Articles
The article presents the overview of technological solutions that currently have not found wide apply in the production of disk billets from P/M Ni-based superalloys for high-pressure compressor and turbine of aircraft jet-engines. The methods of forming the specific phase composition of the alloys, the methods of powder production which are alternative to gas atomization and plasma rotate electrode process, the works in the field of liquid-phase sintering, the original methods of forming dual microstructure structure over the profile of disc blanks are considered.
Ni-based superalloys with a niobium content of up to 16–22%, as well as alloys containing about 8% aluminum and up to 38% cobalt are reviewed as a further development of approaches to the alloying of disk materials. The results of studies on the possibility of the increasing of the melt cooling rate upon receipt of powders in the form of flakes and fibers are given. The results of works on liquid-phase sintering in which diffusion processes are more active than in standard hot isostatic pressing process are described. Among the original methods of obtaining a dual microstructure structure over the profile of disc blanks patents for managing grain size due to controlled boron diffusion are presented. Also some methods are described for the internal oxidation of rare-earth elements contained in the alloy to local formation of the dispersion oxides that inhibit the growth of grains and the separation of powder particles by size in the rotating steel can.
In general the considered technologies are alternative to successfully proven ways to improve mechanical properties associated with the complication of alloying, computer simulation of the production technologies, the use of rare-earth elements, the introduction of resource-saving technolo
2. Logunov A.V., Shmotin Yu.N., Danilov D.V. Metodologicheskiye osnovy avtomatizirovannogo proyektirovaniya zharoprochnykh splavov na nikelevoy osnove. Ch. 1 [Methodological principles of computer-aided design of heat-resistant nickel-based alloys. Part 1] // Tekhnologiya metallov. 2014. №5. S. 3–9.
3. Chabina E.B. Vliyaniye mikrolegirovaniya lantanoidami na osobennosti formirovaniya struktury granits zeren i mezhfaznykh granits /zharoprochnogo nikelevogo splava tipa VZH175 [Microalloying influence by lanthanoids on feature of forming of structure grain boundaries and interphase boundaries of / heat resisting nickel alloy of the VZh175 type] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 09. Available at: http://www.viam-works.ru (accessed: July 25, 2019). DOI: 10.18577/2307-6046-2017-0-2-9-9.
4. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
5. Karasev O.I., Vishnevskiy K.O., Veselitskaya N.N., Velikanova N.P., Kablov E.N. Forsayt razvitiya aviatsionnoy nauki i tekhnologiy do 2030 goda i na dalneyshuyu perspektivu [Foresight of the development of aviation science and technology until 2030 and beyond]. M.: TsAGI, 2014. 280 s.
6. Kablov E.N., Bronfin M.B. Effekt S.T. Kishkina, ili pochemu struktura zharoprochnykh nikelevykh splavov dolzhna byt geterofaznoy [Effect S.T. Kishkina, or why the structure of heat-resistant nickel alloys should be heterophasic] // Liteynyye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 7–14.
7. Logunov A.V., Shmotin Yu.N. Sovremennyye zharoprochnyye nikelevyye splavy dlya diskov gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant nickel alloys for gas turbine disks (materials and technologies)]. M.: Nauka i tekhnologiya, 2013. 264 s.
8. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. A ternary nickel eutectic alloy: pat. EP 2065479A2; filed 21.10.08; publ. 03.06.09.
10. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Issledovanie kompozicij sistemy Ni–Al–Co pri razrabotke novogo zharoprochnogo deformiruemogo intermetallidnogo splava [Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 10. St. 01. Available at: http://www.viam-works.ru (accessed: July 25, 2019).
11. Smythe J. Superalloy powders: An amazing history // Advanced Materials & Processes. 2008. November. P. 53–55.
12. Koshelev V.Ya., Khodkin V.I., Musiyenko V.T. Issledovaniye svoystv granul zharoprochnykh nikelevykh splavov, poluchennykh razlichnymi metodami raspyleniya [Investigation of the properties of granules of heat-resistant nickel alloys obtained by various spraying methods] // Metallovedeniye i obrabotka titanovykh i zharoprochnykh splavov. 1991. S. 333–340.
13. Gessinger G.Kh. Poroshkovaya metallurgiya zharoprochnykh splavov. Per. s angl. [Powder metallurgy of heat-resistant alloys. Line from Engl.]. Chelyabinsk: Metallurgiya, 1988. 320 s.
14. Serov M.M., Kazberovich A.M., Ber L.B., Konyayev V.S., Tarmosin E.V. Sravnitelnye issledovaniya struktury diskretnykh volokon i granul iz zharoprochnogo nikelevogo splava EP741NP [Comparative studies of the structure of discrete fibers and granules of heat-resistant nickel alloy EP741NP] // Tekhnologiya legkikh splavov. 2012. №2. S. 48–52.
15. Tarmosin E.V., Logachev A.V., Stepkin E.P., Serov M.M. Issledovaniye protsessa polucheniya kompaktnykh zagotovok iz bystrozakalennykh chastits splava EP741NP [Investigation of the process of producing compact billets from rapidly quenched particles of EP741NP alloy] // Vakuumnaya tekhnika i tekhnologiya. 2014. T. 24. №2. S. 135–140.
16. Tyagunov A.G., Baryshev E.E., Tyagunov G.V., Shmakova K.Yu. Optimizatsiya temperaturnogo rezhima polucheniya volokon iz zharoprochnogo splava EP741NP [Optimization of the temperature regime for producing fibers from the heat-resistant alloy EP741NP] // Elektrometallurgiya. 2016. №7. S. 3–8.
17. Libenson G.A., Lopatin V.Yu., Komarnitskiy G.V. Protsessy poroshkovoy metallurgii: ucheb. dlya vuzov v 2 t. [The processes of powder metallurgy: textbook. for universities in 2 vol.]. M.: MISIS, 2002. T. 2: Formovaniye i spekaniye, 320 s.
18. Jeandin M., Bienvenu Y., Koutny J.L. Liquid phase sintering of nickel base superalloys // Superalloys–1984. 1984. P. 467–476.
19. Morishita M., Nagai H., Shoji K. Liquid phase sintering of Ni-base superalloy IN-100 // Transactions of Japan Institute of Metals. 1986. Vol. 27. No 1. P. 61–69.
20. Pierron X., Banik A., Maurer G.E., Lemsky J., Furrer D.U. Sub-solidus HIP process for P/M superalloy conventional billet conversation // Superalloys–2000. 2000. P. 425–433.
21. Bratukhin A.G., Maslenkov S.B., Logunov A.V. Fiziko-khimicheskiye osnovy tekhnologii zhidkofaznogo spekaniya granul [Physicochemical principles of the technology of liquid-phase sintering of granules] // Materialovedeniye. 1997. №2. S. 53–56.
22. Method of selective grain growth in nickel-based superalloys by controlled boron diffusion: pat. US 4401480; filed 19.1081; publ. 30.08.83.
23. Graded metallic structures and method of forming and related articles: application US 2008/0142126 A1; filed 19.06.08.
24. Multi-alloy turbine rotor disk: pat. US 4900635; filed 09.02.89; publ. 13.02.90.
At the present time production of disk blanks of turbine of small-size gas turbine engines from heat-resistant nickel-based alloys is carried out by stamping method of predeformed (forged and pressed) cut-to-length blanks. FSUE “VIAM” has advanced manufacturing capabilities in the field of special metallurgy from melting and electrode remelting to total quality control of semifinished materials. By reason of continuous increase in price of forging bars and, in particular, pressed ones from heat-resistant nickel-based alloys which are supplied by large metallurgical companies the alternative sources of raw materials for disk blank production of turbine of small-size gas turbine engines should be find. Own low-tonnage manufacture of VAR-ingots is an example of such source.
Usually VAR-ingots are used for production of disk blanks of large dimension. The deformation schedule which makes possible efficiently to work cast structure in the blanks of small dimension was developed by specialists of FSUE “VIAM” with using computer modeling of technological processes. The batch of pilot isothermal forged blanks of small-size gas turbine engines from heat-resistant nickel-based alloy EP 742-ID was produced. Pilot blanks fully in geometrical dimensions and quality requirements with ones which are produced in series for domestic engine manufacturing. Experimental results showed that pilot blanks fully complied in quality characteristics with the standard process documentation on the production in series.
As a result of work principal possibility of obtaining isothermal forged blank of turbine of small-size gas turbine engines from own melted VAR-ingots of required quality was shown. Proposed scheme of thermomechanical treatment can be used for obtaining blank of turbine of small-size gas turbine engines from modern and perspective deformed heat-resist
2. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
3. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: May 14, 2019). DOI: 10.18577/2307-6046-2015-0-2-3-3.
4. Ponomarenko D.A., Letnikov M.N., Skugorev A.V., Sidorov S.A. Ispol'zovaniye spetsializirovannykh izotermicheskikh pressov dlya kovki zagotovok diskov turbiny iz trudnodeformiruyemykh zharoprochnykh splavov [The use of specialized isothermal presses for forging blanks of turbine disks from refractory heat-resistant alloys] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2018. №3. S. 19–25.
5. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tekhnologicheskiye vozmozhnosti spetsializirovannykh izotermicheskikh pressov siloy 6,3 i 16 MN v proizvodstve detaley aviatsionnogo naznacheniya [Technological capabilities of specialized isothermal presses with a force of 6.3 and 16 MN in the production of aircraft parts] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2015. №9. S. 36–41.
6. Kablov E.N. Marketing materialovedeniya, aviastroyeniya i promyshlennosti: nastoyashcheye i budushcheye [Marketing of materials science, aircraft building and industry: present and future] // Direktor po marketingu i sbytu. 2017. №5–6. S. 40–44.
7. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
8. Bubnov M.V., Sidorov S.A., Bazhenov A.R., Chebotareva E.S. Razvitiye teorii i praktiki proizvodstva shtampovok diskov GTD iz geterofaznykh zharoprochnykh nikelevykh splavov [Development of the theory and practice of production of punchings of disks of from gas turbine engines of heterophase nickel-based superalloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 02. Available at: http://www.materialsnews.ru (accessed: May 14, 2019).
9. Razuvayev E.I., Bakradze M.M., Kapitanenko D.V., Sidorov S.A. Tekhnologii izgotovleniya deformirovannykh polufabrikatov neposredstvenno iz rasplava, poluzhidkogo sostoyaniya ili nepreryvnolitoy zagotovki [Manufacturing technologies for deformed semi-finished products directly from a melt, semi-liquid state or continuously cast billets] // Stal. 2016. №2. S. 67–71.
10. Bakradze M.M., Volkov A.M., Shestakova A.A., Letnikov M.N., Bubnov M.V. Osobennosti izmeneniya razmera zeren v diskovom granuliruyemom zharoprochnom nikelevom splave, proizvedennom po razlichnym tekhnologiyam [The features of the grains size changing in the p/m Ni-base superalloy for disks application produced via different technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2 (62). St. 01. Available at: http://www.viam-works.ru (accessed: March 31, 2019). DOI: 10.18577/2307-6046-2018-0-2-1-1.
