Articles
The structure, phase composition and hardness of corrosion-resistant steels with different mechanisms of volumetric hardening was studied. It was found that after hardening treatment of steel VNS9-Sh, VNS30-Sh, VNS72-Sh have approximately the same hardness with a volumetric martensite content of 50, 90 and 75 %, respectively. According to the results of tribological tests for wear under dry friction conditions, it was found that VNS9-Sh steel with the TRIP effect has the best wear resistance. VNS30-Sh steel with precipitation hardening and VNS72-Sh steel with martensite hardening have approximately the same wear resistance.
2. Tonysheva O.A., Voznesenskaya N.M., Shestakov I.I., Eliseyev E.A. Influence of modes of high-temperature thermomechanical processing on structure and properties of high-strength corrosion-resistant steel of austenitic-martensitic class 17Х13Н4К6САМ3ч. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 11–16. DOI: 10.18577/2307-6046-2017-0-1-11-16.
3. Shi F., Tian P.C., Jia N. et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corrosion Science, 2016, Vol. 107, PP. 49–59.
4. Voznesenskaya N.M., Tonusheva O.A., Leonov A.V., Dulnev K.V. Hydrogen influence on high-strength corrosion-resistant steel VNS65-Sh properties and ways of elimination of hydrogen embrittlement. Trudy VIAM, 2018, no. 10 (70), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 1, 2019). DOI: 10.18577/2307-6046-2018-0-10-3-9.
5. Bannykh O., Blinov V., Lukin E. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite. IOP Conference Series: Materials Science and Engineering, 2016, vol. 130, no. 1, pp. 012001.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellect and technology, 2016, no. 2 (14), pp. 16–21.
8. Romanenko D.N., Sevalnev G.S., Leonov A.A., Udod K.A., Stepanenko E.V. Improving the tribological characteristics of 18KHGT steel after cementation and hardening heat treatment. Aviation materials and technology, 2021. no. 1 (62). paper no. 02. Available at: https://journal.viam.ru (accessed: May 20, 2021). DOI: 10.18577/2713-0193-2021-0-1-13-21.
9. Sevalnev G.S., Tsukanov D.V., Zubkov N.N. et al. Improvement of Austenitic Steel Tribological Properties by Deformational Cutting. Metallurgist, 2021, vol. 65, pp. 169–176. DOI: 10.1007/s11015-021-01145-6.
10. Kolmykov V.I., Romanenko D.N., Abyshev K.I., Bedin V.V. Efficiency of surface hardening by carburizing steel objects operating under abrasive wear conditions. Chemical and Petroleum Engineering, 2015, vol. 51, no. 1–2, pp. 58–61.
11. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Ospennikova O.G., Alekseeva M.S., Gromov V.I. Surface engineering and operational properties of nitrided structural steels: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2019, 600 p.
12. Terent’ev V.F., Ashmarin A.A., Blinova E.N. et al. Mechanical properties and structure of a VNS9-Sh steel as functions of the tempering temperature. Russian metallurgy (Metally), 2019, vol. 2019, no. 4, pp. 403–408.
13. Betzofen S.Ya., Ashmarin A.A., Terentyev V.F. et al. Phase composition and residual stresses in surface layers of trip-steel VNS9-Sh. Deformatsiya i razrushenie materialov, 2020, no. 6, pp. 12–20.
14. Zhegina I.P., Lutsenko A.N., Muboyadzhyan S.A., Belous V.Ya., Kotelnikova L.V. The nature of destruction of steel EP866-Sh with coatings. Voprosy materialovedeniya, 2009, no. 4, pp. 150–156.
15. Tonysheva O.A. Features of the formation of structure and properties during smelting, heat treatment and plastic deformation of corrosion-resistant welded chromium-nickel steels alloyed with nitrogen: thesis, Cand. Sc. (Tech.). Moscow, 2014, 138 p.
16. Materials science: textbook. Ed. B.N. Arzamasov, G.G. Mukhina. Moscow, 2001, 648 p.
This article opens a series of publications in which the main problems of magnesium alloys will be considered, such as low corrosion resistance, high anisotropy of mechanical properties, low fire safety, as well as the industries of application of these materials. The cycle of works involves several parts, each of which is devoted to a separate macro-problem characteristic of magnesium alloys, or to industries in which magnesium alloys may be most in demand. This part of the review presents basic information and systems for alloying magnesium alloys. The crystallographic and structural factors influencing the corrosion resistance of magnesium alloys are described. The possibility of using magnesium alloys in medicine is shown, and the reasons for which at the current moment of time their use is difficult.
2. Magnies alloys. Metal studies of magnesium and its alloys. Applications: directory: 2 vols. M.B. Altman, M.E. Dritz et al. Moscow: Metallurgiya, 1978, vol. 2, 237 p.
3. Emlie E.F. Basics of production technology and processing magnesium alloys. Moscow: Metallurgiya, 1972, 488 p.
4. Kablov E.N. Construction and functional materials – the basis of the economic and scientific and technical development of Russia. Voprosy materialovedeniya, 2006, no. 1, pp. 64–67.
5. Drits M.E., Dobatkina T.V., Muratova E.V. The study of magnesium alloys containing lantane and zirconium. Metal studies and processing of non-ferrous alloys. By the 90th anniversary of the birth of Academician A.A. Bochvar: Collection of Scientific Articles. Moscow: Nauka, 1992, pp. 32–37.
6. Drits M.E., Rokhlin L.L. Magnetic alloys with special acoustic properties. Moscow: Metallurgiya, 1983. 128 p.
7. Skundin A.M., Bagatsky V.S. Chemical current sources. Moscow: Nauka, 1992. 125 p.
8. Rokhlin L.L. Use of magnesium for hydrogen accumulation. Metal science and processing of color alloys. By the 90th anniversary of the birth of Academician A.A. Bochvar: Collection of Scientific Articles. Moscow: Nauka, 1992, pp. 114–125.
9. Volkova E.F. Prospects for the development of magnesium production technology and its alloys: the results of the international conference "Magnesium – new horizons". Materialovedeniye i termicheskaya obrabotka metallov, 2006, no. 11, pp. 3–11.
10. Volkova E.F. Modern deformed alloys and composite materials. Materialovedeniye i termicheskaya obrabotka metallov, 2006, no. 11, pp. 5–9.
11. Volkova E.F., Duyunova V.A. On the current trends in the development of magnesium alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 94–105.
12. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspectives of application of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 212–222.
13. Volkova E.F. Evolution of wrought Magnesium Alloys Aerospace Application. Proceedings of the 10th International Conference on Magnesium Alloys and Their Application Mg, 2015, pp. 10–24.
14. Volkova E.F. Magnesium alloys. Large Russian Encyclopedia (BD): in 35 vols. Moscow: Lomonosov-Manizer, 2011, vol. 18, p. 354.
15. Merson D., Brilevsky A., Myagkikh A. et al. The Functional Properties of Mg–Zn–X. Biodegradable Magnesium Alloys. Materials, 2020, vol. 1, pp. 544–548.
16. Frolova T.S., Boykov A.A., Tarkova A.R. et al. Investigation of the cytotoxic effect of magnesium alloys into cellular structures. Patologiya krovoobrashcheniya i kardiokhirurgiya, 2019, vol. 23, no. 3, pp. 22–29.
17. Sabbaghian M., Mahmudia R., Shin K.S. Effect of texture and twinning mechanical properties and corrosion behavior of an extruded biodegradable Mg–4Zn alloy. Journal of Magnesium and Alloys, 2019, no. 7, pp. 707–716.
18. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
19. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
20. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
21. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
22. Volkova E.F. The analysis and results of the International conference «Magnesium–21. Broad horizons» (review). Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
23. Huabao Y., Liang W., Bin J., Wenjun L., Fusheng P. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg–Li alloys for primary Mg-air batteries. Journal of Materials Science & Technology, 2021, no. 62, pp. 128–138.
24. Junjie H., Bin J., Jun X., Jianyue Z., Fusheng P. Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet. Journal of Alloys and Compounds, 2017, no. 723, pp. 213–224.
25. Volkova E.F., Mostyaev I.V., Akinina M.V. Comparative analysis of mechanical properties anisotropy and microstructure of semi-finished products from high-strength magnesium alloys with REE. Trudy VIAM, 2018, no. 5 (65), paper no. 04. Available at: http://www.viam-works.ru (date of access: June 17, 2021). DOI: 10.18577/2307-6046-2018-0-5-24-33.
26. Ageev N.V., Babareko A.A., Betzofen S.Ya. Description of the texture by the method of inverse pole figures. Izvestiya AN SSSR. Metally, 1974, no. 1, pp. 94–103.
27. Debao L., Yichi L., Yan H., Rong S., Minfang C. Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy. Progress in Natural Science: Materials International, 2014, no. 24, pp. 452–457.
