3), pp. 63–76.
36. Kim S.S., Kato K., Hokkirigawa K., Abe H. Wear Mechanism of Ceramic Materials in Dry rolling Friction. Transaction of the ASME, 1986, vol. 108, pp. 522–526.
Magnesium alloys are the lightest of metallic structural materials with a number of advantages, such as low density, manufacturability and high damping capacity. In this part of the review, the article deals with the anisotropy of the mechanical properties of magnesium alloys associated with the texture of the resulting semi-finished products and products, the relationship of alloying elements with the crystallographic lattice parameters, as well as the deformation mechanisms prevailing in various alloying systems.
2. Betsofen S.Ya., Osintsev O.E., Grushin I.A., Petrov A.A., Speransky K.A. Influence of alloying elements on the deformation mechanism and texture of magnesium alloys. Deformatsiya i razrusheniye materialov, 2018, no. 8, pp. 2–17.
3. Kelley E., Hosford W. The deformation characteristics of textured magnesium. Transactions of the Metallurgical Society of AIME, 1968, no. 242, pp. 654–660.
4. Barnett M.R. Twinning and the ductility of magnesium alloys. Part II. "Contraction" twins. Materials Science and Engineering, 2007, no. A (464), pp. 8–16.
5. Koike J., Fujiyama N., Ando D., Sutou Y. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Original Research Article Scripta Materialia, 2010, no. 63, pp. 747–750.
6. Ando D., Koike J., Sutou Y. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Materialia, 2010, no. 58, pp. 4316–4324.
7. Muránsky O., Carr D.G., Šittner P., Oliver E.C. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behavior of extruded AZ31 magnesium alloy. Original Research Article International Journal of Plasticity, 2009, no. 25, pp. 1107–1127.
8. Knezevic M., Levinson A., Harris R., Raja K. Mishra, Roger D. Doherty and Surya R. Kalidindi Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Materialia, 2010, no. 58, pp. 6230–6242.
9. Martin E., Capolungo L., Jiang L., Jonas J. J. Variant selection during secondary twinning in Mg – 3% Al. Acta Materialia, 2010, no. 58, pp. 3970–3983.
10. Barnett M.R., Keshavarz Z., Beer A.G., Ma X. Non-Schmidbehavior during secondary twinning in a polycrystalline magnesium alloy. Acta Materialia, 2008, no. 56, pp. 5–15.
11. Bozhko S.A., Betsofen S.Ya., Kolobov Yu.R., Vershinina T.N. Formation of the Structure and Properties of an Mg – Al – Zn – Mn Alloy during Plastic Deformation by Rolling. Russian Metallurgy (Metally), 2015, no. 3, pp. 205–210.
12. Ferro R., Saccone A., Delfino S. Magnesium alloys of the rare earth metals: systematics and properties. Metallurgical Science and Technology, 1998, no. 16, pp. 25–44.
13. Betzofen S.Ya., Volkova E.F., Kolobov Yu.R. et al. Investigation of texture and anisotropy of mechanical properties of magnesium alloys with rare earth metals. Tekhnologiya legkikh splavov, 2012, no. 1, pp. 31–38.
14. Liu X.B., Chen R.S., Han E.H. Effects of aging treatment on microstructures and properties of Mg – Gd – Y – Zr alloys with and without Zn additions. Journal of Alloys and Compounds, 2008, no. 465, pp. 232–238.
15. Gao L., Chen R.S., Han E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. Journal of Alloys and Compounds, 2009, no. 481, pp. 379−384.
16. Hang K., Li X., Li Y., Ma M. Effect of Gd content on microstructure and mechanical properties of Mg – Y – RE – Zr alloys. Transactions of Nonferrous Metals Society of China, 2008, no. 18, pp. 12–16.
17. Ming S., Wu G., Wang W., Ding W. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg – 10Gd – 3Y magnesium alloy. Materials Science and Engineering A, 2009, no. 523, pp. 145–151.
18. Peng Q., Wang L., Wu Y., Wang L. Structure stability and strengthening mechanism of die-cast Mg – Gd – Dy based alloy. Journal of Alloys and Compounds, 2009, no. 469, pp. 587–592.
19. Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E., Lukyanova E.A. Behavior during annealing of high-strength magnesium alloy IMV7-1 of the Mg – Y – Gd – Zr system. Perspektivnye materialy, 2011, no. 6, pp. 53–58.
20. Lukyanova E.A., Rokhlin L.L., Dobatkina T.V., Korolkova I.G. Investigation of the solubility of samarium in a solid solution based on magnesium containing yttrium and gadolinium. Metally, 2012, no. 4, pp. 85–89.
21. Rokhlin L.L., Lukyanova E.A., Dobatkina T.V., Aladiev N.A., Korolkova I.G. Phase equilibria in alloys of the Mg – Y – Gd – Sm system. Metally, 2012, no. 5, pp. 71–77.
22. Rokhlin L.L. Magnesium Alloys Containing rare Earth Metals. Taylor and Francis. 2003, no. 1, p. 245.
23. Drits M.E., Dobatkina T.V., Muratova E.V. Investigation of magnesium alloys containing lanthanum and zirconium. Metallurgy and processing of non-ferrous alloys. On the occasion of the 90th anniversary of the birth of Academician A.A. Bochvara: collection scientific articles. Moscow: Nauka, 1992, pp. 32–37.
24. Drits M.E., Rokhlin L.L., Nikitina N.I. Research of magnesium – scandium alloys. Tekhnologiya legkikh splavov, 1976, no. 1, pp. 22–26.
25. Rokhlin L.L. Structure and properties of alloys of the Mg – REM system. Materials Science and Heat Treatment of Metals, 2006, no. 11, pp. 18–22.
26. Rokhlin L.L., Lukyanova E.A., Dobatkina T.V., Korolkova I.T., Tarytina I.E., Ovchinnikova O.A. Features of the structure of state diagrams of alloys magnesium with two rare-earth metals of different groups and predicting fragments of the investigated phase diagrams of this type on their basis. Tekhnologiya legkikh splavov, 2016, no. 4, pp. 41–49.
27. Dobatkin S.V., Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Investigation of magnesium alloys of the Mg – Sm – Y system subjected to severe plastic deformation and subsequent heat treatment. Metally, 2011, no. 4, pp. 32–37.
28. Rokhlin L.L., Dobatkin S.V., Dobatkina T.V. et al. Investigation of aging Mg – Sm alloys subjected to severe plastic deformation. Metally, 2006, no. 1, pp. 89–95.
29. Volkova E.F., Duyunova V.A. About modern tendencies of development of magnesium alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 94–105.
30. Bozhko S.A. Regularities of the formation of the structure and properties of magnesium alloys under the influence of plastic deformation: thesis, Cand. Sc. (Tech.). Belgorod, 2016, 113 p.
31. Betzofen S.Ya., Osintsev O.E., Grushin I.A., Petrov A.A., Speransky K.A. Regularities of the formation of texture and anisotropy of mechanical properties of magnesium alloys. Deformatsiya i razrusheniye materialov, 2018, no. 9, pp. 2–15.
32. Shaforostov A.A. Study of the influence of alloying elements on the formation of texture and anisotropy of the properties of magnesium alloys: thesis, Cand. Sc. (Tech.). Moscow, 2011, 136 p.
33. Betsofen S.Ya., Ilyin A.A., Ashmarin A.A., Shaforostov A.A. Influence of the deformation mechanism on the anisotropy of mechanical properties and manufacturability of magnesium alloys. Metally, 2008, no. 3. S. 83–90.
34. Betzofen S.Ya., Volkova E.F., Shaforostov A.A. Influence of alloying elements on the formation of rolling texture of Mg – Nd – Zr and Mg – Li alloys. Metally, 2011, no. 1, pp. 78–84.
35. Haferkamp H., Boehem R., Holzkamp U., Jachik C., Kaese V., Niemeyer M. Alloy development, processing and applications in magnesium lithium alloys. Materials Transactions, 2001, no. 7, pp. 1160-1166.