11. Izakov I.A., Kapitanenko D.V., Bubnov M.V., Bazhenov A.R. Issledovaniye parametrov tekhnologicheskikh protsessov izotermicheskogo deformirovaniya [Research of parameters of technological processes of isothermal deformation] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №5 (23). St. 04. Available at: http://www.materialnews.ru (accessed: April 01, 2019).
12. Rozenenkova V.A., Solntsev S.S., Mironova N.A., Gavrilov S.V. Steklokeramicheskiye kompozitsionnyye zashchitnyye tekhnologicheskiye pokrytiya dlya termomekhanicheskoy obrabotki intermetallidnykh splavov [Glass-ceramic composite protective technological coatings for thermomechanical processing of intermetallic alloys] // Steklo i keramika. 2016. №10. S 32–36.
13. Stebunov S.A., Bocharov Yu.A. Sertifikatsiya aviatsionnykh pokovok na osnove modelirovaniya protsessov v programme QForm [Certification of aviation forgings based on process modeling in the QForm program] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2011. №6. S. 33–35.
14. Nosov V.K., Kononov S.A., Perevozov A.S. i dr. Reologicheskiye svoystva splava EP742-ID v kontekste integrirovannogo vychislitelnogo materialovedeniya i inzhiniringa (ICME). Chast 1. Rezultaty eksperimentalnykh issledovaniy [Rheological properties of the EP742-ID alloy in the context of integrated computational materials science and engineering (ICME). Part 1. Results of experimental studies] // Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya. 2018. №1. S. 30–42. DOI: 10.17073/0021-3438-2018-1-30-42.
15. Nosov V.K., Kononov S.A. Perevozov A.S. i dr. Reologicheskiye svoystva splava EP742-ID v kontekste integrirovannogo vychislitelnogo materialovedeniya i inzhiniringa (ICME). Chast 2. Modelirovaniye protsessa szhatiya obraztsov i virtualnykh zagotovok [Rheological properties of the EP742-ID alloy in the context of integrated computational materials science and engineering (ICME). Part 2. Modeling the compression process of samples and virtual blanks] // Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya. 2018. №1. S. 43–52. DOI: 10.17073/0021-3438-2018-1-43-52.
16. Ponomarenko D.A., Rozenenkova V.A., Skugorev A.V., Shishkov S.YU. Effektivnoye ispolzovaniye zashchitnykh tekhnologicheskikh pokrytiy pri izotermicheskoy shtampovke na vozdukhe slozhnoprofilnykh detaley iz titanovykh splavov [The effective use of protective technological coatings for isothermal stamping in air of complex-profile parts made of titanium alloys] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2014. №9. S. 44–48.
17. Lozhkova D.S., Dalin M.A., Lyayzenberg D.V. Avtomatizirovannyy immersionnyy ultrazvukovoy kontrol komponenta divertora termoyadernogo reaktora [Automated immersion ultrasonic control of the divertor component of a thermonuclear reactor] // Avtomatizatsiya v promyshlennosti. 2014. №11. S. 36–38.
18. Lozhkova D.S., Dalin M.A., Tsykunov N.V. Otsenka dostovernosti avtomatizirovannogo ultrazvukovogo kontrolya titanovykh splavov [Reliability assessment of automated ultrasonic testing of titanium alloys] // Kontrol. Diagnostika. 2014. №6. S. 24–28.
19. Lozhkova D.S., Krasnov I.S. Eksperimentalnye issledovaniya po otsenke defektnosti svarnykh soyedineniy osnovnykh detaley GTD [Experimental studies to assess the defectiveness of welded joints of the main parts of a gas turbine engine] // Defektoskopiya. 2015. №2. S. 10–16.
20. Kablov E.N. K 80-letiyu VIAM [On the occasion of the 80th anniversary of VIAM] // Zavodskaya laboratoriya. Diagnostika materialov. 2012. T. 78. №5. S. 79–82.
21. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
22. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
A comparison of traditional methods for removing protective coatings from the surface of GTE blades (mechanical, chemical and electrochemical) with the method of electrolytic-plasma removal of coatings has been carried out. The indisputable advantages of electrolyte-plasma removal of protective coatings are revealed in comparison with traditional methods of removing coatings - high process performance, low cost of electrolyte components, their low consumption and low toxicity, the possibility of uniform processing of products with complex geometry when using counter-electrodes that mimic the geometry of the workpiece.
A two-component electrolyte based on an inorganic salt has been developed and modes have been selected for removing heat-resistant MCrAlY coatings from the surface of GTE blades made of high-temperature alloys of the ZhS type.
A comprehensive repair of the blades was carried out, including the following operations: sandblasting the outer surface of the blades from soot and gas corrosion products, electrolyte-plasma removal of spent heat-resistant coatings of MCrAlY composition from the outer surface of the blades in the developed electrolyte and according to selected modes, hot isostatic pressing (HIP) and thermal processing in order to restore the structure of the material of the blades, metal physics studies of the microstructure of the blades after the ISU and heat treatment, toskopichesky (luminescence) control and damaged areas solder surface machining soldering places the step of applying the composition MCrAlY coating to the external surface of the blades.
According to the results of metalphysical studies of the microstructure of the blades after the HIP and heat treatment, it was established that the cubic morphology of the γʹ-phase was restored. The luminescent control showed that there are no def
2. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Pomelov Ya.A. Ionno-plazmennyye zashchitnyye pokrytiya dlya lopatok gazoturbinnykh dvigateley [Ion-plasma protective coatings for blades of gas turbine engines] // Konversiya v mashinostroyenii. 1999. №2. S. 42–47.
3. Kablov E.N., Muboyadzhyan S.A. Ionno-plazmennyye zashchitnyye pokrytiya dlya lopatok GTD [Ion-plasma protective coatings for GTE blades] // Lityye lopatki gazoturbinnykh dvigateley: splavy, tekhnologii, pokrytiya. M.: Nauka, 2006. S. 531–608.
4. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Lutsenko A.N. Ionno-plazmennyye zashchitnyye pokrytiya dlya lopatok gazoturbinnykh dvigateley [Ion-plasma protective coatings for gas turbine engine blades]// Metally. 2007. №5. S. 23–34.
5. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Zharo- i korrozionnostoykoye pokrytiye dlya rabochikh lopatok turbiny iz perspektivnogo zharoprochnogo splava VZhL21 [Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21] // Aviacionnyye materialy i tekhnologii. 2017. №1 (46). S. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
6. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
7. Muboyadzhyan S.A., Budinovskij S.A. Ionno-plazmennaya tehnologiya: perspektivnye protsessy, pokrytiya, oborudovanie [Ion-plasma technology: prospective processes, coatings, equipment] // Aviacionnye materialy i tehnologii. 2017. №S. S. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Yagodkin Yu.D. Perspektivy primeneniya ionno-plazmennoy tekhnologii vysokikh energiy dlya mezhresursnogo remonta lopatok turbin [Prospects for the use of high-energy ion-plasma technology for inter-resource repair of turbine blades] // Aviacionnye materialy i tehnologii. 2002. №1. S. 6–13.
10. Method of removing a coating from a substrate: pat. US6905396B1; filed 20.11.03; publ. 14.07.05.
11. Process for treating the surface of a component, made from a Ni based supperalloy, to be coated: pat. US6440238B1; filed 09.08.99; publ. 27.08.02.
12. Method for repairing a thermal barrier coating: pat. US6544346B1; filed 01.07.97; publ. 08.04.03.
13. Method of decoating a turbine blade: pat. US6660102B2; filed 27.12.00; publ. 17.10.02.
14. Process for applying a protective layer: pat. US7736704B2; filed 15.09.04; publ. 10.08.06.
15. Method for selectively removing coatings from metal substrates: pat. US8021491B2; filed 07.12.06; publ. 22.10.09.
16. Method for removal of surface layers of metallic coatings: pat. US6036995A; filed 31.01.97; publ. 14.03.00.
17. Method for removing aluminide coating from metal substrate and turbine engine part so treated: pat. US7270764B2; filed 09.01.03; publ. 03.11.05.
18. Method for cleaning metal parts: pat. US4324594A; filed 02.02.78; publ. 13.04.82.
19. Chemical stripping composition and method: pat. US8859479B2; filed 26.08.11; publ. 28.02.13.
20. Sposob udaleniya zharostoykogo pokrytiya s detaley iz zharoprochnykh nikelevykh splavov: pat. 2339738C1 Ros. Federatsiya [The method of removing heat-resistant coatings from parts made of heat-resistant nickel alloys: pat. 2339738C1 Rus. Federation]; zayavl. 27.03.07; opubl. 27.11.08.
21. Sposob udaleniya pokrytiy s detaley iz zharostoykikh splavov: pat. 2200211S2 Ros. Federatsiya; [The method of removing coatings from parts of heat-resistant alloys: pat. 2200211S2 Rus. Federation] zayavl. 07.03.01; opubl. 10.03.03.
22. Sposob remonta lopatok turbiny gazoturbinnogo dvigatelya: pat. 2367554S2 Ros. Federatsiya [A method of repairing turbine blades of a gas turbine engine: pat. 2367554S2 Rus. Federation]. zayavl. 08.11.07; opubl. 20.09.09.
23. Elektrolitno-plazmennaya obrabotka i naneseniye pokrytiy na metally i splavy [Electrolyte-plasma processing and coating of metals and alloys] // Uspekhi fiziki metallov. 2005. T. 6. S. 273–344.
24. Volenko A.P., Boychenko O.V., Chirkunova N.V. Elektrolitno-plazmennaya obrabotka metallicheskikh izdeliy [Electrolyte-plasma processing of metal products] // Vektor nauki TGU. 2012. №4 (22). 2012. C. 144–147.
25. Sposob udaleniya pokrytiya s metallicheskoy podlozhki: pat. 2094546S1 Ros. Federatsiya [A method of removing a coating from a metal substrate: pat. 2094546S1 Rus. Federation]; zayavl. 03.04.95; opubl. 27.10.97.
26. Sposob udaleniya zharostoykogo metallicheskogo pokrytiya: pat. 2228396S1 Ros. Federatsiya [A method of removing a heat-resistant metal coating: pat. 2228396C1 Rus. Federation ]; zayavl. 19.09.02; opubl. 10.05. 04.
27. Sposob udaleniya alyuminidnogo pokrytiya na osnove nikelya: pat. 2211261S2 Ros. Federatsiya [The method of removing aluminide coatings based on Nickel: pat. 2211261C2 Rus. Federation ]; zayavl. 12.11.01; opubl. 27.08.03.
28. Sposob kontrolya stepeni udaleniya pokrytiya s detaley iz zharoprochnykh nikelevykh splavov: pat. 2440878S2 Ros. Federatsiya [A method of controlling the degree of removal of the coating from parts of heat-resistant nickel alloys: pat. 2440878C2 Rus. Federation]; zayavl. 21.04.09; opubl. 27.01.12.
29. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article is devoted to computer simulation of the processes of thermomechanical processing of heat-resistant nickel alloys VZh175 and EP742 used for the manufacture of parts for gas turbine engines.
Software systems for modeling metal forming processes using the finite element method are considered. The principles of their work are described and the sequence of actions for developing a database of the rheological properties of metallic materials is given. The need to develop a database of the rheological properties of metals is described.
Experimental studies on the determination of the flow stress of a material at various temperatures, velocities and degrees of deformation are described. As a test method, the method of precipitation of cylindrical samples is given, and the criteria for choosing temperature, speed, and power-law deformation intervals are given.
A comparative analysis of the calculated and experimental values of energy-power parameters and shaping has been carried out. An assessment of the reliability of the developed databases of the rheological properties of VZh175 and EP742 alloys has been carried out. The calculation of the total modeling error is shown by finding the prediction error of a geometric shape and the error in calculating the deformation force.
A comparative analysis of the shaping and energy-power parameters in the real process and using computer simulation is presented. Using the example of manufacturing serial forgings from alloy EP742, the advantages of using the developed database over the use of the analog alloys as the initial database are shown.
In conclusion, an assessment of the feasibility of work on the development of databases of the rheological properties of metallic materials is given. The advantages tha
2. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
4. Ospennikova O.G., Bubnov M.V., Kapitanenko D.V. Kompyuternoe modelirovanie processov obrabotki metallov davleniem [Computer modeling of metal working processes by pressure] // Aviacionnye materialy i tehnologii. 2012. №S. S. 141–147.
5. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: June 26, 2019). DOI: 10.18577/2307-6046-2015-0-2-3-3.
6. Gun G.Ya. Teoreticheskiye osnovy obrabotki metallov davleniyem [Theoretical foundations of metal forming]. M.: Metallurgiya, 1980. 456 s.
7. Biba N.V., Lishniy A.I., Stebunov S.A. Effektivnost primeneniya modelirovaniya dlya razrabotki tekhnologii shtampovki [The effectiveness of modeling for the development of stamping technology] // Kuznechno-shtampovochnoye proizvodstvo. 2001. №5. S. 39–44.
8. Bakradze M.M., Skugorev A.V., Kucheryayev V.V., Bubnov M.V. Kompyuternoye modelirovaniye tekhnologicheskikh protsessov obrabotki metallov davleniyem kak instrument razrabotki novykh tekhnologiy [Computer modeling of technological metal forming processes as effective instrument for development of new technologies] // Aviacionnye materialy i tehnologii. 2017. №S. S. 175–185. DOI: 10.18577/2071-9140-2017-0-S-175-185.
9. Stebunov S.A., Biba N.V. QForm – programma, sozdannaya dlya tekhnologov [QForm – a program created for technologists] // Kuznechno-shtampovochnoye proizvodstvo. 2004. №9. S. 38–43.
10. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivleniye plasticheskoy deformatsii metallov i splavov [Resistance to plastic deformation of metals and alloys]. M.: Metallurgiya, 1983. 488 s.
11. Gladkov Yu.A., Mordvintsev P.S. Modelirovaniye tekhnologicheskikh protsessov shtampovki pri reshenii zadach avia- i dvigatelestroyeniya [Certification of aviation forgings based on process modeling in the QForm program] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2012. №5. S. 38–47.
12. Stebunov S.A., Bocharov Yu.A. Sertifikatsiya aviatsionnykh pokovok na osnove modelirovaniya protsessov v programme QForm [Certification of aviation forgings based on process modeling in the QForm program] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2011. №6. S. 33–35.
13. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
14. Volkov A.M., Vostrikov A.V., Bakradze M.M. Printsipy sozdaniya i osobennosti legirovaniya granuliruyemykh zharoprochnykh nikelevykh splavov dlya diskov GTD [Development principles and alloying features of p/m NI base superalloys for jet-engine disks application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 02. Available at: http://www.viam-works.ru (accessed: June 24, 2019). DOI: 10.18577/2307-6046-2016-0-8-2-2.
15. Khenzel A., Shpittel T. Raschet energosilovykh parametrov v protsessakh obrabotki metallov davleniyem: sprav. izd. Per. s nem. [Calculation of power parameters in metal forming processes: reference edition. Line from Germ.]. M.: Metallurgiya, 1982. 360 s.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTE from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
18. Ponomarenko D.A., Moiseyev N.V., Skugorev A.V. Effektivnaya tekhnologiya izgotovleniya diskov GTD iz zharoprochnykh nikelevykh splavov [An effective technology for the manufacture of gas-turbine engine disks from heat-resistant nickel alloys] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2013. №10. S. 13–17.
The paper comprises the information on the tribological properties of materials based on titanium carbosilicide obtained by various researchers. Although titanium carbosilicide is positioned as an antifriction material, its average coefficient of friction, obtained in various tribological tests, is quite large and averages meaning is 0.3.
A comparative assessment of titanium carbosilicide in comparison with layered materials such as graphite and tetragonal boron nitride is given. The layered structure of titanium carbosilicide assigns its special physical and mechanical properties. According to the example of microcrack propagation, it can be seen that the energy is extinguished by side branches.
A hypothesis has been advanced about the effect of a greater binding energy of atoms between basal, or easy cleavage, planes of Ti3SiC2, with the result that the friction coefficient of titanium carbosilicide is significantly higher than that of the traditional layered materials. For its verification, tribological tests were performed at elevated temperatures. Studies of the friction coefficient of the titanium carbosilicide based material at ambient temperature up to 400°C with counter bodies made of EP866 steel and VK-6 hard alloy have been carried out. According to the tribological tests data, the friction coefficient decreases with increasing temperature due to a decrease in the binding energy between the basal, or easy cleavage, planes of Ti3SiC2. An anomalous change in the friction coefficient in the temperature range of 100–200°C has been established. This feature of the titanium carbosilicide tribotechnical properties, as a material with a layered structure, was explained by qualitative changes in the friction surface associated with the physical processes of gas and mois
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Sintez modelnykh vysokotemperaturnykh keramicheskikh matrits metodom iskrovogo plazmennogo spekaniya i izucheniye ikh svoystv dlya polucheniya kompozitsionnykh materialov [Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
4. Buznik V.M., Kablov E.N. Arkticheskoye materialovedeniye [Arctic materials sciences]. Tomsk: Izd-vo Tomsk. gos. un-ta. 2018. Vyp. 3. 44 s.
5. Farafonov D.P., Migunov V.P., Aleshina R.Sh. Issledovanie tribotehnicheskih harakteristik materialov, primenyaemyh dlya uprochneniya bandazhnyh polok rabochih lopatok turbin GTD [Tribotechnical characteristics research of materials used for gas turbine engines blade shroud hardening] // Aviacionnye materialy i tehnologii. 2016. № S1. S. 24–30. DOI: 10.18577/2071-9140-2016-0-S1-24-30.
6. Souchet A., Fontaine J., Belin M. et al. Tribological duality of Ti3SiC2 // Tribology Letters. 2005. Vol. 18. No. 3. P. 341–352.
7. Myhra S., Summers J.W.B., Kisi E.H. Ti3SiC2 a layered ceramics exhibiting ultra-low friction // Materials Letters. 1999. Vol. 39. P. 6–11.
8. El-Raghy T., Blau P., Barsoum M.W. Effect of grain size on friction and wear behavior of Ti3SiC2 // Wear. 2000. Vol. 238 (2). P. 125–130.
9. Sun Z.M., Zhou Y.C., Li S. Tribological Behavior of Ti3SiC2-based Material // Journal of Materials Science & Technology. 2002. Vol. 18. No. 2. P. 142–145.
10. Zang Y., Ding G.P., Zhou Y.C., Cai B.C. Ti3SiC2 – a self-lubricating ceramic // Materials Letters. 2002. Vol. 55. P. 285–289.
11. Barsoum M.W., El-Raghy T. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 // Journal of the American Chemical Society. 1996. Vol. 79. P. 1953–1956.
12. Yuanyuan Zhu, Aiguo Zhou, Yiqiu Ji et al. Tribological properties of Ti3SiC2 coupled with different counter faces // Ceramics International. 2015. Vol. 41. P. 6950–6955.
13. Huang Z., Zhai H., Guan M. et al. Oxide-film-dependent tribological behaviors of Ti3SiC2 // Wear. 2007. Vol. 262. P. 1079–1085.
14. Sarkar D., Basu B., Cho S.J. et al. Tribological properties of Ti3SiC2 // Journal of the American Chemical Society. 2005. Vol. 88 (11). P. 3245–3248.
15. Chandraghosh N. Synthesis and Tribological Characterization of In-Situ Spark Plasma Sintered Ti3SiC2 and Ti3SiC2–TiC Composites: thesis, Oklahoma State University, 2009. P. 105.
16. Barsoum M.W. The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates // Progress of Solid State Chemistry. 2000. Vol. 28 (1–4). P. 201–205.
17. Zhang H.B., Bao Y.W., Zhou Y.C. Current Status in Layered Ternary Carbide Ti3SiC2, a Review // Journal of Materials Science & Technology. 2009. Vol. 25. No. 1. P. 1–38.
18. Naydich Yu.V., Kolisnechenko G.A. Vzaimodeystviye metallicheskikh rasplavov s poverkhnostyu almaza i grafita [Interaction of metal melts with the surface of diamond and graphite] . Kiev: Naukova dumka, 1967. 89 s.
19. Kisi E.H., Crossley J.A.A., Myhra S., Barsoum M.W. Structure and crystal chemistry of Ti3SiC2 // Journal of Physics and Chemistry of Solids. 1998. Vol. 59. P. 1437–1443.
20. Gorbunov D.A. Adgezionnoye vzaimodeystviye na kontakte pri trenii grafita: dis. … kand. fiz.-mat. Nauk [Gorbunov D.A. Adhesive interaction on a contact during graphite friction: thesis, Cand. Sc. (Phys. & Math.)]. M.: NIIgrafit, 1981. 210 s.
21. Klinger L.L., Gorbunov D.A. Modelirovaniye sluchaynykh bluzhdaniy po granitsam zeren [Modeling of random walks along grain boundaries] // Fiziko-khimicheskaya mekhanika materialov. 1986. T. 61. №6. S. 1084–1088.
22. Barsoum M.W. MAX Phases. Properties of Machinable Ternary Carbides and Nitrides. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 437 p.
23. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Metod gibridnogo iskrovogo plazmennogo spekaniya: princip, vozmozhnosti, perspektivy primeneniya [Hybrid spark plasma sintering method: principle, possibilities, future prospects] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 11–16. DOI: 10.18577/2071-9140-2014-0-s6-11-16.