28. Lili G., Chunhong Z., Milin Z., Xiaomei H., Nan S. The corrosion of a novel Mg–11Li–3Al–0,5RE alloy in alkaline NaCl solution. Journal of Alloys and Compounds, 2009, no. 468, pp. 285–289.
29. Volkova E.F., Grovenkov S.V., Sinebryukhov S.L., Betzofen S.Ya. The effect of deformation and heat treatment on the structure and properties of magnesium alloy MA5. Metallovedeniye i termicheskaya obrabotka metallov, 2012, no. 10, pp. 55–59.
30. Bozko S.A., Manokhin S.S., Tokmachev-Kolobova A.Yu., Karlagina Yu.Yu., Ligachev A.E. Effect of pulsed nanosecond laser radiation on corrosion resistance of magnesium alloy Mg-Al-Zn system. Fizika i khimiya obrabotki materialov, 2019, no. 6, pp. 28–35.
31. Mersson ED, Poluyanov V.A., Soft P.N., Mersson D.L., Vinogradov A.Yu. The effect of grain size on the mechanical properties and ability of pure magnesium and the MA14 alloy absorbing hydrogen with corrosion cracking under voltage. Letters on Materials, 2020, vol. 10, no. 1, pp. 94–99.
32. Radha R., Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. Journal of Magnesium and Alloys, 2017. Vol. 5, pp. 286–312.
33. Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Material of Sciens Engeeniring, 2014. Reprint 77, pp. 1–34.
34. Birbilis N. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater, 2014, vol. 10 (3), pp. 1463–1474.
35. Ding Y., Wen C., Hodgson P., Li Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2014, vol. 2 (14), pp. 1912–1933.
36. Frolov A.V., Muhina I.Yu., Leonov A.A., Uridiya Z.P. An influence of rare-earth metals doping on properties and structure of the experimental Mg–Zr–Zn–Y–Nd casting magnesium alloy. Trudy VIAM, 2016, no. 3, paper no. 03. Available at: http://www.viam-works.ru (accessed: July 17, 2021). DOI: 10.18577/2307-6046-2016-0-3-3-3.
37. Zhang S., Bi Y., Li J. et al. Biodeg-radation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioactive Materials, 2017, no. 2 (2), pp. 53–62.
38. Chen J., Tan L., Yang K. Effect of heat treatment on mechanical and biode-gradable properties of an extruded ZK60 alloy. Bioactive Materials, 2017, no. 2 (1), pp. 19–26.
39. Shadanbaz S., Dias G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomaterials, 2012, no. 8 (1), pp. 20–30.
40. Chen X.-B., Birbilis N., Abbott T.B. Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion Science, 2011, no. 67 (3), pp. 1–16.
41. Chen X.-B., Birbilis N., Abbott T.B. A simple route towards a hydroxyapatite-Mg(OH)2 conversion coating for magnesium. Corrosion Science, 2011, no. 53 (6), pp. 2263–2268.
42. Tang J., Wang J., Xie X. et al. Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications. Journal of Orthopaedic and Transplantologe, 2013, no. 1 (1), pp. 41–48.
43. Chen X.-B., Kirkland N.T., Krebs H. et al. Corrosion survey of Mg-xCa and Mg–3Zn–yCa alloys with and without calcium phosphate conversion coatings. Corrosion Science, 2012, no. 47 (5), pp. 365–373.
44. Wang J.-L., Mukherjee S., Nisbet D.R. et al. In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium, with and without zinc. Journal of Materials Chemistry B, 2015, no. 3 (45), pp. 8874–8883.
45. Lacroix C., Ai M., Morvan F. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proceeding of the National Academy of Sciences, 2005, no. 102 (48), pp. 17406–17411.
46. Zamani A., Omrani G.R., Nasab M.M. Lithium's effect on bone mineral density. Bone, 2009, no. 44 (2), pp. 331–334.
47. Khorami M., Hesaraki S., Behnamghader A. et al. In vitro bioactivity and biocompatibility of lithium substituted 45S5 bioglass. Material of Science, 2011, no. 31 (7), pp. 1584–1592.
48. Wu R., Yan Y., Wang G. et al. Recent progress in magnesium-lithium alloys. Intellectual Materials, 2015, no. 60 (2), pp. 65–100.
49. Li C.Q., Xu D.K., Yu S. et al. Effect of icosahedral phase on crystallographic texture and mechanical anisotropy of Mg–4 % Li based alloys. Material of Science, 2017, no. 33 (5), pp. 475–480.
50. Li C.Q., Xu D.K., Wang B.J. et al. Suppressing effect of heat treatment on the Portevin-Le Chatelier phenomenon of Mg–4 % Li–6 % Zn–1,2 % Y alloy. Material of Science, 2016, no. 32 (12), pp. 1232–1238.
51. Yfantis C.D., Yfantis D.K., Anastassopoulou J. New magnesium alloys for bone tissue engineering: in vitro corrosion testing. WSEAS Transaction on Environment and Development, 2006, no. 2 (8), pp. 1110–1115.
52. Xu W., Birbilis N., Sha G. et al. A high-specific-strength and corrosion-resistant magnesium alloy. National Materials, 2015, no. 14 (12), pp. 1229–1235.
53. Bozhko S.A. The patterns of formation of the structure and properties of magnesium alloys when exposed to plastic deformation: thesis, Cand. Sc. (Tech.). Belgorod, 2016. 113 p.
54. Shafostov A.A. Investigation of the effect of alloying elements on the formation of texture and anisotropy properties of magnesium alloys: thesis, Cand. Sc. (Tech.). Moscow, 2011. 136 p.
55. Pawar S., Slater T.J.A., Burnett T.L. et al. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet. Acta Materialia, 2017, no. 133, pp. 90–99.
The article presents the results of a study of the operational properties of the VTP-1V grade material, including cold flow. It was found that the material of the VTP-1V grade hasn’t cold flow and, according to the complex of properties studied in the work, can be recommended as an alternative to layered polymeric composite materials used in the bolted joints of the aircraft wing rib. The possibility of operating VTP-1V in an environment of aggressive liquids was assessed and it was shown that the material is resistant to the effects of TC-1 fuel, including retaining low deformability under prolonged loading.
2. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
3. Kablov E.N. Chemistry in Aviation Materials Science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
4. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Mikhailin Yu.A. Structural polymer composite materials. 2nd ed. Saint Petersburg: Nauchnye osnovy i tekhnologii, 2016, 820 p.
7. A large reference book of a rubber worker: in 2 partss. Moscow: Tekhinform, 2012. Part 5: Rubber technology: Recipe building and testing. Trans. from English. Ed. J.S. Dick. Saint Petersburg: Scientific bases and technologies, 2010, 620 p.
8. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Development and modifying of elastomeric materials for application in all weather conditions. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 309–314.
9. Seals and sealing technology: reference book. Ed. A.I. Golubeva, L.A. Kondakov. Moscow: Mashinostroenie, 1986, 464 p.
10. Fedyukin D.L., Makhlis F.A. Technical and technological properties of rubbers. Moscow: Khimiya, 1985, 240 p.
11. Naumov I.S., Petrova A.P., Chaikun A.M. Rubber for sealing purposes and reduction of their combustibility. Vse materialy. Entsiklopedicheskiy spravochnik, 2013, no. 5, pp. 28–35.
12. Naumov I.S. Sealing rubbers of low flammability: thesis, Cand. Sc. (Tech.). M., 2016, 118 p.
13. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review). Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
14. Semenova S.N., Chaykun A.M., Suleymanov R.R. Ethylene-propylene-diene rubber and its use in rubber materials for special purposes (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 23–30. DOI: 10.18577/2071-9140-2019-0-3-23-30.
15. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concen-tration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
16. Chaykun A.М., Naumov I.S., Venediktova M.A., Alifanov E.V.. New researches of special purpose fluorosilicone rubber. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 60–65. DOI: 10.18577/2071-9140-2016-0-3-60-65.
17. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Rubbers, sealants, fireproof and heat-shielding materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
18. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Features of old-resistant rubbers on the basis on different unvulcanized rubbers. Trudy VIAM, no. 12, paper no. 04. Available at: http://www.viam-works.ru (accessed: April 13, 2021).
19. Buznik V.M. Modern materials science on the example of fluoropolymers. Ed. V.V. Kozik. Tomsk: Tomsk State University, 2012, vol. 1, 42 p.
20. Loginov B.A. The amazing world of fluoropolymers. 2nd ed., add. Moscow: Ninth Element, 2009, 168 p.
21. Sytyy Yu.V., Sagomonova V.A., Yurkov G.Yu., Tselikin V.V. New structural and functional PCMs based on thermoplastics and technologies for their molding. Aviatsionnaya promyshlennost, 2013, no. 2, p. 12.