36. Volkova E.F. The analysis and results of the International conference «Magnesium–21. Broad horizons» (review). Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
37. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
38. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
39. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
40. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
41. Kablov E.N. Structural and functional materials – the basis of economic, scientific and technical development of Russia. Voprosy materialovedeniya, 2006, no. 1 (61). S. 64–67.
42. Zhu T., Cui C., Zhang T. et al. Influence of the combined addition of Y and Nd on the microstructure and mechanical properties of Mg – Li alloy. Materials and Design, 2014, no. 57, pp. 245–249.
43. Cui C., Zhu T., Zhang T. et al. Microstructure and texture evolution of Mg – Li alloy during rolling. International Journal of Materials Research, 2014, no. 105, pp. 1111–1117.
The features of quenching on the line of continuous heat treatment (CHT) of wide (2400 mm wide) cladding sheets made of high-strength aluminum alloy B95p.ch. are given. The investigations of the structure, corrosion resistance and mechanical properties in tension at different temperatures shown that the technology of heat treatment, including hardening on the CHT line and subsequent artificial two-stage aging according to the T2 modes of sheets, made it possible to provide a uniform characteristic structure, the surface quality and level of mechanical properties necessary for sheathing sheets along the width of the sheet and in different directions of rolling that meets the requirements of the aviation industry standard.
2. Fridlyander I.N., Senatorova O.G., Tkachenko E.A. High strength alloy systems Al – Zn – Mg – Cu. Mechanical engineering: encyclopedia in 40 vols. Moscow: Mechanical engineering, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metallic materials, pp. 94–128.
3. Fridlyander IN, Senatorova OG, Tkachenko EA, Molostova II. Development and application of high-strength alloys of the Al – Zn – Mg – Cu system for aerospace engineering. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 155–163.
4. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334. DOI: 10.31857/S0869587320040052.
6. Fridlander I.N. Aluminum alloys in aircraft in the period 1970–2015. Tekhnologiya legkikh splavov, 2002, no. 4, pp. 12–17.
7. Kablov E.N. Aviation and Space Materials Science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
8. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
9. Wen K., Fan Yu., Wang G. et al. Aging behavior and precipitate characterization of a high Zn-containing Al – Zn – Mg – Cu alloy with various tempers. Materials & Design, 2016, vol. 101, pp. 16–23.
10. Oglodkov M.S., Shchetinina N.D., Rudchen- ko A.S., Panteleev M.D. Directions of the develop-ment of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
11. Tsukrov S.L. Development of lines for continuous heat treatment of strips from aluminum alloys. Tekhnologiya legkikh splavov, 2018, no. 4, pp. 85–91.
12. Tsukrov S.L. Development of hardening technology for semi-finished products from aluminum alloys: Advanced technologies for light and special alloys. Moscow: Fizmatlit, 2006, pp. 323–338.
13. Fridlyander I.N. Aluminum wrought structural alloys. Moscow: Metallurgiya, 1979, 208 p.
14. TR 50-31-70. Homogenization of aluminum alloy ingots. Moscow: VILS, 1970, 24 p.
15. Fridlyander I.N. Metallurgy of aluminum alloys. Moscow: Nauka, 1985, 238 p.
16. Belov N.A. Phase composition of industrial and promising aluminum alloys. Moscow: Publ. house MISIS, 2010, 511 p.
17. Nechaikina T.A., Blinova N.E., Ivanov A.L., Kozlova O.Yu., Kozhekin A.E. Research of the effect of homogenization and quench hardening modes on the structure and mechanical properties of retail rings from alloy В95o.ch.-T2. Trudy VIAM, 2018, no. 10 (70), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 30, 2021). DOI: 10.18577/2307-6046-2018-0-10-27-36.
18. Beletskiy V.M., Krivov G.A. Aluminum alloys (composition, properties, technology, application): reference book. Ed. I.N. Friedlander. Kiev: Komintech, 2005, pp. 99–100.
The technology of electron-beam welding (EBW) of structures of large thickness made of titanium alloy Ti–6Al–4V has been developed. A complex of metallographic studies of welded samples has been carried out. Tests to determine the mechanical characteristics of repair welded joints, that these joints made by EBW are equal in strength to the base material. The analysis of the level of residual stresses in various parts of the welded joint after repeated repair passes has been carried out. It was found that the subsequent vacuum annealing reduces the level of residual stresses in welded joints to 50 %. The analysis of the elemental composition showed that the elemental composition of the samples from the center of the weld to the base metal practically does not change for welding with the number of repeated passes up to 3.
2. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
3. Panteleev M.D., Bakradze M.M., Skupov A.A., Scherbakov A.V., Belozor V.E. Technological features of fusion welding of aluminum alloy V-1579. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 11–17. DOI: 10.18577/2071-9140-2018-0-3-11-17.
4. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. The efficiency of rare earth metals for filler materials alloying. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 14–19. DOI: 10.18577/2071-9140-2017-0-3-14-19.
5. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and brazing in the aerospace industry. All-Rus. scientific-practical conf. "Welding and safety". Yakutsk, 2012. pp. 21–30.
6. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Nochovnaya N.A., Panin P.V. Residual Macrostress Analysis in Welded Junctions of Different Titanium Alloys. Trudy VIAM, 2014, no. 05, paper no. 02. Available at: http://www.viam-works.ru. (accessed: April 20, 2021). DOI: 10.18577/2307-6046-2014-0-5-2-2.
8. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation. Trudy VIAM, 2016, no. 9, paper no. 05. Available at: http://www.viam-works.ru (accessed: March 2, 2021). DOI: 10.18577/2307-6046-2014-0-9-5-5.
9. Tarasov Yu.M., Antipov V.V. The VIAM new materials – for perspective aviation engineering of production of JSC «OAK». Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 5–6.
10. Frolov V.A. Technology of fusion welding and thermal cutting of metals: textbook. Moscow: Alpha; Infra-M, 2011, 477 p.
11. Lyasotskaya V.S. Heat treatment of welded joints of titanium alloys. Moscow: Ecomet, 2003, 352 p.
12. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and brazing in the aerospace industry. All-Rus. scientific-practical conf. "Welding and Safety". Yakutsk, 2012. pp. 21–30.
13. Zolotorevsky BB, Shubladze T.G., Tikhonova A.F. Residual stresses and deformations in welded joints of titanium alloy VT6. Svarochnoye proizvodstvo, 1982, no. 1, pp. 23–25.
14. Martynov V.N., Khokhlovsky A.S., Sliva A.P. Electron beam welding of steels, aluminum and titanium alloys of great thickness. Svarochnoye proizvodstvo, 2009, no. 12, pp. 20–24.
15. Nikolaev G.A. Welding in mechanical engineering: in 4 vols. Moscow: Mashinostroenie, 1978, vol. 3, pp. 85–89.
16. Goncharov A.L., Sliva A.P., Portnov M.A., Terentyev E.V., Gribkov M.S. Investigation of welded joints of dissimilar steels of magnetic circuit parts made by ELW. Vestnik PNIPU. Mashinostroyenie, materialovedenie, 2013, vol. 15, no. 4, pp. 74–87.
17. Nazarenko O.K., Kaidalov A.A., Kovbasenko S.N. et al. Electron beam welding. Ed. B.E. Paton. Kiev: Naukova Dumka, 1987, 256 p.
18. Elkin V.N., Makarov S.V., Panfilov A.P. et al. Experience of electron-beam welding of large-sized products from titanium alloys. Materials and reports Intern. conf. "Electron beam welding and related technologies". Moscow, 2015, pp. 450–458.
19. Terentyev E.V. Improving the quality of formation of welded joints in electron beam welding of fixed joints with through penetration: thesis abstracts, Cand. Sc. (Tech.). Moscow: MGTU im. N.E. Bauman, 2014, pp. 26–29.
20. Terentyev E.V., Dragunov V.K., Sliva A.P., Shcherbakov A.V. Influence of welding speed on weld formation in EBW with through penetration. Svarochnoe proizvodstvo, 2014, no. 2, pp. 25–29.