24. Grashchenkov D.V., Sevostyanov N.V., Efimochkin I.Yu., Burkovskaya N.P. Sintez karbosilitsida titana Ti3SiC2 metodom iskrovogo plazmennogo spekaniya [Synthesis of titanium carbosilicide Ti3SiC2 by spark plasma sintering] // Konstruktsii iz kompozitsionnykh materialov. 2016. №4. S. 23–26.
25. Treniye, iznashivaniye i smazka: spravochnik v 2-kh kn. / pod red. I.V. Kragelskogo, V.V. Alisina [Friction, wear and lubrication: a reference book in 2 books. / ed. I.V. Kragelsky, V.V. Alisin]. M.: Mashinostroyeniye, 1978. Kn. 1. 400 s.
In this work influence of low-molecular rubbers PDI-3AK and PDI-3A on technological and operational properties of putties on the basis of epoxy and polyamide metal-polymeric compositions is investigated.
Mechanical characteristics are investigated: durability at gap and discontinuous lengthenings free films of epoxy and rubber compositions in initial condition and after thermoageing. From the received results follows that with increase in the content of low-molecular rubbers durability at gap monotonously decreases, and discontinuous lengthenings monotonously increase. Thermoageing of the cured modified metal-polymeric compositions leads to insignificant decrease in durability at stretching (elasticity), thus durability at blow remains at initial level.
Technological properties of putty materials on the basis of the modified metal-polymeric compositions are defined. It is established that with increase in the content of rubber the surface workability after curing improves.
Adhesive durability is determined at separation the putty materials received on the basis of metal-polymeric compositions, modified by the PPG-3A rubber, put on samples with priming covering EP-0214. The maximum value of adhesive durability at separation is reached at the content of PPG-3A rubber in number of 20% mass.
Influence of the content of low-molecular rubbers PDI-3AK and PPG-3A in metal-polymeric composition on the hardness of the created putty layer is investigated. It is established that with increase in the content of rubber the hardness of putty layer monotonously decreases. It is defined, dependence of hardness of putty layer on duration of its curing. It is established that the maximum value of hardness is reached in 4 days of curing under natural conditions. The metal-polymeric compositions modified
2. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of new generation materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo sezda po obshchey i prikladnoy khimii. UrO RAN, 2016. S. 25–26.
3. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials – there is no future] // Metallurg. 2013. №12. S. 4–8.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnyye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytiy dlya aviatsionnoy tekhniki [The main directions of increasing the operational, technological and environmental characteristics of coatings for aircraft] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 96–102.
6. Pavlyuk B.Ph. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
7. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitiye aviatsionnykh lakokrasochnykh materialov [Development of aviation paints and varnishes] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №5. S. 49–54.
8. Zheleznyak V.G. Sovremennyye lakokrasochnyye materialy dlya primeneniya v izdeliyakh aviatsionnoy tekhniki [Modern paint and varnish materials for use in aviation equipment products] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №5 (77). St. 07. Available at: http://www.viam-works.ru. (accessed: May 17, 2019). DOI: 10.18577/2307-6046-2019-0-5-62-67.
9. Metallopolimernaya kompozitsiya: pat. 2574212C1 Ros. Federatsiya [Metal-polymer composition: pat. 2574212C1 Rus. Federation]; zayavl. 10.11.14; opubl. 12.01.16.
10. Metallopolimernaya kompozitsiya: pat. 2618031C1 Ros. Federatsiya [Metal-polymer composition: pat. 2618031C1 Rus. Federation]; zayavl 02.06.16; opubl. 02.05.17.
11. Kuznetsova V.A., Deyev I.A., Kuznetsov G.V., Kondrashov E.K. Vliyaniye napolnitelya na ustalostnuyu prochnost i mikrostrukturu svobodnykh polimernykh plenok pri tsiklicheskom rastyazhenii [The effect of filler on the fatigue strength and microstructure of free polymer films under cyclic tension] // Zavodskaya laboratoriya. 2014. T. 80. №5. S. 35–39.
12. Sosnina S.A., Kuleshova I.D. Regulirovaniye vzaimodeystviya komponentov v napolnennykh lakokrasochnykh kompozitsiyakh [Regulation of the interaction of components in filled paint compositions] // Lakokrasochnyye materialy i ikh primeneniye 2011. №1. S. 60–62.
13. Narisava I. Prochnost polimernykh materialov. Per. s yap. [Strength of polymer materials. Line from Jap.]. M.: Khimiya, 1987. 364 s.
14. Kuznetsova V.A., Emelyanov V.V., Marchenko S.A., Silayeva A.A. Primeneniye metallopolimernykh kompozitsiy dlya zadelki defektov lit'ya i vyravnivaniya poverkhnosti na detalyakh i izdeliyakh aviatsionnoy tekhniki [Application of metalpolymeric compositions for seal of casting defects and surface alignment on details and products of aviation engineering] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №4 (76). St. 08. Available at: http://www.viam-works.ru. (accessed: June 18, 2019). DOI: 10.18577/2307-6046-2019-0-4-67-75.
15. Yakovlev A.D., Yakovlev S.A. Lakokrasochnyye pokrytiya funktsionalnogo naznacheniya [Functional coatings]. SPb.: Khimizdat, 2016. 272 s.
16. Petrov G.N., Sinayskiy A.G., Dalgren I.V. Zhidkiye uglevodopodnyye kauchuki i oblasti ikh ppimeneniya [Liquid hydrocarbon rubbers and their applications] // Klei. Germetiki. Tekhnologii. 2009. №10. S. 24–27.
17. Yulovskaya V.D. Oligomery. Kauchuk-oligomernyye kompozitsii, struktura i svoystva // uchebnoye posobiye [Oligomers. Rubber-oligomeric compositions, structure and properties: textbook] / Federalnoye agentstvo po obrazovaniyu, Moskovskaya gos. akad. tonkoy khimicheskoy tekhnologii im. M.V. Lomonosova. M., 2008. 46 s.
18. Pyrikov A.V., Loyko D.P., Kochergin YU.S. Modifikatsiya epoksidnykh smol zhidkimi polisulfidnymi i kapboksilatnymi butadiyenovymi kauchukami [Modification of epoxy resins with liquid polysulfide and carboxylate butadiene rubbers] // Klei. Germetiki. Tekhnologii. 2010. №1. S. 28–33.
19. Chalykh A.E., Kochnova Z.A., Zhavoronok E.S. Sovmestimost i diffuziya v sistemakh epoksidnyye oligomery–zhidkiye karboksilatnyye kauchuki [Compatibility and diffusion in systems epoxy oligomers – liquid carboxylate rubbers] // Vysokomolekulyarnyye soyedineniya. Ser.: A. 2001. T. 43. №12. S. 1–9.
20. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
21. Vladimirskiy V.N., Ofitserova M.G., Novikova T.A., Karimova S.A., Pavlovskaya T.G. Tekhnologiya remonta LKP na vneshney poverkhnosti izdeliy AT [Technology of repair of paint coatings on exterior surface of products of aviation engineering] // Aviatsionnyye materialy i tekhnologii. 2003. №2. S. 86–89.
22. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Sistemy lakokrasochnyh pokrytij dlya vertoletnoj tehniki [Systems of paint coatings for helicopter equipment] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
23. Kablov V.F. Sistemnaya tekhnologiya kauchuk-oligomernykh kompozitsiy [System technology of rubber-oligomer compositions] // Oligomery-2009 / Rossiyskaya akademiya nauk, Ministerstvo obrazovaniya i nauki RF. M., 2009. S. 162–191.
24. Davydova V.N., Lukasik V.A., Antsupov Yu.A., Petrukhina E.V. Svyaz tekhnologii izgotovleniya i svoystv kauchuk-oligomernoy kompozitsii [The connection of manufacturing technology and properties of rubber-oligomeric composition] // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2004. №2. S. 114–116.
25. Kalinina N.K., Sakina A.I., Babina K.S., Osipchik V.S. Kauchuk-oligomernyye kompozitsii na osnove khlorsulfirovannogo polietilena [Rubber-oligomeric compositions based on chlorosulfonated polyethylene] // Plasticheskiye massy. 2016. №7–8. S. 45–47.
Transparent electrically conductive coatings are now widely used in science and technology, in particular in the aviation industry. The paper proposed developed coatings that combine the properties of electrically conductive and antireflection, while such coatings are made as part of a single stack of coatings. The coatings were formed using ion-plasma technology, namely vacuum reactive magnetron sputtering of a target cathode made of silicon, titanium, and an indium-tin alloy. The method of magnetron vacuum sputtering of films allows them to be applied with high uniformity on large (up to 350×500 mm) solid (silicate glasses) and flexible substrates (polyethyleneterephthalate, PET film). This paper presents the results of the development and manufacture of coatings based on indium tin oxide (ITO) on various substrates, ITO coatings with a single-layer anti-reflective coating (AR1) SiO2 and with a three-layer anti-reflective coating (AR3) SiO2–TiO2–SiO2. For coatings on silicate glasses, the following characteristics are achieved: transmittance>93%, surface resistance RsurfR<1% with two-sided deposition of anti-reflective coatings.
The simplest is the scheme of manufacturing a single layer of ITO coating on a substrate. At the same time, the optical and electrophysical properties of the coating are interrelated with the possibility of shifting the balance in the direction of increasing the integral transmittance T or decreasing the surface resistance Rsurf by adjusting the thickness and parameters of the coating manufacturing process. To increase T and reduce the reflection coefficient R over the ITO coating, an AR1 or AR3 coating can be applied, allowing T to increase to 90% and reduce R to 5% and the int
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing – the basis of innovation ] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Nastoyashcheye i budushcheye additivnykh tekhnologiy [Present and future of additive technologies] // Metally Evrazii. 2017. №1. S. 2–6.
4. Bogatov V.A., Krynin A.G., Shchur P.A. Vliyaniye velichiny natekaniya v vakuumnoy kamere na parametry reaktivnogo magnetronnogo raspyleniya i svoystva pokrytiya oksida titana [Influence of the leakage value in the vacuum chamber on the parameters of reactive magnetron discharge and properties of titanium oxide coatings] // Aviaсionnye materialy i tehnologii. 2019. №1 (54). S. 17–22. DOI: 10.18577/2071-9140-2019-0-1-17-22.
5. Kuzmichev A.I. Magnetronnyye raspylitelnyye sistemy. Kn. 1. Vvedeniye v fiziku i tekhniku magnetronnogo raspyleniya [Magnetron Spray Systems. Book 1. Introduction to the physics and technology of magnetron sputtering]. Kiev: Avers, 2008. 244 s.
6. Jeong S.H., Lee J.W., Lee S.B., Boo J.H. Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural, electrical and optical properties // Thin Solid Films. 2003. Vol. 435. P. 78–82.
7. Iyevlev V.M., Kushchev S.B., Latyshev A.N. i dr. Spektry pogloshcheniya tonkikh plenok TiO2, sintezirovannykh reaktivnym vysokochastotnym magnetronnym raspyleniyem titana [Absorption spectra of thin TiO2 films synthesized by reactive high-frequency magnetron sputtering of titanium] // Fizika i tekhnika poluprovodnikov. 2014. T. 48. №7. S. 875–884.