22. Sytyj Ju.V., Kisljakova V.I., Sagomonova V.A., Nikolaeva M.F. New multi-layer sealing material VTP-2P. Aviacionnye materialy i tehnologii, 2011, no. 4, pp. 32–34.
23. Sytyy Yu.V., Kislyakova V.I., Tkachev A.A., Abakumova N.M., Rumyantseva T.V. Vibration-absorbing thermoplastic elastomer VTP-1V. Aviacionnye materialy i tehnologii, 2004, no. 3, pp. 30–31.
The paper presents the results of a study of the effect of non-covalent modifiers on the structure and properties of polymer filaments for FDM-printing based on ABS-plastic and carbon nanoparticles. The dependences of the characteristics of nanocomposites and filaments based on them to the type of functionalization have been established. The effect of the concentration of CNTs on the hardness, water absorption, electrical resistance, and shear strength for modified polymer filament has been investigated. The optimal formulations and technological parameters of FDM-printing of templates have been determined.
2. Kablov E.N., Semenova L.V., Petrova G.N. and other Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser,: Chemistry and Chemical Technology. 2016, vol. 59, no. 10, pp. 61.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Kraev I.D., Popkov O.V., Shuldeshov E.M., Sorokin A.E., Yurkov G.Yu. Prospects for the use of organosilicon elastomers in the development of modern polymer materials and coatings for various purposes. Trudy VIAM, 2017, no. 12 (60), paper no. 5. Available at: http://www.viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2017-0-12-5-5.
5. Sorokin A.E., Platonov M.M., Larionov S.A. Selective laser sintering of polymer compositions based on polyamide 12. Trudy VIAM, 2017, no. 9, paper no. 05. Available at: http://www.viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2017-0-9-5-5.
6. Kirin B.S., Lonskii S.L., Petrova G.N., So-rokin A.E. Materials for the 3D-printing on the basis of polyetheretherketones. Trudy VIAM, 2019, no. 4 (76), paper no. 03. Available at: http://viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2019-0-4-21-29.
7. Kablov E.N. Trends and guidelines for innovative development in Russia: Collection of scientific information materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
8. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 2016, vol. 83, pp. 389–405. DOI: 10.1007/s00170-015-7576-2.
9. Lobanov M.V., Voronov V.A., Kondrat’ev S.A., Govorov V.A., Bobrikov I.A., Balaguroc A.M., Belyaev A.A., Medvedev P.N., Lebedeva Yu.E., Sorokin A.E. Preparation of submicron CaCu3Ti4O12 dispersions and filled epoxy compositions based on them. Inorganic Materials, 2019, vol. 55, no. 8, pp. 856–863.
10. Petrova G.N., Larionov S.A., Sorokin A.E., Sapego Yu.A. Modern ways of processing of thermoplastics. Trudy VIAM, 2017, no. 11 (59), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 28, 2021). DOI: 10.18577/2307-6046-2017-0-11-7-7.
11. Kablov E.N. Additive technologies are the dominant feature of the national technology initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
12. Kablov E.N. Present and future of additive technologies. Metally of Evrazii, 2017, no. 1, pp. 2–6.
13. Schmid M., Kleijnen R., Vetterli M. et al. Influence of the Origin of Polyamide 12 Powder on the Laser Sintering Process and Laser Sintered Parts. Applied Sciences, 2017, vol. 7, pp. 462.
14. Turnkey continuous fiber 3D printing solutions for producing anisoprinted composite parts. Stronger, lighter and cheaper than metal or non-optimal composites. Available at: https://anisoprint.com/solutions (accessed: June 28, 2021).
15. The backbone of aluminum-strength composite parts. Available at: https://markforged.com/materials/continuous-fibers/continuous-carbon-fiber (accessed: June 28, 2021).
16. Liu Z., Lei Q., Xing S. et al. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. Journal of Materials Research and Technology, 2019, vol. 8, no. 5, pp. 3741–3751. DOI: 10.1016/j.jmrt.2019.06.034.
17. Heidari-Rarani M., Rafiee-Afarani M., Zahedi A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites, Part B, 2019, vol. 175, pp. 1–8.
18. Moumen A., Tarfaoui M., Lafdi K. Additive manufacturing of polymer composites: Processing and modeling approaches. Composites, Part B, 2019, vol. 171, pp. 166–182.
19. Popescu D., Zapciu A., Amza C. et al. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 2018, vol. 69, pp. 157–166.
20. Yang L., Lia Sh., Zhou X. et al. Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synthetic Metals, 2019, vol. 253, pp. 122–130.
21. Dawoud M., Taha I., Ebeid S. J. Strain sensing behaviour of 3D printed carbon black filled ABS. Journal of Manufacturing Processes, 2018, vol. 35, pp. 337–342.
22. Mahfuza H., Adnan A., Rangari V.K. et al. Enhancement of strength and stiffness of Nylon 6 filaments through carbon nanotubes reinforcement. Applied Physics Letters, 2006, vol. 88, no. 8, pp. 083119.
23. Luo J., Krause B., Pötschke P. Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications. AIMS Materials Science, 2016, vol. 3, no. 3, pp. 1107–1116.
24. Vijayan R., Ghazinezami A., Taklimi S.R. et al. The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Composites, Part B. 2019, vol. 156, pp. 28–42.
25. Mansurova I.A., Isupova O.Y., Burkov A.A. et al. Functionalization of 1d carbon nanostructures by components of curing system and their influence on the properties of the vulcanizates. Nanotechnologies in Russia, 2016, vol. 11, pp. 603–609.
26. Sandler J.K.W., Kirk J.E., Kinloch I.A. et al. Ultra-low electrical percolation threshold in carbon-nanotube epoxy composites. Polymer, 2003. vol. 44, no. 19, pp. 5893–5899.
27. Lobanov M.V., Voronov V.A., Larionov S.A. et al. A new method for producing anisotropic two-matrix materials with controlled spatial distribution of fillers using 3D printing. Proceedings of the IV All-Rus. conf. "The role of fundamental research in the implementation of "Strategic directions for the development of materials and technologies for their processing for the period up to 2030". Moscow: VIAM, 2018, pp. 213–233.
28. Wang J., Zhou H., Zhuang J., Liu Q. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites. Scientific Reports, 2013, vol. 3, pp. 3252.
29. Sorokin A.E., Pykhtin A.A., Larionov S.A. et al. Structure and properties of CNT modified filaments based on ABS plastic. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 4, pp. 1–16.
30. Paul D., Bucknell K. Polymer mixtures. Trans. from Engl. Ed. V.N. Kuleznev. St. Petersburg: Nauchnye osnovy i tekhnologii, 2009, vol. II: Functional properties. 606 p.
31. Solovyanchik L.V., Shashkeev K.A., Soldatov M.A. A method for controlling the electrical conductive properties of a polymer composition. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 184–194.
32. Solovyanchik L.V., Kondrashov S.V., Shashkeev K.A., Marachovskiy P.C., Soldstov M.A. A new approach to impart to polymer composites functional properties. Trudy VIAM, 2017, no. 4 (52), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 10, 2021). DOI: 10.18577/2307-6046-2017-0-4-5-5.
33. Ayewah D., Davis D., Krishnamoorti R. et al. A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties. Composites. Part A, 2010, vol. 41, no. 7, pp. 842–849.
34. Kuleznev V.N. Mixtures and alloys of polymers. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013, 216 p.
In this work, we studied the radio technical characteristics of two-matrix composites made by combining thermoplastic, modified carbon nanotubes (CNTs), templates with a network and figured structure, and polymer compositions based on epoxy resin containing iron powders and CNTs. It has been established that the implemented approach makes it possible to flexibly regulate the radio-technical properties of a two-matrix composite material by varying the structure and size of the cells of the thermoplastic template and the type of filler for the polymer composition based on epoxy resin.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. The formation of domestic cosmic materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
4. Vorshevsky A.A., Grishakov E.S. Ensuring electromagnetic compatibility of marine equipment in the event of electrostatic discharges. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta, ser.: Marine equipment and technology, 2020, no. 1, pp. 106–114.
5. Safina R.M., Schkinders M.S. Increasing the noise immunity of the control and access control system when exposed to electrostatic discharge. Zhurnal radioelektroniki, 2020, no. 8, p. 15.
6. Bodylov A.S., Ryabishin L.A. Electromagnetic compatibility of controlled static converters with a supply network. Materials of the III Volga Sc. Conf. "Instrument-making and automated electric drive in the fuel and energy complex and housing and communal services". Kazan: Publ. house Kazan State Energ. University, 2017, vol. 2, pp. 98–102
7. Kondrashov S.V., Gunyaeva A.G., Shashkeev K.A., Barinov D.Ya., Soldatov M.A., Shevchenko V.G., Muzafarov A.M. Electrically-conductive hybrid polymer composite materials on the basis of noncovalent functional carbon nanotubes. Trudy VIAM, 2016, no. 2 (38), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 31, 2021). DOI: 10.18577/2307-6046-2016-0-2-10-10.