21. Dragunov V.K., Terentyev E.V., Sliva A.P., Goncharov A.L., Marchenkov A.Yu. Determination of welding speed with EBW of large thicknesses with through penetration. Svarochnoe proizvodstvo, 2016, no. 4, pp. 20–25.
22. Gerasimenko A.V., Magnitov V.S., Shlyaev Yu.N. Electron beam welding of complex section parts. Elektronno-luchevaya svarka v sudovom mashinostroyenii, 1987, pp. 58–59.
23. Solomatin V.E., Novosalov T.M. Experience in using the X-ray method for determining residual stresses in welded joints. Avtomaticheskaya svarka, 1982, no. 2, pp. 23–28.
The influence of the chemical nature and component composition of the polymer base and the curing conditions of conductive adhesive compositions on their conductive properties is shown. The values of the volumetric shrinkage during the curing of the adhesive are compared with the realized level of conductive properties. The influence of the temperature level during curing on the electrical conductivity of the cured glue is shown. Shrinkage phenomena, viscosity, temperature range of the curing reaction were investigated as factors determining the appearance and formation of the conductive properties of conductive compositions during curing.
2. Bazarova F.F., Kolesova L.S. Adhesives in the manufacture of electronic equipment. Moscow: Energiya, 1975, 112 p.
3. Petrova A.P., Isaev A.Yu., Lukina N.F., Pavlyuk B.Ph. Influence of fillers on the electrical conductivity of adhesives and the properties of electrically conductive adhesives. Review. Klei. Germetiki. Tekhnologii, 2018, no. 8, pp. 9–15.
4. Electrically conducting cements containing epoxy resins and silver: pat. US 2774747; filed 25.03.52; publ. 18.12.56.
5. Lewis A., Asymtek A.B. Conductive Adhesive Dispensing Process // SMTnet: Electronic industry web portal. Available at: https://smtnet.com/library/files/upload/Conductive-Adhesive-Dispensing.pdf (accessed: March 14, 2021).
6. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecu-lar mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
7. Ershov T.N., Smirnov G.V., Hakhin N.B., Smirnov E.N. Research of finely dispersed powders of silver for electrowire glue compositions. Elektronnaya tekhnika, Ser. 1: Microwave engineering. 2014, is. 3 (522), pp 61–68.
8. Mach P., Radev R. Electrically conductive adhesives with micro-nano filler. Nanocon, 2011, no. 21, pp. 143–149.
9. Sancaktar E., Bai L. Electrically conductive epoxy adhesives. Polymers, 2011, vol. 3, pp. 427–466. DOI: 10.3390/polym3010427.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
12. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8‒18.
13. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
14. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
15. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2020, no. 3 (87), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 22, 2021). DOI: 10.18577/2307-6046-2021-0-3-58-67.
16. Besednov K.L., Petrova A.P., Lukina N.Ph., Isaev A.Yu. Influence of the composition and conditions of heat treatment of the conductive properties of silver-containing electrically conductive adhesive compositions (review). Part 1. Trudy VIAM, 2021, no. 5 (99), paper no. 07. Available at: http://www.viam-works.ru (accessed: July 1, 2021). DOI: 10.18577/2307-6046-2021-0-5-64-77.
17. Tomasz F., Jan F. Conductivity improvement of electrically conductive adhesives by thermal post-curing processes. XXX International Conference of IMAPS. Kraków, 2006, pp. 24–27.
18. Lu D., Tong Q.K., Wong C.P. A Study of Lubricants on Silver Flakes for Microelectronics Conductive Adhesives. IEEE. Transactions on components and packaging technology, 1999, vol. 22, no. 3, pp. 365–371.
19. Jiang H., Moon K., Li Y., Wong C.P. Ultra High Conductivity of Isotropic Conductive Adhesives. Proceedings of the 56th Electronic Components and Technology Conference, 2006, vol. 6, pp. 485–490. DOI: 10.1109/ECTC.2006.1645691.
20. Mir I., Kumar D. Recent advances in isotropic conductive adhesives for electronics packaging applications. International Journal of Adhesion & Adhesives, 2008, vol. 28, is. 7, p. 362–371.
21. Moskovits M., Suh J.S. Conformation of mono-carboxylic and dicarboxylic-acids adsorbed on silver surfaces. Journal American Chemical Society, 1985, vol. 107, no. 24, p. 6826–6829.
22. Lu D., Wong C.P. Effects of shrinkage on conductivity of isotropic conductive adhesives. International Journal of Adhesion & Adhesives, 2000, vol. 20, р. 189–193. DOI: 10.1016/S0143-7496(99)00039-1.
23. Kohinata S., Shiraki Y., Inoue M., Uenishi K. Investigation of the influence of the cure shrinkage in electrically conductive adhesive, and the mechanism for conductivity. Journal of Smart Processing, 2014, vol. 3 (4), no. 1, pp. 246–253. DOI: 10.7791/jspmee.3.246.
24. Morris J., Lee J., Liu J. Isotropic Conductive Adhesive Interconnect Technology in Electronics Packaging Applications. Proceedings of the Fifth International IEEE conference on polymers and adhesives in microelectronics and photonics. Wroclaw, 2005, pp. 45–52. DOI: 10.1109/POLYTR.2005.1596485.
25. Keusseyan L., Dilday L. Electric Contact Phenomena in Conductive Adhesive Interconnections. International Journal of microcircuits and Electronic Packaging, 1994, vol. 17-3, pp. 236–242.
Describes compositions based on a mixture of phenol-formaldehyde oligomers of the resole and novolac types, used to create foams, laminated plastics for electrical purposes, friction materials, press compositions, sealing putties, as well as for vulcanization of rubbers. Detailed information on the composition and physicochemical properties of the compositions and their technological characteristics are given. The main advantages of resole-novolac materials are shown: strength, heat resistance, reduced flammability, low moisture absorption, good dielectric properties.
2. Kablov E.N. The materials of the new generation are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2, pp. 16–22.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Kara-vaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021. no. 1 (62). paper no. 03. Available at: https://journal.viam.ru (accessed: June 15, 2021). DOI: 10.18577/2713-0193-2021-0-1-22-23.
8. Pilato. L. Phenolic resins: A century of progress. Springer, 2010. 545 p.
9. Gardziella A., Pilato L.A., Knop A. Phenolic resins: chemistry, applications, standardization, safety and ecology. 2nd completely rev. Springer, 2000. 562 p.
10. Knop A., Pilato L. Phenolic resins. Springer, 1985. 315 p.
11. Knop A., Shab V. Phenolic resin and materials based on them. Trans. from Engl. Moscow: Khimiya, 1983, 280 p.
12. Martin R.V. Chemistry of phenolic resins. Trans. from Engl. Moscow: NIIPM, 1962, 168 p.
13. Encyclopedia of polymers. Ed. V.A. Kabanov. Moscow: Sovetskaya Entsyklopedia, 1977, vol. 3, pp. 710–720.
14. Losev I.P., Trostyanskaya E.B. Chemistry of synthetic polymers. Ed. 3rd. Moscow: Khimiya, 1971, 616 p.
15. Technology of plastics. Ed. V.V. Korshak. Moscow: Khimiya, 1972, 616 p.
16. Method for producing polystyrene: pat. 333844 USSR. No. 1440024/23-5; filed 04.06.70; publ. 25.05.76.
17. A method of producing foams based on liquid novolac phenol-formaldehyde resin: pat. 335966 USSR. No. 1453094/23-05; filed 06.07.70; publ. 15.05.84.
18. A method of producing foams based on liquid resole phenol-formaldehyde resin: pat. 448744 USSR. No. 1436621/23-5; filed 08.06.70; publ. 23.06.85.
19. A method of producing foams based on liquid phenol-formaldehyde oligomers of the novolach type: pat. 448745 USSR. No. 1445873/23-05; filed 08.06.70; publ. 30.10.84.
20. Composition for obtaining foam: pat. 548037 USSR. No. 1965061/23-05; filed 08.10.73; publ. 15.05.84.
21. A method of producing foam: pat. 519442 USSR. No. 1734328/05; filed 04.01.72; publ. 30.06.76.
22. Valgin V.D. Domestic energy-saving technology of thermal insulation of building structures using a new generation of foam. Energobezopasnost v dokumenty i faktakh, 2005, no. 1, pp. 20–26.