8. Ellmer K., Welzel T. Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment // Journal of Materials Research. 2012. Vol. 27. No. 5. P. 765–779.
9. Elinson V.M., Shchur P.A., Kirillov D.V. et al. Study of the Mechanical Characteristics of Single-Layer and Multilayer Nanostructures Based on Carbon and Fluorocarbon Coatings // Pleiades Publishing, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018. Vol. 12. No. 2. P. 342–345.
10. Zhanga K., Wena M., Chengb G. et al. Reactive magnetron sputtering deposition and characterization of niobium carbide films // Vacuum. 2014. Vol. 99. P. 233–241.
11. Komlev A.E., Shapovalov V.I., Shutova N.S. Magnetronnyy razryad v srede argona i kisloroda pri osazhdenii plenki oksida titana [Magnetron discharge in an argon and oxygen medium during deposition of a titanium oxide film] // Zhurnal tekhnicheskoy fiziki. 2012. T. 82. №7. S. 134–136.
12. Navabpoura P., Ostovarpourb S., Hampshirea J. et al. The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering // Thin Solid Films. 2014. Vol. 571. Part 1. P. 75–83.
13. Leóna J.J.D., Garretta M.P., Zhanga J. et al. Aluminum titanium oxide alloys: Deposition of amorphous, transparent, corrosion-resistant films by pulsed DC reactive magnetron sputtering with RF substrate bias // Materials Science in Semiconductor Processing. 2015. Vol. 36. P. 96–102.
14. Stana G.E., Boteaa M., Bonia G.A. et al. Electric and pyroelectric properties of AlN thin films deposited by reactive magnetron sputtering on Si substrate // Applied Surface Science. 2015. Vol. 353. P. 1195–1202.
15. Fakhouri H., Pulpytel J., Smith W. et al. Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering // Applied Catalysis B: Environmental. 2014. Vol. 144. P. 12–21.
16. Juškevičius K., Audronis M., Subačius A. et al. High-rate reactive magnetron sputtering of zirconia films for laser optics applications // Applied Physics A. 2014. Vol. 116. No. 3. P. 1229–1240.
17. Solovan M.N., Brus V.V., Maryanchuk P.D. i dr. Kineticheskiye svoystva tonkikh plenok TiN, poluchennykh metodom reaktivnogo magnetronnogo raspyleniya [Kinetic properties of thin TiN films obtained by reactive magnetron sputtering] // Fizika tverdogo tela. 2013. T. 55. №11. S. 2123–2127.
18. Bogatov V.A., Krynin A.G., Popkov O.V., Khokhlov Yг.A. Vliyaniye dvukhosnoy deformatsii na svoystva prozrachnogo elektroprovodyashchego pokrytiya, osazhdennogo na PETF plenku metodom reaktivnogo magnetronnogo raspyleniya [Influence of biaxial strain on the properties of the transparent conductive coating deposited on PET film by reactive magnetron sputtering] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1 (37). St. 06. Available at: http://www.viam-works.ru (accessed: May 25, 2019). DOI: 10.18577/2307-6046-2016-0-1-42-49.
19. Gorjanca T.C., Leonga D., Py C., Rotha D. Room temperature deposition of ITO using r.f. magnetron sputtering // Thin Solid Films. 2002. Vol. 413. P. 181–185.
20. Khokhlov Yu.A., Bogatov V.A, Krynin A.G. Vliyanie raspredeleniya magnitnogo polya na svojstva ITO pokrytiya, poluchaemogo na polimernoj plenke metodom reaktivnogo magnetronnogo osazhdeniya [An influence of the magnetic field distribution on properties of ITO coating deposited on a polymer film by reactive magnetron sputtering method] // Trudy VIAM : electron. nauch.-tenhich. zhurn. 2014. №12. St. 11. Available at: http://viam-works.ru (accessed: May 25, 2019). DOI: 10.18577/2307-6046-2014-0-12-11-11.
21. Khokhlov Yu.A., Bogatov V.A., Berezin N.M., Krynin A.G. Reaktivnoye magnetronnoye osazhdeniye ITO pokrytiya na polimernuyu plenku s primeneniyem sektsionirovannoy sistemy napuska gazov [Reactive magnetron deposition of ITO coating on the polymer film using a sectionalized gas feed system] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №5. St. 07. Available at: http://www.viam-works.ru (accessed: May 25, 2019). DOI: 10.18577/2307-6046-2015-0-5-7-7.
Multilayer systems based on anodizing and painting are used in the aircraft industry for aluminum alloys corrosion protection. Porous anodic oxide coatings with insufficient corrosion protection properties are formed during anodizing in chromium-free electrolytes. These coatings are sealed for better corrosion protection. Hot water sealing is one of the most widely used methods to enhance aluminum anodic oxide coatings protective properties. Lengthy neutral salt spray tests (usually at least 336 h) are commonly used for assessment of sealed aluminum anodic oxide (AAO) coatings protective properties. The present study aims to develop the electrochemical criterion for rapid evaluation of hot water sealed anodic oxide coatings protection properties. Coatings were obtained by 1163, V-1461, V96c3pch aluminum alloys anodizing in sulfuric acid water solution for 15, 30, 45 minutes, followed by hot water sealing in deionized water. Immersion in neutral 3% NaCl solution was used to evaluate the protective properties of AAO coatings. Low thickness (15 min anodizing) coatings were tested for 1440 h and medium and high thickness (30, 45 min anodizing, respectively) coatings were tested up to 3600 h. Equivalent electrical circuits (EEC) parameters of sealed anodic oxide coating were obtained by fitting EIS data. Two R-CPE circuits EEC was used to fit impedance spectra. Changes in EEC parameters of coatings were studied during the immersion testing: capacitive properties and resistance of anodic oxide layer are almost constant, while EECs’ sealing parameters change during the initial period of testing. Impedance modulus at low frequencies cannot be used to evaluate protective properties of sealed AAO: even if there are corrosion spots, impedance modulus at frequencies below 1 Hz is almost constant until complete failure of a coating. Change in sealing capacitive parameter CPEseal-T during the first 24 h of testing in NaCl solution&
2. López V., Bartolomé M.J., Escudero E. et al. Comparison by SEM, TEM, and EIS of Hydrothermally Sealed and Cold Sealed Aluminum Anodic Oxides // Journal of the Electrochemical Society. 2006. Vol. 153. No. 3. P. B75–B82. DOI: 10.1149/1.2163811.
3. Hoar T.P., Wood G.C. The sealing of porous anodic oxide films on aluminium // Electrochimica Acta. 1962. Vol. 7. No. 3. P. 333–353. DOI: 10.1016/0013-4686(62)87009-1.
4. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
5. Semenychev V.V., Smirnova T.B. Ocenka korrozionnoj stojkosti zashhitnyh i funkcionalnyh pokrytij s pomoshhyu izmeritelya skorosti korrozii [The evaluation of corrosion resistance of protective and functional coatings using corrosion-ratemeter] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 12. Available at: http://www.viam-works.ru (accessed: July 29, 2016). DOI: 10.18577/2307-6046-2016-0-6-12-12.
6. Whelan M., Cassidy J., Duffy B. Sol-gel sealing characteristics for corrosion resistance of anodised aluminium // Surface and Coatings Technology. 2013. Vol. 235. P. 86–96. DOI: 10.1016/j.surfcoat.2013.07.018.
7. Whelan M., Barton K., Cassidy J. et al. Corrosion inhibitors for anodised aluminium // Surface and Coatings Technology. 2013. Vol. 227. P. 75–83. DOI: 10.1016/j.surfcoat.2013.02.029.
8. Mansfeld F., Kendig M.W. Technical Note: Impedance Spectroscopy as Quality Control and Corrosion Test for Anodized Al Alloys // Corrosion. 1985. Vol. 41. No. 8. P. 490–492. DOI: 10.5006/1.3583832.
9. Mansfeld F. Evaluation of Anodized Aluminum Surfaces with Electrochemical Impedance Spectroscopy // Journal of The Electrochemical Society. 1988. Vol. 135. No. 4. P. 828. DOI: 10.1149/1.2095786.
10. Domingues L., Fernandes J.C.S., Da Cunha Belo M. et al. Anodising of Al 2024-T3 in a modified sulphuric acid/boric acid bath for aeronautical applications // Corrosion Science. 2003. Vol. 45. No. 1. P. 149–160. DOI: 10.1016/S0010-938X(02)00082-3.
11. Antipov V.V., Medvedev I.M., Kutyrev A.E., Zhitnyuk S.V. Issledovaniye elektrokhimiche-skikh svoystv nenapolnennykh anodno-oksidnykh pokrytiy na alyuminiyevykh splavakh marok 1163, V-1461 i V96TS3p.ch. pri uskorennykh ispytaniyakh [The investigation of electrochemical properties of non-sealed oxide coatings on 1163, v-1461, v96с3pch aluminum alloys during accelerated testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №6 (78). St. 06. Available at: http://www.viam-works.ru (accessed: July 26, 2019). DOI: 10.18577/2307-6046-2019-0-6-51-64.
12. Franco M., Anoop S., Uma Rani R., Sharma A.K. Porous Layer Characterization of Anodized and Black-Anodized Aluminium by Electrochemical Studies // ISRN Corrosion. 2012. Vol. 2012. P. 1–12. DOI: 10.5402/2012/323676.13.
13. Siva Kumar C., Rao V.S., Raja V.S. et al. Corrosion behaviour of solar reflector coatings on AA 2024T3 – An electrochemical impedance spectroscopy study // Corrosion Science. 2002. Vol. 44. No. 3. P. 387–393. DOI: 10.1016/S0010-938X(01)00082-8.14.
14. Costenaro H., Lanzutti A., Paint Y. et al. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating // Surface and Coatings Technology. 2017. Vol. 324. P. 438–450. DOI: 10.1016/j.surfcoat.2017.05.090.15.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminiy-litiyevyye splavy novogo pokole-niya i sloistyye alyumostekloplastiki na ikh osnove [New-generation aluminum-lithium alloys and layered aluminum-glass plastic based on them] // Tsvetnyye metally. 2016. №8. S. 86–91. DOI:10.17580/tsm.2016.08.13.17.
17. Fomina M.A., Karimova S.A. Issledovanie korrozionnyh svojstv listov splava V-1461-T1 primenitelno k vseklimaticheskim usloviyam ekspluatacii aviacionnoj tehniki [Study of corrosion properties of V-1461-T1 aluminum alloy sheets in all-climatic conditions of aerotechnics operation] // Aviacionnye materialy i tehnologii. 2014. №4. S. 18–22. DOI: 10.18577/2071-9140-2014-0-4-18-22.
18. Mansfeld F., Kendig M.W. Electrochemical Impedance Spectroscopy of protective coatings // Materials and Corrosion. 1985. Vol. 36. No. 11. P. 473–483. DOI: 10.1002/maco.19850361102.