8. Bannyj V.A., Ignatenko V.A. The use of polymer radio-absorbing materials in solving the problem of electromagnetic security. Problemy zdorovya i ekologii, 2016. № 3 (49), pp. 9–13.
9. Devin K.L., Agafonova A.S., Sokolov I.I. Prospects for the use of radio-absorbing materials to ensure electromagnetic compatibility of avionics. Trudy VIAM, 2020, no. 8 (90), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 6, 2020). DOI: 10.18577/2307-6046-2020-0-8-94-100.
10. Savitsky A.I., Kulikovich D.B., Petrova E.S., Bannik V.A., Gramameva L.I. Study of the possibilities of optical location of radio absorbing materials with a fiber-porous structure. Fundamentalnye problemy radioelektronnogo priborostroeniya, 2017, vol. 17, no. 1, pp. 208–211.
11. Kraev I.D., Popkov O.V., Shuldeshov E.M., Sorokin A.E., Yurkov G.Yu. Prospects for the use of organosilicon elastomers in the development of modern polymer materials and coatings for various purposes. Trudy VIAM, 2017, no. 12 (60), paper no. 5. Available at: http://www.viam-works.ru (accessed: December 6, 2020). DOI: 10.18577/2307-6046-2017-0-12-5-5.
12. Shcherbinin S.V., Volchkov S.O., Svalov A.V., Vaskovsky V.O., Kurland G.V. Measuring the parameters of ferromagnetic microwaves in the frequency range from 0.1 to 20 GHz. Materialovedenie, 2019, no. 7, pp. 12–18.
13. The absorber of electromagnetic waves of the Gigahertz range: pat. 2657018 Rus. Federation, no. 2017126740; filed 26.07.17; publ. 08.06.18.
14. Bespalova E.E., Kondrashov E.K. Features of updating of a composition of a fireproof material for anechoic chambers when changed of parameters radio absorbing filler. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 48–52. DOI: 10.18577/2071-9140-2014-0-2-48-52.
15. Antipova E.A., Bothanogova E.D., Agafonova A.S., Belyaev A.A. Construction radio absorbing material of a three-layer structure with a matching layer. Kompozitnyy mir, 2014. № 3 (54), pp. 32–35.
16. Ivanova L.N., Borovik I.A., Kohnik D.D., Polikikova A.A., Chistyev V.A., Semenenko V.N. Radio-absorbing coating with high mechanical strength for an antenna platform. Elektronika i mikroelektronika SVCh, 2017. № 1 (1), pp. 55–62.
17. Roldugin V.I., Rudoy V.M. Absorption of electromagnetic radiation by nanoparticle in a nanocomposite: output for the approximation of Maxwell-harnetta. Kolloidny zhurnal, 2017, vol. 79, no. 6, pp. 778–784.
18. Prokhorov MA The use of carbon nanomodifiers in composites. Politekhnicheskiy molodezhny zhurnal, 2017. № 7 (12), p. 15.
19. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
20. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review). Trudy VIAM, 2016, no. 3 (39), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 25, 2021). DOI: 10.18577/2307-6046-2016-0-3-7-7.
21. Ivahnenko Yu.A., Varrik N.M., Maksimov V.G. The high-temperature radiolucent ceramic composite materials for the radomes and other products of aviation engineering (review). Trudy VIAM, 2016, no. 5, paper no. 05. Available at: http://www.viam-works.ru (accessed: May 25, 2021). DOI: 10.18577/2307-6046-2016-0-5-5-5.
22. Gorenshev V.N., Kolesov V.V., Fionov A.S., Erichman N.S. Multilayer coatings with variable electrodynamic characteristics based on filled polymer matrices. Zhurnal radioelektroniki, 2016. № 11, pp. 1-16.
23. Thomassin J.-M., Jerome C., Pardoen T. et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Material Science and Engineering. R, 2013, vol. 74, pp. 211–232.
24. Sandler J.K.W., Kirk J.E., Kinloch I.A. et al. Ultra-low electrical percolation threshold in carbon-nanotube epoxy composites. Polymer, 2003, vol. 44, no. 19, pp. 5893–5899.
25. Silva V.A., Folgueras L., Candido G.M. et al. Nanostructured Composites Based on Carbon Nanotubes and Epoxy Resin for Use as Radar Absorbing Materials. Materials Research, 2013, vol. 16, no. 6, pp. 1299–1308.
26. Teber A., Cil K., Yilmaz T. et al. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials. Aerospace, 2017, vol. 4, pp. 2–19.
27. Wang Z., Wu L., Zhou J. et al. Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber. Journal of Physical Chemistry, 2013, vol. 117, pp. 5446−5452.
28. Jia X., Wang J., Zhu X. et al. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. Journal Alloys and Compounds, 2017, vol. 697, pp. 138–146.
29. Du Y., Liu W., Qiang R. et al. Shell Thickness-Dependent Microwave Absorption of Core–Shell Fe3O4C Composites. ACS Applied Materials and Interfaces, 2014, vol. 6, pp. 12997–13006.
30. Andreev A.S., Kazakova М.A., Ishchenko A.V. et al. Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles. Carbon, 2017, vol. 114, pp. 39–49.
31. Subramanian M.A., Li D., Duan N. et al. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. Journal of Solid State Chemistry, 2000, vol. 151, pp. 323–325.
32. Kadkhodayan H., Seyed Dorraji M.S., Rasoulifard M.H., Amani-Ghadim A.R. Enhanced microwave absorption property of Fe3O4/CaCu3−xMgxTi4−ySnyO12(0 ≤ x, y ≤ 1)/graphene oxide nanocomposites in epoxy vinyl ester resin. Journal of Material Science, 2017, vol. 28, pp. 12535–12544.
33. Park S.H., Theilmann P., Yang K. et al. The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites. Applied Physical Letters, 2010, vol. 96, pp. 043115.
34. Chen H.-T., Padilla W.J., Zide J.M.O. et al. Active terahertz metamaterial devices. Nature, 2006, vol. 444, pp. 597–600.
35. Wang J., Zhou H., Zhuang J., Liu Q. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites. Scientific Reports, 2013, vol. 3, pp. 32–52.
36. Krasilnikova O.K., Pogosyan A.S., Serebryakov N. V. et al. Receiving carbon nanomaterials with use of porous aluminum oxide as templata. Fizikokhimiya poverkhnosti zachshita materialov, 2008, no. 44, pp 389–394.
37. Chizari K., Arjmand M., Liu Z. et al. Three-Dimensional Printing of Highly Conductive Polymer Nanocomposites for EMI Shielding Applications. Material Today Communication, 2017, vol. 11, pp. 112–118.
38. Postiglione G., Natale G., Griffini G. et al. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Composites. Part A, 2015, vol. 76, p. 110–114.
39. Kennedy Z.C., Christ J.F., Evans K.A. 3D-Printed Poly(vinylidene fluoride) / Carbon Nanotube Composites as a Tuneable, Low-Cost Chemical Vapour Sensing Platform. Nanoscale, 2017, vol. 9, pp. 5458–5467.
40. Gnanasekaran K., Heijmans T., Van Bennekom S. et al. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today, 2017, vol. 9. Р. 21–28.
41. Gao P., Hunter A., Benavides S. et al. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing. ACS Applied Materials and Interfaces, 2016, vol. 8, pp. 3386–3395.
42. Sun J., Dawood A., Otter W.J. et al. Microwave characterization of low-loss FDM 3-D printed ABS whis dielectric-filled metal-pipe rectangular waveguide spectroscopy. IEEE ACCESS, 2019, vol. 7. Р. 95455–95486.
Currently, compositions based on a mixture of phenol-formaldehyde resins of the resole and novolac types are of considerable interest. In the first part of the review examples of the use of resole-novolac phenol-formaldehyde resins in adhesive compositions, prepregs, fiberglass plastics and refractory masses are given. The advantages of using resole-novolac compositions in comparison with resole and novolac phenol-formaldehyde oligomers by increasing the physical and mechanical characteristics, fire resistance and fireproof properties are shown.
2. Kablov E.N. The materials of the new generation are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2, pp. 16–22.
3. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Satdinov R.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. РСМ low-pressure air ducts in aircraft. Trudy VIAM, 2016, no. 8, paper no. 8. Available at: http://www.viam-works.ru (accessed: July 2, 2021). DOI: 10.18577/2307-6046-2016-0-8-8-8.
6. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 2, 2021). DOI: 10.18577/2307-6049-2019-0-7-26-33.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Polymer composite materials: properties, structure, technology: tutorial. Ed. A.A. Berlin. St. Petersburg: Professiya, 2009, 560 p.