23. Valgin V.D. Data for the design of production of thermal insulation of building structures using a new generation of foam. Energobezopasnost v dokumenty i faktakh, 2005, no. 4, pp. 22–28.
24. Catalyst for obtaining phenol-formaldehyde foam and composition for obtaining phenol-formaldehyde foam: pat. 2451550 Ros. Federation. No. 2010139112/04; filed 23.09.10; publ. 27.05.12.
25. Composition for producing foam: pat. 2477734 Rus. Federation. No. 2011141873/05; filed 17.10.11; publ. 20.03.13.
26. Polymer molding composition: pat. 1733445 USSR. No. 4811128/05; filed 02.21.90; publ. 15.05.92.
27. Polymer composition: pat. 2100390 Rus. Federation. No. 95121369/04; filed 19.12.95; publ. 27.12.97.
28. Binder based on synthetic oligomers for fiberglass for electrical purposes: pat. 2320039 Rus. Federation. No. 2006130494/09; filed 08.24.06; publ. 20.03.08.
29. Composition for the manufacture of a compacting composition:pat. 2198189 Rus. Federation. No. 2000116777/04; filed 29.06.00; publ. 10.02.03.
30. Frictional composition: pat. 2101305 Rus. Federation. No. 64036316/04; filed 28.09.94; publ. 10.01.98.
31. Frictional composition: pat. 2298707 Rus. Federation. No. 2005130672/11; filed 04.10.05; publ. 10.05.07.
32. Polymer press composition: pat. 1016335 USSR. No. 3372956/23-05; filed 29.12.81; publ. 07.05.83.
33. Phenol-formaldehyde putty: pat. 1735336 USSR. No. 4804951/05; filed 31.01.90; publ. 23.05.92.
34. Adhesive underlayer for attaching rubbers to metal during vulcanization: pat. 2637239 Rus. Federation. No. 2016132657; filed 08.08.16; publ. 01.12.17.
In this paper provides an overview of scientific and technical literature and developments in the field of tungsten-free hard alloys or cermet as promising materials of a new generation metalworking tools. Methods of obtaining sintered hard alloys, their structure and basic operational properties are considered The main directions of improving the properties of hard alloys are given. The results of experimental work on the production of cermet by high-speed quenching of the melt are presented. The obtained fast-quenched materials of the Fe–TiC–TiB2 system demonstrate physical and mechanical properties at the level of sintered hard alloys, but at the same time it contain 2–3 times less of the carbide phase.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334. DOI: 10.31857/S0869587320040052.
3. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Kieffer R.O., Benezovsky F.O. Hard alloys: per. with him. Moscow: Metallurgiya, 1971, 392 p.
5. Falkovsky V.A., Klyachko L.I. Hard alloys. Moscow: Ore and Metals, 2005, 492 p.
6. State Standard 3882–74. Sintered hard alloys. Stamps. Moscow: Publishing house of standards, 1998, 12 p.
7. Tyurin A.G., Razumakov A.A., Terentyev D.S., Nagavkin S.Yu., Ivantsivsky V.V. Investigation of the structure and properties of hard alloys with a gradient structure. Processing of metals, 2012, no. 4 (57), pp. 86–91.
8. Humphry-Baker S.A., Ramanujam P., George D.W. et al. Ablation resistance of tungsten carbide cermets under extreme conditions. International journal of refractory metals and hard materials, 2020, no. 93. Art. 105356. DOI: 10.1016/j.ijrmhm.2020.105356.
9. Bogodukhov S.I., Garipov V.S., Shein E.A., Yasakov A.S. Chemical heat treatment of hard alloys of the VK group. Vestnik OGU, 2011, no. 10 (129), pp. 221–226.
10. Oskolkova T.N., Bataev A.A., Tyurin A.G., Kozyrev N.A., Fedorov A.A. Investigation of the structure and properties of the VK10KS hard alloy after quenching in a water-polymer environment Termovit M. Obrabotka metallov, 2014, no. 4 (65), pp. 36–42.
11. Fedorov E.M., Tsemenko V.N., Rumyantsev V.I. Influence of the addition of nanosized tungsten carbide on the structure and properties of the sintered hard alloy VK10KHOM. Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2013, no. 3 (178), pp. 156–162.
12. Vostrikov Ya.A., Verkhoturov A.D., Burkov A.A. Increase of heat resistance and wear resistance of tungsten-containing hard alloys by ESA method. Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2017, no. 11-1 (30), pp. 90–99.
13. Kablov E.N., Lukina E.A., Zavodov A.V., Efimochkin I.Yu. The formation of structure in ultrafine WC–Cо carbide material in the presence of inhibitory additives. Trudy VIAM, 2020, no. 4-5 (88), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 1, 2021) DOI: 10.18577/2307-6046-2020-0-45-89-99.
14. Trofimenko N.I., Efimochkin I.Yu., Dvoretskov R.M., Batienkov R.V. Obtaining fine-grained cemented carbide alloys of the WC–Co system (review). Trudy VIAM, 2020, no. 1 (85), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 1, 2021). DOI: 10.18577 / 2307-6046-2020-0-1-92-100.
15. Malikov A.A., Markova E.V., Chechuga O.V. Application of electric discharge methods of surface hardening for tool life durability. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 19–25. DOI: 10.18577/2071-9140-2018-0-4-19-25.
16. Yung D., Zikin A., Hussainova I. et al. Tribological performances of ZrC – Ni and TiC – Ni cermet reinforced PTA. Surface & Coatings Technology, 2017, no. 309, pp. 497–505. DOI: 10.1016/j.surfcoat.2016.11.099.
17. Bobylev E.E. Structural formation of functional diffusion coatings formed on hard alloys such as TK and VK. Inzhenernyy zhurnal: nauka i innovatsii, 2019, no. 1, pp. 1–14. DOI: 10.18698/2308-6033-2019-1-1845.
18. Panov V.S., Zaitsev A.A. Hard alloys WC – Co doped with tantalum carbide (review). Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2015, no. 2, pp. 44–48. DOI: 10.17073/1997-308X-2015-2-44-48.
19. Kurganova Yu.A., Panina K.S., Beshenkov P.S. Analysis of the possibility of increasing the properties of the VK15 material for drilling tools. Zapiski Gornogo instituta, 2018, vol. 233, pp. 518–524. DOI: 10.31897/PMI.2018.5.518.
20. Samsonov G.V., Vinitskiy I.M. Refractory compounds: a reference book. 2nd ed. Moscow: Metallurgy, 1976, 560 p.
21. State Standard 26530–85. Tungsten-free sintered hard alloys. Moscow: Publishing house of standards, 1985, 7 p.
22. Novikov A.V., Kulkob S.N., Panin V.E. Effect of hot extrusion on the structural state of the TiC – NiTi hard alloy. Soviet powder metallurgy and metal ceramics, 1990, vol. 29 (6), pp. 497–501.
23. Liu B.H., Shuigen V.H., Jan V.J. Influence of Mo addition on the microstructure and mechanical properties of TiC – NiTi cermets. Journal of Alloys and Compounds, 2017, vol. 712, pp. 579–587. DOI: 10.1016/j.jallcom.2017.04.151.
24. Liu Y., Bao-Hai Y., De-Hui G. et al. Microstructure and properties of TiC/NiCr cermets produced by partial liquid-phase sintering. Journal of materials science letters, 2001, vol. 20 (7), pp. 619–620. DOI: 10.1023 / A: 1010965216385.
25. Atefeh A., Zohreh S., Gokuldoss K., Filippo B. In situ fabrication of TiC – NiCr cermets by selective laser melting. International Journal of Refractory Metals and Hard Materials, 2019, vol. 87, art. 105171. DOI: 10.1016/j.ijrmhm.2019.105171.
26. Dunand D.C., Fukami-Ushiro K.L., Mari D. et al. Mechanical Properties of NiTi – TiC Shape-Memory Composites. MRS Proceedings, 1996, vol. 459, pp. 131.