The work is devoted to the analysis of modern scientific works in the field of application of non-metallic inorganic coatings by anodic oxidation on aluminum and aluminum-lithium alloys. The modern trends of anodic oxidation technology are considered, and the results of scientific research are compared with traditional technologies. The main attention in the analysis of scientific research is focused on the mechanism of influence of alloying elements of aluminum alloys coming to the surface, technological solutions to eliminate the use of toxic compounds in anodic oxidation and subsequent filling.
2. Kablov E.N., Lukina E.A., Sbitneva S.V., Khokhlatova L.B., Zaytsev D.V. Formirovaniye metastabilnykh faz pri raspade tverdogo rastvora v protsesse iskusstvennogo stareniya Al-splavov [The formation of metastable phases during the decomposition of a solid solution in the process of artificial aging of Al-alloys] // Tekhnologiya legkikh splavov. 2016. №3. S. 7–17.
3. Fridlyander I.N., Drits A.M., Vovnyanko A.G. Novyye alyuminiyevyye splavy dlya otvetstvennykh silovykh konstruktsiy samoletov [New aluminum alloys for critical power structures of aircraft] // Aviatsionnaya promyshlennost. 1985. №6. S. 56–58.
4. Shalin R.E., Fridlyander I.N., Leshchiner L.N., Butusova I.V., Kuznetsova N.B. Alyuminiyevyye splavy dlya passazhirskikh samoletov [Aluminum alloys for passenger aircraft] // Aviatsionnaya promyshlennost. 1988. №6. S. 88–89.
5. Fridlyander I.N., Leshchiner L.N., Sandler V.S., Latushkina L.V., Vorobev O.I., Nikolskaya T.I. Struktura i svoystva splavov sistemy Al–Cu–Mg–Li [Structure and properties of alloys of the Al–Cu–Mg–Li system] // Aviatsionnaya promyshlennost. 1986. №8. S. 59–61.
6. Fridlyander I.N., Grushko O.Ye., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Alyuminiylitiyevye splavy [Aluminum-lithium alloys] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №8. S. 22–27.
7. Antipov V.V., Serebrennikova N.Yu., Nefedova Yu.N., Kozlova O.Yu., Panteleev M.D., Osipov N.N., Klychеv A.V. Tekhnologicheskie osobennosti Izgotovleniya detalej iz alyuminiy-litievogo splava 1441 [Manufacturing capability of Al–Li 1441 alloy details] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 03 Available at: http://www.viam-works.ru (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2018-0-10-17-26.
8. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
9. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Sovremennye alyuminievye i alyuminij-litievye splavy [Modern aluminum and aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 195–211.
10. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistyye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [SIAL-1441 laminated aluminoglassplactics and cooperation with Airbus and TU Delft] // Tsvetnyye metally. 2013. №9. S. 50–53.
11. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. Razrabotka rastvora dlya naneseniya korrozionnykh porazheniy na alyuminiyevykh splavakh v galvanostaticheskom rezhime [The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №9 (69). St. 11. Available at: http://www.viam-works.ru (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2018-0-9-105-118.
12. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plazmennoye elektroliticheskoye oksidirovaniye magniyevykh splavov (obzor) [Plasma electrolytic oxidation of magnesium alloys (review)] // Aviatsionnyye materialy i tekhnologii. 2019. №1 (54). S. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
13. Pavlovskaya T.G., Volkov I.A., Kozlov I.A., Naprienko S.A. Ekologicheski uluchshennaya tehnologiya obrabotki poverhnosti alyuminievyh splavov [Ecologically improved technology of aluminum alloys surface treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 02 (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2016-0-7-2-2.
14. Antipov V.V., Petrova A.P., Kozlov I.A., Fomina M.A., Volkov I.A. Vliyaniye tekhnologicheskikh nagrevov i sposobov podgotovki poverkhnosti pod skleivaniye na mekhanicheskiye svoystva alyuminiyevoy folgi iz splava AMg2N [Influence of technological heatings and ways of surface preparation under pasting on mechanical properties of aluminum foil from alloy AMg2N] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №7 (67). St. 02. Available at: http://www.viam-works.ru (accessed: June 17.06.2019). DOI: 10.18577/2307-6046-2018-0-7-10-24.
15. Sposob polucheniya pokrytiya na alyuminiyevykh splavakh: pat. 2547983 Ros. Federatsiya [A method of obtaining a coating on aluminum alloys: pat. 2547983 Rus. Federation]; zayavl. 14.04.14; opubl. 10.04.15.
16. Antipov V.V., Chesnokov D.V., Kozlov I.A., Volkov I.A., Petrova A.P. Podgotovka poverkhnosti alyuminiyevogo splava V1469 pered primeneniyem v sostave sloistogo gibridnogo materiala [Surface preparation aluminum alloy V-1469 before use in the composition of layered hybrid material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №4 (64). St. 07. Available at: http://www.viam-works.ru (accessed: Juny 16, 2019). DOI: 10.18577/2307-6046-2018-0-4-59-65.
17. Rastvor dlya uplotneniya anodno-okisnogo pokrytiya alyuminiyevykh splavov: pat. 2447201 Ros. Federatsiya [The solution for sealing the anodic oxide coating of aluminum alloys: pat. 2447201 Rus. Federation]; zayavl. 05.04.11; opubl. 10.04.12.
18. Harscoet E., Froelich D. Use of LCA to evaluate the environmental benefits of substituting chromic acid anodizing (CAA) // Journal of Cleaner Production. 2007. No. 16. P. 1294–1305.
19. Kozlov I.A., Pavlovskaya T.G., Zakharov K.E., Volkov I.A. Ekologicheski uluchshennyye tekhnologii podgotovki poverkhnosti alyuminiyevykh splavov [ Ecologically improved technologies for preparing the surface of aluminum alloys ] // Adgezionnyye materialy: sb. dokl. nauch.-tekhnich. konf. M.: VIAM, 2016. S. 13.
20. Chakravarthy V., Canulescu S., Shabadi R. et al. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance // Applied Surface Science. 2014. No. 317. P. 1113–1124.
21. Zahavi J., Zangvil A., Metzger M. Structure and stability of anodic films formed on aluminum containing dispersed Al3Fe phase // Journal of The Electrochemical Society. 1978. No. 125. P. 438–444.
22. Mukhopadhyay A.K., Sharma A.K. Influence of Fe-bearing particles and nature of electrolyte on the hard anodizing behaviour of AA7075 extrusion products // Surface and Coatings Technology. 1997. No. 92 (3). P. 212–220.
23. Mukhopadhyay A.K. On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA7075 extrusion products // Metallurgical and Materials Transactions. 1998. No. 29 (3). P. 979–987.
24. Fratila-Apachitei L.E., Terryn H., Skeldon P. et al. Influence of substrate microstructure on the growth of anodic oxide layers // Electrochimica Acta. 2004. No. 49 (7). P. 1127–1140.
25. Iglesias-Rubianes L., Garcia-Vergara S.J., Skeldon P. et al. Cyclic oxidation processes during anodizing of Al–Cu alloys // Electrochimica Acta. 2007. No. 52 (24). P. 7148–7157.
26. Kikuchia T., Kunimotoa K., Ikedaa H. Fabrication of anodic porous alumina via galvanostatic anodizing in alkaline sodium tetraborate solution and their morphology // Journal of Electroanalytical Chemistry. 2019. Vol. 846. P. 113–152.
27. Wu H., Ma Y., Huang W. et al. Effect of Iron-Containing Intermetallic Particles on Film Structure and Corrosion Resistance of Anodized AA2099 Alloy // Journal of the Electrochemical Society. 2018. Vol. 165 (9). Р. 573–581.
28. Liu J., Rong G., Cen S. et al. Dissolution Behavior of Intermetallic Particles in AA2297-T87 during Anodizing in Adipic-Sulfuric Acid // Journal of the Electrochemical Society. 2018. No. 165 (16). P. C980–C990.
29. Ma Y., Zhou X., Thompson G.E. et al. Anodic film growth on Al–Li–Cu alloy AA2099-T8 // Electrochimica Acta. 2012. No. 80. Р. 148–159.
30. Skeldon P., Thompson G.E., Wood G.C. et al. Effects of alloying elements in anodizing of aluminium // Philosophical Magazine. 1997. No. 76. Р. 729–738.
31. Bailey P., Skeldon P., Noakes T.C.Q. et al. Composition and structure of enriched alloy layers in filmed Al alloys studied by medium-energy ion scattering // Surface and Interface Analysis. 2001. No. 31. Р. 480–488.
32. Shimizu K., Brown G.M., Kobayashi K. et al. Anodising as pre-treatment before organic coating of extruded and cast aluminium alloys // Corrosion Science. 1998. No. 40 (7). Р. 1049–1055.
33. Ma Y., Zhou X., Thompson G.E. et al. Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy // Corrosion Science. 2011. No. 53. Р. 4141–4151.
34. Ma Y., Zhou X., Thompson G.E. et al. Microstructural Modification Arising from Alkaline Etching and Its Effect on Anodizing Behavior of Al–Li–Cu Alloy // Journal of the Electrochemical Society. 2013. No. 160. P. 111–118.
35. Gharbia O., Birbilisb N., Oglea K. Li reactivity during the surface pretreatment of Al–Li alloy AA2050-T3 // Electrochimica Acta. 2017. No. 243. P. 207–219.
36. Gharbi O., Birbilis N., Ogle K. In-Situ Monitoring of Alloy Dissolution and Residual Film Formation during the Pretreatment of Al-Alloy AA2024-T3 // Journal of The Electrochemical Society. 2016. No. 163 (5). P. 240–251.
37. Nelson K.J.H., Hughes A.E., Taylor R.J. et al. Characterisation of aluminium alloys after HNO3/HF–NaOH–HNO3/HF pretreatment // Materials Science and Technology. 2001. No. 17 (10). P. 1211–1221.
38. Hughes A.E., Theodossiou G., Elliott S. et al. Study of deoxidation of 2024-T3 with various acids // Materials Science and Technology. 2001. No. 17 (12). P. 1642–1652.
39. García-Rubio M., Ocón P., Climent-Font A. Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024-T3 aerospace alloy // Corrosion Science. 2009. No. 51. P. 2034–2042.
40. Marzocchi V., Iglesias-Rubianes L., Thompson G.E., Bellucci F. The influence of tartaric acid additions on the anodizing behaviour of AA2024-T3 alloy in sulphuric acid // Corrosion Science. 2009. No. 25. P. 461–473.
41. Curioni M., Skeldon P., Koroleva E. et al. Role of tartaric acid on the anodizing and corrosion behavior of a 2024-T3 aluminum alloy // Journal of the Electrochemical. 2009. No. 156. P. 147–153.
42. Arenas M.A., Conde A., de Damborenea J.J. Effect of acid traces on hydrothermal sealing of anodising layers on 2024 aluminium alloy // Electrochimica Acta. 2010. No. 55. P. 8704–8708.