9. Martin R.V. Chemistry of phenolic resins. Trans. from Engl. Moscow: NIIPM, 1962, 168 p.
10. Knop A., Shab V. Phenolic resin and materials based on them. Trans. from Engl. Moscow: Khimiya, 1983, 280 p.
11. Encyclopedia of polymers. Ed. V.A. Kabanov. Moscow: Sovetskaya Entsyklopedia, 1977, vol. 3, pp. 710–720.
12. Valgin V.D., Sokolov V.A., Polykin G.M., Fanar A.Ya., Gruzdev N.V., Rushkin V.M. Analysis and modeling of adiabatic curing reactions of phenolofood degree resists. Plasticheskiye massy, 1986, no. 10, pp. 5–7.
13. Phenol Formaldehyde Resins: pat. 763697 AU, no. 200015391; filed 25.11.99; publ. 31.07.03.
14. Moroz S.A., Proskova L.I., Lykov G.P., Chekina O.V., Radchenko S.I. Phenol formaldehyde binder for the manufacture of shell forms in the production of metal castings. Plasticheskiye massy, 1987, no. 8, pp. 44–46.
15. Kardashov D.A., Petrova A.P. Polymeric adhesives. Creation and application. Moscow: Khimiya, 1983, 256 p.
16. Petrova A.P. Adhesive materials: directory. Ed. E.N. Kababov, S.V. Reznichenko. Moscow: Kauchuk and Rezina, 2002, 196 p.
17. Heat-resistant adhesive composition: pat. 2002786 Rus. Federation, no. 4948096/05; filed 24.06.91; publ. 15.11.93.
18. Resol-type phenol resin composition and method for curing the same: pat. 7041724 US, no. 09/892457; filed 28.06.01; publ. 09.05.06.
19. The method of obtaining resolves: pat. 2234519 Rus. Federation, no. 2000127719/04; filed 30.12.99; publ. 20.08.04.
20. Binding: pat. 2123502 Rus. Federation, no. 97120915/04; filed 01.12.97; publ. 20.12.98.
21. Berlin A.A., Tellyakhovsky G.I., Aseeva R.M., Belova G.V., Baver A.I. Curing resolon phenol-formaldehyde resins. Plasticheskiye massy, 1969, no. 1, pp. 23–25.
22. Heat-resistant adhesive composition: pat. 2203917 Rus. Federation, no. 20011225969/04; filed 24.09.01; publ. 10.05.03.
23. Heat-resistant adhesive composition: pat. 2276679 Rus. Federation, no. 2004134629/04; filed 29.11.04; publ. 20.05.06.
24. Phenoloformaldehyde binder, prepreg on its basis and the product made of it: pat. 2333922 Rus. Federation, no. 2007107679/04; filed 01.03.07; publ. 20.09.08.
25. Resin composition, prepreg, and phenolic resin paper base laminate: pat. 268945 CA, no. 20030106882; filed 27.03.03; publ. 21.12.06.
26. Phenol resin composition, prepreg using the same, and phenol resin laminate with paper base: pat. 2005154592 JP, no. 20030395484; filed 26.11.03; publ. 16.06.05.
27. Phenol resin composition and phenol resin laminated sheet using the same: pat. 2002249638 JP, no. 20010051390; filed 27.02.01; publ. 08.09.02.
28. Phenol resin composition, prepreg and paper substrate phenolic resin laminate: pat. 2003176398 JP, no. 20010377994; filed 12.12.01; publ. 24.06.03.
29. Plastic refractory mass: pat. 2353602 Rus. Federation, no. 2007133981/03; filed 11.09.07; publ. 27.04.09.
30. Mix for the manufacture of foundry shell forms and rods in heated snap: pat. 1090482 USSR, no. 3566051/22-02; filed 24.03.83; publ. 05.05.84.
31. Mix for the manufacture of casting rods and forms, mainly shell, in the heated snap: Pat. 1616754 USSR, no. 4669302/27-02; filed 01.02.89; publ. 30.1290.
The effect of the modifying additive ZrO2 on the rheological properties, the processes of structure and phase formation of the compositions of the Y2O3–Al2O3–SiO2 system obtained by the sol-gel method has been investigated. It was found that the temperature range of crystallization of the compositions of the Y2O3–Al2O3–SiO2 system with the addition of ZrO2 is 1020–1270 °C and with an increase in the concentration of zirconium oxide, the amount of the main crystalline phase of yttrium pyrosilicate (β-Y2Si2O7) decreases and the concentration of the zirconium-containing phase – the tetragonal modification of zirconium oxide and zirconium silicate ZrSiO4 -increases.
2. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
3. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Ceramic materials aviation engineering (review). Trudy VIAM, 2018, no. 12 (72), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 7, 2021). DOI: 10.18577/2307-6046-2018-0-12-54-61.
4. Kablov E.N., Grashchenkov D.V., Shchegoleva N.E., Orlova L.A., Suzdaltsev E.I. Radiotransparent glass ceramics based on strontium aluminosilicate glass. Ogneupory i tekhnicheskaya keramika, 2016, no. 6, pp. 31–38.
5. Evdokimov S.A., Solntsev S.St., Yermakova G.V., Davletchin D.I. High-temperature protective coating for C–C composite materials. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 82–87. DOI: 10.18577/2071-9140-2016-0-3-82-87.
6. Simonenko E.P., Simonenko N.P., Sevastianov V.G., Grashchenkov D.V., Kuznetsov N.T., Kablov E.N. Functionally gradient composite material SiC / (ZrO2 – HfO2 – Y2O3) obtained using the sol-gel method. Kompozity i nanostruktury, 2011, no. 4, pp. 52–64.
7. Aparacio M., Duran A. Yttrium silicate Coatings for Oxidation Protection of Carbon-silicon Carbide Composites. Journal of American Ceramic Society, 2000, vol. 83, no. 6, pp. 1351–1355.
8. Sun L., Shi X., Liu X., Fang J., Liu C., Zhang J. Joining of Cf/SiC composites and Si3N4 ceramic with Y2O3–Al2O3–SiO2 glass filler for high-temperature applications. Ceramic International, 2021, vol. 47, no. 11, pp. 15622–15630.
9. Atkinson A., Segal D.L. Some Recent Developments in Aqueous Sol-Gel Processing. Journal of Sol-Gel Science and Technology, 1998, no. 13, pp. 133–139.
10. Wang L., Fan S., Sun H. et al. Pressure-less joining of SiCf/SiC composites by Y2O3–Al2O3–SiO2 glass: Microstructure and properties. Ceramic International, 2020, vol. 46, no. 17, pp. 27046–27056.
11. Zhou L., Huang J., Cao L. et al. A novel design of oxidation protective β-Y2Si2O7 nanowire toughened Y2SiO5/Y2O3–Al2O3–SiO2 glass ceramic coating for SiC coated carbon/carbon composites. Corrosion Science, 2018, vol. 135, pp. 233–242.
12. Voronov Vs.A., Lebedeva Yu.E., Sorokin O.Yu., Vaganova M.L. Investigation of the high-temperature coatings properties on the basis of an yttrium-alumosilicate system for the protection of SiC materials from the action of an oxidizing environment. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 63–73. DOI: 10.18577/2071-9140-2018-0-4-63-73.
13. Simonenko E.P., Simonenko N.P., Kopitsa G.P., Almasy L., Gorobtsov F.Yu., Sevastyanov V.G., Kuznetsov N.T. Evolution during heat treatment of the mesostructure of highly dispersed Y3Al5O12 obtained by the sol-gel method. Zhurnal neorganicheskoy khimii, 2018, vol. 63, no. 6, pp. 661–669.
14. Simonenko N.P., Simonenko E.P., Sevastyanov V.G., Kuznetsov N.T. Preparation of Nanostructured Thin Films of Yttrium Aluminum Garnet (Y3Al5O12) by Sol-Gel Technology. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 6, pp. 667–673.
15. Mackenzie J.D. Sol-Gel Research-Achievements Since 1981 and Prospects for the Future. Journal of Sol-Gel Science and Technology, 2003, no. 26, pp. 23–27.
16. Zarzyki J. Past and Present of Sol-Gel Science and Technology. Journal of Sol-Gel Science and Technology, 1997, no. 8, pp. 17–22.
17. Sainz М.A., Osendi M.I., Miranzo P. Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surface & Coatings Technology, 2008, no. 202, pp. 1712–1717.
18. Harrysson R., Vomacka P. Glass formation in the system Y2O3–Аl2О3–SiO2 under conditions of laser melting. Journal of the European Ceramic Society, 1994, no. 14, pp. 377–382.
19. Kolitsch U., Seifert H.J., Ludwig T., Aldinger F. Phase equilibria and crystal chemistry in the Y2O3–Аl2О3–SiO2 system. Journal of Materials Research, 1999, vol. 14, no. 2, pp. 447–455.
20. Nasiri N.A., Patra N., Horlait D. et al. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites. Journal of American Ceramic Society, 2016, vol. 99, pp. 589–596.