27. Akimov V.V. The mechanism of liquid-phase sintering of TiC – TiNi hard-alloy composites. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2006, no. 6, pp. 33–35.
28. Gulyaev A.P. Metallurgy: textbook. 6th ed., rev. and add. Moscow: Metallurgy, 1986, 544 p.
29. Afonin V.K., Ermakov B.S., Lebedev E.L. Metals and alloys: a reference book. Saint Petersburg: Professional, 2003, 1066 p.
30. Loginov Yu.N. Production technology of workpieces from hard alloys: textbook. Sverdlovsk: Ed. nsmed S.M. Kirov, 1984, 53 p.
31. Akimov V.V. Development of the composition and technology of sintering dispersion-hardened composite materials TiC – TiNi with increased viscoelastic properties: thesis abstract, Dr. Sc. (Tech.). Barnaul, 2007, 35 p.
32. Akimov V.V. The mechanism of liquid-phase sintering of TiC – TiNi hard-alloy composites. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2006, no. 6, pp. 33–35.
33. Panov V.S., Chuvilin A.M., Falkovsky V.A. Technology and properties of sintered hard alloys and products from them. Moscow: MISiS, 2004, 462 p.
34. Akimov V.V., Mishurov A.F., Negrov D.A. et al. Change in the microhardness of tungsten-free hard alloys during their irradiation with a gas-metal beam of argon and zirconium ions. Vestnik YUUGU, 2019, vol. 19, p. 19–26.
35. Mokhovikov A.A., Shamarin N.N. Investigation of the resistance of a tungsten-free hard alloy based on titanium carbide under cutting conditions. Inzhenernyy vestnik Dona, 2015, vol. 2, art. 7. Available at: http://www.ivdon.ru/ru/magazine/archive/n2p2y2015/2957 (accessed: July 2, 2021).
36. Vereshchaka A.A., Khozhaev O.Kh. Improving the performance of tungsten-free hard alloys using nanostructured multilayer composite coatings. Vestnik BGTU, 2014, vol. 3 (43), pp. 20–25.
37. Panov V.S., Chuvilin A.M. Technology and properties of sintered hard alloys and products made of them: textbook. Moscow: MISiS, 2001, 428 p.
38. Vynar V. Effect of components on the tribocorosion properties of tungsten-carbide cermets. Materials Science, 2016, vol. 51 (6), pp. 869–876.
39. Mekgwe G.N., Tuckart W.R. Effect of CrC – Ni on the tribological behavior of WC cemented carbide. 4th International conference materials science and engineering, 2019, no. 499, art. 012012. DOI: 10.1088/1757-899X/499/1/012012.
40. Ganguly A., Murthy V., Kannoorpatti K. Structural and electronic properties of chromium carbides and Fe-substituted chromium carbides. Materials Research Express, 2020, vol. 7 (5), art. 056508. DOI: 10.1088/2053-1591/ab8cf9.
41. Antonov M., Hussainova I. Subsurface of Cr3C2 – Ni cermets modified by wear. Proceedings of the 10th international conference of the European society. Baden-Baden, 2008, pp. 632–640.
42. Lagos M.A., Agote I., Leizaola I. Fabrication of chromium carbide cermets by electric resistance sintering process: Processing, microstructure and mechanical propetries. International journal of refractory metals and hard materials, 2020, pp. 88–94. DOI: 10.1016/j.ijrmhm.2020.105417.
43. Kolnes M., Pirso J. Strucrure formation and characteristics of chromium carbide-iron-titanium cermets. Proceedings of the Estonian Academy of sciences, 2016, vol. 65, no. 2, pp. 138–143. DOI: 10.3176/proc.2016.2.09.
44. Zhang X., Liu N. Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC – ZrC – Co – Ni cermets. Materials Science & Engineering A, 2013, vol. 561, pp. 270–276. DOI: 10.1016/j.msea.2012.11.003.
45. Li S., Zhu Y., Chai J. et al. Effects of ZrC content on the microstructure and mechanical property of ZrC/ZTA composites consolidated by hot pressing. Journal of Alloys and Compounds, 2020, no. 860, art. 158402. DOI: 10.1016/j.jallcom.2020.158402.
46. Kang X., Lin N., He Y., Zhang M. Influence of ZrC addition on the microstrucure, mechanical properties and oxidation resistance of Ti (C, N)-based cermets. Ceramics international, 2018, pp. 1151–11159. DOI: 10.1016/j.ceramint.2018.03.131.
47. Xiong H., Xie D., Chen J. et al. Ti (C, N)-based cermets with strengthened interfaces: Roles of secondary cubic carbides. Journal American ceramic society, 2020, no. 103, pp. 1582–1592. DOI: 10.1111/jace.16893.
48. Westphal H. Bearbeitung schwerzerspanbarer Werkstoffe. Moderne Zerspannungswerkzeuge in optimierten Prozessketten, 2002, no. 56, pp. 167–172.
49. Burkov P.V. Structure formation, phase composition and properties of composite materials: thesis abstract, Cand. Sc. (Tech.). Barnaul, 2009, 34 p.
50. Serov M.M., Borisov B.V. Obtaining metal fibers and porous materials from them by the method of extracting a hanging drop of the melt. Tekhnologiya legkih splavov, 2007, no. 3, pp. 62–65.
The results of the work performed at NRC «Kurchatov Institute» – VIAM in research on aspects of the influence of operational factors (high humidity and temperature) on the physic-mechanical properties of glass fiber composite VPS-31. The main physical and mechanical properties of samples obtained from the spar of the helicopter's main blade are presented (including the glass transition temperature, strength and modulus of elasticity in tension, elongation at break at various test temperatures in the initial state and after exposure to moisture). We studied the fragments of the spar, successfully passed thermocyclic tests («day/night»). The results of the research confirmed the possibility of exploitation of glass fiber composite VPS-31in a humid tropical climate.
2. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Assessment of the influence of significant influencing factors. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16.
3. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of research methods for the early stages of aging. Deformatsiya i razrusheniye materialov, 2020, no. 1, pp. 15–21.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Liew Y.S., Tan K.H. Durability of GFRP composites under tropical climate. Fiber-Reinforced Polymer Reinforcement for Concrete Structures. Singapore, 2003, pp. 769–778. DOI: 10.1142/9789812704863_0072.
6. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
7. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
8. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
9. Khaskov M.A. On the specifics of determining the glass transition temperature of moisture-saturated polymer composite materials by the method of dynamic mechanical analysis. Zavodskaya laboratoriya. Diagnostika materialov, 2016, vol. 82, no. 1, pp. 25–31.
10. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
11. Composite materials handbook. SAE International, 2012, vol. 1. Polymer matrix composites guidelines for characterization of structural materials, pp. 29–33.
12. Laptev A.B., Barbotko S.L., Nikolaev E.V., Skirta A.A. Statistical processing of the results of climatic tests of fiberglass. Plasticheskiye massy, 2016, no. 3-4, pp. 58–64.
13. Ivchin V.A., Nikiforov V.A., Samsonov K.Yu. Influence of different variants of main rotor blades on X-shaped tail rotor of a helicopter. Nauchnyy vestnik MGTU GA, 2018, vol. 21, no. 1, pp. 114–123. DOI: 10.26467/2079-0619-2018-21-1-114-123.
14. Slyusar B.N., Fleck M.B., Goldberg E.S. Helicopter technology. Technology for the production of helicopter blades and aircraft structures from polymer composite materials. Rostov-on-Don: SSC RAS Publishing House, 2013, pp. 153–199.
15. Potter K., Langer C., Hodgkiss B., Lamb S. Sources of variability in uncured aerospace grade unidirectional carbon fiber epoxy preimpregnate. Сomposites. Part A. 2007, vol. 38, is. 3, pp. 905–916. DOI: 10.1016/j.compositesa.2006.07.010.