43. Bononi M., Conte M., Giovanardi R., Bozza A. Hard anodizing of AA2099-T8 aluminum lithium copper alloy: Influence of electric cycle, electrolytic bath composition and temperature // Surface & Coatings Technology. 2017. Vol. 325. Р. 627–635.
44. Sposito G. The Environmental Chemistry of Aluminum/ CRC Press, 1995. 480 р.
45. Bozza A., Giovanardi R., Manfredini T., Mattioli P. Pulsed current effect on hard anodizing process of 7075-T6 aluminium alloy // Surface and Coatings Technology. 2015. No. 270. P. 139–144.
46. Ma Y., Zhou X., Liao Y. et al. Effect of anodizing parameters on film morphology and corrosion resistance of AA2099 // Journal of the Electrochemical Society. 2016. No. 163 (7). P. 369–376.
47. Pearlstein F., Agarwala V.S. Trivalent Chromium Solutions for Applying Chemical Conversion Coatings to Aluminum Alloys or for Sealing Anodized Aluminum // Surface and Coatings Technology. 1994. No. 81 (7). P. 50–55.
48. Gordovskaya I.V., Hashimoto T., Walton J. Development of Cerium-Rich Layers on Anodic Films Formed on Pure Aluminium and AA7075-T6 Alloy // Journal of The Electrochemical Society. 2014. No. 161 (14). P. 601–606.
49. Kuznetsov B., Serdechnova M., Tedim J. Sealing of tartaric sulfuric (TSA) anodized AA2024 with nanostructured LDH layers // RSC Advanced. 2016. No. 6. P. 13942–13952.
50. Capelossi V.R., Poelman M., Recloux I. et al. Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol–gel coating // Electrochimica Acta. 2014. No. 124. P. 69–79.
51. Balaraju J.N., Srinivasan A., Yoganandan G. Effect of Mn/Mo incorporated oxide layer on the corrosion behavior of AA2024 alloy // Corrosion Science. 2011. No. 53. P. 4084–4092.
52. Yoganandan G., Balaraju J.N., Christopher H.C. et al. Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy (AA2024) // Surface & Coatings Technology. 2016. No. 288. P. 115–125.
Modern navigation devices require the use of magnetic materials with both magnetic and thermostable properties. The most promising such materials are alloys of REM-Fe-Co-B (REM – rare earth metals). These alloys are increasingly used for the manufacture of magnets used in the production of dynamically adjustable gyroscopes (DNG) and accelerometers and are characterized by wider temperature ranges than previously used materials.
The main properties of alloys of REM-Fe-Co-B systems directly depend on their chemical composition, both on the content of the main components of the system, and on the content of various impurities – nitrogen, oxygen, carbon and sulfur. Production of high-quality materials is not possible without precise control of the content of these impurities in the alloys.
Classical methods for the determination of sulfur, oxygen, nitrogen and carbon are extremely time-consuming, time-consuming and require the use of a large number of different reagents and equipment. Modern methods for the determination of sulfur and carbon in various objects is the method of burning the sample sample in an induction furnace of the gas analyzer, followed by detection in the infrared cell of the spectrometer, and for the determination of nitrogen and oxygen, reducing melting in a vacuum or in an inert carrier gas stream is used.
In this paper, the alloys of Ce-Fe-Co-B and Gd-Fe-Co-B systems were analyzed for the content of gas-forming impurities. The sulfur and carbon content was determined by combustion in the induction furnace of the LECO CS-444 gas analyzer with subsequent detection in the infrared cell of the spectrometer, and for the determination of oxygen and nitrogen, the method of reducing melting in the inert carrier gas current was used, followed by detection of oxygen in the infrared cell and nitrogen in t
2. Min P.G., Vadeyev V.E., Piskorskiy V.P., Kramer V.V. Razrabotka tekhnologii vyplavki splavov sistemy RZM–Fe–Co–B s vysokoy chistotoy po primesyam dlya termostabilnykh magnitov [Development of melting technology of high pure REM–Fe–Co–B alloys for temperature-stable magnets] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1 (37). St. 01. Available at: http://www.viam-works.ru (accessed: June 06, 2019). DOI: 10.18557/2307-6046-2016-0-1-1-1.
3. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
4. Cherednichenko I.V., Ospennikova O.G., Piskorskiy V.P., Valeyev R.A., Buzenkov A.V. Ekonomicheskiye aspekty proizvodstva postoyannykh magnitov [The economics aspects of manufacturing permanents magnets (review)] // Novosti materialovedeniya. Nauka i tekhnika. 2016. №4 (22). St. 06. Available at: http://www.materialsnews.ru (accessed: June 06, 2019).
5. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
6. Davydova E.A., Chabina E.B., Moiseeva N.S. Vliyanie gadoliniya, a takzhe sposoba ego vvedeniya na strukturu i fazovyj sostav magnitotverdogo spechennogo materiala sistemy Pr–Dy–Fe–Co–B [An influence of gadolinium and the method of its introduction on the structure and phase composition of sintered hard magnetic materials of Pr–Dy–Fe–Co–B series] // Aviacionnye materialy i tehnologii. 2015. №1. S. 56–59.
7. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
8. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeyev R.A., Piskorskiy V.P., Sulyanova E.A. Vliyaniye kobalta na stoykost k okisleniyu materialov Pr(Nd)–Dy–Fe–Co–B [The effect of cobalt on the oxidation resistance of materials Pr(Nd)–Dy–Fe–Co–B // Metally. 2016. №4. S. 52–56.
9. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Otsenka sootvetstviya novykh materialov s ispolzovaniyem SO i MI vysokogo urovnya [Conformity assessment of new materials using high-level CO and MI] // Kompetentnost. 2017. №2. S. 40–46.
10. GOST 6689.18–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya sery [State Standard 6689.18–92. Nickel, nickel and copper-nickel alloys. Methods for the determination of sulfur]. M.: Izd-vo standartov, 1992. S. 4.
11. GOST 6689.10–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya ugleroda [State Standard 6689.10–92. Nickel, nickel and copper-nickel alloys. Methods for the determination of carbon]. M.: Izd-vo standartov, 1992. S. 4.
12. GOST 29006–91. Poroshki metallicheskiye. Metod opredeleniya kisloroda, vosstanovimogo vodorodom [State Standard 29006–91. Metal powders. Method for determination of oxygen reduced by hydrogen]. M.: Izd-vo standartov, 1991. S. 3.
13. GOST 12359–99. Stali uglerodistyye, legirovannyye i vysokolegirovannyye. Metody opredeleniya azota [State Standard 12359–99. Steel carbon, alloyed and high alloyed. Methods for the determination of nitrogen]. M.: Izd-vo standartov, 1999. S. 3.
14. Alekseev A.V., Rastegayeva G.Yu., Pakhomkina T.N. Opredeleniye sery i ugleroda v poroshkakh nikelevykh splavov [Determination of sulfur and carbon in the powder of nickel alloys] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №11 (71). St. 03. Available at: http://www.viam-works.ru (accessed: June 08, 2019). DOI: 10.18557/2307-6046-2018-0-11-20-27.
15. Alekseev A.V., Rastegayeva G.YU., Pakhomkina T.N. Opredeleniye kisloroda i azota v poroshkakh nikelevykh splavov [Determination of oxygen and nitrogen in nickel alloy powders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №8 (68). St. 11. Available at: http://www.viam-works.ru (accessed: June 08, 2019). DOI: 10.18557/2307-6046-2018-0-8-112-119.
The article is devoted to investigation of mechanical characteristics and indicators of moisture transfer to the monolithic and three-layer cell samples on the basis of CFRP VKU-30K.R14535 in the initial state, after the mechanical shock damage and after the repairs, taking into account climate impacts. For research was made monolithic and three-layer cell samples, which are subsequently deposited mechanical damage regulated by State Standard 33496–2015. After the damage was caused, ultrasonic testing of samples was carried out, as a result of which the destruction zone was determined and the repair zone was prepared. Selected schemes and materials for repair. As a result of all the preparatory work, the samples with damages were repaired. For climate testing of the source, the attack and repaired the monolithic and three-layer cell samples were exposed to the natural climatic-cal trials in the temperate – warm climate for a period of 3, 6, 12 months. Based on the results of the work, the chosen technology of repair of monolithic and three-layer cellular samples after calibrated shock damage is experimentally justified. The influence of impact energy on the strength parameters and characteristics of moisture transfer of monolithic samples in the damaged state and after repair is studied. The influence of impact energy on three-layer cellular samples on the characteristics of moisture transfer in the damaged state and after repair is studied. It is shown that the effect on the climate in the temperate warm climate with a duration of 3 months additional impact on the decrease of the strength indicators in the original and damaged condition of the samples. After repair, the mechanical properties of monolithic samples are at a satisfactory level. It is shown that the climatic influence in the conditions of moderate-warm climate lasting 3, 6 months has an additional effect on the increase of moisture transfer in the damaged sta
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE VIAM in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
3. MIL-HDBK-336-2. Military Handbook for Military Aircraft Nonnuclear Survivability. Washington, DC: Department of Defense, 1983. 505 p.
4. Styuart D. Rukovodstvo po kompozitam dlya aviakosmicheskoy promyshlennosti [Composites Guide for the Aerospace Industry]. Available at: https://www.twirpx.com/file/2019248/ (accessed: June 28, 2019).
5. DOT/FAA/AR-TN06/57. Best Practice in Adhesive-Bonded Structures and Repairs. U.S. Department of Transportation Federal Aviation Administration, 2007. 58 p.
6. DOT/FAA/AR-08/54. Guidelines for the Development of a Critical Composite Maintenance and Repair Issues Awareness Course. U.S. Department of Transportation Federal Aviation Administration, 2009. 240 p.
7. DOT/FAA/AR-00/47. Material Qualification and Equivalency for Polymer Matrix Composite Material Systems. U.S. Department of Transportation Federal Aviation Administration, 2001. 119 p.
8. DOT/FAA/AR-03/74. Bonded Repair of Aircraft Composite Sandwich Structures. U.S. Department of Transportation Federal Aviation Administration, 2004. 121 p.
9. Singh N.K., Rawat P., Singh K.K. Impact response of quasi-isotropic asymmetric carbon fabric/epoxy laminate infused with MWCNTs // Journal of Material Science. 2016. Vol. 2016. Article ID 7541468.
10. ASTM Standard D7137. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM International, 2012. 16 p.
11. Berketis K., Tzetzis D. The compression-after-impact strength of woven and non-crimp fabric reinforced composites subjected to long-term water immersion ageing // Journal of Material Science. 2010. Vol. 45. No. 20. P. 5611–5623.
12. Park H., Kong C. A study on low velocity impact damage evaluation and repair technique of small aircraft composite structure // Composites. Part A. 2011. Vol. 42. No. 9. P. 1179–1188.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoye stareniye kompozitsionnykh materialov aviatsionnogo naznacheniya. 1. Mekhanizmy stareniya [Climatic aging of composite materials for aviation purposes. 1. Aging mechanisms] // Deformatsiya i razrusheniye materialov. 2010. №11. S. 19–26.
14. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov YU.M. Tsentry dlya klimaticheskikh ispytaniy aviatsionnykh PKM [Centers for climate testing of aviation PCM] // Aviatsionnaya promyshlennost. 2009. №4. S. 36–46.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Startsev V.O., Panin S.V., Startsev O.V. Sorbtsiya i diffuziya vlagi v polimernykh kompozitnykh materialakh s udarnymi povrezhdeniyami [Moisture sorption and diffusion in polymer composite materials with impact damage] // Mekhanika kompozitnykh materialov. 2015. T. 51. №6. S. 1081–1094.
17. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.
18. Startsev V.O., Makhankov A.Yu., Panin S.V., Startsev O.V. i dr. Razrusheniye pri szhatii i vlagoperenos v polimernykh kompozitsionnykh materialakh s mekhanicheskimi povrezhdeniyami [Compression fracture and moisture transfer in polymer composite materials with mechanical damage] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №7. S. 2–81.
19. Gomez-del Rio T., Zaera R., Barbero E., Navarro C. Damage in CFRPs due to low velocity impact at low temperature // Composites. Part B. 2005. Vol. 36. No. 1. P. 41–50.
20. Perez A., Gil L., Oller S. Non-destructive testing evaluation of low velocity impact damage in carbon fiber-reinforced laminated composites // Ultragarsas (Ultrasound). 2011. Vol. 66 (2). P. 21–27.
21. Imielinska K., Guillaumat L. The effect of water immersion ageing on low-velocity impact behaviour of woven aramid–glass fibre/epoxy composites // Composites Science and Technology. 2004. Vol. 64. No. 13–14. P. 2271–2278.
22. Saito H., Kimpara I. Damage evolution behavior of CFRP laminates under post-impact fatigue with water absorption environment // Composites Science and Technology. 2009. Vol. 69. No 6. P. 847–855.
23. Aoki Y., Yamada K., Ishikawa T. Effect of hygrothermal condition on compression after impact strength of CFRP laminates // Composites Science and Technology. 2008. Vol. 68. No. 6. P. 1376–1383.
24. Panin S.V., Startsev V.O., Kurs M.G., Varchenko E.A. Razvitiye metodov klimaticheskikh ispytaniy materialov dlya mashinostroyeniya i stroitelstva v GTSKI VIAM im. G.V. Akimova [The development of climatic testing methods for materials for mechanical engineering and construction in the GSCT VIAM named after G.V. Akimov ] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №10. S. 50–61.
25. Startsev V.O. Klimaticheskaya stoykost polimernykh kompozitsionnykh materialov i zashchitnykh pokrytiy v umerenno-teplom klimate: dis. … d-ra tekhn. Nauk [Climatic resistance of polymer composite materials and protective coatings in a moderately warm climate: thesis, Dr. Sc. (Tech.)]. M.: VIAM, 2018. 308 s.
26. Startsev V.O., Ilichev A.V. Vliyaniye energii mekhanicheskogo udara na sorbtsiyu i diffuziyu vlagi v polimernykh kompozitsionnykh materialakh pri var'irovanii razmerov obraztsov [The effect of mechanical shock energy on the sorption and diffusion of moisture in polymer composite materials with varying sample sizes] // Mekhanika kompozitnykh materialov. 2018. T. 54. №2. S. 219–232.
27. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
28. Postnov V.I., Strelnikov S.V. Opyt vosstanovleniya ekspluatatsionnoy nadezhnosti aviatsionnykh konstruktsiy iz PKM [Experience in restoring the operational reliability of aircraft structures from PCM] // Remont, vosstanovleniye, modernizatsiya. 2014. №4. S. 12–19.
29. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
30. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
31. Vilents V.S., Andreyev S.V., Dementeva L.A. Remont sotovykh kleyenykh konstruktsiy iz kompozitsionnykh materialov [Repair of cellular glued structures made of composite materials] // Aviacionnye materialy i tehnologii. Vyp.: Remontnyye tekhnologii v aviastroyenii. 2002. S. 65–70.
32. Rumyantsev A.F., Gunyayev G.M., Uralskiy M.P. Tekhnologicheskiye defekty v polimernykh kompozitakh i stepen ikh opasnosti dlya rabotosposobnosti konstruktsiy iz ugleplastikov [Technological defects in polymer composites and the degree of their danger to the performance of carbon fiber structures] // Aviacionnye materialy i tehnologii. Vyp.: Remontnyye tekhnologii v aviastroyenii. 2012. S. 41–53.
33. Kulikov V.V., Petrova A.P. Analiz tipov defektov v kleyevykh soyedineniyakh aviatsionnoy tekhniki i ikh remont // Klei. Germetiki. Tekhnologii. 2011. №5. S. 24–27.
34. Murashov V.V., Rumyantsev A.F. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz PKM i metody ikh vyyavleniya. Ch. 1. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Defects of monolithic parts and multilayer PCM structures and methods for their detection. Part 1. Defects of monolithic parts and multilayer structures made of polymer composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–32.
35. Samolet An-124-100. Rukovodstvo po tekhnicheskoy ekspluatatsii 1.4001.0000.000.000 RE6 [Aircraft An-124-100. Technical Operation Manual 1.4001.0000.000.000]. Available at: http://www.aviadocs.net/RLE/An-124-100/CD1/RYE/An-124-100_RYE6.pdf (accessed: June 28, 2019).
36. Il-96-300. Rukovodstvo po tekhnicheskoy ekspluatatsii [IL-96-300. Technical Operation Manual]. Available at: http://www.aviadocs.net/RLE/IL-96-300/CD1/RTYE/IL-96-300_RTYE_kn2.pdf (accessed: June 28, 2019).
37. Frolov L.M. Voyskovoy remont aviatsionnoy tekhniki: ucheb. posobiye dlya inzhenerno-tekhnicheskogo sostava VVS [Military repair of aircraft: textbook. allowance for the engineering staff of the Air Force]. M.: Voyen. izd-vo, 1991. 479 s.
One of the main problems solved by designers in the development of high-speed aircraft is the task of protecting the airframe elements from high-temperature oxidative gas flow. First introduced during the creation of the head parts of the first long-range ballistic missiles, the problem was solved with the use of destructible heat protection materials, which are kind of washings and coatings. The lack of calculation methods for heat and mass transfer in heat protective materials left its mark, and the choice of the type of material, thickness and properties of the coatings was carried out with full-scale testing of the entire system with the whole, using the «launch» method.
The paper proposed a physical and mathematical model of heat and mass transfer in a destructive heat protective material, which is a quartz fiber impregnated with a silicone binder. Models take into account the temperature-time mode of heating a model sample, while on the side surfaces various boundary conditions can be realized: convective, radiation and incident heat fluxes or the condition of thermal insulation. Baseline data for modeling include both the geometric dimensions of the sample and the thermal physical (thermal conductivity, heat capacity, density) and kinetic (number of stages, pre-exponential factors, activation energies, exponents) characteristics of the material.
For modeling, the temperature dependences of the thermophysical characteristics of the material were determined experimentally using thermoanalytical equipment. In the MSC.Marc software package, a simulation of heat and mass transfer was carried out in a model material sample when descending from the Earth’s orbit along a model trajectory. The dependences of temperature and density fields on time were obtained. The depth of the destructed layer and the thickness of the layer in which the destruct
2. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Keramicheskiye materialy v aviatsionnom dvigatelestroyenii (obzor) [Ceramic materials in aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 06. Available at: http://www.viam-works.ru (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
3. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the «Buran». VIAM materials and technologies for the ISS «Energy – Buran» / gen. ed. E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
4. Polezhayev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. M.: Energiya, 1976. 392 s.
5. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
6. Kablov E.N., Petrushin N.V. Kompyuternyy metod konstruirovaniya liteynykh zharoprochnykh nikelevykh splavov [Computer method for designing casting heat-resistant nickel alloys] // Liteynyye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 56–78.
7. Barbotko S.L., Volnyy O.S., Shurkova E.N. Postroyeniye fenomenologicheskoy modeli, opisyvayushchey izmeneniye kharakteristiki goryuchesti (prodolzhitelnost ostatochnogo goreniya) v zavisimosti ot tolshchiny polimernogo materiala [Creation of the phenomenological model describing change of the characteristic of combustibility (duration of residual burning) depending on thickness of polymeric material] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 12. Available at: http://www.viam-works.ru (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2018-0-10-107-116.
8. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Postroyeniye matematicheskoy modeli i raschet temperatur obraztsov pri ispytaniyakh na ognestoykost [Creation of the mathematical model and calculation of sample temperatures at tests on fire resistance] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №7 (55). St. 12. Available at: http://www.viam-works.ru (accessed: June 17, 2019). DOI: 10.18577/2307-6046-2017-0-7-12-12.
9. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Raschetno-eksperimentalnye issledovaniya teplofizicheskikh svojstv [Computational and experimental investigations of thermophysical properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.
10. Dec J.A., Braun R.D., Lamb B. Ablative Thermal Response Analysis Using the Finite Element Method // Journal of Thermophysics and Heat Transfer. 2012. Vol. 26. No. 2. P. 201–212.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Barinov D.Ya., Prosuntsov P.V. Modelirovaniye teploperenosa v sloye razlagayushchegosya materiala teplozashchitnogo pokrytiya spuskayemogo apparata [Modeling of heat transfer in a layer of decaying material of a heat-protective coating of a descent vehicle] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2016. №6. C. 22–32. DOI: 10.18698/0236-3941-2016-6-22-32.
13. GOST 29127–91. Plastmassy. Termogravimetricheskiy analiz polimerov. Metod skanirovaniya po temperature [State Standard 29127–91. Plastics. Thermogravimetric analysis of polymers. Temperature scan method]. M.: Izd-vo standartov, 2004. 5 s.
14. ASTM E 1461–01. Standard Test Method for Thermal Diffusivity by the Flash Method. 2001. P. 1–13.
15. Blumm J., Opfermann J. Improvement of the mathematical modellind of flash measurements // High Temperatures – High pressures. 2002. Vol. 34. P. 515–521. DOI: 10.1068/htjr061.
16. GOST R 56754. Plastmassy. Differentsialnaya skaniruyushchaya kalorimetriya (DSK). Chast 4. Opredeleniye udelnoy teployemkosti [State Standard R 56754. Plastics. Differential Scanning Calorimetry (DSC). Part 4. Determination of specific heat capacity]. M.: Standartinform, 2016. 14 s.
17. GOST 4401–81. Atmosfera standartnaya. Parametry [State Standard 4401–81. The atmosphere is standard. Options]. M.: Izd-vo standartov, 1981. 180 s.
18. MSC.Marc Vol. A: Theory and User Information – MSC Software Corporation, 2013. 876 p.