21. Kolitsch U., Seifert H.J., Ludwig T., Aldinger F. Phase equilibria and crystal chemistry in the Y2O3–Аl2О3–SiO2 system. Journal of Materials Research, 1999, vol. 14. no. 2, pp. 447–455.
22. Fernandez-Carrion A.J., Allix M., Becerro A.I. Thermal expansion of rare-earth pyrosilicates. Journal of American Ceramic Society, 2013, vol. 96, pp. 2298–2305.
23. Lebedeva Yu.E., Grashhenkov D.V., Popovich N.V., Orlova L.A., Chajnikova A.S. Development and research of the thermostable coverings, received sol-gel method in Y2O3–Al2O3–SiO2system, for SiC-containing materials. Trudy VIAM, no. 12, paper no. 03. Available at: http://www.viam-works.ru (accessed: July 7, 2021).
24. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Based on the analysis of recent publications of scientific and technical literature, data on the production of zirconium oxide fibers used for the manufacture of high-temperature thermal insulation materials are presented. Information is provided on various methods of obtaining zirconium oxide fibers (methods of impregnation of the template and molding of the mixture, sol-gel method of spinning a fiber-forming precursor solution), as well as on the technique of fiber molding (manual pulling, dry and wet spinning, blowing and electrospinning). The use of such fibers for the production of thermal insulation materials (felts, cords and blocks) instead of currently existing materials made of aluminum oxide-based fibers can significantly increase the operating temperatures of the thermal protection systems.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Babachov V.G., Stepanova E.V., Zimichev A.M., Basargin O.V. Oxide continuous fibers as a part of flexible high temperature insulation. Aviation materials and technology, 2021. no. 1 (62). paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 8, 2021). DOI: 10.18577/2713-0193-2021-0-1-34-43.
5. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and pro-perties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
6. Saffil® Alumina Fibers. Available at: https://www.unifrax.com/product/saffil-fibers (accessed: July 1, 2021).
7. Polycrystalline Alumina Fiber MAFTECTM. Available at: https://www.m-chemical.co.jp/en/products/departments/mcc/maf-metal/product/1201261_7532.html (accessed: July 2, 2021).
8. Fibers. Available at: www.zircarceramics.com/product/category/fibers (accessed: July 2, 2021).
9. Unifrax product catalog. Available at: www.unifrax.com/product-category/fibers/?productcategory=231 (accessed: July 4, 2021).
10. Zircar Zirconia Inc. product catalog. Available at: www.zircarzirconia.com/products/ceramic-textiles#zirconia (accessed: July 4, 2021).
11. STA Universe group Co. product catalog. Available at: http://stauniversegp.com/2200ZirconiaFiberBoard (accessed: August 4, 2021).
12. Zhigachev A.O., Golovin Yu.I., Umrikhin A.V. et al. Ceramic materials based on zirconium dioxide. Ed. Yu.I. Golovin. Moscow: Tekhnosfera, 2018, 358 p.
13. Bokiy G.B. Crystal chemistry. Moscow: Nauka, 1971, 00 p.
14. Polezhaev Yu.M. Low-temperature cubic and tetragonal forms of zirconium dioxide. Zhurnal fizicheskoy khimii, 1967, vol. 41, no. 11, pp. 2958–2959.
15. Voronkov A.A., Pyatenko Yu.A., Shumyatskaya N.G. Crystal chemistry of zirconium minerals and their artificial analogues. Moscow: Nauka, 1978, 184 p.
16. Yashima M., Noma T., Ishizava N. Effects of Non-Compositional Inhomogeneity on t → m Phase Transformation during Grinding of Various Rare-Earth-Doped Zirconia. Journal of the American Ceramic Society, 2005, vol. 74, no. 12, pp. 3011–3016.
17. Bechepeche A.P., Treu O., Longo E., Paiva-Santos C. Experimental and theoretical aspects of the stabilization of zirconia. Journal of Materials Science, 1999, vol. 34, no. 11, pp. 2751–2756.
18. Stubican V.S. Phase Equilibria and Metastabilities in the Systems ZrO2–MgO, ZrO2–CaO, and ZrO2–Y2O3. Advances in Ceramics, 1988, vol. 24, pp. 71–82.
19. Milovich F.O. Structure and mechanical properties of ZrO2 crystals partially stabilized by Y2O3: thesis, Cand. Sc. (Phys.&Math.). Moscow, 2013, 24 p.
20. Stabilized Tetragonal Zirconia Fibers and Textiles: pat. 3860529 USA, no. 249057; field 01.05.72; publ. 14.06.75.
21. Process for Preparation of Zircon Coated Zirconia Fibers: pat. 3861947 USA, no. 29376872; field 02.10.72; publ. 25.01.75.
22. Zirconium Oxide Fibers and Process for Their Preparation: pat. 4937212 USA, no. 286654; field 19.12.88; publ. 26.06.90.
23. Fine coagulated particles of ultrafine monoclinic zirconia crystals oriented in a fiber bundle-like form and method of manufacturing them: pat. 4722833 USA, no. 93996186; field 10.12.86; publ. 02.02.88.
24. Production of zirconia filament: pat. Н0491227 JP, no. 19900199017; field 30.07.90; publ. 24.03.92.
25. Method for preparing fully-stabilized tetragonal-phase zirconia crystal fibers: pat. 102775143 CN, no. 20121299746; field 22.08.12; publ. 14.11.12.
26. Method for preparing organic poly-zirconium precursor or silk-thrawn liquor thereof for zirconia fiber production by one-step solvent method: pat. 102766154 CN, no. 201210264131, field 28.07.12, publ. 07.11.12.
27. Marshall D.B., Lange F.F., Morgan P.D. High-Strength Zirconia Fibers. Journal of the American Ceramic Society, 2005, vol. 70, no. 8, pp. 187–188.
28. Kamiya K., Takahashi K., Maeda T. et al. Sol-gel Derived CaO and CeO2-stabilized ZrO2-fibers – Conversion Process of Gel to Oxide and Tensile Strength. Journal of 6the European Ceramic Society, 1991, vol. 7, pp. 295–305.
29. Li J., Jiao X., Chen D. Preparation of Zirconia Fibers via a Simple Aqueous Sol-Gel Method. Journal of Dispersion Science and Technology, 2007, vol. 28, pp. 531–535.
30. Zhao Y., Tang Y., Guo Y., Bao X. Studies of electrospinning process of zirconia nanofibers. Fibers and Polymers, 2010, vol. 11, no. 8, pp. 1119–1122.
31. Bussarin K., Manop P. Fabrication of Ceramic Nanofibers Using Atrane Precurso. Nanofibers. Ed. by A. Kumar. INTECH, Croatia, 2010, pp. 367–382.
32. Qin D., Gu A., Liang G., Yuan L. A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin. Royal Society of Chemistry Advances, 2012, no. 2, pp. 1364–1372.
33. Sun G.X., Liu F.T., Bi J.Q., Wang C.A. Electrospun zirconia nanofibers and corresponding formation mechanism study. Journal of Alloys and Compounds, 2015, vol. 649, no. 15, pp. 788–792. DOI: 10.1016/J.JALLCOM.2015.03.068.
34. Тyurin A.I., Rodaev V.V., Razlivalova S.S., Vasyukov V.M. Investigation of the influence of electrospinning parameters on the control of the morphology and diameter of nanofibers zirconium acetylacetonate/polyacrylonitrile. Mezhdunarodny nauchno-issledovatel'skiy zhurnal, 2019, no. 9 (87), pp. 67–70. DOI: 10.23670/IRJ.2019.87.9.011.
35. Korenkov V.V., Rodaev V.V., Shuklinov A.V. et al. Synthesis and properties of multifunctional ceramic nanofibers obtained by electrospinning. Vestnik TGU, 2013, vol. 18, is. 6, pp. 3156–3159.
36. Istomin A.V., Kolyshev S.G. Electrostatic method of forming ultrathin fibers of refractory oxides. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 40–46. DOI: 10.18577/2071-9140-2019-0-2-40-46.
37. Abe Y., Kudo T., Tomioka H. et al. Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction. Journal of Materials Science, 1998, vol. 33, pp. 1863–1870.
38. Pullar R.C., Taylor M.D., Bhattacharya A.K. The manufacture of partially-stabilised and fully-stabilised zirconia fibres blow spun from an alkoxide derived aqueous sol-gel precursor. Journal of the European Ceramic Society, 2001, vol. 21, pp. 19–27.
39. Varrik N.M., Ivahnenko Ju.A. Features of producing zirconia fibers (review). Trudy VIAM, 2015, no. 10, paper no. 08. Available at: http://www.viam-works.ru (accessed: July 8, 2021). DOI: 10.18577/2307-6046-2015-0-10-8-8.