The paper considers the use of atmospheric pressure plasma (APP) treatment as a method for surface preparation of fiberglass of the VPS-53K brand in the manufacture of the main rotor blades of a helicopter of the «Mi» family. It was found that APP treatment increases the strength of the «spar–sheathing» adhesive bond (fiberglass grade VPS-53K), and also that there is a decrease in the bond strength in the presence of a temporary gap (one month) between the processing of the APP sheathing and the gluing operation, which requires additional research.
2. Doroshenko N.I., Chursova L.V. Evolution of materials for blades of helicopters. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 16–18.
3. Davydova I.F., Kablov E.N., Kavun N.S. Heat-resistant non-combustible polyimide glass fiber laminates for aircraft and rocket technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 7, pp. 2–11.
4. Popov Y.O., Kolokolceva T.V., Gusev Y.A., Gromova A.A. Development of the constructive and technological solution for a sheet fibreglass for tail section skins of helicopter rotor blades. Trudy VIAM, 2016, no. 1 (37), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 12, 2020). DOI: 10.18577/2307-6046-2016-0-1-42-49.
5. Zhelezina G.F., Voinov S.I., Pletin I.I., Veshkin E.A., Satdinov R.A. Development and production of structural organoplastics for aviation technology. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 4–2, pp. 411–416.
6. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
8. Grebenikov A.G., Dyachenko Yu.V., Kollerov V.V. et al. Design and technological features of the bearing surfaces of a helicopter made of polymer composite materials. Otkrytye informatsionnye i kompyuternyye integrirovannye tekhnologii, 2019, no. 84, pp. 4–49.
9. Zavalov O.A., Basharov E.A. Methodical instructions for the laboratory work "Design of rotor blades and tail rotor blades". Available at: http://elibrary.mai.ru/MegaPro/Download/ ToView/15843?idb=NewMAI2014 (accessed: July 12, 2021).
10. Slyusar B.N., Fleck M.B., Goldberg E.S. et al. Helicopter technology. Technology for the production of helicopter blades and aircraft structures from polymer composite materials. Rostov-on-Don: Publishing house of the SSC RAS, 2013, 230 p.
11. Topolev V.V. Design and operation of the Mi-171 helicopter. Available at: http://78.29.20.90/dw/lib/exe/fetch.php/ps:dikihvf:discip:mi-171_bortmexaniki_.pdf (accessed: July 12, 2021).
12. Doroshenko N.I. Application of PCM in the design of helicopter propeller blades. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1234.pdf (accessed: July 12, 2021).
13. Zavalov O.A. Helicopter main and tail rotor design. Available at: http://www.kaf102.mai.ru/bibl_files/L_20.pdf (accessed: July 12, 2021).
14. Sokhan O. N., Skulkov D. D. Hubs and blades of helicopter main and tail rotor blades: method. instructions for laboratory work. Available at: https://kaf102.mai.ru/bibl_files/L_06.pdf (accessed: July 12, 2021).
15. Ivchin V.A., Samsonov K.Yu. Results of the first stage of flight tests of the helicopter – flying laboratory MI-171A2. Nauchnyy vestnik MGTU GA, 2014, no. 200, pp. 63–69.
16. Zhelezina G.F. Features of destruction organoplastikov at shock influences. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 272–277.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. I. Mechanisms of aging. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 19–27.
18. Startsev V.O., Molokov M.V., Postnov V.I., Starostina I.V. Assessment of the influence of climatic impact on the properties of fiberglass grade VPS-53K. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, vol. 19, no. 4 (2), pp. 220–228.
19. Postnov V.I., Pletin I.I., Veshkin E.A., Starostina I.V., Strelnikov S.V. Technological features of the production of thin-sheet skins of helicopter blades from structural fiberglass VPS-53K. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2016, vol. 18, no. 4 (3), pp. 619–627.
20. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Gluing materials in the design of blades of helicopters. Trudy VIAM, 2016, no. 7, paper no. 07. Available at: http://www.viam-works.ru (accessed: July 12, 2021). DOI: 10.18577/2307-6046-2016-0-7-7-7.
21. Barannikov A.A., Postnov V.I., Veshkin E.A., Strelnikov S.V. The role of fiberglass surface preparation for gluing. Klei. Germetiki. Tekhnologii, 2019, no. 6, pp. 19–27. DOI: 10.31044/1813-7008-2019-0-6-19-27.
22. Barannikov A.A., Veshkin E.A., Postnov V.I., Semenichev V.V. Structural studies of adhesive joints of VPS-53K fiberglass sheets treated with atmospheric pressure plasma. Klei. Germetiki. Tekhnologii, 2020, no. 3, pp. 27–33. DOI: 10.31044/1813-7008-2020-0-3-27-33.
23. Barannikov A.A., Рostnov V.I., Veshkin E.A., Starostina I.V. Link between the energy characteristics of the surface of fiberglass of the VPS-53К brand and the strength of the adhesive joint based on it. Trudy VIAM, 2020, no. 10 (92), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 12, 2020). DOI: 10.18577/2307-6046-2020-0-10-40-50.
24. Tracey A.C. Effect of Atmospheric Pressure Plasma Treatment on Surface Characteristics and Adhesive Bond Quality of Peel Ply Prepared Composites. Available at: https://digital.lib.washington.edu/researchworks/handle/1773/27522 (accessed: November 12, 2020).
25. Takeda T., Yasuoka T., Hoshi H. et al. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 119, pp. 30–37.
26. Zaldivar R.J., Nokes J., Steckel G.L. et al. The Effect of Atmospheric Plasma Treatment on the Chemistry, Morphology and Resultant Bonding Behavior of a Pan-Based Carbon Fiber-Reinforced Epoxy Composite. Journal of Composite Materials, 2009, vol. 44, is. 2, pp. 137–156. DOI: 10.1177/0021998309345343.
27. Dighton C., Rezai A., Ogin S.L., Watts J.F. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques. International Journal of Adhesion and Adhesives. 2019, vol. 91, pp. 142–149. DOI: 10.1016/j.ijadhadh.2019.03.010.
28. Zaldivar R.J., Steckel G.L, Morgan B.A. et al. Bonding Optimization on Composite Surfaces using Atmospheric Plasma Treatment. Journal of Adhesion Science and Technology, 2012, vol. 26, is. 1–3, pp. 381–401.
29. Hansen W. Plasma for Aviation and Aerospace Industries. Available at: https://www.plasmatreat.com/ downloads/english/15-04_IST_aerospace.pdf (accessed: July 12, 2021).
30. Langer M., Otto D. Methods for studying the surface characteristics of polymers after plasma treatment. Comparative analysis. Analiz i kontrol: tekhnologii, pribory, resheniya, 2018, no. 2 (39). S. 2-7.
31. Williams T., Yu H., Hicks R. Atmospheric pressure plasma activation of polymers and composites for adhesive bonding: A Critical Review. Reviews of Adhesion and Adhesives, 2013, vol. 1, no. 1, pp. 46–87. DOI: 10.7569/RAA.2013.097302.
32. Serrano J.S. Surface modifications of composite materials by atmospheric pressure plasma treatment: PhD-Thesis. Madrid: Universidad Rey Juan Carlos, 2011. 302 p. Available at: https://eciencia.urjc.es/bitstream/10115/11379/1/Thesis_June%202011%20JSS-SLU-AUF_v5.pdf (accessed: July 12, 2021).
33. Gleich H. Zusammenhang zwischen Oberflächenenergie und Adhäsionsvermögen von Polymer werkstoffen am Beispiel von PP und PBT und deren Beeinflussung durch die Niederdruck-Plasmatechnologie: Dissertation. Universtät Duisburg-Essen, 2004. 103 p. Available at: https://duepublico2.unidue.de/servlets/MCRFileNodeServlet/duepublico_derivate_00005593/gleichdiss.pdf (accessed: April 4, 2021).
34. Rodríguez B.N. Pre-Treatment for adhesive bonding of aerospace composite components: PhM-Thesis. London: Brunel University, 2016. 133 p. Available at: https://bura.brunel.ac.uk/bitstream/ 2438/14669/1/FulltextThesis.pdf (accessed: April 4, 2021).
35. Al-Maliki H.L.R. Adhesive and tribological behaviour of cold atmospheric plasma-treated polymer surfaces: PhD Dissertation. Gödöllő: Szent István University, 2018. 115 p. Available at: https://szie.hu/sites/default/files/hayder_lateef_dissertation.pdf (accessed: April 4, 2021).
36. Lisco F., Shaw A., Wright A. et al. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Solar Energy, 2017, vol. 146, pp. 287–297.
37. Kostova K.G., Nishimea T.M.C., Castroa A.H.R. et al. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 2014, vol. 314, pp. 367–375.
38. Akiyama H., Hasegawa K., Sekigawa T., Yamazaki N. Atmospheric pressure plasma treatment for composites bonding. Mitsubishi Heavy Industries Technical Review, 2018, vol. 55, no. 2, pp. 1–5.
39. Lucchetta G. Experimental analysis of atmospheric plasma treatment and resin optimization for adhesive bonding of carbon fiber/epoxy composites. Available at: http://tesi.cab.unipd.it/48832/1/Tesi_ANTONELLO_Julien.pdf (accessed: 04.04.2021).
40. Konokotin S. P., Yatsyuk I. V., Dobrynin D. A., Azarovsky E. N. Influence of yttrium on the quality of cast billets from alloys based on aluminum. Trudy VIAM, 2020, no. 3 (87), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 13, 2021). DOI: 10.18577/2307-6046-2020-0-3-49-57.
In view of the fact that sanctions are constantly being introduced against the Russian Federation, it became necessary to use domestic materials in the designs of modern helicopters being developed in our country that meet all the necessary requirements foe this. Approaches to the development of domestic materials with specified characteristics for use in the designs of advanced helicopter technology are considered. The selected methods made it possible to develop polymer composite materials that meet the necessary requirements are not inferior in properties to those of the imported analog.
2. Kablov E.N. The role of fundamental research in the creation of new generation materials. Abstracts of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. Saint Petersburg, 2019, vol. 4, p. 24.
3. Mikhailin Yu.A. Fibrous polymer composite materials in technology. Saint Petersburg: Scientific bases and technologies, 2013, 720 p.
4. Zorin V.A. Experience of using composite materials in products of aviation and rocket-space technology. Konstruktsii iz kompozitsionnykh materialov, 2011, no. 4. pp. 44–59.
5. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5. pp. 8–18.
6. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
7. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: May 17, 2021). DOI: 10.18577/2307-6046-2016-0-8-7-7.
8. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Gluing materials in the design of blades of helicopters. Trudy VIAM, 2016, no. 7, paper no. 07. Available at: http://www.viam-works.ru (accessed: July 13, 2021). DOI: 10.18577/2307-6046-2016-0-7-7-7.
9. Kogan D.I., Chursova L.V., Petrova A.P. Polymer composite materials obtained by impregnation with a film binder. All materials. Encyclopedic reference book, 2011, no. 11, pp. 2–7.
10. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
11. Grashhenkov D.V., Chursova L.V. Strategy of development of composite and functional materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 231–242.
12. Petrova A.P., Donskoy A.A., Chalykh A.E., Shcherbina A.A. Adhesive materials. Sealants: reference. Saint Petersburg: Professional, 2008, 589 p.
13. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
14. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
15. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Experience of using technological control of semi-finished products of PCM. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 6 (2), pp. 393–398.
16. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: July 8, 2021). DOI: 10.18577/2307-6046-2014-0-4-6-6.
17. State Standard 9450–76. Measurement of microhardness by indentation of diamond tips. Moscow: Publishing house of standards, 1993, 35 p.
18. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Regularities of the manifestation of anisotropy of properties in three mutually perpendicular sections of glass-carbon plastic. Plasticheskiye massy, 2020, no. 5-6, pp. 15–19.
19 Satdinov R.A., Istyagin S.E., Veshkin E.A. Analysis of the temperature-time parameters mode curing PCM with specified characteristics Trudy VIAM, 2017, no. 3, paper no. 9. Available at: http://www.viam-works.ru (accessed: August 13, 2021). DOI: 10.18577/2307-6046-2017-0-3-9-9.
20. Satdinov R.A., Veshkin E.A., Postnov V.I., Abramov P.A. The role of anti-adhesive coatings in the technological process of PCM molding. Trudy VIAM, 2016, no. 4, paper no. 10. Available at: http://www.viam-works.ru (accessed: August 21, 2021). DOI: 10.18577/2307-6046-2016-0-4-10-10.
21. Goyal R.K., Tiwari A.N., Negi Y.S. Microhardness of PEEK/ceramic micro- and nanocomposites: Correlation with Halpin–Tsai model. Materials Science and Engineering A, 2008. pp. 230–236.
22. Aristov V.M., Aristova E.P. Influence of structural heterogeneity on the physical properties of partially crystalline polymers. Plasticheskiye massy, 2016, no. 3-4, pp. 15–17.
23. Aristov V.M., Aristova E.P. Influence of relaxation phenomena on the physical properties of polymer materials. Plasticheskiye massy, 2017, no. 5-6, pp. 3–6.
24. Kenui M.G. Fast statistical calculations. Simplified Assessment and Testing Methods: handbook. Moscow: Statistics, 1979, 69 p.
25. Tager A.A. Physicochemistry of polymers. Moscow: Scientific world, 2007, 128 p.
The determination of gas-forming impurities in samples of low-alloyed copper alloys of the Cu–Cr and Cu–Cr–Zr systems is carried out. The content of sulfur and carbon was determined by the method of combustion in an induction furnace of a gas analyzer with subsequent detection in the infrared cell of the spectrometer, and to determine oxygen and nitrogen, the method of reducing melting in a flow of an inert carrier gas was used, followed by the detection of oxygen in the infrared cell and nitrogen in the conductometric cell of the gas analyzer.
2. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
4. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
5. Ten E.B., Badmazhapov I.B. Fundamentals of development of multifunctional heat-resistant copper alloys. Metallurgiya mashinostroyeniya, 2009, no. 6, pp. 21–24.
6. Lovshenko F.G., Lovshenko G.F., Lozikov I.A. Cast chromium-containing bronzes obtained with the use of mechanically alloyed ligatures. Litye i metallurgiya, 2012, no. 3, pp. 131–135.
7. Busygin S.L., Dovzhenko N.N., Mozhaev A.V., Demchenko A.I., Bezrukikh A.A. Electrodes from copper alloy low-alloyed with nanostructured chromium particles for resistance spot welding. Innovatsii i investitsii, 2020, no. 5, pp. 174–178.
8. Tebyakin A.V., Fokanov A.N., Podurazhnaya V.F. Multipurpose copper alloys. Trudy VIAM, 2016, no. 12, paper no. 05. Available at: http://www.viam-works.ru (accessed: June 8, 2021). DOI: 10.18557/2307-6046-2016-0-12-5-5.
9. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
10. State Standard 13938.2–78. Copper. Methods for the determination of sulfur. Moscow: Publishing house of standards, 1978, pp. 2–5.
11. State Standard 12344–2003. Alloyed and high-alloyed steels. Methods for the determination of carbon. Moscow: Publishing house of standards, 2003, pp. 4–5.
12. State Standard 13938.13–93. Copper. Methods for the determination of oxygen. Moscow: Publishing house of standards, 1993, pp. 7–20.
13. State Standard 12359–99. Carbon steels, alloyed and high-alloyed. Methods for the determination of nitrogen. Minsk: Publishing house of standards, 1999, p. 3.
14. ASTME E1019-11. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. ASTM International. United States, 2011, p. 24.
15. Alekseev A.V., Rastegaeva G.Yu., Pakhomkina T.N., Razmakhov M.G. Determination sulfur, carbon, nitrogen and oxygen in alloys of system Co–Fe–Co–B and Gd–Fe–Co–B. Trudy VIAM, 2019, No. 8 (80), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 12, 2021). DOI: 10.18557/2307-6046-2019-0-8-90-97.