40. Balinova Yu.A., Varrik N.M., Istomin A.V., Lyulyukina G.Yu. Obtaining zirconium oxide fibers by electrospinning. Steklo i keramika, 2020, no. 8, pp. 30–35.
41. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Solntcev S.S. Al2O3 and ZrO2 ceramic materials obtained by sol-gel method. Trudy VIAM, 2021, no. 4 (98), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 8, 2021). DOI: 10.18577/2307-6046-2021-0-4-61-73.
The phase structure, adhesion and physical mechanical properties, water resistance of varnish coatings on the basis of the modified and not modified epoxy filmformers, with organic silicon ammine «AСOT-2» and low-molecular «ПO-200» polyamide as curing agents. It is established that the process of structurization of unfilled epoxy compositions depends on each component of polymeric system. The received results of determination of adhesion, physical mechanical properties, water resistance correlate with results of researches of phase structure of the coatings received on the basis of modified and not modified epoxy compositions, with organic silicon ammine «AСOT-2» and low-molecular «ПO-200» polyamide as curing agents.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: UB RAS, 2016, pp. 25–26.
3. Zhitomirskiy G.I. Aircraft design. Moscow: Mashinostroyenie, 1991, 400 p.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
5. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Strength tests and researches of aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
6. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
7. Chebotarevsky V.V., Kondrashov E.K. Technology of paint and varnish coatings in mechanical engineering. Moscow: Mashinostroyenie, 1978, 295 p.
8. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
9. Kvasnikov M.Yu., Zamshin V.A., Kudlo V.L., Ilina N.S., Chinov V.V., Nepochatov V.M. New technology for production of electrophoretic coatings on the parts of a helicopter operating in fretting-corrosion conditions. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 49–55. DOI: 10.18577 / 2071-9140-2019-0-4-49-55.
10. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: January 18, 2021). DOI: 10.18577/2307-6046-2019-0-5-62-67.
11. Yakovlev A.D., Yakovlev S.A. Functional paintwork. Saint Petersburg: Khimizdat, 2016, 272 p.
12. Kochnova Z.A., Sorokin M.F., Zakharova A.A., Cherebylo I.A. Coatings with increased adhesion to anodized aluminum and its alloys. Lakokrasochnye pokrytiya i ikh primenenie, 1980, no. 4, pp. 32–34.
13. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Development of aviation paints and varnishes. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 5, pp. 49–54.
14. Filichkina V.N. Current state and development trends in the production and consumption of epoxy resins. Moscow: NIITEKhIM, 1988, is. 8.18 p.
15. Moshinsky L.Ya. Epoxy resins and hardeners (structure, properties, chemistry and topology of curing). Tel Aviv, 1995, 370 p.
16. Mostovoy A.S., Panova L.G. Investigation of the possibility of using low molecular weight polyamide PO-300 as a "cold" hardener for epoxy oligomers. Plasticheskiye massy, 2016, no. 1–2, pp.16–18.
17. Noskov A.M., Novikov N.I. Curing of glycidyl ethers with amines in the presence of hydroxyl groups. Zhurnal prikladnoy khimii, 2008, vol. LW, no. 12, pp. 2733–2737.
18. Petrov G.N., Sinaisky A.G., Dalgren I.V. Liquid hydrocarbon rubbers and their areas of application. Klei. Germetiki. Tekhnologii, 2009, no. 10, PP. 24–27.
19. Yulovskaya V.D. Oligomers. Rubber-oligomeric compositions, structure and properties: textbook. Moscow, 2008, 46 p.
20. Chalykh A.E., Kochnova Z.A., Lark E.S. Compatibility and diffusion in epoxy oligomer – liquid carboxylate rubbers systems. Vysokomolekulyarnye soedineniya. Ser. A, 2001, vol. 43, no. 12, pp. 2147–2155.
21. Kablov V.F. System technology of rubber-oligomeric compositions. Oligomers-2009. Moscow, 2009, pp. 162–191.
22. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. The main directions of improving the operational, technological and environmental characteristics of paint and varnish coatings for aviation technology. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
23. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Pyrikov A.V., Loiko D.P., Kochergin Yu.S. Modification of epoxy resins with liquid polysulfide and carboxylated butadiene rubbers. Klei. Germetiki. Tekhnologii, 2010, no. 1. P. 28–33.
25. Kuznetsova V.A., Marchenko S.A., Zhelez-nyak V.G., Emelyanov V.V. Influence of the spatial structure of reinforcing fillers on the properties of the paint coatings. Trudy VIAM, 2020, no. 9 (91), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 9, 2021). DOI: 10.18577/2307-6046-2020-0-9-96-104.
The article presents the results of work on improving the corrosion resistance of magnets of the REM–Fe–B system manufactured in China, by applying an ion-plasma coating of the SDP-1T + VSDP-13 system on an industrial vacuum-arc installation MAP-3. A comparative assessment of the tread protection of the vacuum-arc coating of the SP-1T + VSP-13 system was carried out with an already applied Ni–Cu–Ni coating under conditions of accelerated cyclic corrosion tests at a temperature of 300 °C. The coating of the SDP-1T + VSDP-13 system, applied in the FSUE «VIAM», creates a much more resistant protection of the magnets of the REM–Fe–B system from corrosion compared to the electroplating of the Ni–Cu–Ni system, manufactured in China.
2. Kablov E.N., Ospennikova O.G., Piskorskii V.P., Korolev D.V., Morgunov R.B., Kunitsyna E.I., Talantsev A.D. Competition of Single-ion Anisotropy of Sm and Dy ions During the Spin-reorientation Transition in (Nd1 – x – ySmxDyy)(FeCo)B Supermagnets. Physics of the Solid State, 2016, vol. 58, no. 7, pp. 1320–1324.
3. Dmitriev A.I., Kunitsyna E.I., Morgunov R.B., Kucheryaev V.V., Valeev R.A., Piskorskii V.P., Ospennikova O.G., Kablov E.N. Effect of Samarium Impurity on the Relaxation of the Magnetization of a (NdDy)(FeCo)B alloy. Physics of the Solid State, 2016, vol. 58, no. 8, pp. 1582–1586.
4. Savchenko E.S. Formation of the structure and magnetic properties of the Fe2NiAl alloy after casting and quenching of the melt: thesis, Cand. Sc. (Tech.). Moscow, 2016, 150 p.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Vinogradov S.S., Nikiforov A.A., Balahonov S.V., Leshhev K.A. Ni–B chemical coating’s structure and properties investigation. Trudy VIAM, 2014, no. 12, paper no. 7. Available at: http://www.viam-works.ru (accessed: June 21, 2021). DOI: 10.18577/2307-6046-2014-0-12-7-7.
7. Evdokimov A.A., Petrova A.P., Pavlovskiy K.A., Gulyaev I.N. The influence of climatic ageing on the properties of PCM-based epoxy resin systems. Trudy VIAM, 2021, no. 3 (97), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 21, 2021). DOI: 10.18577/2307-6046-2021-0-3-128-136.
8. Vinogradov S.S., Nikiforov A.A., Zakirova L.I. Cadmium replacement. Stage 2 – final. Galvanic thermal coating of zinc–tin system – real alternative to cadmium plating. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 59–66. DOI: 10.18577/2071-9140-2019-0-3-59-66.
9. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 71–81.
11. Kosmin A.A., Budinovskiy S.A., Matveyev P.V., Smirnov A.A. Research of sulfide-oxide corrosion resistance of ZhS36 nickel superalloy with different types of ion-plasma coatings in temperature range 850–900°С. Trudy VIAM, 2015, no. 12, paper no. 05. Available at: http://www.viam-works.ru (accessed: June 21, 2021). DOI: 10.18577/2307-6046-2015-0-12-5-5.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Piskorsky V.P., Korolev D.V., Valeev R.A., Morgunov R. B., Kunitsyna E.I. Physics and engineering of permanent magnets. Ed. E.N. Kablov. Moscow: VIAM, 2018, 360 p.
14. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
15. Baranov A.N., Guseva E.A., Komova E.M. Investigation of the corrosion resistance of steels used for the manufacture of dredging equipment for gold mining. Sistemy. Metody. Tekhnologii, 2014, no. 1 (21), pp. 102–106.
16. Roslyakov V.I. Increasing corrosion resistance and reliability of household appliances during operation. Tekhniko-tekhnologicheskiye problemy servisa, 2012, no. 4 (22). S. 29–32.
17. Zamaletdinov I.I. Corrosion and protection of metals. Corrosion of powder materials: textbook. Perm, 2007, 188 p.
18. Rossina N.G., Popov N.A., Zhilyakova M.A., Korelin A.V. Corrosion and protection of metals: textbook: in 2 parts. Ekaterinburg, 2019. Part 1: Methods of research of corrosion processes, 108 p.