The procedure for comparing the kits of reference materials of nickel alloys VZh172 and VZhL21 is considered. Using the method of atomic emission spectrometry with inductively coupled plasma for analytical lines of elements Al, Co, Cr, Mo, Ti, W, Zr, Fe, Mn, calibration characteristics were constructed using by two kits of reference materials VZh172 and VZhL21. According to statistical criteria an assessment is made of the possibility of joint use of the kits when constructing general calibration characteristics using the method of atomic emission spectrometry with inductively coupled plasma for the simultaneous determination of elements Al, Co, Cr, Mo, Nb, Ta, Ti, W, Zr, Fe, Mn in nickel alloys.
2. Karpov Yu.A., Baranovskaya VB Problems of standardization of methods of chemical analysis in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5-14.
3. Kablov E.N. Quality control of materials is a guarantee of the safety of aircraft operation. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
4. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2 (143), pp. 40–46.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
6. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
7. Gundobin V.I., Titov V.I., Orlov G.V., Pchelkin A.I. Development of monolithic standard samples of the composition of cast heat-resistant nickel alloys of the Ni – Cr – Al – Co – Mo – Nb – W – Ti – V system for spectral analysis. Liteyshchik Rossii, 2014, no. 7, pp. 21–24.
8. Karpov Yu.A., Baranovskaya VB The role and possibilities of analytical control in metallurgy. Tsvetnye metally, 2016, no. 8 (884). S. 63–67. DOI: 10.17580/tsm.2016.08.09.
9. Chernikova I.I., Kostrikina T.V., Tyumneva K.V., Ermolaeva T.N. Application of standard samples of blast-furnace, steelmaking, converter slags and welding fused fluxes in the development of methods for analyzing slag-forming mixtures by atomic emission spectrometry with inductively coupled plasma. Standartnye obraztsy, 2017, no. 3-4, pp. 29–40. DOI: 10.20915/2077-1177-2017-13-3-4-29-40.
10. Nalobin D.P., Osintseva E.V. Methods for comparing standard samples of the composition of substances and materials. Standartnye obraztsy, 2006, no. 1 (3), pp. 36–44.
11. Stepanovskikh V.V., Guzeev L.I. Comparison of domestic and foreign reference materials on the SA-2000 device. Analitika i kontrol, 2000, vol. 4, no. 3, pp. 293–297.
12. Saprygin A.V., Golik V.M., Makarov A.A., Dzhavaev B.G., Kudryavtsev V.N. Comparison of standard samples of isotopic composition of uranium produced by NBL (USA) and UEKhK. Standartnye obraztsy, 2007, no. 2, pp. 39–48.
13. Gundobin N.V., Titov V.I., Pchelkin A.I. Standard samples of the composition of high-temperature nickel alloys of the Ni – Al – Co – Mo – Nb – Ta – Cr – W – Re system for spectral analysis. Zavodskaya laboratoriya. Diagnostika materialov, 2015, vol. 81, no. 2, pp. 71–74.
14. Orlov G.V., Titov V.I. X-ray fluorescence and optical-emission methods of analysis of aviation alloys. Metallurgiya mashinostroeniya, 2018, no. 3, pp. 31–33.
15. Karachevtsev F.N., Letov A.F., Protsenko O.M., Yakimova M.S. Development and application of certified reference materials of airborne advanced alloys. Trudy VIAM, 2016, no. 10, paper no. 8. Available at: http://www.viam-works.ru (accessed: July 14, 2021). DOI: 10.18577/2307-6046-2016-0-10-8-8.
16. Karpov Yu.A., Gimelfarb F.A., Savostin A.P., Salnikov V.D. Analytical control of metallurgical production. Moscow: Metallurgy, 1995, 400 p.
17. Otto M. Modern methods of analytical chemistry: in 2 vol. Moscow: Tekhnosfera, 2003, vol. I, 416 p.
18. RMG 56-2002. GSE. Sets of reference materials for the composition of substances and materials. Intercomparison methodology. Moscow: Publishing house of standards, 2004.10 p.
19. MI 3257-2009. GSE. Standard samples of materials (substances). Intercomparison technique. Eekaterinburg: UNIIM, 2009, 36 p.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Kablov E.N. Aviation materials science in the XXI century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS-VIAM, 2002, pp. 23–47.
22. Kablov E.N. Trends and guidelines for innovative development in Russia: collection of articles. sci.-inf. materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
23. Letov A.F., Karachevtsev F.N., Zagvozdkina T.N. Development the set of methods measurements of the chemical composition of nickel-based alloys. Trudy VIAM, 2018, no. 8 (68), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 15, 2021). DOI: 10.18577/2307-6046-2018-0-8-89-97.
24. Karachevtsev F.N., Zagvozdkina T.N., Dvoretskov R.M., Zyablikova I.N. Application of model solutions in the development and implementation of AES-ICP techniques. Vse materialy. Entsiklopedicheskiy spravochnik, 2015, no. 2, pp. 10–15.
25. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plasma methods of nickel alloys elemental chemical composition analysis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
26. Osintseva E.V. Comparisons of reference materials: experimental planning and processing of measurement results. Standartnyye obraztsy, 2016, no. 4, pp. 3–14. DOI: 10.20915/2077-1177-2016-0-4-3-14.
27. Dörffel K. Statistics in analytical chemistry. Moscow: Mir, 1994.268 p.
28. Garmash A.V., Sorokina N.M. Metrological foundations of analytical chemistry. Moscow: Moscow State University, 2012, 47 p.
Authors named |
Position, academic degree |
NRC «Kurchatov Institute» – VIAM; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Andrey V. Alekseev |
Researcher, Candidate of Sciences (Bio.) |
Alexander A. Barannikov |
First Category Engineer-technologist |
Kirill L. Besednov |
Engineer |
Alexander N. Vasyukov |
Second Category Engineer |
Evgeny A. Veshkin |
Head of USTC, Candidate of Science (Tech.) |
Maksim S. Gribkov |
Leading Engineer |
Valeriy I. Gromov |
Deputy Head of Laboratory for Science, Candidate of Sciences (Tech.) |
Anna A. Gromova |
Head of Sector |
Yury A. Gusev |
First Category Engineer |
Roman M. Dvoretskov |
Head of Sector, Candidate of Sciences (Chem.) |
Tatiana N. Zagvozdkina |
Second Category Engineer |
Olga B. Zastrogina |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Andrey L. Ivanov |
Leading Engineer |
Aleksey Yu. Isaev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Fedor N. Karachevchev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Olga Yu. Kozlova |
Engineer |
Tatiana V. Koloкoltseva |
Leading Engineer-technologist |
Elena N. Korobova |
Leading Engineer |
Elena V. Krasheninnikova |
Second Category Engineer-technologist |
Yulia V. Lapshina |
Engineer |
Alexander V. Leonov |
Leading Engineer |
Natalia Ph. Lukina |
Chief Researcher, Candidate of Sciences (Tech.) |
Tatiana A. Nechaykina |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Mikhail S. Oglodkov |
Deputy Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Alexander Yu. Patrushev |
Technician |
Tatiana N. Pahomkina |
Engineer |
Artem A. Petrov |
First Category Engineer, Candidate of Sciences (Tech.) |
Aleftina P. Petrova |
Chief Researcher, Doctor of Sciences (Tech.) |
Yury O. Popov |
Leading Engineer |
Maria V. Postnova |
Senior Researcher, Candidate of Sciences (Tech.) |
Ruslan S. Savitskiy |
Third category engineer-technologist |
Ruslan A. Satdinov |
Acting Head of Laboratory |
Alexandеr V. Sviridov |
Head of Laboratory, Candidate of Sciences (Tech.) |
German S. Sevalnev |
Leading Engineer |
Evgeniya A. Serkova |
Head of Sector |
Mikhail M. Serov |
Chief Researcher, Doctor of Sciences (Tech.) |
Stanislav D. Sinyakov |
Second Category Engineer |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Konstantin A. Speransky |
Technician |
Dmitry P. Farafonov |
Head of Sector |
OJSC «Kamensk-Uralsky Metallurgical Plant», e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Mikhail A. Shlyapnikov |
Deputy Foreman |
Sergey I. Yakovlev |
Deputy Chief Millman |