A method is proposed for the determination of titanium and zirconium by inductively coupled plasma atomic emission spectrometry in aluminum alloys. Analytical lines of titanium and zirconium free from other elements significant spectral overlaps are selected. The selection of the sample preparation method was carried out, namely – dissolution in concentrated nitric acid. Studies of the metrological characteristics of the technique were carried out: for titanium and zirconium contents from 0.05 to 0.3 % of the mass. the accuracy index is no more than 5 % rel., which fully ensures the possibility of analytical control of the content of titanium and zirconium in products from aluminum alloys.
2. Kuznetsov A.O., Oglodkov M.S., Klimkina A.A. The influence of chemical composition on structure and properties of Al–Mg–Si alloy. Trudy VIAM, 2018, no. 7 (67), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 7, 2021). DOI: 10.18577/2307-6046-2018-0-7-3-9.
3. Kablov E.N., Belov E.V., Trapeznikov A.V., Leo- nov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviacionnye materialy i tehnologii, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 12, 2021). DOI: 10.18577/2713-0193-2021-0-2-24-34.
4. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
5. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Oglodkov M.S. Experience and prospects of using aluminum-lithium alloys in aircraft and space technology. Metallurg, 2021, no. 1, pp. 62–70.
6. Benarieb I., Ber L.B., Antipov K.V., Sbitneva S.V. Trends in development of wrought alloys of Al–Mg–Si–(Cu) system. Part 1 (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 14–22. DOI: 10.18577/2071-9140-2019-0-3-14-22.
7. Kolobnev N.I. Heat resistance of wrought aluminum alloys.Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 32–36. DOI: 10.18577/2107-9140-2016-0-1-32-36.
8. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminum-lithium alloys: processing, properties, and applications. Oxford: Elsevier, 2013, 608 p.
9. State Standard 11739.23–99. Casting and wrought aluminum alloys. Method for the determination of zirconium. Moscow: Publishing house of standards, 2000, 7 p.
10. State Standard 11739.20–99. Casting and wrought aluminum alloys. Method for determination of titanium. Moscow: Publishing house of standards, 2000, 7 p.
11. State Standard 7727–81. Aluminum alloys. Spectral analysis methods. Moscow: Publishing house of standards, 2002, 26 p.
12. Karpov Yu.A., Baranovskaya VB Analytical control is an integral part of materials diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
13. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M., Yakimova M.S. Determination of silicon content in aluminium alloys by ICP-AES method in combination with microwave pre-treatment. Trudy VIAM, 2014, no. 12, paper no. 10. Available at: http://www.viam-works.ru (accessed: June 25, 2021). DOI: 10.18577/2307-6046-2014-0-12-10-10.
14. Molchan N.V., Konkevich V.Yu., Fertikov V.I. Control of structural changes in aluminum alloy 1379p, obtained by granular technology, by atomic emission spectroscopy. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 2, pp. 42–45.
15. Karpov Yu.A., Baranovskaya V.B. Problems of standardization of methods of chemical analysis in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5–14.
16. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, pp. 97–107.
17. Otto M. Modern methods of analytical chemistry: in 2 vol. Moscow: Tekhnosfera, 2003, vol. I, 416 p.
18. Dvoretskov R.M., Uridia Z.P., Karachevtsev F.N., Zagvozdkina T.N. Determination of the chemical composition of magnesium alloys by the atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2019, no. 10 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 25, 2021). DOI: 10.18577/2307-6046-2019-0-12-88-98.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. RMG 61–2010. State system for ensuring the uniformity of measurements. Indicators of accuracy, correctness, precision of methods of quantitative chemical analysis. Assessment methods. Moscow: Publishing house of standards, 2010, 41 p.
The analysis of the requirements of domestic and foreign standards for the magnetic particle testing (MPT) method is presented. Their advantages and disadvantages are highlighted, as well as fundamental differences in the technology of control, of which the main one is the use of the remanent magnetization method in the practice of domestic MPT. The methods of remanent magnetization and the applied magnetic field are compared. Based on the analysis, it was concluded that for the control of particularly responsible products during the MPT, GOST 56512-2015 should be followed.
2. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
4. Kablov E.N. There is no future without new materials. Metallurg, 2013, no. 12, pp. 4–8.
5. Chertishchev V.Yu., Ospennikova O.G., Boi-chuk A.S., Dikov I.A., Generalov A.S. Determina-tion of the size and depth of defects in multilayer PCM honeycomb structures based on the mecha-nical impedance value. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 72–94. DOI: 10.18577/2071-9140-2020-0-3-72-94.
6. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. Automated non-destructive inspection of three-layer honeycomb structures’ samples by ultrasonic through-transmission technique. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 74–80. DOI: 10.18577/2071-9140-2020-0-2-74-80.
7. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calcu-lation of gas turbine engine disks fracture risk. Aviacionnye materialy i tehnologii, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: June 3, 2021). DOI: 10.18577/2713-0193-2021-0-2-115-122.
8. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
9. State Standard R ISO 9934-1-2011. Non-destructive testing. Magnetic particle method. Part 1. Basic requirements. Moscow: Standartinform, 2013, 16 p.
10. State Standard R ISO 9934-2-2011. Non-destructive testing. Magnetic particle method. Part 2. Non-destructive materials. Moscow: Standartinform, 2013, 16 p.
11. State Standard R 53700-2009 (ISO 9934-3: 2002). Non-destructive testing. Magnetic particle method. Part 3. Equipment. Moscow: Standartinform, 2010, 12 p.
12. Bondareva V.S., Pavlova T.D., Stepanov A.V., Kosarina E.I. Requirements for magnetic particle control in European norms and Russian standards. Kommentarii k standartam, TU, sertifikatam, 2013, no. 9, pp. 14–18.
13. ISO 9934-1: 2016. Non-destructive testing – Magnetic particle testing. Part 1: General principles. 2016, 17 p.
14. State Standard R 56512–2015. Non-destructive testing. Magnetic particle method. Typical technological processes. Moscow: Standartinform, 2016, 56 p.
15. State Standard 21105–87. Non-destructive testing. Magnetic particle method. Moscow: Publishing house of standards, 2003, 14 p.
16. Shelikhov G.S. Magnetic particle inspection of parts and assemblies. Moscow: Expert, 1995. 224 p.
Authors named |
Position, academic degree |
FSUE «All-Russian Scientific-Research Institute of Aviation Materials» of National Research Center «Kurchatov Institute»; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Vladimir G. Babashov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Aleksey A. Belyaev |
Leading Design Engineer |
Ruslan A. Valeev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Natalia M. Varrik |
Leading Engineer |
Vsevolod A. Voronov |
Head of Sector, Candidate of Sciences (Chem.) |
Alexander S. Generalov |
Head of Laboratory |
Dmitry S. Gorlov |
Leading Engineer |
Roman M. Dvoretskov |
Head of Sector, Candidate of Sciences (Chem.) |
Stanislav S. Dolgopolov |
Second Category Engineer |
Konstantin V. Dulnev |
Engineer |
Tatiana N. Zagvozdkina |
Second Category Engineer |
Olga B. Zastrogina |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Fedor N. Karachevchev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Vasilisa S. Kovaleva |
Engineer |
Ivan D. Kraev |
First category engineer-technologist |
Sergey A. Krylov |
Deputy Head of laboratory |
Vera A. Kuznetsova |
Head of Sector, Candidate of Sciences (Tech.) |
Evgeny V. Kurshev |
First Category Engineer |
Sergey A. Larionov |
First Category Engineer |
Yulia E. Lebedeva |
Deputy Head of Laboratory for Science, Candidate of Sciences (Tech.) |
Igor S. Lednev |
First Category Engineer |
Stanislav L. Lonskii |
Second Category Engineer |
Sergey A. Marchenko |
Engineer |
Artem A. Petrov |
First Category Engineer, Candidate of Sciences (Tech.) |
Alexander A. Pykhtin |
Candidate of Sciences (Tech.) |
Valeria A. Sagomonova |
Head of Laboratory |
German S. Sevalnev |
Leading Engineer |
Tatiana G. Sevalneva |
Engineer |
Evgeniya A. Serkova |
Head of Sector |
Anna A. Silaeva |
Engineer, Candidate of Sciences (Tech.) |
Stanislav D. Sinyakov |
Second Category Engineer |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Anton E. Sorokin |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Konstantin A. Speransky |
Technician |
Anna S. Chaynikova |
Head of Scientific-Research Bureau, Candidate of Sciences (Tech.) |
Igor V. Cherednichenko |
Senior Researcher, Candidate of Sciences (Tech.) |
Dmitry V. Chesnokov |
Head of Laboratory |
Valery V. Tselikin |
First Category Engineer |
Natalia E. Shchegoleva |
Head of Sector, Candidate of Sciences (Tech.) |
Institute of Metallurgy and Materials Science A.A. Baykova RAS; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Alexey G. Kolmakov |
Head of laboratory, Corresponding Member of RAS, Doctor of Sciences (Tech.) |